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Measure-valued branching diffusions:
immigrations, excursions and
limit theorems

By

Zenghu L1 and Tokuzo SHIGA

1. Introduction

Measure-valued branching diffusion processes (MBD processes) have been
extensively studied concerning various problems such as ergodic behaviors
[2], [17], sample path properties [4], [24], historical processes [5], [9], entrance
laws [7] and so on.

In the present paper we focus upon the immigration structure of the MBD
process and discuss the following problems: The first is to characterize the
immigration structure associated with a given MBD process. We do this by
establishing a one to one correspondence between immigration diffusion processes
of the MBD process and entrance laws of its basic Markov process. The
immigration process is ordinarily determined by an immigration measure
supported by the state space of the basic process. However, when the basic
process is an absorbing Brownian motion in a smooth domain (in this case we
call the associated MBD process a super absorbing Brownian motion or simply
a super ABM following Dynkin), the immigration structure consists of two parts,
one is a measure supported by the interior domain and the other is a measure
supported by the boundary. In particular, the latter one involves excursions of
the absorbing Brownian motion from the boundary.

Secondly we discuss the immigration diffusion process of the super ABM
over (0, o0), for which we derive a stochastic partial differential equation (an
SPDE). When the immigration measure has compact support, so does the
immigration process. We shall present a limit theorem for the range of the
immigration process.

The third one is to discuss central limit theorems of immigration
processes. Assuming that the basic Markov process is a Lévy process in RY,
one can observe a “clustering-diffusive dichotomy” in the central limit
theorems. More precisely, if the symmetrization of the basic process is recurrent,
then the limiting Gaussian field is spatially uniform, while if the symmetrization
is transient, the limiting Gaussian field is spatially fluctuating.

We remark that Dynkin [7] obtained a characterization of entrance laws of
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234 Measure-valued branching diffusions

the MBD processes in terms of entrance laws of the basic spatial Markov
processes. Our first result may be regarded as an extention of Dynkin’s result
to the immigration processes. We mention also [21], [22] where are discussed
the law of large numbers for immigration processes and the convergence from
particle systems.

1.1. MBD processes. Given a locally compact seperable topological space
S, let Cy(S) be the Banach space of continuous functions vanishing at infinity
equipped with the supremum norm. Note that if S is compact, Cy(S) coincides
with C(S), the totality of continuous functions on S. Let Mg(S) denote the
space of finite Borel measures on S equipped with the topology of weak
convergence. Throughout this paper we use u(f) to denote the integral of the
function f relative to the measure p.

Let (T;),», be a strongly continuous conservative Feller semigroup on C,(S),
and let A be the strong generator of (T;) defined on D(4) = Cy(S). Let C([0, o0),
Mg(S)) be the space of all continuous paths from [0, c0) to Mg(S) with the
coordinate process denoted by (w,),»o and the natural filtration (¢4, 4,). To every
pe Mg(S) there corresponds a unique probability measure P, on C([0, o0), M(S))
such that for each fe D(4),

t

(1.1) M,(f):=w(f) — u(f) — J wi(Af)ds, t>0,

0

is a (%,)-martingale starting at 0 with quadratic variation process

t

(1.2) M) = J wi(f?ds, t=0.

0

The probability measure P, is the distribution on C[(0, c0), M(S)) of the MBD
process (X,, P,) driven by (T,) with state space M(S). See [11] or [27] for the
above results.

In this paper we do not assume the conservativeness of the basic driving
semigroup (T,). We shall discuss the MBD processes in a broader state spacce

rather than M(S), which is formulated by introducing a reference function given
by

Condition [A]. There are a bounded strictly positive function pe D(A) and
a constant ¢ > 0 such that T)p < c¢p for all 0 <t < 1.

Let M ,(S) denote the space of Borel measures yu on S satisfying pu(p) < oo,
and denote by C,(S) the space of continuous functions feCy(S) such that
|f] < const.p. We equip M,(S) with the following topology: u, — u in M(S) if
and only if u,(f)— u(f) for all feC,(S). Under the condition [A], the state
space of the MBD process can be enlarged to M,(S). In this case the MBD
process is characterized by a martingale problem on space C([0, o), M,(S)), the
M (S))-valued continuous path space; see e.g. [20]. The MBD process can also



Zenghu Li and Tokuzo Shiga 235

be characterized by the Laplace functional of its transition law: Let C,(9*
denote the subspace of non-negative elements of C,(S). Then

(1.3) P exp{— X.(N)} =exp{—u(Kf)}. feC,9)",

where P, denotes the conditional expectation given X, = u, and ¥ f is the mild
solution of the evolution equation

v
ot

—Ayf - %(l{f)z,
(1.4)

Wbf=/f

More precisely, ¥, f is the unique bounded positive solution of the integral equation

t

(1.5) Wf=Tf- %f T [(Kf)1ds, 120, feC,(5)".
0
We here introduce some further notations for later use. C,(S) stands for
the subspace of C,(S) whose elements have compact supports. If S=D is a
smooth domain in the d-dimensional Euclidean space R?, we use the superscript
‘m’> to indicate the order of continuous differentiability, e.g., C;(ﬁ)*,C,f(D).
2RY = C*(RY, and 2'(RY) is the space of Schwartz distributions on R?.

1.2. Immigration processes. Let an MBD process (X,, P,) be fixed.
Following [19] and [30], we introduce the notion of an immigraion process.

Definition 1.1. An M (S)-valued diffusion process (Y,, Q,) is called an
immigration diffusion process of the MBD process (X,, P,) if (¥}),,, under Q,
and (X, + Y)),., under P, x Q, have identical laws in C([0, c0), M ,(S)) for every
pne M, (S).

By Definition 1.1, the transition law {Q,: ue M,(S)} is uniquely determined
by {P,: ue M,(S)} and Q,. In the sequel, we call (Y,, Q,) simply an immigration
process of (X,, P,) instead of an immigration diffusion process since we are only
concerned with diffusion processes in this paper. Furthermore we impose the
following technical condition:

Condition [M1]. The first moment Q,{Y,(p)} is finite for every ¢t > 0.

Definition 1.2. A family of o-finite measures (x,),», on S is called a locally
p-integrable entrance law of (T}) if k,,, = k, T, for all r, t > 0, and if the integral
Joxs(p)ds is finite for all > 0.

It is easy to check by equation (1.5) that for a locally p-integrable entrance
law (x,) of (T,), we have

Ko+ (Kf)i= lim K,(Kf)
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(1.6) ,
=k(f) — %J Kos(Kf))ds, >0, feCy(S)".
0

In particular, if (k) has the form k, = mT, for some measure me M, (S), where
pr= j(l) T,pds, then ko (K f) = m(¥Kf).

Our first result establishes a one to one correspondence between the
immigration processes of a given MBD process and the entrance laws of its basic
semigroup.

Theorem 1.1. If (Y,, Q,) is an immigration process of the MBD process
(X,, P,) satisfying [M1], then there exists a unique locally p-integrable entrance
law (k) of (T,) such that

t

Q.exp{— Yi(/)} = CXP{—#(W)—j

0

K0+(Kf)d8},
(1.7)

t>0, feC,(S)", ueM,(S).

Conversely, for each locally p-integrable entrance law (k) of (T,), there is a unique
immigration process (Y,, Q,) of (X,, P,) such that (1.7) and [M1] are fulfilled.

Next we give a martingale characterization to the immigration process. Let
D,(A)={feD(A): f, AfeC,S)}. By Lemma 2.5 of the section 2, the limit
Ko+ (f):=1lim . K (f) exists for all feD,(4). Recall the notion of martingale
measure from [31]. Then we obtain

Theorem 1.2. Let (Y,, Q,) denote the immigration process associated with the
locally p-integrable entrance law (x,) given by (1.7). Then there is a unique
orthogonal martingale measure M (dsdx) on [0, 0c0) x S having quadratic variation
measure (M) (dsdx) = dsY,(dx) such that

(1.8)  Y(N)-Yo(f)= f [Y{(AS) + Ko (f)]ds + f j f(x)M(dsdx), feD,(A).
0 0JsS

Moreover it holds that

t t

(1.9)  Yi(f) - Yo(Tf) =J

0

ks(f)ds+J

(4]

J T, f(x)M(dsdx), feC,(S).
s

1.3. Excursion laws of MBD processes. In this paragraph we present some
construction of the immigration process by integration of excusion paths by

means of Poisson random measures, which has been developed in [29]. It was
shown in [7] that for a locally p-integrable entrance law (x,) of (T}),

(1.10) J (1 —e"N)K,(dv) = ko (Kf),  feC,(S),
M ,(S\(0)

defines an entrance law (K)),, of the MBD process (X,, P,). By a general theory
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of Markov processes, there is a o-finite measure Py on W,,’r (8):= C((0, 00), M,(S))
such that under Py the coordinate spocess (w,),»o is a Markov process with the
same transition law as (X,, P,) and one-dimensional marginal distributions
(K/);»o. Indeed, it holds that for Pg-almost all we W,*(S), w,»0 as t - 0" and
w, =0 for all t > ag(w):=inf {t > 0: w, =0} (cf. (3.5)).

Let N (dsdw) be a Poisson random measure on [0, c0) x W,"(S) with intensity
ds x Pg(dw). Define a measure-valued process (Y,),5o by

t
(1.11) Y, = j j w,_ N (dsdw).
o Jwis)
Theorem 1.3. The process (Y,),5 defined by (1.11) is an M o(S)-valued diffusion
that is equivalent to the immigration process with initial value O and the transition
Sfunction given by (1.7).

