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Measure-valued branching diffusions:
immigrations, excursions and

limit theorems

By

Zenghu L i and Tokuzo SHIGA

1. Introduction

Measure-valued branching diffusion processes (MBD processes) have been
extensively studied concerning various problem s such a s  e rg o d ic  behaviors
[2], [17], sample path properties [4], [24], historical processes [5], [9], entrance
law s [7] and  so  on.

In  the  present paper we focus upon the immigration structure of the MBD
process a n d  discuss th e  following problems : T h e  first is to  characterize  the
immigration structure associated with a  given M B D  p rocess. W e  d o  this by
establishing a one to  one correspondence between immigration diffusion processes
o f  th e  M B D  process a n d  entrance law s o f  i t s  basic M arkov process. The
im m igration p ro c e ss  is  o rd in a rily  d e te rm in e d  b y  a n  im m ig ra tio n  measure
supported by th e  state  space o f the  basic  p rocess . However, when the basic
process is an  absorbing Brownian m otion  in  a  sm ooth dom ain (in this case we
call the associated M BD process a  super absorbing Brownian m otion or simply
a super ABM following Dynkin), the immigration structure consists of two parts,
one is  a  measure supported by the interior domain and  the  o ther is a  measure
supported by the  boundary . In particular, the latter one involves excursions of
the absorbing Brownian motion from the boundary.

Secondly we discuss the immigration diffusion process o f the  supe r ABM
over (0, oo), fo r  w hich w e derive a  stochastic partia l differential equation (an
S P D E ) . W hen the im m igration m easure  has com pact support, s o  d o e s  the
im m igration process. W e shall present a  lim it theorem  fo r the  range  o f the
immigration process.

T h e  th i r d  o n e  is t o  d i s c u s s  c e n tra l lim it  th e o re m s  of immigration
processes. Assum ing that the basic M arkov process is a  L év y  process in  Rd

,

o n e  c a n  o b s e r v e  a  "clustering-diffusive dichotomy" in  t h e  c e n t r a l  limit
theorems. More precisely, if the symmetrization of the basic process is recurrent,
then the limiting Gaussian field is spatially uniform, while if the  symmetrization
is transient, the  limiting Gaussian field is spatially fluctuating.

W e remark that Dynkin [7] obtained a  characterization of entrance laws of
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234 Measure-valued branching diffusions

th e  MBD processes i n  te rm s o f  entrance law s o f  th e  b a s ic  sp a tia l Markov
processes. O ur first result may be regarded a s  a n  extention of Dynkin's result
to  the immigration processes. W e mention also  [21], [22] where are discussed
the  law  of large numbers for immigration processes and the convergence from
particle systems.

1.1. M B D  processes. Given a  locally compact seperable topological space
S , le t  Co (S ) b e  th e  Banach space o f continuous functions vanishing at infinity
equipped with 1 he suprem um  norm . N ote tha t if S  is  compact, Co (S) coincides
w ith  C (S ), th e  totality  o f  continuous functions o n  S. L e t MF (S) denote the
space  o f  fin ite  B ore l m easures o n  S  equipped  w ith  t h e  topology o f  weak
convergence. Throughout this paper we use g ( f )  to  denote  the  integral of the
function f  relative to  the measure p.

Let (T;),, o  b e  a  strongly continuous conservative Feller semigroup o n  Co (S),
and let A  be the strong generator of (7;) defined on D (A ) C o (S). Let C([0, a)),
M F (S)) b e  th e  space o f  a ll continuous paths from  [0, c o )  to  M F (S) w ith  the
coordinate process denoted by (m),,. 0 and the natural filtration (W, Wt). To every
p E MF (S) there corresponds a unique probability measure P p  o n  C([0, co), MF (S))
such that for each feD (A ),

(1.1) M t(f):= w t(f)—  1 1 ( f ) —  f
t w s(A f)d s, t  > 0,

is  a  0 ,) - martingale starting at 0  with quadratic variation process

(1.2) < M (f)> t=  f t w s ( f 2 )ds, t > O.

The probability measure P p  i s  the distribution on C[(0, co), MAS)) of the MBD
process (X„ P p ) driven by (Ti )  with state space M F (S). See [11] o r [27] for the
above results.

I n  th is paper w e d o  not assum e the conservativeness o f the  basic  driving
sem igroup (T). We shall discuss the  MBD processes in  a  broader state spacce
rather than MAS), which is formulated by introducing a  reference function given
by

Condition [A]. There a re  a  bounded strictly positive function pe D(A) and
a constant c>  0  such  that T;p <  cp for a ll 0 < t < 1.

Let M e (S) denote the  space of Borel measures p  o n  S  satisfying g(p ) <  co,
a n d  denote by  C a (S )  th e  space  o f  continuous functions f e C o (S )  such that
If I const.p . We equip M e (S) with the following topology: p„ —> it  in M a (S) if
a n d  only if  g n ( f)— ). g ( f)  fo r all fe  Cp (S). U nder the condition [A ], the state
space o f the  MBD process can be enlarged to M p (S). I n  th is case the MBD
process is characterized by a martingale problem on  space C([0, co), Mp (S)), the
M (S)) -valued continuous path space; see e.g. [ 2 0 ] .  The MBD process can also
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be characterized by the L aplace functional o f  i t s  transition law : Let C (S ) +

denote the  subspace of non-negative elements o f Cp (S). Then

(1.3) P„ exp 1— X ,( )1 = exp { — p(kf )}, f e C p (S) + ,

where P , denotes the conditional expectation given X 0 =  p, a n d  'lÇf is  the mild
solution of the evolution equation

=  A k f —  -
2  

(litf ) 2 ,t
(1.4)

V0 f =  f

More precisely, Kf is the unique bounded positive solution of the integral equation

(1.5) = T,f — 1 f  T _ s [(V  f) 2 ]ds, t 0 ,  e  C  p (S) ±

2 "

W e here introduce som e further notations for la te r  use . CK (S ) stands for
th e  subspace of C a (S) whose elements have com pact supports. If S = D  i s  a
smooth domain in  the  d-dimensional Euclidean space R d ,  we use the superscript
'in ' to  ind ica te  th e  o rd e r  o f  continuous differentiability, e.g., C ( D ) ,  C ( D ) .

(12(1) = C ( R d ) , and g '(R d ) is  the space of Schwartz distributions on Rd .

1.2. Immigration processes. L e t  a n  M B D  p rocess (X„ P m) b e  f ix e d .
Following [19] a n d  [30], we introduce the notion of an  immigraion process.

Definition 1.1. A n  M a (S)-valued diffusion process (Ye, Q „) is  c a lle d  an
immigration diffusion process o f  th e  M BD process (X„ if  (1',), „  under Q,
and (X, +  Y , 0  under Po x  Q , have identical laws in  C([0, co), M p (S)) for every

e Mp (S).

By Definition 1.1, the transition law  {Q„: ye M p (S )} is uniquely determined
by {Pi,: peM p (S)} and Q 0 . In the sequel, we call (Y „ Q„) simply an immigration
process of (X„ P„) instead of an immigration diffusion process since we are only
concerned with diffusion processes in  th is  p a p e r . Furtherm ore we impose the
following technical condition:

Condition [ M 1 ] .  The first moment Q0 { Yr (p )} is finite for every t 0.

Definition 1.2. A  family of a-finite measures (K „  o n  S is called a  locally
p-integrable entrance law of (T ) if kr  = k r 'T, for all r, t > 0, and if the integral

Ks (p)ds is finite for a ll t > 0 .

It is easy to  check by equation (1.5) that fo r a  locally p-integrable entrance
law (K t )  of (T,), w e have

K „  ( =  urn , ( I f )
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(1.6)
1 

= —
2 0 Kt--,((kf) 2 )ds ,

f
t > 0, fe Cp (S) + .

In particular, if (Kt)  has the  form K r = tnT, for some measure m e Mp ,(S), where
p  =  T s pds, then Ko  ( k f ) =  m( 11f ).

O u r  first result establishes a  o n e  t o  o n e  correspondence between the
immigration processes of a given MBD process and the entrance laws of its basic
semigroup.

Theorem 1.1. I f  (Y „  Q ) i s  an  im m igration process of  th e  M BD process
(X„P 0 )  satisfy ing [M l],  then there ex ists a  unique locally  p-integrable entrance
law (K t )  o f  (Te) such that

exP {— Yt(f)} = exP tt(U ' Ko,(Vsf)ds},
(1.7)

t 0, .f E C p (S) ±  , p E M p (S).

Conversely, f o r each locally  p-integrable entrance law (K1) of  (7;), there is a unique
immigration process (Yi , Qm) o f  (X„ Pm)  such that (1.7) and [ M l]  are fulfilled.

