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Remarks on the elliptic cohomology
of finite groups

By

Michimasa TANABE

1. Elliptic character
Let EIlI*(?) be the elliptic cohomology based on the Weierstrass cubic
V=4x*—gx—gs
over
El*=17[1/6](gz, g5, 47')(d=g3—2743)

(see [3], [11]). The coefficient ring Ell*= Ell*(pt) can be viewed as the ring
of modular forms on I'(1)=SLy(Z) over Z[1/6]. (The grading on E/l* is given
by —2Xweight.) In other words E/l* is the ring which represents the functor

{Z[1/6]-algebras A}—{isomorphism classes of I'(1)-test objects over A}
with universal test object
(Eunlv, CUumv) = (y2=4x3 — G2 X — g3, a’x/y),

where a I'(1)-test object over A means a pair (E, w) consisisting of an elliptic
curve E/A and a nowhere-vanishing invariant differential w on E (see [10,
Chapter II]). This identification is #atural in the sense that the formal group
law associated to EIl with canonical orientation is the formal group Eumv
associated to Eunv, with parameter T =—2x/y.

For n>2 let E:»€EIl**®Q be the Eisenstein series given by the g-
expansion

Ezn(q)=1 _(4 n/BZn) El O'Zn—I(k)qky

where

z/(e‘—1)=1—z/2+§1 B2n2®*/(2n)!
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and
O'n(k)zﬁ d”".

Then the Tate elliptic curve Tate(q) is given over Z[1/6]((q)) by
y2=4x3—%E4(Q)x +2—i6Es(q)

and there is a unique ring homomorphism
A Ell*—Z[1/6)((q))

classifying (Tate(q), dr/y). (This A is nothing but a g-expansion homomor-
phism which is injective.) Since the formal group associated to Tate(q),
viewed as Gn/q?% is canonically isomorphic to formal multiplicative group Gn
we have a canonical isomorphism of formal groups over Z[1/6]((¢)):

g: Gm—giA*Eunlv.

This isomorphism @ is actually a strict isomorphism of formal group laws,
where we take local parameter T =¢—1 for Gn=Spec Z[¢, ¢']. Therefore, by
using the theory of Landweber-Novikov operations, we have

Theorem 1.1 ([13]). There is a unique natural transformation of multi-
plicative cohomology theories on finite CW-complexes

AX): ENXX)—~K*(X)[1/6]((a))
such that :
(1) Alpt)=A.

(2) Let A(CP*)=lim, A(CP") and denote by x®* (vesp. x¥) the canowical
orientation for Ell (resp. K) then

ACP>)(x®)=0(x¥).
Here K*(?) is Z/(2)-graded complex K-theory.

The above A(?) is called elliptic character.

2. Modularity of elliptic character for finite groups

Let G be a finite group and BG be its classifying space. Since
lim' K*(BG:)=0 for a filtration {BG:} on BG consisting of finite subcomplexes
we have elliptic character

A(BG): Ell*(BG)—K*(BG)[1/6]((¢)).
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Using Atiyah’s isomorphism K*(BG)=R(G) ([1]), we have a natural ring
homomorphism

El*(BG)—R(G)[1/6]((q)),

where R(G) denotes the completion of the complex representation ring of G
at the ideal consisting of the virtual representations of dimension 0.

For a prime p let GL,={9EG: ¢*"=1, N>0}, R»,(G)=(R(G))5 and denote
by C, the completion of the algebraic closure of Q,. Then there is a character
map

Xp(G)i Ry(G)>Mapc(Gu,p, Cp)

which is a p-adic analogue of the usual group character (see [6]). Thus for a
prime »>5 (from now on we fix a prime p=5) we have a natural ring
homomorphism

A0(G) : Ell*(BG)—~Mape(Gup, Co((q)).

We shall study modularity property of this A,(G). Before stating our result we
give a brief account of p-adic theory of modular forms.

Let V(n)= V(Z,[&n], I'(1)) be the ring of I'(1)-generalized p-adic modu-
lar functions over B,=2Z,[ &), where & is a primitive p"-th root of unity (see
[10, Chapter V], [5, Chapter I]). The ring V(%) represents the functor

{p-adic B-algebras A}—{isomorphism classes of trivialized elliptic
curves over A}.

Here a p-adic Bnr-algebra means a Br-algebra which is complete Hausdorff in
its p-adic topology and a trivialized elliptic curve over A means a pair (E, ¢)
consisting of an elliptic curve E/A and a trivialization ¢ of it, i.e., an isomor-
phism of formal groups over A:

There is an obvious inclusion
V(n)=>V(n+1)

for every n=0.