In order to obtain a more explicit form of the right hand side of (1.7), let
us consider the following condition.

Condition [E]. Every locally p-integrable entrance law (x,) of (T;) has the
form x, = mT,, t > 0, for some measure me M, (S).

We remark that the condition [E] is satisfied in the following two cases:

(i) (T,) is conservative ad p is a positive constant function;

(i) (T,) is the semigroup of a Brownian motion in R? and p is a positive
C2-function on R? satisfying p(x) = e~ !*! for |x|> I.

By Theorem 1.1, under the condition [E], (Y,, Q,) is an immigration process
of the MBD process if and only if there is some measure me M, (S) such that

t

Q. exp {— Yi(/)} =€Xp{—u(Vf)—f

0o

M(Kf)dS},
(1.12)

t>0, feC,(S)", ueM,(S).

It would be intuitively plausible that the immigration measure m appearing
in (1.12) gives the distribution of the location where the immigrants enter. To
justify this intuition we introduce a space of excursion paths of the MBD process
and discuss some excursion laws on this space. Let xeS be fixed. We call
we C([0, 00), M(S)) an Mg(S)-valued excursion starting at x if

(i) wy=0, a(w)>0 and w, =0 for all t > a(w),

() w() 'w,—>3d, as t>0".

Let WS(S) be the totality of excursion paths starting at x, and let W¢(S) =
Uxes WE(S). (¥4, 9,) stands for the natural filtration of W*¢(S). We then have some
excursion laws on W*(S):

Theorem 1.4. There is a unique family of o-finite measure kernels {A*(dw)}
on (We(S), 9) such that
(i) xv>A* is continuous;
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(ii) AT is supported by WZ(S);

(i) A*[w,(1)]—>1 as t >0"; and

(iv) (WS), %4, %,, w,, A%),»¢ is a Markov process with the same transition
laws as the MBD process X.

Let N(dt, d(x, w)) be a Poisson point process on S ® Wes):= {(x, w): xeS8,
we Wg(S)} with characteristic measure m(dx)A*(dw). Set

t
(1.13) Y, = J J w,_,N(ds, d(x, w)).

0 JSeWe(s)
The intuitive meaning of the expression (1.13) is quite clear. At each occurrence
time of the Poisson point process, an (x, w) is chosen randomly according to the
measure m(dx)A*(dw), so w is an excursion path starting at x, after that this
path grows up as a path of the MBD process. Summing up all those excursion
paths we get the immigration process:

Corollary 1.5. The process (Y,),, defined by (1.13) is a diffusion realization
of the immigration process with initial value 0 and the transition function given
by (1.12).

1.4. Super absorbing Brownian metions. In this paragraph, we let (T,) be
the transition semigroup of an absorbing Brownian motion in a smooth domain
D. In this case (T,) does not satisfy the condition [E], unless D = R?. Indeed
for each xedD there corresponds an extremal entrance law (k}) defined by

(1.14) ki(f)=DTf(x), feCo(D)nC'(D),

0 . o
where D:= on denotes the inward normal derivative operator at the boundary.
n

(It is known that T, fe Co(D)nC*(D) for fe Co(D)nC' (D), e.g. [13], p. 65, so that
(1.14) is well defined.) In this case the condition [E] is replaced by

Lemma 1.1. Suppose either of the following two conditions:

(i) D is bounded,;

(i) D=H*"={(x;,,x)€R": x; >0} and p(x) = p;(x,)p2(x2) + p2(x,), where
p1€C2((0, ©))** such that p,(x)=x for 0<x <1 and =e™* for x> 2, and
p,€CER)* ™ such that p,(x) =e ™! for |x| > 1.

Then every locally p-integrable entrance law (x,) of T, has representation

(1.15) K, = mT, +j I(dx)K
oD

for some me M, (D) and le M (D).
By virtue of Theorem 1.1 we have

Theorem 1.6. Suppose that either of the two conditions of Lemma 1.1 is
fulfilled. Then (Y,, Q,) is an immigration process of X satisfying [M1], if and
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only if

Q,exp {— Y/(f)} =exp {— p¥f) — f [m(¥%f) + (DY f)] dS},
0
(1.16)

t >0, pe M, (D), feC(D),
Sfor some meM, (D) and le M(0D).

1.5. An SPDE for an immigration process of the super ABM over (0, ©).
Applying Theorem 1.6 to D = (0, o) we see that every immigration process
(Y., Q,) of the super ABM on (0, ) is expressed by

Q,exp {— Y/(f)} = exp {— uw¥f) — f [m(¥.f) + cDg Kf]dS},
0
(1.17)

t20, pe M,((0, o)), f€((0, )),

0
for some me M, ((0, c0)) and ¢ > 0, where Dy ¥, f = o ¥ f(0*%). Recall that the
X

reference function p e C3((0, o)) has been chosen such that p(x) = x for 0 < x < 1
and =e™* for x >2. Then it indeed holds that M, (0, ©)) = M,((0, c0)). It
is well-known that the sample path of the super Brownian motion over R has
a continuous density, which solves an SPDE, cf. [20]. One should expect

analogous results for the immigration process of the super ABM over
(0, 00). Here we obtain

Theorem 1.7. Let (Y,, Q,) be an immigration process of the super ABM defined
by (1.17). Then there exists a continuous two parameter process Y,(x), (t, x)e(0, c0)
% (0, ) such that Y/(dx) = Y,(x)dx and Y,(0%)=2c for all t>0 Q,-almost
surely. Moreover the density process Y,(x) solves the following SPDE:

(1.18) —Y(x JY0) Wx) + — A*Y() (

where V'I{(x) is a time-space white noise, A* denotes the adjoint operator of the
Laplacian in (0, o) with Dirichlet boundary condition at 0, and 8|, is the derivative
of the Dirac 6-function with test functions C ([0, 00)):= {fe C*([0, 00)): f(0) =
and supp (f) is bounded}. More precisely, the equation (1.18) should be understood
in the sense of distribution, i.e.

r Y,(x)ﬂx)dx—j wf(X)Yo(dx)=f f S0 () W (x)dsdx
0

0

(1.19) o e
+3 J J Y,(x) " (x)dsdx + tm(f) + ctf'(0)
0JO

Jor every feC2 ([0, ©)).
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1.6. A limit theorem for the range of the immigration process of the super
ABM over (0, c0). It is well-known that a super Brownian motion over R? has
compact support property and the distribution of the total range up to extinction
can be seeked explicitly, cf [18]. We here present a limit theorem for the range
up to time t for the immigration process of the super ABM as t— oo. For
peM,((0, 0)), S(u) stands for the support of p.

Theorem 1.8. Let (Y,, Q,) denote an immigration process given by (1.17).
Then S(Y,) is bounded for all t >0 Q,-almost surely if and only if both S(u) and
S(m) are bounded. In this case, let R, denote the range of (Y,) up to time t >0,
ie., R,=Uo<s<:S(X,), and let R,=sup {x > 0: xeR,}. Then t™ '*R, converges
in distribution as t — oo, and the limit distribution is the so-called Fréchet distribution
(cf. [14]) given by F(z) =e "> ’(z > 0), where

_L r1/3)r(y/e) 3< J“" )
(1.20) y = T <—F(1/2) ) c+ . xm(dx) |.

1.7. Clustering-diffusive dichotomy in the central limit theorems for immigra-
tion processes. In this paragraph, we assume that (T;) is the transition semigroup
of an irreducible Lévy process in R? acting on Cy(R%). We fix a >0 and a
nontrivial function ¢ € C (RY)*. Define the reference function p by

(1.21) p(x) = Ggo(x):= J e P T, ¢(x)dt.

0
It is obvious tht p satisfies the condition [A], so we have an MBD process X
associated with (T;), which we shall call a super Lévy process.

Let (Y;, Q,) be an immigration process of the super Lévy process X given by
(1.12). We are here concerned with central limit theorems for this immigration
process. These provide us a new example of “clustering diffusive dichotomy”
since the recurrence of symmetrition of the basic process yields spatial uniformity,
while the transience yields spatial fluctuation. The dichotomy phenomenon is
often observed in the study of interacting particle systems, cf. [15], [23], etc. We
first assume

(1.22) m = cA, (c > 0. A = Lebesgue measure on RY)
Theorem 1.9. i) If the symmetrized Lévy process is transient, then the

distribution of

(1.23) Z,:=

t >0,

under Q, converges as t — oo to that of a centered Gaussian field Z over RY with
covariance functional:

(1.24) Cov (Z(f), Z(g)) = gufa‘g), f. ge DR,
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where G is the potential operator of the symmetrized Lévy process.
iiy If the symmetrized Lévy process is recurrent, there exists an h(t) such
that t~*h(t) > o0 as t — oo, and the distribution of
Y, —tm
(1.25) Z,.= - , t >0,
h(t)

under Q, converges as t— oo to that of n-A, where n is a centered Gaussian
random variable with variance c.

In Theorem 1.9 we assumed (1.22), which makes the proof extremely simple
since m is an invariant measure of the basic Markov process. However, the
dichotomy result does not really depend on the immigration measure. Next we
consider a more general immigration measure in the case where (T;) is a Brownian
semigroup. Assume that

(1.26) m(dx) = y(x)A(dx),
where y is a locally bounded measurable function satisfying

(1.27) ,11.12 r~2%y(rx) = a(x)

uniformly in xeS? ':= {xeR?: |x| =1} for a constant « >0 and a nontrivial
continuous function a on $~'. Let Ag denote the surface element of S9! for
d>2 and Ag=0, +06_, for d=1. Then Ag(1) =2n*?I(d/2)"*'. Define the
constants ¢;,d =1, 2,---, by

r 1 !
_ret1/2 f ro122 - rpdrista)  for d=1,

4=

2o+ 3) Jo
oa—2
(1.28) X TeED ) for d=2,
o+ 1)
2tp
- stm) for d> 3.
(1 + o)
Let

h(M) = ¢, M**3/2  for d =1,
(1.29) =c,M**'log M for d =2,
=c,M*t! for d > 3.