Next we give a martingale characterization to the immigration process. Let
Dp (A )=  If eD(A): f, A f eC p (S)}. B y L em m a 2.5 o f  th e  se c tio n  2, th e  limit
Ko ,. ( f ) :=  O f )  exists for all feD p (A). Recall the notion of martingale
measure from [3 1 ]. Then we obtain

Theorem 1.2. L et (Y„ QM) denote the immigration process associated with the
locally  p- integrable entrance law  (K1) g iv e n  b y  (1 .7 ). T hen  there  is  a unique
orthogonal martingale measure M (dsdx) on  [0, co) x S having quadratic variation
measure <M> (dsdx) = ds y (dx) such that

(1.8) Yt(f) — Y o(f)= [ K ( A f )  Ko+(f)] ds + f f(x)M (dsdx), f e D p (A ).
0 0  s

M oreover it holds that

(1.9) Yt(f) —  Y o (T tf)=  f t Ks (f)ds + f Tt _ s f(x )M (dsdx), feC p (S).
s

1.3. Excursion laws of MBD processes. In  this paragraph we present some
construction of the im m igration process by integration o f  excusion paths by
means of Poisson random measures, which has been developed in  [2 9 ]. It was
shown in  [7] tha t fo r  a  locally p-integrable entrance law (K1)  of (71),

(1.10) (1 — e - v( f ) )K,(dv) = ,c0 +(1'f ),f  e  C  p (S),

defines an entrance law (K ,),„  of the M BD process (X 1 , P m). B y  a general theory
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of Markov processes, there is a o--finite measure P, on Wp
+  (S):= C((0, oo), M o (S))

such  that under P , the coordinate spocess ( w d t > o  i s  a  M arkov process with the
sam e  transition  la w  a s  (X „ P , )  a n d  one-dimensional marginal distributions

Indeed, it holds that for P K -almost all we 14Ç' (S), w, 0  as t 0 +  and
w, = 0 for a ll t o- (w):= inf It >0: w, = 01 (cf. (3.5)).

Let N(dsdw) be a Poisson random measure on [0, oo) x Hip +  (S) with intensity
ds x P K (dw ). D efine a  measure-valued process (Y,), by

= f f(:) w , ( s )  
wt -,N (dsdw).

Theorem 1.3. The process ( > 0  defined by (1.11) is an M e (S)-valued diffusion
that is equivalent to the immigration process with initial value 0  and the transition
function given by  (1.7).

In  order to  obtain  a  m ore  explicit form of the  right hand side of (1.7), let
us consider the  following condition.

Condition [ E ] .  Every locally p-integrable entrance law (it,) o f  (T,) has the
ICf o r m  ,  =  mT„ t > 0, for some measure m e M p i (S).

W e rem ark that the condition [E] is satisfied in  the  following two cases:
(i) (T,) is conservative a d  p  is  a positive constant function;
(ii) (T,) is  the sem igroup of a Brownian m otion in  Rd a n d  p  is  a positive

C 2 -function o n  Rd satisfying p(x) e - lx1 f o r  Ix > 1.
By Theorem 1.1, under the condition [E], (Y,, Q i,) is an immigration process

of the  MBD process if and only if there is some measure m e M p t (S) such that

Qp. exp { — ( f )} = exp {— ,u(kf) — f m(Vs f)d s},

(1.12)

t > 0, f e C p (S) +  , y e M p (S).

It would be intuitively plausible tha t the immigration measure m appearing
in (1.12) gives the distribution of the location where the im m igrants enter. To
justify this intuition we introduce a  space of excursion paths of the MBD process
a n d  discuss some excursion law s o n  th is  sp a c e . Let x e S  be fixed. W e call
w e C([0, oo), M,(S)) an M F (S)-valued excursion starting  a t x  if

(i) w , =  0, cr(w) > 0  and w , = 0 for a ll t > o- (w),
(ii) w,(1) - 1 w,—> 6 a s  t .
L e t ['I (S) be the totality of excursion paths starting at x , and let We(S) =

UxeS Wxe(S). (W, W t ) stands for the natural filtration of W e(S). We then have some
excursion laws on We(S):

Theorem 1.4. There is a unique fam ily  o f  a-f inite m easure kernels {ilx(dw)}
on (We(S), W) such that

( i )  x A ' is continuous;
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(ii) Jr is supported by W.:(S);
(iii) Aqw ,(1)] -41 as  t• 0+ ; and
( iv )  (We(S), w „ int>0 is  a  Markov process w ith the sam e transition

laws as the M BD process X .

Let N(dt, d(x, w)) be a Poisson point process o n  S15 We(S):= {(x, w): x e S,
we W(S)} with characteristic measure m(dx)Ax(dw). Set

(1.13) Yt = wi,N(ds, d(x, w)).
Jo is,;w-(s)

The intuitive meaning of the expression (1.13) is quite clear. A t  each occurrence
time of the Poisson point process, an (x, w) is chosen randomly according to the
measure m(dx)Ax(dw), so w is an excursion path starting at x, after that this
path grows up as a  path of the MBD process. Summing up all those excursion
paths we get the immigration process :

Corollary 1.5. The process defined by (1.13) is  a d iffusion realization
of  the im m igration process w ith initial value 0 and the transition function given
by  (1.12).

1.4. Super absorbing Brownian m otions. In  this paragraph, we le t  (Te) be
the transition semigroup of an  absorbing Brownian m otion in  a  smooth domain
D .  In  this case (TO does not satisfy the condition [E ], unless D = Rd . Indeed
for each x e0D  there corresponds an extremal entrance law (Ktx) defined by

(1.14) ic ( f )  =  D  f (x), f E c o (D) n c (D),

0
where D := —  denotes the  inward normal derivative operator at the  boundary.

an
(It is known that Tt f e Co (D)n c 1 (1) for f e Co (D)nC d (D), e.g. [13], p . 6 5 ,  so that
(1.14) is well defined.) In  this case the condition [E ] is replaced by

Lemma 1.1. Suppose either of  the follow ing two conditions:
(i) D  is bounded;
(ii) D = H d := {(x,,•••,x d )eR d : x 1 > 0} and p(x)— p i (x l )p ,(x 2 )•••p 2 (x d ), where

p ,  CA(0, co))" such that p i (x )=  x  for 0< x <1  a n d  =  C x  f o r x >2, an d
p2 e C (R ) ± ±  such  that p 2 ( x ) = C 1x1 f o r I > 1.

Then every locally  p-integrable entrance law  (is) of  T, has representation

(1.15) K ,  = mT, + f l (d x )K
OD

f o r some m e M p  (D ) and le M F (OD).

By virtue of Theorem 1.1 we have

Theorem 1.6. Suppose that either o f  th e  tw o conditions of  L em m a 1.1 is
fulfilled. T h e n  (Ye, i s  an  im m igration process of  X  satisfy ing [M l], i f  and



Zenghu Li and Tokuzo Shiga 239

only  if

(1.16)
exP 1— =  e x P MU) —  

[m ( f )  +  WV)] ds},

t 0, e M p (D), f  e OD),
fo r  some me M p ,(D) and le A4,(0D).

1.5. An SPDE for an immigration process of the super ABM over (0, co).
Applying Theorem 1.6 t o  D = (0, co) w e see  th a t ev e ry  immigration process
(Ye, ()A) of the super ABM on (0, co) is expressed by

(1.17)
exp {— Y( f )}  = exp {— p(k f  )

—  
[m ( f )  +  cDo Kf] ds} ,

t > 0, p e M p ((0, oo)), f e ((0, cc)),

0for some meM p 1 ((0, cc)) and c 0, where Do  vs f  = a x  k j(0+ ). Recall that the

reference function p e C((0, cc)) has been chosen such that p(x) = x for 0 < x  < 1
and =  e '  for x  >  2 . Then it indeed holds that M p , (0, co)) = M p ((0, co)). It
is well-known that the sam ple path of the super Brownian motion over R has
a  continuous density, w hich solves an SPD E, cf. [ 2 0 ] .  One should expect
ana logous resu lts  for the immigration p ro c e s s  o f  the super A BM  over
(0, co). Here we obtain

Theorem 1.7. Let (1Ç, (4) be an immigration process of the super ABM defined
by (1.17). Then there exists a continuous two parameter process 11, (x), (t, x) e (0, co)
x (0, co) su c h  th at  Yt (dx) = Yt (x)dx  and 1Ç (0) =  2c  f o r  all t  > 0  %-alm ost

surely . M oreov er the density  process Y (x) solves the follow ing SPDE:

0(1.18) — Y(x)x) = .\ /Y(x) +  —

1  

4* Y(x) + m(dx) càoat 2 dx

w here V i(x ) is a  time-space white noise, 4 *  denotes the adjoint operator of the
Laplacian in (0, co) with Dirichlet boundary condition at 0, and 6,', is the derivative
of the Dirac 6-function with test functions C4,,([0, co)):= {  f e 0 [0 , c o )) : f (0 )  = 0
and supp (f ) is bounded}  . More precisely, the equation (1.18) should be understood
in the sense of distribution, i.e.