The Tate curve Tate(q), viewed over Ba((g))=(B»((¢)))?, has a canonical
trivialization

Pcan— o' Wcm

Then evaluation on (Tate(q), @can) gives an injective g-expansion homomor-
phism

1 Vin)-Bal().
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For any a<€Z; and f< V(n) we define [a]f€ V(#n) by the formula
[alf(E, 9)=f(E, a”'9),

where ¢! acts on ¢ via an automorphism of G». This gives the action of Z;
on V(n). Let

V¥n)={feV(n): [alf=a*/(VaET})}
and

V¥ (n)=@V*(n),

where I ={aE€Z}: a=1(»")}). Note that there is an obvious inclusion
VHn)>VH¥(n+1)

since [p+1C 1.

Let dT/(1+ T) be the standard invariant differential on G». Then for
any trivialized elliptic curve (E, ¢) we have an invariant differential ¢*(dT"/
(14+T)) on E which uniquely extends to a nowhere vanishing invariant
differential on E. Thus for any /€ Ell** we get an element f € V%= V~*(0)
defined by

F(E, @)=A(E, ¢*(dT/(1+T))).
Therefore there is a ring homomorphism
Eli* >V

which preserves g-expansions and hence is injective. When we regard E/l* as
a subring of V via this homomorphism Euav @ V admits a trivialization @unw
given by

eunv( T)=expe. (logs... (T))E V[ T]].

For (Ewuwv ® V, dx/y) is clearly isomorphic to (E, ¢*(dT/(1+ T))) as
I'(1)-test objects for any universal trivialized elliptic curve (E, ¢) over V and

dx/y=d logs..(TXT=—2x/y)
and
e*(dT/(1+ T))=d loge. (e(T)).

Theorem 2.1. For any xEENI*(BG) and g=G of order p"* there is a
(necessarily unique) element f< V~=*(n) such that

[A(G)(2)](g)=F(Tate (q), Pecan).
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Proof. First consider the case G=Z/p"Z and g=g. (the canonical gener-
ator of Z/p"Z).
Let

fo=panLn—1)EpV ().
Then f» has weight —1 over I, i.e.,
HEPV(n)NV (n)=pV ! (n)
since, for any a€ I},
[alfa=[al(pian(&m—1))
=[al((exps... loge.) (& —1))
=(eXDlal. £ l0g6.)(Epn—1)
=((a™" expz. a) loge.)(£pn—1)
=a"'(expe... 10ge.) (& —1)
=a' fn.
Now the g-expansion of f, is given by
f(Take (q), @ean)=A(f2)
= A((expp... loga.)(£pn—1))
=(eXDiEuwn 1086.)(Epn—1)
=60(&n—1).
Therefore for any r=3)a.(x®™)" of degree 2% in
Ei*(BZ/p"Z)=Eu*[[x*])/([p"]2..(x")),
(A:(Z/ 9"2)(x))(gx) =221 M @) 0(xo(Z/ p"Z)(x*)) ) gn)
=20 Ma:) 6(Ln—1)*
=(Take (g), @ean)

for f=22; a:fi€ V~*(n). This proves the result for G=Z/p"Z and g= gn.
Now for a general G and g€ G of order p” there is a unique homomor-
phism

a: Z/p"7—-G

which sends g» to g. Hence for any x€ Ell**(BG)
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[4(G)(x))(9)=[2:(G)(x)] a(gn))
=[2(Z/p"Z)(a* 2)1(gn)
=f(Tate(q), Pean)

for some fE€ V*(n).

Remark 2.2. The above result asserts that every element in Im A,(G) is
p-adically Thompson series.

3. Relations between elliptic character and HKR character

Throughout this section we denote simply by E// the p-adic completion of
Ell. (Recal that p is a fixed prime=5.)

Let O, be the valuation ring of Cp and b, be the valuation ideal. Let m
be a maximal homogeneous ideal of Ell* (=Z,[g., gs, 47']) containing (,
E,-1) and choose a local homomorphism

¢: (Ell*)s— O ».

The restriction of ¢ on Ell* classifies an elliptic curve over O, whose mod p,
reduction is supersingular (see [18, Chapter V §§3-4] and [9, §§2.0-1]).

Theorem 3.1(7], [8], [6]. Let Gep={(g, K)EG?: [g, h]=1, g*"=h*"=1,
N>0}. Then there is a generalized character map

(EU)*(BG)y>Mape(Ge.p, Cp)
which extends to the isomorphism
(Elln/:)*(BG)®(EH"’:)‘CP_;)MapG(GZ,P’ Cp).