Normalizing (Y,), we define a centered 2'(R“)-valued process

M
Y,M—j mT,ds
° ., M>0,t>0.

V h(M)

(1.30) zZM
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Then we have our second central limit theorem as follows.

Theorem 1.10. As M — oo, any finite dimensional distributions of (Z*),,,
under Q, converge to those of the 9'(R)-valued centered Gaussian process (Z,),»
that is characterized by

i) ford=1,Z, =n,A where (n,),, is a continuous centered Gaussian process
with covariance Engn, = (s, t), where k(t, t) = 1t**3/2 t > 0 and

+1

Wt — s + s(2 — vyuv]*
1.31 K(s, t) = ys2@+D dudv, t>s5>0;
(1.31) (s 0=7 JJ (t — s + 2sup)*t1/2 ’

with

1 -1
(1.32) y=2"32Q0 + 3)<f rol22 — r)"dr) ;
0
iiy for d =2, Z, = n,A, where (n,) are independent centered Gaussian random
variables with En} = $t**1;
iiiy for d >3, (Z) are independent 9'(R%-valued centered Gaussian random
variables with

at1

(1.33) Cov(Z,(f). Z2,9) = A(fGg), f geDR),

where G denotes the potential operator of the Brownian motion.

Finally let us remark that in the special case « =0 and a(x) = 1, we have

(1.34) ¢y =

4 ford=1,=Lf0rd=2,=1f0rd23,
3 /7 2n
and (1.31) turns into

(1.35) K(s, t) = ? [(t+5)3*2—(t—s)?*—3s/t — 5], t>s>0.

The rest of the paper is organized as follows: Section 2 contains the proofs
of Theorems 1.1 and 1.2. The proofs of Theorems 1.3, 1.4 and Corollary 1.5 are
given in Section 3. Super ABMs are discussed in Section 4, where the proofs
of Lemma 1.1 and Theores 1.6 through 1.8 are given. Theorems 1.9 and 1.10
are proved in Section 5.

2. Immigration processes
For an immigration process Y = (Y,, Q,) given by Definition 1.1, we set

@1 J(f)= —logQo{exp — Y,(f)}, feC,9".
For a o-finite measure K supported by M,(S)\ {0}, we define a modification of



Zenghu Li and Tokuzo Shiga 243

the Laplace functional as in [7],

22) Ry(f) = J (1 —e*)K(dv),

M, (S)\{0}

under a subsidiary condition

2.3) j I Av(p)K(dv) < c0.
M, (S)\(0)

Let S:= SuU{4} denote the one point compactification of S if it is not compact,
and let S =S if it is compact. Denote by C(S)** the space of strictly positive
continuous functions on S. Choose a countable dense subset C of C(S)**
containing all constant functions of positive integers, and let H = {gp: geC}. It
follows from Lemmas 2.1-2.4 below that any immigration process of the MBD
process satisfying the condition [M1] is characterized by formula (1.7), which
proves the former part of our Theorem 1.1. The converse assertion in Theorem
1.1 is a consequence of Theorem 1.3, which will be proved in section 3. The
following Lemma 2.1 is a modification of Lemma 2.3 of [7], of which proof is
omitted since it is quite similar to the one given in [7].

Lemma 2.1. Suppose that K,,n=1, 2,---, is a sequence of o-finite measures
on M,(S)\ {0} satisfying (2.3). If

24 Rk (f)-R(f), feH,
and if
(2.5) li}"rl jonfR(p/n) =0 and lizrl gonfR(np)/n =0,

then there exists a unique o-finite measure K on M ,(S)\ {0} satisfying (2.3) such
that Ry (f)= R(f) for all feH.

Lemma 2.2. Suppose that Y = (Y,, Q,) is an immigration process of the MBD
process, and that J,(f) is given by (2.1). Then there is a family of non-negative
Sunctionals (1) on C,(S)* such that

(2.6) J(f) = f ' I(f)ds, feC,(S)*, t>0.
0

Proof. The Chapman-Kolmogorov equation implies that
27 oo ) =T+ L (Kf), feC,(8)",rt=0.

Then for every fe C,(S)*, J,(f) is non-decreasing in t > 0. Fix M > 0 and choose
a constant ¢ such that T,p<cp for all 0<t<M. Let 0<c¢, <d, <c,<
d;<--<c¢,<d, <M, and let a(n)=)Y;_,(d. —c;). Using (2.7) one can show
by induction that
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2.8) ki [ () — T ()] < Jyon(cp).
=1

Because, for n =1 (2.8) follows from (2.7). Assuming that it is true for n — 1,
by (2.7) we have

> Walf) — o)

< Jom-nylep) + Iy (f) = J., (f)
< Jow-1)(cp) + Jay e, Vo Hlcp))
< Ja(n)(cp)v

which proves (2.8) for all n > 1. By Definition 1.1, Y,(cp) - 0 as t - 0 Q,-almost
surely. Thus by (2.1),

(2.9 J(cp) >0 as t—0".

Then the absolute continuity of J,(f) in t > 0 follows by (2.8) and (2.9).

Lemma 2.3. Under the condition on Lemma 2.2, there is a family of o-finite
measures (K,),»o supported by M ,(S)\ {0} such that

t
210) J(f) = J ds J (1 — e M)K,(dv), feC,(S)*, t>0,
0 M (5)\{0}
and that
(2.11) J K. (dpwP, (X, edv) =K, (dv), r,t>0.
M (5)\{0}

Proof. By Lemma 2.2, there is a null set N = (0, oo) such that for all se N¢
and feH,

Is(f) = ,—l—i»l(I)]* r_l[Js+r(f) - Js(f)]

= lim r™'[1 —exp {— J,(K)}].

m,
Setting
KO(dv) = r 1 Qo {Py (X,edv)},
we get
I(/) = lim f (1= exp {= V() K{(dv).
0" Jmpenio

Since lim,., J,(p/n) =0 by (2.1), we can enlarge the Lebesgue null set N and
assume lim,_  I,(p/n) =0 for all se N°®. By Jensen’s inequality, for 0 < é < t,
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(2.12) j I(f)ds = Js(V-5f) < Qo{Ys(V_5/)}-
F

It is easy to see that lim,_ n~ ! ¥(np) = 0, so applying the dominated convergence
theorem together with Fatou’s lemma to (2.12) we see that,

t t
J lim inf n~* I (np)ds < lim infj n~'I(np)ds = 0.
5 n— oo n—ao

o

Thus Lemma 2.1 is applicable to I, for almost every s>0, and J, has
representation (2.10). Now (2.7) implies that for r,t >0 and fe Cp(S)+,

J ds j (1 —e ") K, ,(dv)
0 M, (S)\{0}

= J ds[ (1 —e "W K (dv).
0 JM.N\0

By Fubini’s theorem there are null subsets N and N(s) of (0, co) such that
2.13) f (1 —eU)K,, (dv) = J (1 — e ) K (dv)
M, (S)\(0} M p(SH\{0}

for all seN,teN(s) and feH. For feC,(S)", the right side of (2.13) is
continuous in t, so we can modify the definition of (K,),», to make (2.11) be
satisfied.

Lemma 2.4. Under the condition of Lemma 2.2, (J,) has the representation
(2.14) Ji(f) =J Ko+ (K f)ds,
0

where (k,) is a locally p-integrable entrance law of the basic process (T).

Proof. Combining (2.1) and (2.10) we get

t

(2.15)  Q,{exp — Y,(f)} =exp {— wVf) — J de (1—e¥) Ks(dV)}-
0 M, (SH){0}
By Theorem 1.3 of [7], the above (K,) can be expressed as follows.

(2.16) f (1 —e D) K, (dv) = Ko+ (Vf) + j(l —e ") F(dy),
M, (S)\(0}

where (k,) is a locally p-integrable entrance law of (T;) and F is a o-finite measure
on the set of locally p-integrable entrance laws of (T;). We shall see that the
diffusion assumption on Y forces F =0. It follows from (2.15), (2.16) and the
condition [M1] that for each t >0 and feC,(S)",

Qo {Y(f)} = J dsj V(f)K(dv)
o JMeN0
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(2.17) t
= j [Ks(f )+ Jns(f )F (dn)] ds < co.

0

Fix a > 0, and notice that ¢:= T,pe D(4). Using the condition [A] one sees

s—0*t

lim J (1 —e ") K (dv) = ko (¢) + j(l — e ™) F(dn)
(218) M (S)\{0}

= i,(p) + f(l — e ™®)F(dn) < co.