J0

,  co
Yt (x)f (x)dx — f (x) Yo (dx) = li/s(x)dsdx

o o
(x)f (x)

+ 1.°D Y (x)f"(x)dsdx + tm( f ) + ct f '(0)
2 0 o s

fo r  ev ery  f  e  C ([0 , co)).

(1.19)
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1.6. A  limit theorem for the range of the immigration process of the super
ABM over (0, co). It is well-known that a  super Brownian motion over R d has
compact support property and the distribution of the total range up to  extinction
can be seeked explicitly, c f  [1 8 ] .  We here present a  limit theorem for the range
u p  to  t im e  t  for the im m igration process o f  th e  su p e r A B M  a s  t c e .  F o r

e Mp ((0, oc)), S(p) stands for the support of

Theorem 1.8. L et (Y „ Q0 )  denote an im m igration process giv en by  (1.17).
Then S(Y ,) is bounded f o r all t 0 Q , 2 -alm ost surely  if  and only  if  both S (p) and
S(m ) are bounded. In  this case, let R , denote the range of  (Y ,) up to tim e t > 0,

= U o<s,,S (X ,), and let k, = sup {x > 0 : x R t } . Then t - 1 1 3 i i ,  converges
in distribution as t —> co, and the limit distribution is the so-called Fréchet distribution
(cf . [14]) giv en by  F(z )= e 3 (z > 0), where

18 F ( 1 / 2 )
1  (F (113 )F (116 )) 3

1.7. Clustering - diffusive dichotomy in the central limit theorems for immigra-
tion processes. In  this paragraph, we assume that (T,) is the transition semigroup
o f an  irreducible Lévy process in  l e  acting on C o (Rd). W e fix a /3 >  0 and a
nontrivial function 4) E C, (Rd )  . Define the  reference function p  by

(1.21) p(x) = G f l 4)(x):= e T ,4 )(x )d t.

It is obvious th t p  satisfies the condition [A ], so w e have an  MBD process X
associated with (Ti ), which we shall call a super Lévy process.

Let (Yt , Qp.) be an immigration process of the super Lévy process X  given by
(1.12). W e  are here concerned with central limit theorems for this immigration
process. These provide u s  a  new example o f  "clustering diffusive dichotomy"
since the recurrence of symmetrition of the basic process yields spatial uniformity,
while th e  transience yields spatial fluctuation. The dichotomy phenomenon is
often observed in the study of interacting particle systems, cf. [15], [23], etc. W e
first assume

(1.22) i n  =  (c > 0. 2 = Lebesgue measure o n  le )

Theorem 1.9. i) I f  t h e  sy m m etriz ed L év y  process is transient, then the
distribution of

(1.23)
Y — tin

Z ,:=  t > 0,

under Q  converges as t co to  that of  a  centered Gaussian f ie ld  Z  over l e  with
covariance functional:

(1.24) Cov (Z(f  ), Z(g)) = 4 1 . Gg), f ,  g  g  (Rd),

(1.20) = c +  f  x m (d x ))
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w here Ô is the potential operator of  the symmetrized Lévy process.
ii) I f  th e  symmetrized Lévy process is recurrent, there ex ists an  h(t) such

that t 1 140-* co as  t -> oo, and the distribution of

(1.25)
Y -  tm

.\/h(t)
t > 0 ,

under Q ,  converges a s  t -> oo to  th at  o f  ri • .1, w here n  is  a  centered Gaussian
random variable w ith variance c.

In  Theorem 1.9 we assumed (1.22), which makes the proof extremely simple
since m  is  an  invarian t measure o f the  basic  Markov p ro cess . However, the
dichotomy result does not really depend on the immigration measure. Next we
consider a more general immigration measure in the case where (1}) is a  Brownian
semigroup. Assume that

(1.26) m(dx) = y(x).1.(dx),

where y  is  a  locally bounded measurable function satisfying

(1.27) lim r 'y ( rx )= a(x )
00

uniformly in  x E Sd — 1 :=  Ix e Rd :  x  =  1}  fo r a  constan t a > 0 a n d  a  nontrivial
continuous function a  o n  V - 1 . L et As  deno te  the surface element of S '  for
d > 2  a n d  As  = ( 5 _ ,  fo r  d = 1. T hen  As (1) = 27rd i2 F(d12) - 1 . Define the
constants cd , d = 1, 2, —, by

c d  = F7 ((a206++ 1/3 2) ) f  r - 112(2 _ d r .1 s (a) fo r  d = 1,

2 ' 2 r(cc + 1)
(1.28)

72(1 + 1)
 /s (a) fo r  d = 2,

2 ' 1 F (a + d/2)
e2 (1 a ) / I s ( a ) fo r  d > 3.

Let

h(M)=-c i Ma + 3 1 2 f o r  d = 1,

(1.29) = c2 M" + 1  log M f o r  d = 2,

= cd /W + 1 f o r  d > 3.

Normalizing (Y,), we define a  centered Y(le)-valued process

Yt m  - mTscis
(1.30) 4m) = 0  M  >  0 ,  t > O.

f h (M )
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Then we have our second central limit theorem a s  follows.

o f  (4 m ) )1>0
under Q 0  converge to those of  the g'(1e)-valued centered Gaussian process (Z,), „
that is characterized by

i) f o r d = 1 , Z , r i,A , where (rh),,. 0  is  a continuous centered Gaussian process
w ith covariance Eris n, = K(s, t), where K(t, t)=1-ta + 3 1 2 , t > 0  and

(1.31) K(s, t) = ys2"11
1 1  ua [t — s + s(2 — v)uv]Œ 

d u d v , t > s > 0;
J 0 o (t — s  + 2suv) + 1 1 2

with

-
(1.32) = 2 3 1 2 (2a + 3) ( I  r - 1 /2 (2 — r)Œdr)

o

ii) f o r d  = 2, Z 1 p l ,  where OM are  independent centered Gaussian random
variables w ith En t'  =  t ' 1. 1 ;

iii) f o r d  >  3, (Z 1)  are  independent 2Y(R d ) valued centered Gaussian random
variables with

0+1
(1.33) Cov (Z t (f), Z1(9)) = 

2
f  G g ) ,  f ,  g  E  g ( R d ),

where G  denotes the potential operator o f  the  Brownian motion.

Finally le t us rem ark that in  the  special case a  =  0  and a (x ) -  1, w e have

4 1
for d = 1, = —  for d  = 2 , =  1  fo r  d > 3,

27r

and (1.31) turns into

(1.35) K(s, t)
2

[(t + s) 3 1 2  — (t — s) 3 1 2  — 3s.\ /t — s], t > s >  0.
4

The rest of the paper is organized as follows: Section 2 contains the proofs
of Theorems 1.1 and  1 .2 . T he  proofs of Theorems 1.3, 1.4 and Corollary 1.5 are
given in  S ec tion  3 . S uper ABMs are  discussed in  Section 4, where th e  proofs
o f Lemma 1.1 and Theores 1.6 through 1.8 a re  given. Theorem s 1.9 and 1.10
are proved in Section 5.

2. Immigration processes

For an immigration process Y= (Ye, Qu)  given by Definition 1.1, we set

(2.1) t ( f )  =  —  log Q, {exp — Ye ( f )}, fEC,(S ) +

F o r  a  a-finite measure K  supported by M p (S)\ 101, we define a modification of

Theorem 1.10. A s M  cc, any  f inite dim ensional distributions

(1.34) C d  =
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the Laplace functional as in  [7],

(2.2) =  fm p ( , ) , { 0 ,  

(1 - e - v(f ))K(dv),

under a  subsidiary condition

(2.3) 1 A  v(p)K(dv)< (X).
M p (S) \ {0}

Let S := Su {A }  denote the one point compactification of S  if it  is  n o t compact,
and let S = S  if it  is  co m p ac t. D enote by C(g) +  +  the  space of strictly positive
continuous functions o n  g .  C hoose a  countable dense subset C  o f  C (S )"
containing all constant functions of positive integers, and let H =  { gp:geC }. It
follows from Lemmas 2.1-2.4 below that any immigration process o f the  MBD
process satisfying the condition  [M l] is  ch a rac te rized  b y  formula (1.7), which
proves the former part of our Theorem  1.1. The converse assertion in Theorem
1.1 is a  consequence of Theorem 1.3, which will be proved in  section  3 . T he
following Lemma 2.1 is a modification of Lemma 2.3 o f  [7 ], o f  which proof is
omitted since it is quite similar to the one given in [7].