To relate the above character map to elliptic character we need to specify
an exponential isomorphism

(QP/ZP)Z_;—’Euniv(pp)tors

as described in [6]. This requires some facts about elliptic curves and modular
forms.

Let M*(n)=M*(Bn, I'(p")*"™) (resp. M*(n)=M*(B., [i(p")*"™)) be the
ring of I’'(p™)*™™ (resp. I(p")*"™)-modular forms over B,=Z,[ ] (see [10,
Chapter II]). These rings represent the functors

{Bg-algebras A}—{isomorphism classes of I'(p")*"*"-test objects over A}
and

{Bx-algebras A}—{isomorphism classes of I(p")*""-test objects over A}
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respectively. Here a I'(p")*™" (resp. I(p")*"*")-test object over A means a
triple (E, w, B) (resp. (E, w, ¢)) consisting of an elliptic curve E/A, a nowhere
vanishing invariant differential @ on E, and a I'(p")*"" (resp. I(p")*"")-
structure B (resp. ¢) on E which is an isomorphism (resp. inclusion) of
A-group schemes :

B: ponXZ/p"2>E[p"]
and
t: upn—=E[p"],

where E[p"] denotes the kernel of multiplication by p” on E.
For every #=0 there are natural inclusions, which do #nof preserve
g-expansions,

M*(n)>M*(n+1)
and
H(n)>M*(n)

since a I'(p")*"*™.structure B gives a I'(p"~")*"**.structure B|upn1 X pZ/p"Z and
a N(p")* " .structure B|upn. The first inclusion has the effect ¢ —¢” on the
g-expansions and the second one has the effect ¢ —¢?". There is also a
g-expansion preserving natural inclusion

)= M¥*(n+1)

which is compatible with the above ones.
Any trivialized elliptic curve (E, ¢) over A has a I(p")*""-structure
given by the trivialization

o upn: ppn>E[p"].

Therefore we have a I(p")*"*"-test object (E, ¢*(dT/(1+ T)), ¢~ !|upn) over A
and a g-expansion preserving ring homomorphism

M¥(n)— V*(n)

which is necessarily injective.
Let

B( n)unlv Do X Z/Pnz_z’(Eunlv ® M*(n))[l)n]

be a universal I'(p")*""*-structure. Let El/*(%) be the integral closure of E//*
in M*(n) (M*(n)[1/p] is itself integral over E//* [1/p]), m, be a maximal ideal
of Ell*(n) containing mE!/*(n), and fi,=m(El*(xn))n.. Then the isomor-
phism
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(Z/$"2)*> Eunns[6")(M*(n)

given by
(@, b) = B(1)unv(&in, b)

induces an isomorphism
B (2 5"2) Buna 51(1r)

since Eunv® Ell*/m is supersingular (cf. [18, Theorem V.3.1 and Proposition
VII.2.2]). Here we may assume that

@umv(a, 0) = ¢Jr%lv( Cffn - 1)( V an/an)

Therefore we have an exponential isomorphism given by

)

(a, 8) = FBEMu(s"a, "0)( ¥ (a, B)=(

and the generalized character map factors as
(ElI3)*(BG)—Mapo(Gap, EU*(%3))—Mapo(Gas, C),
where ElI*(o0)=UEll*(n)p, and
J: m—’@o

is an extension of ¢. (We assume that m,DOm, 1 El*(n)(V n=1).)
Let

106(G): EN*(BG)—Mapo(Ga,p, EUI(3))
denote the composition
El*(BG)—(ElN*(BG)>Mapc(Gz,p, Ell*(0)).

Theorem 3.2. For any xS EI*(BG) and 9= G of ovder p", x.(x)(g, 1)
lies in (EI*(n) N\ M¥(n)p(=>V(n)) and

A(z)(9) =[x2.0(x)(g, D](Tate(q), @ecan).

Proof. By using naturality, as in the proof of 2.1, it is enough to show the
result for G=Z/p"Z and g=g». By the construction of HKR character and our
choice of an exponential isomorphism, for any x=2>!: a:(x®)'€El*(BZ/
1"7),

22.6(x)(gn, 1)=20; ai@unlv(l, 0)!
=3 a:pai( Eon—1)¢
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221' aff r§
Therefore we have

Ao(2)(gn)= x2.0(x)(gn, 1)(Tate(q), @can).

Remark 3.3. The above relations between A, and x.,» are analogous to

relations between moonshine and generalized moonshine.

(3]
[4]

[5]
(6]

(7]
(8]
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