Now we claim that

' 1
e Vo) _ g Yo) _ J e'““”[h(— A + 5 ¢2> - Ko+(¢)]d5
0

t
+ j ds fe—Ys(¢)(1 _ e""’*“”’)F(dn)

0

(2.19)

is a Q,martingale. To see this it is enough to prove that for each
Gea{Y,: 0<s<r}, Q,{lge” '@} is a differentiable function of ¢ with continuous
derivative

Q,,{IG[Y,<— A + %d)’) — Ko+ (#) — J(l - e""’*“”)F(dn)]e‘YtW},

By Markov property and (2.15),

Qﬂ {lGe—Y:(d»)}

= QM{IG exp {— Y.(V_.¢) - r—r ds j (1- e_VW))Ks(dv)}}
0 M, (S)\(0)

is continuously differentiable as a function of t, so it suffices to calculate the
right derivative:

(2.20)

lim 571Q, {1g[e ™" @ — 7Y@}

= El—i.rg)+ B_IQ” {lc[e_yl(Vad') _ e"’z(&b)]}

+ lirgl s‘‘Qu{lGe“"(V“"’l:exp{—Jv dsf(l — e‘"“"’)Ks(dv)} - 1}}
e—0t o

Then (2.18) and the dominated convergence theorem yields the desired result.
If Y,(¢) is continuous, then by applying 1td’s formula to (e~ Y**)? = ¢~ 2¥+@
one sees that the martingale (2.19) has quadratic variation process
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J e—ZY.s(as)l:Ys(d,Z) + j(l — Qe Mo+ 4 c_z"°*("”)F(d11):| ds.
0

Using It6’s formula again one sees,

e 3@ _ o~ 3Y009)

t
(2.21) = martingale + 3J
0

e-sys(.»)[ys(_ A + %¢,2> + x0+(¢)]ds

+ 3[1 dsje—3Ys(¢)(e—2ﬂo+(¢) — e ™ @) F(dy).
0
Comparing (2.19) and (2.21) we see the increasing process
t
J ds Je‘”“"”(l —e ™ @3 Fdy), >0,

0
is a continuous martingale, which forces F = 0.
Next we proceed to the proof of Theorem 1.2 which gives a martingale

characterization for the immigration process. The following two simple properties
of the set D,(4) will be useful.

Lemma 25. i) For each feD,(A), the the limit Kk, (f)=1lim, - K,(f)
exists.

iiy For each feC,(S) there is a sequence {f,} in D,(A) such tht p~'f,
converges as n— oo to p~'f boundedly and pointwise.

Proof. 1) Let a >0 be large enough so that
(2.22) T,p <¢e*p for 0<t<1.
For feD,(A) let h=oaf— Af. Then we have

(2.23) f= f e~ * T, hds.
0

Using (2.22) and (2.23) one sees easily

o0

(2.24) tl_i.rg{ K(f) = J e~ *K,(h)ds < 0.

0

i) For any feC,(S) one can check that f,:=n _f’(')_lTs fds satisfies the
requirements.

Proof of Theorem 1.2. As in the proof of Lemma 2.4, for feD,(4)*,

e—ys(f)I:Ys<_ Af + %f2> _ KO+(f)]ds

t
(225)  N,(f):=e Y) — g=Yoih _ J

0

is a martingale with quadratic variation process
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(2.26) (NP = Jl e DY (f?)ds.
0
Then
(2.27) M,(f):= Y(f) = Yo(f) —J [Y,(Af) + ko (f)]ds

is a martingale with quadratic variation process

t
(2.28) M), =j Y(f?)ds.

0
Note that for feC,(S)*, there is a sequence {f,} from D,(4)* such that
p 'f,— p~'f pointwise and boundedly as n— co. In view of this fact together
with (2.27) and (2.28), there exists a unique orthogonal martingale measure
M (dsdx) such that

t

Mz(f)zj‘

0

j f(x)M(dsdx),  feC,(S),
S
and that

(M(f), M(g)>, =J Y(fg)ds,  f, geC,(S),

0

so (1.8) holds. Next we prove (1.9). To simplify the presentation we assume
Y, =0, since modifications to the general situation are trivial. A routine
computation based on (1.7) shows that for any ¢t >0 and f, geC,(S)*,

(229) QYN = w(Tf) + f e(f)ds,
0
Qo (V) Y(f)) = j ,(g)ds J (f)ds
0 0

+f dSJ‘ Ku(’rs—ugT;—r+s—uf)du’

0 0

= jr K,(g)ds f K(f)ds

0 0

(2.30)

+j dsJ~ KT, _,g T, _,f)du.
0 0

Using these one sees that for feD,(A)",

Qo{J~ Y.(f)Ys(Ag)dS} =J Ks(f)de [rs(9) — Ko (g)]1ds

0 0 0
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; j ' dsr k(T S [Tosg — g1))du

0 0
and
Qo {Y.(/)M,(9)} =J dSJ k(g T, f)du.
0 o

Lett;=it/nfori=0,1,2,--,and n=1,2,---. By the continuity of (T;) and the
Markov property of (Y,, Qo).

(2.31)

Qo{ f)j fﬂ-SQ(X)M(dst)}

= lim ¥ Qo{Y.(f)Ji
i=1

ti-1

j T,_,..g(x)M(dsdx)}

— lim S Qo {Y,(/) M (T,_g) — M, (T,_.0)]}

n—+oo .
i=

— lim z’ [Qo (Y (T,- o [IM (T )} — Qo Yy (Toesr /)My (To—00)}]

n—oo

n i s
= lim Y. J j kol Th—yf Ti- oy g)du
=1 Jti

n—>ow .
L 0

=J dSJ KT, -5 f T, sg)du.
(o] 0

It is easy to see that

(2:32) Qo [ J l T, f(x)M (dsdx)]2 = f t ds f K((T,—sf)du
' 0

0 0

Summing up (2.27), (2.28), (2.31) and (2.32), one gets

2
Qo[Y.(f) —f K —s(f)ds —J j f(x)M(dst)] =

yielding (1.9).

3. Excursion laws of MBD processes

We first give the proof of Theorem 1.3 which asserts that the process (Y,),5 0
defined by (1.11) is a diffusion realization of the immigration process starting at
0. The method used in the following is essentially the same as the one of
[29], that is, to combine a semi-continuity argument with some moment
estimates. Suppose that the Poisson random measure N(dsdw) is defined on a
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probability space (2, o, Q). Let us begin with some estimates for the moments
of the immigration process.

Lemma 3.1. For each M >0 and each feD,(A)*, there exists a constant
C(M, f)>0 such that for all 0 <r<t<M,

t 4
(3.1) Q{(Y’,(f) - Y(f)~ J Ks(f)d8> } <(t—r)PCM, f).

r

Accordingly, for each feD(A)NC,(S)*, the process (Y.(f), t > 0) has a continuous
modification.

Proof. We set that w, =0 for t <0 by convention. First note that

t t

Ko(f)ds = j

0

Tﬂ(f)—f’,(f)—f

r

j W, —o(f) — w, (/)TN (dsdw),
W5 (S)

where N(dsdw) = N(dsdw) — dsPg(dw). By a moment calculation of Poisson
random measures, we get

(3.2)
t 4
Q{[?,(f) _ T - j xs(f)ds] }

= f Pe{lw,—o(f) — w,_|*}ds + 3[j Pyf{iw,_ () - w,_s(f)lz}ds]
0 0

= j dSJPv{IX,-,(f) —v(NI*} K, - (dv) +j deV(f)“K.-s(dV)

0 r

r t 2
+ 3[J dSIPv{lxt-,(f) — V()P K, —4(dv) + f deV(f)zK,-s(dv)}

0 r

Recall the moment estimate of the MBD process from [20],

PIX,(f)— (N <2t S 1T S) + 2u(T.f — f1)%,
P,IX,(f) — u(N)*
< const. [3 | fIP(T.f) + 21 fIP(Tf)? + u(I T.f — f1)].

Then using (1.10) together with Lemma 2.1 of [20] one can easily get

j V() K, —(dv) <t fll(f)
M, ($)\(0)

J v(f)*K,o(dv) <32 | fIIPK,(f).
M, ($)\(0)

Substituting these estimates into (3.2) we get (3.1).

Proof of Theorem 1.3. Take an increasing sequence of Pg-measurable sets
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Wm(S) of W,*(S) such that (J;2, W,(S)= W,"(S) and Pg(W,(S)) < co for all n,
and set

) ,
(3.3) Y™ = J J‘ w,_;N(dsdw).
Wa(S)

0

Note that peD(A)nC,(S)*. By the same way as for (3.2) one sees easily

t 4
Q [Yﬂ‘"’(p) — Y"(p) - J dSJ W,-s(p)Px(dW)}
WEY(S)

r

= J dsJ |Wt—s(.f) - Wr—s(f)|4PK(dw)
W (S)

0

t 2
(3-4) +3 U dsJ Iw,—(f) — w,_s(f)lzPK(dw)]
Wwg(S)

0

t

< Q[Y,(p) — Y,(p) — j

r

K, -s(p)d3]4

< C(M, p)(t —r)*,

for all n and 0 <r <t < M, from which it follows that Y,"(p) has a continuous
modification. However, by the expression (3.3), Y,"(p) is left continuous since
N([0, M] x W™ (S)) < oo for every finite M. Thus it follows that Y, (p) is indeed
continuous in t > 0 Q-almost surely.

We here notice that (3.3) together with the continuity of Y, (p) for all n > 1
implies that

(3.9) lirgl w/(p) =0  for Pg-almost all we W,*(S),
10+

thus w, is an M ,(S)-valued continuous function of te(— oo, o) for Py-almost all
we W, (S).

Since Y,(p) is the increasing limit of the sequence Y,(p), it is lower
semicontinuous. Now by Lemma 3.1, Y,(p) admits a continuous modification
)~’,(p), which clearly satisfies

Y% () < Y(p) < Yi(p),  for all 120,

Q-almost surely. By (3.4), {Y,(p) — Y,"(p): n =1, 2,---} is a tight family in the
space C([0, o), R) converging to the zero process, so that for each M > 0,
sup |¥.(p) — Yi(p)| < sup |¥(p) — ¥, (p)| -0
o<t<M O<t<M
in probability under Q. Therefore Y,(p) = Y,(p) for all t >0 Q-almost surely,
that is, Y,(p) is a continuous process.
Now let feC,(S)" be fixed. Then g:=cp— feC,(S)* for some ¢ > 0.