Lemma 2.1. Suppose that K „,n  = 1, 2, -  ,  is a sequence of a-finite measures
on M (S )\{ O }  satisfy ing (2.3). If

(2.4) RKu(f) -0 R(f), f  EH,

and if

(2.5) lim inf R (pin) = 0  a n d  lim inf R (np)In = 0,
n  co co

then there ex ists a unique a-f inite m easure K  on M p (S )\{ 0}  satisfy ing (2.3) such
that R K ( f ) = R ( f )  f o r all JE H.

Lemma 2.2. Suppose that Y  = Qm) is an immigration process of  the MBD
process, and that J ( f )  is giv en by  (2.1). T hen there is a family of non-negative
functionals (I i)  on C (S ) + such that

(2.6) J ,( f) = I s ( f  )ds, f  e C p (S) +  , t O.

P ro o f . The Chapman-Kolmogorov equation implies that

(2.7) Jr+ =  J ( f )  + Jr1KO, E Cp  (S)  ,  r, t O .

Then for every f e C p (S) +  , J ,( f ) is non-decreasing in t > O. F ix  M  >  0  and choose
a  c o n s ta n t c  s u c h  th a t  Tt p < c p  f o r  a ll 0  <  t < M .  L et 0  <  c, < d 1 < c 2 <
d, < • • • < c„ < d„ M , and  le t a(n) = I n

k = i ( d , -  c , ) .  Using (2.7) one can  show
by induction that
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(2.8) E ( f )  - J„( f ) ] .1 a (n)(C
k = 1

Because, for n =  1 (2.8) follow s from  (2.7). A ssum ing that it is true for n—  1,
by (2.7) we have

E E fd , ( f )  — „ ( f ) ]
k= 1

J a(n —1)(C P )  + ( f ) J c „ ( . 1 .  )

Joqn — 1 ) (C P )  +  d , — („ —  1)(C P))

(n)(C P) ,

which proves (2.8) for all n 1. B y D efinition 1.1, Y(cp)—■ 0  as t 0 Q 0 -almost
surely. Thus by (2.1),

(2.9) .11(ep)—> 0 as 0+.

Then the absolute continuity of f t ( f )  in t 0  follows by (2.8) and (2.9).

Lemma 2.3. Under the condition on Lemma 2.2, there is a fam ily  o f  a-finite
measures (1(,),, 0  supported by  M p (S )\101 such that

(2.10) Jr( f) = ds (1 — e - v( f ) )Ks (d v ) , f e C p (S) ±  , t 0,
O imp(s),,o,

and that

(2.11) Kr(dy)P,,(X tedv) = K „ ,( d v ) ,  r, t > 0.
imp(s)„0)

P ro o f . By Lemma 2.2, there is a null set N  (0, co) such that for all SE N`
and f  eH,

s(f )  = lim  r - i [J,A -r(f) —  Js(f )]

= lim  r - 1 [1 — exp 1— Jr (kf )1].
r—■13+

Setting

K V (dv )= r - i (),{ P,,(X s edv)} ,

we get

'( f )  =  l im (1 — exp 1— v( f )1) K (
s") (dv).

"- O + Ittp(s)\to)

Since lim n .  .1,(pin)= 0 by (2.1), we can enlarge the Lebesgue null set N  and
assume lim n . =  0  for all se N C .  B y Jensen 's inequality , for 0 < 5 < t,
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(2.12) f5/s(i)ds = Ja1 1 -6f Qo Ya(K-af )1-

It is easy to see that K(np) = 0, so applying the dominated convergence
theorem together with Fatou's lemma to (2.12) we see that,

lim inf n - 1 1,(np)ds < lim inf rt - i l s (np)ds = 0.
n—oco n—,co

T hus L em m a 2.1 i s  applicable t o  I s f o r  a lm ost eve ry  s >  0 , and J ,  has
representation (2.10). Now (2.7) implies that for r, t > 0  and f e C p (S) + ,

J ds (1 —O e-v(f))K,,s(dv)
fm ,(,), {0 }

= ds (1 e - v (V , f  Ks(dv).
OA rp (s m o )

By Fubini's theorem there are null subsets N  and N (s) of (0, co) such that

(2.13) (1 — e - v(f ))1(,, s (dv)= (1 — e v (v 'f )) Ks (dv)
tsi (smo) srcsivo}p p 

for a l l  se N c ,te N (s)c  and f e  H .  For f e C p (S) + ,  the r ig h t s id e  of (2.13) is
continuous in t ,  so w e can m odify the definition of (10 1, 0  to  m a k e  (2.11) be
satisfied.

L em m a 2.4. Under the condition of Lemma 2.2, (J,) has the representation

(2.14) J,( f ) = k o ,(1/s f )ds,
JO

where (tc,) is a locally  p-integrable entrance law of the basic process (T,).

P ro o f . Combining (2.1) and (2.10) we get

(2.15) Q t, {exp — Yt ( f ) }  = exp p(Kf ) — ds (1 — e vu )) Ks (dv)} .
Oi t t p ( s ) \  to)

By Theorem 1.3 of [7], the above (K s)  can be expressed as follows.

(2.16) (1 — e - v( f )) K ,(dv )= Ko + ±  ( 1  —  e - "°+ (v u))F(dt/),
ttrpcsmol

where (is) is  a locally p-integrable entrance law of (T ) and F is a a-finite measure
on the set of locally p-integrable entrance laws o f  (T ) .  W e shall see  that the
diffusion assumption on Y forces F  0. It follow s from  (2.15), (2.16) and the
condition [Ml] tha t for each t > 0 and f e C p (S) + ,

Qo YE (.f )1 = f ds v(f )K,(dv)
O mosmo)
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(2.17)
= [ s ( f )  +  f q s ( f )F(dri)] ds < oo •

Fix cx > 0, and notice that 0 := TŒpeD(A ). Using the condition [A ] one sees

lim (1 — e v(4'))K Ks (dv) =  o + (0) + (1 — ea?'" (4 )F(dri)
s- ' ° 4  im p (s ) ,(0 ,

= ic,c(p) + ( 1 — e )F(dri) < oo .

Now we claim that

e t _  e 0

(2.19) ,

_ e  - Ys(o)
0

1 [ ,
-  AO + 0 - )  —  K 0 + (4))1

2
dS

s

f
e - Ys(o) (1 _ e - no + (40)F e jo

is a Q„-martingale. To see this it is enough to prove that for each
G e { Ys : 0 < s < , Q„ { 1 G e } is a  differentiable function of t with continuous
derivative

1
{1 0 [ 4 —  A +  —  0 2 )  —  * (0) — —  e

-  no* (
0 )F (cb)]e -  Y r(i .

2

By Markov property and (2.15),

QiztiGe - Y 'n
=  Q u {1G exp

-

— Y r ( k - r4 ) )  -  

tr
 ds (1 — e y( P̀))1<s (dv)}}
Jom p c s m o )

is continuously differentiable a s  a  function o f  t ,  so it suffices to calculate the
right derivative :

(2.20)

E
- 1/1 i t  re - _  e - Y,(41NE GLe-.0+

=  liM  E - 1 Q , {1 G [e - " v .°) —  e ")] }

(2.18)

Then (2.18) and the  dominated convergence theorem yields the  desired result.
I f  Y,(0) is continuous, then by applying Itô's formula to (e a r s(' ))2 — 2 "°' )

one sees that the martingale (2.19) has quadratic variation process
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e
- 2 Y . (0 )  y s (0 2 ) (1  — + e - 2 "+ (°))F(dti) ds.

Using Itô's formula again one sees,

e
-31',(0) 

—  e
-noto)

(2.21) = martingale + 3 J  e - 3 [Y , ( —  AO+ —

3  

0 2 ) +  Ko+(4))1ds
o 2

J
+  3  f d s  e - 3 Y s(Ø) (e - 2 4 °+(°) — e - "°+( '̀))F(dri).

0

Comparing (2.19) and (2.21) we see the increasing process

ds Je _ 3 Y (1(1 — (0)3Rdn), t > o,
0

is a  continuous martingale, which forces F  O.

N ext w e proceed  to  the proof of Theorem  1.2 which gives a martingale
characterization for the immigration process. The following two simple properties
of the  set Do (A) will be useful.

Lemma 2.5. i) F o r each f e D p (A ), th e  th e  lim it K0 +(f )=1im r _ 0 + Kt (f )
exists.

ii) Fo r each f e C p (S ) th e re  is  a  sequence {L} in D ( A )  such  t h t  p 'f „
converges as n—> oo to  p - 1 f  boundedly and pointwise.

P ro o f . i) Let a > 0 be large enough so that

(2.22) T tp  <ep for 0 < t < 1.

For f e D p (A) let h =af —  A f .  Then we have
cc,

(2.23)f = e  - "  7 's hds.
o

Using (2.22) and (2.23) one sees easily

(2.24) lim  Kt ( f ) =  f  e - "K s (h)ds < oo.

ii) F o r a n y  f e C p (S ) one c a n  check th a t  L:= n ro  T s f  d s  satisfies the
requirements.

Proof  o f  Theorem 1.2. As in the proof of Lemma 2.4, for f e D p (A) + ,

(2.25) N t(f ):= e - Y `( f ) —  e - Y °(f ) —
0 e

- Y s ( f ) [ Y —  A f  + 1 f 2 )—  Ko+(f)ids
 2

is a martingale with quadratic variation process
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(2.26) < N (f ) ) t  = e - 2 Y s ( f )  Ys(i 2 )ds.

Then

(2.27) M t(f):=  Y t(f) —  Y o (f)  f t EYs(Af)+ K0+(f)]ds

is a martingale with quadratic variation process

(2.28) <M (f)> t lis(f2)ds-
o

N o te  th a t  fo r  f  Cp (S) +  t h e r e  i s  a  sequence from D ( A )  s u c h  t h a t
pointwise and  boundedly as n (X). In  view of this fact together

w ith  (2.27) a n d  (2.28), there exists a  unique orthogonal m artingale  measure
M (dsdx) such that

M , ( f )=
 J

 f(x)M (dsdx), f E Cp (S),
o  s

and  that

<M ( f ), M(g)>, = Ys ( fg)ds, f, g e C p (S),

so  (1.8) holds. N ext w e prove (1.9). To simplify th e  presentation we assume
Yo = 0, since modifications t o  t h e  general s itu a tio n  a re  tr iv ia l. A  ro u tin e
computation based on  (1.7) shows that for any t > 0  a n d  f, g e C p (S) + ,

(2.29) Q  { (f)} = P (T tf) + f ‘) d s ,
o

I Y,.(g) Yi ( f )1 =  ( g ) d s  f t K s ( f )ds

Cr Cs
ds

o
Kp(Ts _p g 7 ;, + ,_,,f)d11,

0
(2.30)

Cr
= Ks (g)ds Ks ( f )dsIt

J o

fr ds i s ki , ( T r _ s g Tt _ s j  )dtt.
o o

Using these one sees that for f e D p (A) + ,

Qo t Y i( f ) K ( A g ) d s }' t= Ks ( f )ds j  [k s( g) — Ko , (a)] ds
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+  d s  Ku (T _ J [ T s g —  g]))du,
J o Jo

and

Q0 IY,( f )M t (g)} = ds Ku (g7;_ s f )du.
o o

Let t i =  itln  for i = 0, 1, 2, • • • , and n = 1, 2, • . By the continuity of (T) and the
Markov property of (Ye, Q0),

(2.31)

Q0{ 17,( f )  f  T f _s g(x)M(dsdx)}
0

?I

= firn Q0 { 17t ( f ) g(x)M(dsdx)}
n—■ co .t =1

= lim Q0 1 17t ( f )C M „(T t- t ,g )  —  (I/1 11- t(Tt - O )] }n =

= lim EQ0 Y t i ( T - 1 ;f ) m 1 1 (
7

; - 1 1 g ) }  — Qo P A IN  (7;
i = 1

o

n s
= E K u (T ,_ s f  T -0)du

= f t ds ku(T/ - s f  Tr-sg)du.

It is easy to see that

(2.32) Qo[t 2 sf T ;_j(x )M (dsdx )1 = s i  Ku ((T ; , f ) 2 du.
o o o

Summing up (2.27), (2.28), (2.31) and (2.32), one gets
2

Q 0  [ Y t ( f K t— s(f  )ds — /;_ j(x )M (d sd x )1  =  0,
0

yielding (1.9).

3. Excursion laws of MBD processes

We first give the proof of Theorem 1.3 which asserts that the process (Y,),„
defined by (1.11) is a  diffusion realization of the immigration process starting at
0. T h e  m ethod used in  th e  following is essentially th e  sam e a s  th e  o n e  o f
[2 9 ] , t h a t  is, t o  c o m b in e  a  semi-continuity argum ent w ith  so m e  moment
estim ates. Suppose that the Poisson random measure N(dsdw) is defined on a

0 0
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probability space (Q, ,371, Q). Let us begin with some estimates for the moments
of the immigration process.

Lemma 3.1. For each M  > 0 and each f eD p (A) + , there ex ists a constant
C (M , f )> 0  such that fo r  a l l  0  < r  < t  M ,

4

(3.1) Q { (Y ,(f) — 17,,(f) — f  Ks ( f ) d s ) } — r)2 C(M , f ).

A ccordingly , for each feD(A )n Cp (S) + , the process (Y ,(f ),t > 0) has a continuous
modification.

P ro o f .  We se t that w, = 0 for t < 0 by convention . First note that

Yt(f) —  Y r(f) — k s ( f ) d s = CM -(f)—  w r-s(f )]/Z i(dsdw ),
Jr0 (S)

where g(dsdw) = N(dsdw) — dsP,(dw). B y  a  m o m e n t calculation of Poisson
random measures, we get

(3.2)

QtY,(f)— Y r(f) —  K s ( f ) d S 1 4 }

= ft PK { lW t— s(f) — s14} ds + 3 [ i t PK { w t-s (i) — wr-s(f )1 2 1(14
0 0

=  r ds TP,,{1Xt-r(i) v ( i )1 4 ) K r _s (dv )+ f t ds f v (f ) 4 K,_ 5 (dv)
0

+  3  [  ds P,I1Xt-r(f) —  v(f)1 2 } K r _s (dv) + f t ds v( f ) 2 K , ( d v d 2

Recall the moment estimate of the  MBD process from [20],

PplXf(f) kt(i)122 t  Ilf II kt(Ttf) + 4(1 f — f 1) 2

P — kt(f )1 4

< const. [t 3 I f 113 i (7 f)  +  t 2 II f 11 2 P(1 f ) 2 + ki(lTf — f1) 2 ].

Then using (1.10) together with Lemma 2.1 of [20] one can easily get

v (f ) 2 K r ,(dv ) t II f  II K t(f)

IM p (S)\(01

Substituting these estimates into (3.2) we get (3.1).

Proof  of  T heorem  1.3. Take a n  increasing sequence of PK -measurable sets

v( K r , ( d v )  3 t 3 II f 11 3 O P.
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I4 (S) of W,,+ (S) su ch  th a t U,T= 1 VV,,(S) = Wp + (S) and P K (VV„(S)) < co  for a ll n,
and set

(3.3)
yvo rt

w N(dsdw).Jo  wn(s)

Note tha t peD (A )nc p (s) + . By the same way as for (3.2) one sees easily 

[ Y,( n) (p)—  17,.'(p) — ' t1ds wt-s(P/Px(dw)Q 4
JrW S ( S )

=  d s wt-stf — wr-s(f )1 4 PK(dw)
J Ow , " ( s )  

(3.4) + 3 [ I t2ds I w, _s ( f ) — )12

PK (C1W)1
0 WV (S)

Q [MO — Yr(p) — f ict—s(p)ds1 4

C(M, p)(t —  r) 2 ,

for all n and 0 < r < t < M , from which it follows that Y,(n) (p) has a  continuous
modification. However, by the expression (3.3), 17,(n) (p) is left continuous since
N([0, M] x Wp

( n) (S)) < oo for every finite M . Thus it follows that Yr
(n) (p) is indeed

continuous in t > 0 Q-almost surely.
We here notice tha t (3.3) together with the continuity of Y,(n) (p) for all n > 1

implies that

(3.5) lim w(p) = 0 for P K -almost all WE( S ) ,t-o ,

thus wt is  an M a (S)-valued continuous function of t e(— cc, cc) for P K -almost all
W e Wp

+  (S).
S ince  Y,(p) i s  the increasing lim it of the sequence R,( ") (p ), it  is  lo w er

semicontinuous. N ow  by L em m a 3.1, Y ,(p) adm its a  continuous modification
(p), which clearly satisfies

Vt
( ") (p) Y(p) irt (p), for a l l  t 0,

Q-almost su re ly . B y  (3.4), { i(p ) — V (p ) : n  = 1, 2,...}  is  a  tight family in the
space C([0, co), R) converging to the zero process, so  tha t for each M > 0,

sup  I ift(p) — MP) I sup  I k't(p) — Yt(P) -*o<t<m o<t<m

in  probability  under Q . Therefore  Yi (p) = Rt (p) for a ll t > 0 Q-almost surely,
that is , P,(p) is  a  continuous process.