Notice that by (1.11) both Y,(f) and Y,(g9) are lower semi-continuous functions
of ¢t and
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Y,(f) + Yi(g) = cY,(p)

is continuous in ¢. This implies that Y,(f) and Y,(g) are continuous in ¢, which
yields the M ,(S)-valued continuity of Y,.

Next we prove Theorem 1.4. By Dynkin’s result in [7] for each xeS§,

(3.6) J (1 —e D) Kidv) = Kf(x),  feCo(S),
Mp(S)\(0)

defines an entrance law (K[),», of the MBD process (X,, P,) with state space
M,(S). Thus there is a o-finite measure A4* on space W,"(S):= C((0, ©), M (S))
such that, under 4*, the coordinate process (w,),», of W,"(S) is a Markov process
with the same transition probability as (X,, P,) and one dimensional marginal
distributions (K}),»,. It can be easily checked that x> A* satisfies the
requirements (i) and (iii) of Theorem 1.4. Accordingly what we need to show is
that A4* is supported by W;°. To see this we rely upon Perkins’s result in [25]
which asserts that a conditional MBD process is a modified Fleming-Viot diffusion.

In the following Lemmas 3.2-3.5, we assume that A is the generator of a
strongly continuous conservative Feller semigroup. Let M!(S) denote the
subspace of M ,(S) comprising Borel probability measures on S. Fix r > 0, and let
Q(r) = C([0, r], M'(S)) with canonical process (X,)o<,<, and natural filtration
(52',)05,5,. Then for each he C([0, r], (0, c0)) and aeM?*(S), there is a unique
probability measure P,l » on Q(r) such that for each feD(A),

(3.7) M,(f) = X(f) = Af) — f X(Af)ds, O<t<r,
0
is a (%, lA’”Vh)-martingale starting at 0 with quadratic process

(3.8) (M(f)), =I WX () — X(f)*1ds,  O<t<r
0
(X,, _ ",,) defines a time-inhomogeneous diffusion process which is called a
modified Fleming-Viot diffusion.
Let (X,, P,) be an Mg(S)-valued MBD process associated with the generator

A. It is well-known that the total mass process X,(1) is equivalent to the
2

one-dimensional diffusion (z,, 13”(1)) in [0, c0) generated by 3 x i Hereafter we
x
assume (z,, P .(1y) is realized on the canonical space @:= C([0, o), [0, c0)) with

the natural filtration (¥, &, -

Lemma 3.2. ([25], Theorem 3) For every ﬁ,—measurable Sfunction F(@.), every
Z.-measurable function G(z.) and every pe Mg(S)\ {0}, it holds that

P, {F(X.(D"'X)G(X.(1); X,(1) > 0}

(3.9) N _ .
=P, {G(z)P;. F(X);z > 0}.
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We shall also need the following fact concerning the entrance law (K7).

Lemma 3.3. For t >0, 2 >0 and fe Cy(S),
—Av(In g x 2'1
(3.10) (1—e WKF(Av) = ——— T, f(x).
MF(S)\(0} 2+14

Proof. Although one can prove (3.10) by elementary calculations based on
(3.6), we here use Lemma 3.2 which implies that

J (1 = e™#M)i(f)K(dy) = lim % P, {(1 = exp (= 2X,()X,(/)}
MEp(S)\{0}

= 11m P, {1 —exp(— Az)} P,_{X,(f)}

e=0 ¢

21
2 + /1 TS

Lemma 34. For r > 0,7 >0 and feD(A),

(3.11) lim Em A*{ sup |W,(f) — W, (f)l >n:w, #0} =0.

b—~0" a<t<b
Proof. Using (3.9), Markov property and Chebyshev’s inequality we have

forO<a<b<v,

A*{ sup |W,(f) — W, (f)| > n;w, # 0}

a<t<b

= f KXdWP,){P;.[ sup |X,(f)—5(f) >n); z_.> 0}
M(S5)\{0}

O0<t<b-a

2 - R b—a
S —f K:(dv)Pv(l){P\?,z.I:J\ Xs(lAfl)dS» Zr—a > O:I}
N JmMsno 0

+j K3 (dv) v(l){Pvz[ sup  [M,(f) >n/2]: z,_, > O}
MS\(0)

O<t<b-a
We denote the last two terms by I, and I,, respectively. Using
P.{z,>0}=1—e 2,
and (3.10) we get

2

<l j (1 — e 2= K x(do) | Af | (b — a)
N J Mes)\(0}

4
=—||AfI(b—a)—-0 as a—»0% and b>0".
m

For I, we use a martingale inequality to see that
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2 ~ ~ -
Izs-J' K:(dV)Pv(l){PG,z.[|Mb—a(f)|§Zr—a>0]},
M (S)\{0}

n
where
P;. IM,_(f) < f B, X(IASDds + Py [Ky_u(f) — S
o]
<NASI® = a) + WTy_, 1 f — £C)) + (S — F(0))).
Therefore,

4 4
I, Sr—'; IAfI(b—a)+ a[TbU—f(x)l(X) + TIf—fX)I(x)] -0
as a—> 0" and b— 0%, completing the proof.

Lemma 3.5. For A*-almost all w,

(3.12) lim w,(1)=0 and lim w,=9,,
t—=0+ =0+

so A* is supported by W;.
Proof. By (3.10)

J v(1)2KZX(dv) = a.
MFS\(0)
Since it holds that

P,{ sup z2} < 4(z* + zb),

o<t<b
we obtain

A*{ sup w,(1)?} < J 4[v(1)? + v()t(b — a)] KX(dv) = 4b,
MF(S)\{0)

a<t<b

hence the first assertion follows. For the second assertion note that for 0 <b <r
and 5 > 0,

A"{Osggb W (f) = f()| > 1 w, # 0}

= lim A*{ sup [W,(f) — f(9)] > 13w, %0}
(3.13) a<t<b
< Jim A*{ sup [W(f) = Wa(£) > n/2; w, #0}

ast<

+ lim A*{1%,(f) = £(9] > /23 w, #0}.
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Using (3.10) we have

Jlim A {1W,(f) = £ > n/2; w, # 0}

a-0+

= lim J (1 — e~ 2Wir—a) Kx(dy)
V) =~ £ >

< lim ™! (1 — e 2WIC=a)i(| f — f(x)|)KZ (dv)
a=o0 ME(S)\(0)
.2
= hrgl+ — T, f - f(¥)|(x) =0,
a— m

then the desired assertion follows from (3.11) and (3.13).

For a non-conservative (T;), the proof can be reduced to the conservative
situation in the following way. Extend (T,) to a conservative semigroup (7;) on
the enlarged state space S = SU{4} by adding an extra point 4 as a trap. For
(T,) we denote the associated cumulant semigroup and the entrance law by (V)
and (K7), respectively. Obviously ¥f(x) = ¥/ f(x) holds for xeS if f(4) =0, so
K[ is indeed the restriction of KF to Mg(S). Then it is easy to see that (w,, A4%)
is equivalent to (w,|s, 4%). Since A* is supported by W*, it is obvious that A*
is supported by W=,

Finally, we show the unigeness assertion of Theorem 1.4.

Lemma 3.6. Any o-finite measures A*, xeS, satisfying the requirements
(i)—(iv) of Theorem 1.4 is uniquely determined.

Proof. Since w,—d, as r—0%, by the continuity of (¥) we have for
A*-almost all w,

sl_i.rgl+ ws(l{—sf) = I{f(X), fE CO(S)+
By Markov property, for each r >0 and ¢ > 0,

Jim A {wy(1); 1W(K - f) = K (] < & wy(1) < e}

> lim  A%{w (T, 1); W, (V- f) — Kf(x)] <& wi(1) <e}

s—=0t

Jim A= (15 10K f) = V()] < &, wy(1) < &}
= A*{w, (1)},
hence by the condition (iii) we see
Jm - A%w (1) (K- f) = V()] <& w(l) < e} = 1.

Using this and Markov property again we get
A’Y(l _ eW:(f))
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= lim A*(1 = exp {— w,(_,)}: K- f) = KFX)] < & wy(1) <)

< sup a ‘(1 —exp{—al[¥f(x) + ¢]})

O0<a<e
x lim A%, (1); [, f) = KF (] < &, wi(l) < e}
- Vf(x) as ¢e-0".
A similar argument applies to get
A¥(1 = ") > Y f(x),

thus the marginal distributions of A* is uniquely determined. Therefore the
uniqueness of A* follows.

Proof of Corollary 1.6. This is almost the same as that of Theorem 1.3,
and therefore omitted.

4. Super absorbing Brownian motions

In this section we discuss immigration processes of super ABMs. Let us
first give the proofs of Lemma 1.1 and Theorem 1.6 as follows.

Proof of Lemma 1.1 and Theorem 1.6. Let D be a bounded smooth domain
in R? and let (T;) be the semigroup of an absorbing Brownian motion in D acting
on Cy(D). Suppose (x,) is a p-locally integrable entrance law of (T,). Noting
that «,(p) < oo we introduce a time inhomogeneous Markov semigroup
(T)o<s<i<1 and a probability entrance law (R)o< <, of (T7) by

@.1) T2 f(x) = [Ty p()] ' T, [ f Ty -, p] (),
and
4.2) R(f) = 1,(0) " k(f Ty _,p).