N o w  let f  EC,(S) +  b e  f ix e d .  T h e n  g:= cp — f E C p (S) ±  f o r  som e c > 0.
Notice th a t b y  (1.11) b o th  Yi ( f )  and Y (g )  are lower semi-continuous functions
of t  and
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Y (f ) + Y t (g) = cY t (p)

is continuous in  t. This im plies that Y ,(f ) a n d  y (g) are continuous in  t , which
yields the Mp (S)-valued continuity of Y,.

Next we prove Theorem 1.4. By Dynkin's result in  [7] for each x E S,

(3.6) (1 —  e - "( f ))1(,"(dv) = kf(x), f E C o (S),
mpcsmo)

defines a n  entrance law (K ), > 0  o f  th e  MBD process (X ,, P m) with state space
M p (S). Thus there is a  cr-finite measure A ' on  space Wp

+ (S ):= C((0, co), Mp (S))
such that, under A ', the coordinate process 

( 1 4 ' ) / > 0  o f  Wp rf  (S) is a  Markov process
w ith the  sam e transition probability a s  (X ,  P,,) a n d  o n e  dimensional marginal
distributions (K,x), > 0 . I t  c a n  b e  e a s i ly  c h e c k e d  th a t  x i  -  A ' satisfies the
requirements (i) and (iii) of Theorem 1.4. Accordingly what we need to show is
tha t A " is supported by W.:. T o  see  th is w e re ly  upon P erk ins's resu lt in  [25]
which asserts that a conditional MBD process is a modified Fleming-Viot diffusion.

In  th e  following Lemmas 3.2-3.5, w e assume th a t A  is  th e  generator of a
strongly  continuous conservative Feller semigroup. L e t  M l (S )  d e n o te  the
subspace of Me (S) comprising Borel probability measures on S. Fix r > 0, and let
6(r) = C([0, r], 111 1 (S )) with canonical process ( a n d  na tu ra l filtration
(dist)o<t<r• Then fo r each h e C a ° , r], (0, cc)) a n d  fte A/ 1 (S), there is a unique
probability measure on Q (r) such that for each f ED(A ),

(3.7) 11;it(f) =  Î , ( f ) - f t  is(A f)ds, 0 < t < r,

is  a  (A , f),,,„)-martingale starting at 0 with quadratic process

(3.8)< ( f )>, =  f  h » E is ( f 2 )  —  s(f ) 2 ]ds, 0 < t < r.

(i„L ) a  time-inhomogeneous diffusion process which is called a
modified Fleming-Viot diffusion.

Let (X „ PO be an  MF (S)-valued MBD process associated with the generator
A .  It is  w e ll-know n  tha t th e  to ta l m a ss  process X,(1) is  equ iva len t to  the

d 2

one-dimensional diffusion (z„ in  [0, co) genera ted  by  x   Hereafter we
dx2

assume (z„ f", ( 1 ) ) is realized on  the  canonical space 5 := C([0, cc), [0, cc)) with
the  natural filtration (fr,

Lemma 3.2. ([25], Theorem 3 )  For every A -measurable function F(6) .), every
A .-measurable function G(z.) and every  pe M ,(S )\ { 0} , it holds that

Pi, {F(X.(1) - 1  X .)G(X .(1)); X  JO> 01

= f i u ( , ) 1G(z.)f) J(X .) ; z r > 01.

o

(3.9)
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W e shall also need the following fact concerning the entrance law (Kxt ).

Lemma 3 .3 .  For t > 0, 2  >  0 and f E Co(S),

(3.10) (1 —  e - À vt")i)(f )1((dv) — 
2  +  t / i

Ttf (x).
m,-(s)\ {o}

P ro o f . Although one can prove (3.10) by elementary calculations based on
(3.6), we here use Lemma 3.2 which implies that

IM F(S)\(O }

(1 — e 1
1

) ) 4f)KNdv) = lim —P eax — exp ( J O )  t(f )1E - 0 0

lim 1— Pg  {1 — exp ( —  Az)} {k- f (  f ) }F - - +0

2

2  +  t i l
Ttf(x).

Lemma 3 .4 .  For r > 0, n >  0  and fe D(A),

(3.11) lim  l im  A x  sup I Wt(f) — vi) a (f) >  fl ; W. 0 0} = 0.
b - , 0 +  a -■ 0 + a< t< b

P ro o f . Using (3.9), M arkov property a n d  Chebyshev's inequality we have
for 0 < a < b < r,

Ax { sup I Iiit(f ) —  l i l a ( f ) 1 > T 1 ;
a< t< b

im(s),(,) 
K .: ( d v ) il v(i){f) ,z.E sup lit(f) —  1";(f)1> n]; zr _a >

0 < t< b -a

< — K4(dv)i'v(,){t%, [ 
f b - aI , s

X  ( 1 , 4 f ) d s ;  zr _ a >  o ]}
2

n  M(SMO)

K: (dv)i" ,( 1 )[  s u p  114. r ( f )  >  q/ 2 ] ; Zr - a >
0 < t< b -a

W e denote the last tw o term s by /1 a n d  /2, respectively. Using

{z, > 0} = 1 — e - 2 2 /̀ ,

and (3.10) we get

'1 < --- (1 — 2 ' (1 )1 ( r-  a))K ax(dv) A f (b  —  a)

=  —  1  f —  -÷ 0 a s  a —> 0+  a n d  b

F or /2 w e  use  a  martingale inequality to see that
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12 —

2

n
),

m,(s)\(0) 
1(;(dv) 1[5 ,(l){f',..[Ilab-a(f )1; z r_ a  >0 ] 1,

where
b-a

Pl'%z.1 11-11. 13- a ( f j .1 3;%z.it( iA f Dds + i4f )1
o

II A — a) + I f — f (x)I) + 11(1 f — f (4).

Therefore,

4
12 —

4  

11 A f  (b  —  a) + [Tb I f — f (x)I(x) + Ta I f — f (x)I (x)] 0
rn rn

as a —> 0+  a n d  b 0+, completing the  proof.

Lemma 3.5. For A x-almost all w,

(3.12) lirn w,(1) = 0 a n d  lim 17ti =t—o+ t-o+

s o  A ' is supported by we

Pro o f . By (3.10)

f v(1)2 K ax(dv)= a.
M F  (S) \ (0)

Since it holds that

{  sup 4 }  4(z2 +  zb),
0<t<b

we obtain

AX { sup w,(1)2 } <
f

4E1(1)2 + v(1)t(b — a)] K;(dv) = 4b,
a<t<b M F (S)\ {0)

hence the first assertion fo llow s. For the second assertion note that for 0 < b < r
and  11 > 0,

AX{ sup I ) — f (x)I > ; v v o
0<t<b

(3.13)
= lim  /Ix{ sup I — f (x)I > n; wr o

a- ■0 +
a < t < b

liM  Ax { sup  ili't(f) > r1/2; wr 0 0}
a - ■13 + a < t < b

±  E r n  A x 11%4''  a( f f (x)1 > 11/2 ; wr 0 0).
a-.0+
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Using (3.10) we have

lim  A x  I a(f)—  f(x)1> 1 /2 ; Iv, 1:) }

 u r n  J=
a—.0+

(iv(f) —  f(x)1>

(1 _  e -2,(l)/(,--.) )/ ( .: ( d o

a—.0*
IMF(S) \ (0)

< urni (1 - e 2 v(1 ) /(r- a))11(If - f (x)1)K: (dv)

= lim  —
2  

Ta f  - f  (x )1(x ) = 0,
a—.0+

then the desired assertion follows from (3.11) and (3.13).

F o r  a  non-conservative (1;), th e  proof can  be  reduced  to  the  conservative
situation in the following w a y .  Extend (Te )  to  a  conservative semigroup (T;) on
the enlarged state space S = Su {A} by adding an extra point A  a s  a  tra p . F o r
( ) we denote the  associated cumulant semigroup and  the  entrance law by (K)
and  (K ex) , respectively. Obviously if(x ) =  1 ''f(x ) holds for x e S  if f  (A ) = 0, so
1{,x is indeed the restriction of .1q  to  M F (S). Then it is easy to see that (w„ JP)
is equivalent to (i't Is, A x ). Since A x  is  supported  by  ITI/x, it is obvious that
is supported by Wx.

Finally, we show  the uniqeness assertion of Theorem 1.4.

Lemma 3 .6 .  A ny  a-f in ite  m easures /Ix , x eS , satisf y ing the requirements
(i)-(iv) o f Theorem 1.4 is uniquely determined.

P ro o f . Since W ,.-5 x  a s  r --+ 0 ,  b y  th e  continuity o f  (K ) w e  have for
Ax-almost all w,

lim ( _sf )  = Kf(x), f e C o (S) +  .s-o+

By Markov property, for each r > 0 and e > 0,

lim {ws(1); - (x)I < e, ws (1) <s—co-

> lirn A x{ w,(1;_s1);
s—.0+

Kf(x)1 < 8, Ws (1 ) <

= Ax {0 1 ) ; — Kf(x)1 < E, w s (1 )  <
s—■0+

= {Wr111},

hence by the condition (iii) we see

lim Ax{w,(1); I ( ' -s f ) -  K f(x )i < E, Ws (1) =  1 .

Using this and  Markov property again we get

/1'.(1 - ew'cf))

171
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= lim  A' (1 — exp { — ws (k_ sf )}; I Vtf(x)1 < e, w(l) < e)s—o*

<  s u p  a' (1 —  exp 1— a[k f  (x) + e]} )
o < a <

x  lim  Ax Iws( 1 );1 1;vss(K—sf) f (x)I < e, w (l) < e}
s—■ 0

U (x) a s  e 0 +  .

A  similar argument applies to get

Ax(1 — ew'Lf )) >  U (x),

th u s  the m arginal distributions of A x is uniquely determ ined. Therefore the
uniqueness of A ' follows.

Proof  of  C orollary  1.6. This is alm ost th e  sam e a s  th a t o f  Theorem 1.3,
and  therefore omitted.

4. Super absorbing Brownian motions

I n  th is  section we discuss immigration processes of super A B M s. Let us
first give the proofs o f Lemma 1.1 and Theorem 1.6 as follows.

Proof  of  L em m a 1.1 and Theorem 1.6. Let D be a  bounded smooth domain
in Rd and let (T,) be the semigroup of an absorbing Brownian motion in D acting
on C o (D). Suppose  (K ,) is  a p-locally integrable entrance law o f  ( T d . Noting
that i ( p )  <  o o  w e  in tro d u c e  a  tim e inhom ogeneous M arkov sem igroup
a s/o<s<t<1 a n d  a  probability entrance law (Rt/o< <1 of ( s) by

(4.1) tts f (x) = CT, — s ti(x)] —  T  — [f  T 1
—  19] (x),

and

(4.2) kt(f ) = ( P r  K t( f  - tP ) .

Since T, f e C o (D) n C (D) for .f E Co (D) n C 1 (D) (cf. [13], p. 65), Tt s f  is extended to
a  continuous function o n  D  such that

(4.3) , f (z) =  K1 — s(P) —  1 K zt.—  s(f  — t  P ) fo r  z E OD.

Choose r„ --+ 0+  such  tha t y := lim a 1 C , defines a  probability measure y on  D .  By
(4.1)—(4.3)

I C  (P )  K t ( f )  =  kt( f  [T1 - 1)

(4.4)
= y(dz) [T, p(z)] -  T ;f  (z ) + y(dz) [Kz, (p)] -

D OD

which proves Lemma 1.1 in the case that D is bounded. W hen D is unbounded,
the limit y := limn iC,.„ defines a  probability measure y on D  { o o }  . But for D =



(4.9)

Let

(4.10)

and let

4(dx) =  4 (x)dx =

' tZ,(y) = j pr_s(x, y)M(dsdx),
Jo

2  x
2 /2tdx, t > 0, X  > O.e

t t
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we claim that

(4.5) Ttsf(x )-> 0 a s  lx1 -> co fo r  x ED.

Once (4.5) is proved, Lemma 1.1 follows for D = WI in  th e  same way as  above.
N ote that

d

(4.6) T, f (x) = [gt(x, - y i ) - g t (x i + Y in  I I  gt(xi - Y i)f (AdYi •••dy„,
1=2

where

1
gt(x)    e-'212` xeR , t >O.

27rt

Then it holds that for c < a < b  <  d,
I) d— 1

(4.7) lim gt (x - y)dy (f g t (x - y)dy) =  0 ,
IX1- " 0

a

so  tha t for 0 < c < a < b < d ,

d— 1

fim [g ,(x  - y) - g ,(x  +  y )]d y  (f [g ,(x  - y) -  g r (x + y)]dy) = O.
x -0 0

Since Ti  „p  is a  bounded strictly positive continuous function on H a , (4.5) follows
from (4.1), (4.6) and (4.7).

N o w  T h e o re m  1.6 is  im m e d ia te  s in c e  b y  (1.5) f o r  e v e ry  t >  0  and
.f e C 0 (D) n C 1 (D), icf) ,_(U ') =  D kf (z ) holds for z e OD.

Next we give th e  proof o f Theorems 1.7. Let (Y„ Q ,)  b e  the immigration
process of the super ABM over (0, co) given by (1.19). By Theorem 1.2, for each
f  C  p ((0, oo))+ , Q0 -almost surely,

(4.8)1 '  ( f ) =  ft  [m (T ,„ f )  +  c e „ (f ) ]d s  + T,,f(x )M (dsdx),
o  o

where M(dsdx) i s  an orthogonal m artingale measure o n  [0, co) x (0, cc) with
quadratic variation measure <M> (ds, dx) = Y(dx)ds and (tet ) is  the entrance law
of the ABM in  (0, co) defined by
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(4.11)

where

Measure - valued branching diffusions

Y t(Y )= Z ( y )  + [f° Pt,(x, Am(dx) + c 14-.,(Ydds,
o o

p,(x, y) = g i (x — y) — g,(x + y), t, x, y > O.

By a  stochastic Fubini theorem, Y,(dx) = Yi (x)dx holds Q 0 -almost surely. (See
e. g. [32] ).

N ow  w e prove Theorem  1.7 b y  a  series o f lem m as. S ince the arguments
are quite similar to those given in  [20], we here present only an  outline. Recall
tha t p  is  a function in  C4(0, ()o) + such that p(x) = x for 0 <  x < 1 a n d  = e - x
for x  >  2 . T he proof o f  th e  following Lemma 4.1 is om itted since it is quite
elmentary.

Lemma 4.1. For M  > 0 and n > 0 there is a constants C(n, M )> 0 such that

foo
(4.12) ds gs (x —  y)2 enYdy C(n, M ). enx

o o

f o r x  > 0, and

ds [p,_ s (y, z) —  p,. ,(x , z )] 2 dz
o

(4.13)

M) • ( t  — r + y  — x1)- (enx  + enY)

f o r  0 < r< t < M  a n d  x , y >  O.

Lemma 4.2. For M  > 0 and n > 0 there is a constant C(n, M )> 0 such that

(4.14) (),„ IZ,(x) 2 "1 C(n, A4) • e'

for 0 < t < M and x  > 0. Moreover,

(4.15) {Z,(x)2} 0 a s  x .

P ro o f . Since m  M p ((° , co)), it is  easy  to  check tha t for each M  > 0  there
exists C(M) > 0 such that

(4.16) Tm ds ps (x, y)m(dy) < C(M) • e-.
Jo 

for a ll x  >  0 . Moreover it holds that

(4.17) sup fq(x)ds = lim 10

„:,„,ds = 2
o  0

for a ll t > 0. N ow  notice that
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Q0{Zt(x) 2 } = Q0lYs(19 -,(x, • ))1ds

f o \ /21t(t — s) f t _ s

ds
[m(p„(x, )) + ce,),(x)] du.

from which (4.15) follow s. N ext note that (4.14) holds for n  = 1 by (4.16)—(4.18).
Assuming that (4.14) holds fo r  n < m w e shall show i t  fo r n = 2m, which will
yields (4.14) for all n. Under the induction assumption, we have Q0 { Y,(x)2m} <
C (m , M ) • e '. T h e n  b y  m a k in g  u s e  o f  Burkholder-Davis-Gundy's a n d  then
Holder's inequalities,

Q, IZ,(x)4 1  C, (2m, M) • Q, [ 2md s y) Ys (y)dy1
o

co t 0.0
< C 1 (2m, M) • Q 0  { f s y)Y s2m(y)dy}  •[.{  ds y)dy

o o o 0
C 1 (2m, M) • e2 " ,

thus (4.14) holds for n = 2m.

Proof of Theorem 1.7. Using Lemma 4.1 with a  similar argument as in the
proof of (4.14), we get that

(4.19) Q0{1Z1(Y) — Zr (x) 12 1 C(n, M) • (e  + (N /t —  r + Y  —  xl )f l

for 0 < r < t < M and x, y >  0. Therefore, IZ,(x): t > 0, x > 01 has a continuous
modification vanishing a s  x  0 +  b y  (4.15), hence { Y,(x): t 0, x > 0}  h a s  a
continuous modification satisfying Y,(0 + ) = 2c by (4 .17). Tracing the arguments
o f  [20 ] one can define a  time-space white noise 14 (x) on an extension of the
original probability space such that M(dsdx) = .\ /Ys (x) Ws (x )dsdx . Then by (1.11)
the density process { Y;(x): t > 0, x > 0 } satisfies the  SPDE (1.21).