Since T, fe Co(D)nCY(D) for fe Co(D)nC (D) (cf. [13], p. 65), T? f is extended to
a continuous function on D such that
4.3) Tef@) =& up) Wi (fTy_,p)  for zedD.
Choose r, — 0% such that y:=lim, x,, defines a probability measure y on D. By
(4.1)—~(4.3)
Kl(p)_lkt(f) = 'zt(f[Tl —.P]_l)
4.4)
= j Y(d2) [Ty p(2)]17 ' T.f(2) +J y(d2) [k (p)17 ' KE(Sf),
D

oD

which proves Lemma 1.1 in the case that D is bounded. When D is unbounded,
the limit y:= lim, ,_ defines a probability measure y on DU{oo}. But for D = H?
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we claim that
4.5) i‘f(x)—»O as |x| — o0 for xeD.

Once (4.5) is proved, Lemma 1.1 follows for D = H? in the same way as above.
Note that

d

46  Tf(x)= J [9:(x1 = y1) = g.(x1 + y)] T1 9:x; = )S )y, -y,

H i=2
where
1
g(x) = ——e ¥/ xeR, t>0.
< 2mt
Then it holds that for c<a<b < d,
b d -1

4.7) Jim J gilx — y)dyq gulx — y)dy> =0,

so that for 0<c<a<b<d,

b d -1
lim I [g:(x = y) = g,(x + y)1dy (J [g:(x = ¥) = gulx + y)]dy> =0.
Since T, _,p is a bounded strictly positive continuous function on H?, (4.5) follows
from (4.1), (4.6) and (4.7).

Now Theorem 1.6 is immediate since by (1.5) for every t>0 and
feCo(D)NCY(D), k5. (V.f) = DV f(z) holds for zedD.

Next we give the proof of Theorems 1.7. Let (Y,, Q,) be the immigration
process of the super ABM over (0, o) given by (1.19). By Theorem 1.2, for each
feC,((0, 0))*, Qp-almost surely,

(4.8) Y. (f) = Jl [m(Ti-of) + ex?-s(f)1ds + Jl ro T f(x)M(dsdx),
0 0J0

where M (dsdx) is an orthogonal martingale measure on [0, o0) x (0, c0) with
quadratic variation measure (M) (ds, dx) = Y,(dx)ds and (x{) is the entrance law
of the ABM in (0, o0) defined by

(4.9) K?(dx) = k?(x)dx = /-2; %e_"z/z'dx, t>0,x>0.
T
Let
t o]
(4.10) Z,(y) = J J Pi—s(x, y)M (dsdx),
0JO

and let
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t [eo]
(4.11) Yi(y)=Z©) + f [J Pi-s(x, y)m(dx) + CKf—s(y)] ds,
0 ]
where
p(x y) =gx -y —glx+y, txy>0

By a stochastic Fubini theorem, Y,(dx) = Y,(x)dx holds Q,-almost surely. (See
e.g. [32]).

Now we prove Theorem 1.7 by a series of lemmas. Since the arguments
are quite similar to those given in [20], we here present only an outline. Recall
that p is a function in C2(0, c0)** such that p(x) = x for 0<x <1 and =e *
for x >2. The proof of the following Lemma 4.1 is omitted since it is quite
elmentary.

Lemma 4.1. For M > 0 and n > 0 there is a constants C(n, M) > 0 such that
M ]
(4.12) J dsf gs(x — y)*e™dy < C(n, M) - e™
0 0

for x> 0, and

j ds J s 2) = Prey(x, 212z
(4.13) o Ve
<CO, M) (Jt—r+ ly — x])- ("™ +¢e™)

for 0<r<t<M and x,y > 0.

Lemma 4.2. For M > 0 and n > 0 there is a constant C(n, M) > 0 such that
4.19) Qo{Z,(x)*"} < C(n, M)-e™
for 0 <t <M and x > 0. Moreover,
(4.15) Qo{Z,(x)*} >0 as x—>0".

Proof. Since me M ,((0, 00)), it is easy to check that for each M > 0 there
exists C(M) > 0 such that

M o)
(4.16) J dsJ ps(x, yym(dy) < C(M) - e*.
0 4]
for all x > 0. Moreover it holds that
t t
4.17) supj KJ(x)ds = lilg'n+ j K2(x)ds = 2
x>0 Jo ™% Jo

for all t > 0. Now notice that
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Qo{Z, ()} = j Qo (Y02 (x. - ))}ds
(4.18) °

t ds t '
< | Y/ WX, ) + cxg(x)]du.
L R S)L_s [m(pu(x, -)) + cxu(x)1du

from which (4.15) follows. Next note that (4.14) holds for n = 1 by (4.16)—(4.18).
Assuming that (4.14) holds for n <m we shall show it for n=2m, which will
yields (4.14) for all n. Under the induction assumption, we have Q,{Y;(x)*"} <
C(m, M)-e™. Then by making use of Burkholder-Davis-Gundy’s and then
Holder’s inequalities,

t 2m
Qo{Z,(x)*"} < C,(2m, M)- Qo[j dSJP?-s(x, Y)Ys(y)dy]

0

< C,m. M)-Q, { j " ds r P2 (%, 3) Yf"'(y)dy} : [ J ds r pL(x, y)dy] "

0 0 0 0
< C,(2m, M) - e?™,

thus (4.14) holds for n = 2m.

Proof of Theorem 1.7. Using Lemma 4.1 with a similar argument as in the
proof of (4.14), we get that

(4.19) Qo{lZ,(y) — Z,(0)*"} < C(n, M)- (€™ + ™) (t —r + |y —x|)""

for0<r<t<M and x, y>0. Therefore, {Z,(x): t >0, x >0} has a continuous
modification vanishing as x -»0* by (4.15), hence {Y,(x):t>0, x>0} has a
continuous modification satisfying Y,(0*) = 2¢ by (4.17). Tracing the arguments
of [20] one can define a time-space white noise W,(x) on an extension of the
original probability space such that M(dsdx) = \/ Y{(x) Ws(x)dsdx. Then by (1.11)
the density process {Y,(x): t > 0, x > 0} satisfies the SPDE (1.21).

Now we proceed to the proof of Theorem 1.8. Let us start with the following
nonlinear equation:

u,(t, X) = § (8, X) — Sult, x)2 + 6% 1, o(x), t>0,x>0,
u(0, x) = f(x), x>0,

u(t, 0) =0, t>0,

u(t, -) is uniformly bounded on each finite time interval.

(4.20)

Lemma 4.3. For bounded non-negative fe Cy((0, 0))nC*([0, o)), the equa-
tion (4.20) has a unique solution in C® ([0, o0) x [0, 00))n C*2((0, 00) x [(0, 00)\
{a}]).

Proof. Recall that (T,) denotes the transition semigroup of the absorbing
Brownian motion in (0, o). It is known that the evolution equation
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t

4.21) u(t, x) = T,f(x) + J

0

1 1
. |:5 0% 114, ) — > u(s)2:|(x)ds, t>0,

has a unique positive solution u(t, x) bounded on each finite time interval; see
[12], [16], etc. Then it is a routine task to check that u(-,-)eC®([0, o) x

[0, 0))NC"2((0, 00) x [(0, 00)\ {a}]) and it solves (4.20), hence we omit the
details.

Hereafter we denote by u‘(t, x; 6) the solution to (4.20) with f=0. Then
it holds that

(4.22) 0<u'(t,x;0) <8, t>0 x>0,
and that
(4.23) a*u®(a®t, ax; 0) = u'(t, x; a0), t>0,0<x<1;

see [16], [18].
Lemma 4.4. The limit
(4.24) u'(t, x) = oli_'m u’(t, x; 0)

exists in C%([0, ©) x [0, @))nC*2((0, o0) x (0, a)) and it satisfies

u(t, x) =3u(t, x) — Ju(t,x)* t>0,0<x<a,
4.25) u(0, x) =0, O<x<a,
u(t, 0) =0, t>0,

Moreover u®(t, x) has the following scaling property:
(4.26) a?u®(a’t, ax) = u'(t, x), t>0,0<x<l.

Proof. Let 0 <b < a and let g°°(x, y) denote the transition density of the
absorbing Brownian motion in (0, b). Then u’(t, x; 0) satisfies

u'(t, x; 0) = ——J dsj b (x, y)u(s, y; 0)2dy
4.27)

—EL@g, S(x, b)u(s, b; 6)*ds,

so u’(t, x) satisfies the same integral equation. Using this one checks that u‘(t, x)
is in C%'([0, o) x [0, @))nC2([0, ) x (0, a)) and it satisfies (4.25). The
scaling property (4.26) follows from (4.23).

Lemma 4.5. The limit

(4.28) u'(x: 0) = lllrg u(t, x; 0)
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exists in C*([0, 00))nC?((0, o)\ {a}), which is the unique solution of

u (x)=ux? O<x<a,
U () = u(x)* — 6%, x>a,
4.29
(429) 0<u(x) <6, x >0,
u(0) = 0.

Proof. Since u’(t, x; ) is non-decreasing in t > 0, the limit (4.28) exists.
Note that u’(t, x; 6) satisfies

u(r +t, x; 0) = Tu(r, -; 0)(x) + J" Tt—s[

1 1
— 0y ) — U (r + 53 0)2](x)ds.
o ' 2

2

Letting r - co in the above equation we get

t

1 1
T;—sl:Eezl[a,tD)_-ua(’v0)2](x)dsa t>0,

u’(x; 6) = T,u“(~,9)(x)+J 5

o
from which it follows that w’(x;#) lies in C'([0, c0))nC?((0, 0)\ {a}) and
differentiating in ¢ gives (4.29).

To see the uniqueness of the solutions of (4.29) first note that any solution
u(x) of (4.29) is concave in (a, ), so u(oo) = 6 and w'(c0) = 0. If u(x) and v(x)
are two solutions of (4.29), then w(x):= u(x) — v(x) vanishes at x =0 and oo.
Suppose that w(x) is not identically equal to 0, we may assume w(x,) = max, w(x)
>0 for some x, > 0. Since

w’(x) = [u(x) — v(x)]w(x), x>0, x #a,

we have

w(x) — w(xg) = Jx dy J‘y [u(z) — v(z)Jw(z)dz > 0

when |[x — x| is small, which is absurd.
Lemma 4.6. The limit u(x):= lim,_ , u®(t, x) exists in C*([0, a))nC*((0, a)),
which is the unique solution of

(4.30) {uxx(x) = u(x)?, ) 0<x<a,
u0 =0, u(@)=oo.

Moreover it holds that

(4.31) u4(0) = lim ui(z, 0).

Proof. Since u’(t, x) is non-decreasing in ¢ >0, the limit (4.30) exists.
Letting ¢t —> oo in (4.27) we obtain

2y

1 (=  (° 1
u'(x) = — —J dSJ g (x, y)u(y)*dy — —J ig?"(x, b)u®(x)*ds.
2 Jo 0 2Jo Oy
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This implies that u?(x)e C*([0, a))n C*((0, a)) and

{uxx(x) =u(x)?, O0<x<a,
u(0) =

Next we claim that for u”(x; 6) given by (4.28),
4.32) Jim w(a; 6) =

Once (4.32) is proved, since

u(a”) = 11m 11m u'(t, x) = lim lim w'(t, x; 6) = u®(x; 0),

—a” x—a~ t— o

it will follow that u®(a”) = oo and u®(x) will solve (4.30). To see (4.32) note by
the first equation of (4.29) that

1 1
Eui(x;@)z—gu“(x;0)3=§u‘;(0;0)2, 0<x<a

By this and the second quation of (4.29),

1
%ui(x; 0)? — 3 u'(x; 6> + 6%u’(x; 6)

(4.33) % u'(a; 6)* — u“(a; 0)® + 6%u(a; 6)

1
= Eui(O; 0 + 0°uifa; 0), x>a.

Letting x — oo in (4.33) we see

2 1
3 03 = 3 us(0; 6)* + 6%u’(a; 6).

which yields (4.32) since u®(x; 0) < u(x) implies u%(0; 6) < u%(0).
Finally we show (4.31). For small x > 0,
ft

t~! [ (s, x) — xul(s, 0)]ds

=¢! dsj dyf u? (s, z)dz

=t! dyf [Zu (¢, 2) +J u(s, z)zds:ldz
Jo 0 0

Taking t - o0 we get

x y
u(x) — x ,llm ul(t, 0) = J dyj u’(z)*dz,
® 0 0
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which yields the desired conclusion.

Lema 4.7. Let (Y,, Q,) denote the immigration process given by (1.19). Then
for a>0 and 6 > 0,

Qo exp {— Lo J' Yi([a, OO))dS}‘
2 Jo

4.34) )
= exp {— J [m@ul(s; 0)) + cui(s, 0; 0)]ds},

0
where u®(s, x; 0) is the solution of (4.20) with f = 0.
Proof. Note that for f(t, x)e C2([0, ) x [0, 0)),

M= Y(f() - f LY(fs(8) + fxx(9)/2) + m(f(5)) + ¢ f(s, 0)]ds
0
is a martingale with quadratic variation process
(M7= I‘ Y,(f(5)%)ds.
0

Applying this to f(t, x) = u’(r — t, x; 8), with some approximating argument, we
see that

exp {— Y,u(r — 15 0)) — %92 f Y,([a. oo))ds} 1

0

- f [m(@(r — s: 0)) + cus(r — 5, 0; 6)]
0

exp {— Y. (u(r —s; 0)) — %02 r Y,([a, oo))du} ds

0

+ martingale,

from which the desired relation follows.
Proof of Teorem 1.8. Since the immigration process has a jointly continuous
desity Y,(x), applying Lemmas 4.7 and 4.4 we have

t

Qo{R < a} = Qo{—f

0

Y,([a, c0))ds = 0}
(4.35)

= exp {— Jt [m(u(s)) + cul(s, 0)]ds}.

By the scaling property (4.26),

Qoft'"*R, < a}
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t1/3g-2 ©
(4.36) = exp {— f dsf ul(s, t=3a" x)m(dx)
0 0
(1/3g-2
+z"”3a_1j cul(s, O)ds}.
0

Since u(t, x) solves (4.25), as in the proof of Lemma 4.6,

J‘ [u'(s, x) — xul(s, 0)]ds
0

= jx dy JY [Zu‘(t, z) + f’ ul(s, z)zds] dz
(4] 0 (o]

< xzul(x)[l + %ul(x)].

Using this and Lemma 4.6 we obtain

117342 o
'lim J dsj ul(s, t~13a ' x)m(dx)

0 0o

11/34-2 o
(4.37) = lim t‘”%"j ul(s, O)dsf xm(dx)

1= oo 0 0
a3 1(O)J xm(dx).
0
Hence from (4.36) and (4.37) it follows that
lim Qo{t“”ﬁ,Sa}:exp{—a 3 l(0)[ j xm(dx)]}.

0

The explicit value of u}(0) can be found by a similar argument as [18].

5. Central limit theorems for the immigration processes

Let (Y, Q,) be an immigration process associated with an immigration
measure me M, (S). By Theorem 1.2, we have Q,-almost surely,

t

5.1 Y(f) = Yo(T.S) +j m(

0

T,-sf)dS+ftJ~ T-f(x)M(dsdx),  feC,(9),
0Js

where M(dsdx) is an orthogonal martingale measure on [0, cv) x S having
quadratic variation measure

(5.2) (M) (dsdx) = ds Y (dx).

Our proof of the first central limit theorem is based on the following
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Theorem 5.1. Suppose that m is (T,)-invariant and that for each feC,.(S)*
there is a constant C(f)> 0 such that

(5.3) f | T.f I1ds </t C()
0
Then for each feC.(S)* the distribution of
(5.4) Y,(f) — tm(f)
Var (Y,(f))

under Qg converges as t —» oo to the normal distribution N (0, 1).
For the proof we need a simple fact on martingales.

Lemma 5.1. Suppose for each t>0 we have a continuous martingale
(MP, u > 0) with M = 0. If there exists u(t)— oo such that {M®),,, converges
as t— oo to some constant ¢ >0 in probability, then the distribution of M),
converges as t — oo to the normal distribution N(0, o).

Proof. Note that for each t >0, (M{") is a time change of a standard
Brownian motion B”(u), i.e., M® = BO({(M®> ). Then for §eR and ¢ > 0,

Elexp {iOM{),} — exp {i0B”(0)}|
= E|exp {i§BO(<M"), )} — exp {i§B?(0)}|
<101Esup {|BO) — BO(0)|: [u — o] < &} + 2P {|[{MW,, — 0 > &},
which yields the desired conclusion.

Proof of Theorem 5.1. Let feC,(R)* be fixed. Note that by (5.1), (5.2)
and the (T))-invariance of m we get

t

(5.5) V(t):= Var (Y,(f)) = j (t — m((T,f)*)ds.

0

In order to apply Lemma 5.1 we set

\/Tj J _f(x)M(dsdx).
0Js

where T,f =0 for s <0 by convention. Then for every fixed f and 1, {MY(f)
u >0} is a continuous martingale and

(5.6) MP(f) =

(MO(f), = V(t)’lj Y(T;-f)*)ds

o
=1+ V@) ! f dsj I! T._(T,_.f)*(x)ds M (drdx).
(4] SJr

Combining this with (5.1)—~(5.6) and the present assumption we get
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Qo [KMO(f)p, — 12

1 t t 2
=V_t)2Q°{J drj <J L-lTisf )Z(X>d5> Y,(dx)}

V( )Zj dr<j I'T: - stIdS) Qo {Y.(T,-,./)")}
C(f)
< Vo L r(t — rym((T, f)*)dr

L ey )? ,
V(t)

which vanishes as t— oo if [ m((T,f)*)ds=co. On the other hand, {5 m((T,f)?)ds
< oo implies that V(t) ~ const. t as t — o0, so that

1 t
z_ZJ st — s)m((T, f)*)ds
0

< sr m((T,f))ds + f (T, 1))ds,

(V] 24

which vanishes as t > 00 and ¢ > 0. Thus we have lim,, , Qu|<{MP(f)>, — 1|2
= 0, completing the proof of Theorem 5.1 by virtue of Lemma 5.1.

Proof of Theorem 1.9. We first note that for any irreducible Lévy semigroup
(T;) the estimate (5.3) is known; see Theorem 4.3 of [28]. Suppose that the
symmetrized semigroup (T;) is transient. Then we have for feC, (RY)",

r m((T,f)ds = %m(féf) <,
0
and

Var(Y,(f)~m(f(§f)t/2 as t— oo.

By Theorem 5.1, the distribution of

(5.7) [Y,(f) — tm(£)1//t

converges to N(0, m(fGf)t/2). Next suppose that the symmetrized semigroup
(T;) is recurrent. Recalling that m = c4, we fix some ¢e C,(RY)* with A(¢) =1
and let

(5.8) h(t) = fr (t — $)A(T,9)*)ds.
0

Then [§ m((T,f)*)ds = oo implies that ¢t ~'h(t) > oo as t - co. By Theorem 5.3
of [26], if f, ge C.(RY* with i(g) > 0, then
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(59) tim [ 2 so0as( [ Botas) = 2017200
0

o

uniformly for x and y in each compact set. Using this we obtain that for every
feC(RYT,

lim h(t)~* Var {¥, (f)}

— fim ¢ j - s)u(nmdsq’ (t - s)A((m)Z)ds)_l — A/

b
© Jo 0

By Theorem 5.1 and (5.9) the distribution of (5.7) converges to N (0, cA(f)?). Since
feC(RYH* was arbitary, it is a routine task to see the convergence of (5.7) in
the sense of distributions in 2'(RY), and the theorem is proved.

Next we proceed to the proof of Theorem 1.10. Recall that now (T)) is the
standard Brownian semigroup on R? and the immigration measure is m(dx) =
y(x)A(dx) with y satsfying (1.27). By (2.30) and the symmetry of (T,) we see that for
feC(RY)",

t

(5100 Qo{Y.(N)} =J Ay T, f)du,

0

(5.11)  Var{Y,(f)} = f dr f ATy (T, f)?)du,

0 0
(512 Cov(Y,(g). Y,(/) = f dr j ATy Ty Toeeruf)du
0 0

Lemma 52. If feC,(RY)*, then as t - oo,
(5.13) Qo{Y. (f)} = Af)b, + o(by),
where b, is given by

27 (e +df2)

1+a
(5.14) T CL

Proof. Note that (1.27) implies y(x) < const. (1 + |x|?>*) Therefore
(5.15) T,y(x) < const. (1 + t* + |x]2%).

Furthermore,

lim ¢t ~* T;y(x)

t— o0

= lim (2n)“”2Jt""‘y(x + \ﬂz) exp {—|z|*/2}dz

t— oo
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(5.16) = (2m)~9/? lelz"a(z/lzl)exp {—|z]?/2}dz

= (2m)~? Jw r?*2s(a) exp {—r?/2}r! " 'dr

0
=22"1g72 (o + d/2)Ag(a).
By (5.10), (5.15) and (5.16) we obtain
lim t Qo {Y(f)}
= lim¢*"! f' ds va(x)Tsf(x)dx
0

t— o0

1
= :lllgj drff(x)t_“ Y (x)dx
0

= Jl ds Jf(x) tlirg t7* T, y(x)dx
0
_ 2271+ d/2)
%1 + «)
Lemma 53. If feC.(RY)", then as t —» o,
Var {Y,(f)} = A(f)*h(t) + o(h(t)),  for d=1 and 2,
= AMfGSf)h(t) + o(h(r)),  for d =3,
where h(t) is defined by (1.29).

As(@)A(f).

(5.17)

Proof. Since T,f(x) < const. (1 A t~%2), it follows by (5.15) that
(5.18) jt“’ (T, f ) (x)dx < const. (1 A u™%?).
Then for d > 3, by (5.11), (5.16) and (5.18) we get

H&t”“Vm{xUW}=nmt‘“lfﬂvaMffpumwnfufdx

t
w® 0 0

1 [ )
lim J dsj dujt’“n,_uy(x)Tuf(x)zdx

t— 0
1 )
(5.19) =I de duj}iq;t‘“ w—u? () T, f (x)*dx
0 0

(T du

o

2 (a4 d)2)
T ni2%(1 + o) AS(a)f
_ 2272 (o + d/2)

i 4 S@MICD.
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proving (5.17) in the case d > 3. To get it for d = 1 and 2, we use the following
relation for the Brownian transition density g,(x, y) = g,(x — y):

(5.20) gs(X, )9,(X, 2) = Gayis+0(x, (ty + 52)/(s + 1))gs+(), 2)

to find that

"

Ty(x) Tg(x) T, f (x)dx

= | dx f j Ty(x)gs(x, )g.(x, 2)g(y) f(z)dydz
(5.21)

.
= fgm(y, 2)g9(y) f(z)dydz fT,v(x)gsmm,(x, (s + 1)~ Mty + sz))dx

= J'T;'+51/(s+t)'))((ty + 52)/(s + 1))gs+.(y, 2)g(y) f(z)dydz.

Y

When d = 1, using (5.11), (5.21) and (5.16),

lim ¢ ~*73/2 Var {Y,(f)}

t— o0

t r
= lim t‘“‘”zf drj du HT,_,.,zv((y +2)/2)
0 0

(5.22) 924, 2) f(¥) f(2)dydz, r = st, u = vst,

= lim

AR Nl
sds | v™Y2do ||t 2T, - 27 (v + 2)/2)
"'°°2\/;J‘0 \/_ 0 e

f)f(@)exp {—|y —z|*/4vst}dydz

1

As(@)A(f)? f v~ 122 — v)*do.

0

T+ 1/2)
2722 + 3)

Similar techniques give the analogous result for d = 2,

lim t7*"'log™ 't Var { Y,(f)}

t— 00

. 1 t r
,11‘2 Mg—t j er du J‘J‘T;—u/ZY((y + 2)/2)
0 0
92.(», 2) f (v) f (z)dydz

r1 (st

d: d Ty- 2
1= 0 t“logtuo 9.11 uJ‘J‘ st uIZ‘Y((y'{'z)/ )
20, fWf(2)dydz,  u=(st)' 7,
1 1 r1

ds t)! 7" log (st)d
Mo loge ), &), O Tl l0dr

<

Il
5
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47z(st Jf s—u2V (Y +2)/2) f(») f(2) exp { — |y — z|*/4u} dydz

—}nga Ode dr” T - u2v((y + 2)/2)
F)f(@) exp {—|y — z|*/4u} dydz

= w ,ls(a)l(f)z.

(o + 1)

The proof is complete.

Lemma 54. If g, feC.(R)" and t > 5> 0, then as M — oo,
(5:23)  Cov(Yo(9), Yim(f)) = A@AS)k(s, )h(M) + o(h(M))  for d =1,
= O(log"'M)h(M)  for d =2,
= O(M'~%)h(M) for d >3,
where h(M) is given by (1.29), and k(s, t) by (1.31).
Proof. Noting that f has compact support, we observe by (5.12) and (5.15)
h(M)™! Cov (Y (9), Yire(f))

- h(M J drj‘ duf —u? x) g(x T}l s)M+uf(x)

< const. h(M)~! f dr-[ [(t—s)M + u] %*du fg(x)T,y(x)dx
0 0
sM

< const. (M)~ ' M**+! f [(t — )M + u]~*?du
0

< const. M1 74/2 for d > 3,
< const. (log M)~* for d =2.
For d =1, setting r = psM and u = pgsM, and using (5.21),

Cov (Yo (9), Yin(S))

- j " ar f du J T 7 Tug() Ty g f (¥)dx
[e] 0

1 1
= f SMdp j pSqu JT(l —q)psMy(x) qusMg(x) Tit—s+pqs)Mf(x)dx
0o 0

1 1
=s*M? J pdp f dq Jf Tr(~)M)’(m( NG-s+ 2pqs)M(ya 2)g(y) f (z)dydz,
0 0

where
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_ pslt — s+ pgs2 —q)]

r(-
() t — s+ 2pgs

and

_ (t—s+pqs)y + pgsz

m-
() t —s+2pgs

Then by (5.15)

lim M ™32 Cov (Y,(9), Yin(f))

M-

1 1
= lim szj pdpf qu M2 T,y (m(-))
M- 0 0

g f(2) ox {_ ly — z| }dydz

\/m 2(t — s + 2pgs)M
1 ! Lr(- Y20 (o + 1/2)Ag(a)
= ﬁszl(g)l(f) L pdp L s T e dq
= 2072 12D (o + 1/2) As(@) A(g) ALS)
YU METI[E— s + pgs(2 — g) ]

L o(t—s+ 2pqs)“m

T+ 1/2) (!

Qo +3) Jo

dpdq

= k(s, t)As(@)A(@)A(f) rm Y22 — rrdr.

The lemma is proved.

Proof of Theorem 1.10. 1t suffices to show that for all f,,---,f,e C,(R)*
and 0 <t, <---<t,,

S Z00(f)> 3 Z,(f)
i=1 i=1

in distribution as M — oco. Note that

S Z00 () = N (fy1ooe, S,

i=1

where N (f,,---,f,) is a continuous martingale in ¢t > 0 defined by

NM(fy o) = h(M)‘”thfi T, 01— f:(x) M (dsdx).

By (5.1) and (5.2),
NS o) Dm
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= h(M)"! f ' j (2 Toe-e () Yo

M)"f Jdrj ,v(X(Z Tim-sfilx

+h(M)~! j JJ 5- ,(Z Tn -/ (x) M (drdx).
Using Lemmas 5.3 and 5.4 we have

11m h(M)~ J jdrj W i Toom -5 fi(x))* dx

——Zl(f, 232 4 N AMSASx(t, t) for d =1

I<J

L Saupen a2
=‘;‘Zl(ficf.-)t}’”/2 for d > 3.

On the other hand, by (5.2),

h(M)_ZQo[Jt"M dSJSfTs o i Tom—-sf)? (x) M(GlrdX)]2
0 0

twM twM thnM n 2
= h(M)~? f drf du f T,_uv(x)[ J To- (Y Tom-sfi) (x)ds] dx
0 0 0 i=1

Using (5.15) repeatedly we see that the above value is bounded by
thM 3
const. k(M) 2 M**1 <J 1A s_‘”zds> ,
V]

which goes to zero as M — oo by (1.29). Then the desired conclusion follows
by Lemma 5.1.
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