Now we proceed to the proof of Theorem 1.8. Let us start with the following
nonlinear equation:

(4.20)

{

u t (t, x) = l u x x (t, x) —  iu(t, x) 2  + 4 e21,,,,,(x), t > 0, x > 0,
u(0, x) = f (x ), x > 0,
u(t, 0) = 0, t > 0,
u(t, • ) is uniformly bounded on  each finite time interval.

Lemma 4.3. For bounded non-negative f E Co ((0, co))n O R  00)), the equa-
tion (4.20) has a unique solution in C ("([0 , oo ) x [0, 00))n c1 , 2((0, 00) x [ (0, 00) \

fal]).
P roo f. Recall that (Te)  denotes the transition semigroup o f  th e  absorbing

Brownian m otion in (0, c c ) . I t  is  k n o w n  th a t the evolution equation

(4.18)
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(4.21) u(t, x) = 1f (x ) + T;_, [ 1  02 1[„ ,o )  -  -

1  

u(s)2](x)ds, t > 0,
, 2 ' 2

has a unique positive solution u(t, x) bounded o n  each finite time interval; see
[12], [16], etc. Then  it is  a routine task to check that u( • , • )e C " ( [0 ,  co) x
[0, co))nC 1 •2 ((0, co) x [(0, co) \ l a n )  a n d  it solves (4.20), hence we om it the
details.

Hereafter we denote by 0 (t, x; 0) the solution to (4.20) with f  0. Then
it holds that

(4.22) 0 14'(t, x; 0) 0, t > 0, x > 0,

and  that

(4.23) a2ua(a2t, ax; 0) = u l (t, x; a 2 0), t > 0, 0 < x < 1;

see [16], [18].

Lemma 4.4. The limit

ua(t, x) lim ua(t, x ; e)
6-■

ex ists in  C ° 1 ([0, cc) x [0, a)) n CL 2 ((0, co) x (0, a)) and it satisf ies

ut (t, x) = 1 ux x (t, x) - 1 u(t, x)2t  > 0, 0 < x < a,
(4.25) u(0, x) = 0, 0 < x  <  a,

u(t, 0) = 0, t > 0,

Moreover ua(t, x) has the following scaling property:

(4.26) a 2  a t  -2
U  ka t, ax) = ul (t, x), t > 0, 0 < x < 1.

P ro o f . Let 0 < b < a  and  le t e (x , y ) denote the transition density of the
absorbing Brownian m otion in (0, b). Then ua(t, x; 0) satisfies

1u"(t, x; 0 )  =  -  i t ds f b e s (x, y)u(s, y; 0) 2 dy
2 j 0o

f
2  0  ay

1 '  0  gobjx, b)u(s, b; 0) 2 ds,

so ua(t, x) satisfies the same integral equation. Using this one checks that u°(t, x)
is i n  C '''( [0 , cc) x [0, a)) n C 1 •2 ([0, co) x (0, a ) )  a n d  it satisfies (4.25). The
scaling property (4.26) follows from (4.23).

Lemma 4.5. T he limit

(4.28) u"(x  0 ) =  lim u"(t, x; 0)

(4.24)

(4.27)



Zenghu L i and  Tokuzo Shiga 261

ex ists in  C 1 ([0, oo))n c 2 ((o, 00) lal) , which is the unique solution of

(4.29)

uxx(x)= u(x) 2 , 0 < x < a,
ux x (x)= u(x) 2  — 02 , x > a,
0 u ( x )  0, x > 0,
u(0) = 0.

P ro o f . Since ua(t, x; 0) is non-decreasing in  t >  0 , th e  lim it (4.28) exists.
N ote tha t ua(t, x; 0) satisfies

1
ua(r + t, x; 0) = T i t * ,  • ; 0)(x) + T

1
i _s [— 0 2 1[ a , c o )  —  —  Ua fr S ; e) 2 1(x)ds.

2 2

Letting r co in  the  above equation we get

ua(x; 0) = T;tia(- , 0)(x) + f o2ita — —
1  

ua( • , 9)2 1(x)ds, > o,
02 ' 2

fro m  w h ic h  it  fo llo w s th a t ua(x; 0 )  l ie s  in  C 1 ([0, co))n C 2 ((0, co) \ { a} ) and
differentiating in  t  gives (4.29).

To see the uniqueness of the solutions of (4.29) first note that any solution
u(x) of (4.29) is  concave in (a, co), so u(cc) = 0 and u'(oo) = 0. If u(x) and  v(x)
a re  tw o  solutions of (4.29), th en  w(x):= u(x) — v(x) vanishes at x =  0  a n d  co.
Suppose that w(x) is not identically equal to 0, we may assume w(x0 ) = max x w(x)
> 0 for some x0 >  0 .  Since

w"(x) =[u(x)—  v(x)]w(x), x > 0, x 0  a,

we have

w(x) — w(x 0 ) = f x  d y  f  [U(Z) — v(z)]w(z)dz > 0
xo xo

w hen  x — x0 1 is small, which is absurd.

Lemma 4.6. The lim it ua(x):=1im „„ua(t, x) ex ists in  C 1 ([0, a)) n C2 ((0, a)),
which is the unique solution of

(4.30)
tu(0)= 0, u (a)=c c .

u (x) =  u (x ) 2 ,0 <  x < a,

M oreover it holds that

(4.31) uax (0) = lim uax (t, 0).

P ro o f . Since ua(t, x )  is non-decreasing i n  t >  0 , t h e  lim it  (4.30) exists.
Letting t co in  (4.27) we obtain

1 OD fb 1 f   a Ua (X )  = — dsf gob(x, A u . (y y d y  _ gsob(x, mu aocyd s .

2 j 00 2  0 O y
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This implies that ua(x)e C T ([0, a))n C 2  ((O, a)) and

Ju(x ) = u(x ) 2  , 0 <  x <  a,
u(0) = 0.

Next we claim that for te(x ; 0) given by (4.28),

(4.32) olim ua(a; 0) = c o.

Once (4.32) is proved, since

ua(a - )  = lim  bin tta(t, x) lim  urn  Ua (t, x; 0 ) =  t l a (X  ; 0),
t - ' 0 0

it will follow that tia(a - - ) =  oc  and te(x) will solve (4.30). To see (4.32) note by
the first equation of (4.29) that

— ox oc ; (9)2 — —

1  

tia ( x ; 0)3  = — uax (0 ; 0) 2  , 0 < x  < a.
2 3 2

By this and the second quation of (4.29),

1 1
0)2 — — (x ; 0) 3 +  0 2 u"(x ; 0)

2 3

1
(4.33) = — 4(a ; 0) 2 — —

1  

u°(a; 0) 3 +  02 tta(a; 0)
2 3

1
= — uax (0; 0) 2  + 0 2  uax (a; 0),

2

Letting x c o  in (4.33) we see

2 1
— 03 = — 4(0 ; 0)2 +  02 u"(a ; 0).
3 2

X> a.

which yields (4.32) since u"(x ; 0) u a  (x) implies 4(0; 0) 4 ( 0 ) .
Finally we show (4.31). For small x > 0,

Jt [ O s ,  x) —  x4(s, 0)] ds
0

= ds d y
t f x  f y

te;,x (s, z)dz
o o o
x y

=  t d y f  [2 u " ( t, z ) + f t ua (s, z) 2 ds] dz.
o o

Taking t o o  we get

u"(x) — x lim 0) =  f x  dy (Z)2 dZ,t -■ GO 0 0
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which yields the  desired conclusion.

Lema 4.7. L et (Ye , Q t,) denote the immigration process given by (1.19). Then
f o r a > 0  and 0 >  0,

Q, exp {— — Y s([a, co))ds}
2

t

= exp — [m(ua(s; 0)) + cuax (s, 0; 0)] ds}

where ua(s, x; 0) is  the solution of  (4.20) w ith f  = 0.

P ro o f . N ote tha t for f (t, x )eC 2 ([0, co) x [0, co)),

M {:= Yt (f (t)) —  f i  [Ifs ( fs (s) + f x x (s)12) + m(f (s)) + c fx (s, 0)]ds

is  a martingale with quadratic variation process

<M1>,:= J 1
(f (s)2)ds.

Applying this to f(t, x) = ua(r —  t, x; 0), with some approximating argument, we
see that

exp {— Y;(ua(r — t; 0)) — —0 2 f Ys aa, oo))ds} — 1
t

2 0

=  —  f [m(ua(r — s; 0)) + cuax (r — s, 0; 0)]

exp l's(ua(r — s; 0)) — 1 92 1 Yu q a, oo))du}ds
2

+ martingale,

from which the desired relation follows.

Proof  o f  Teorem 1.8. Since the immigration process has a jointly continuous
desity Yt (x), applying Lemmas 4.7 and 4.4 we have

< a} = (),{ — f K([a, oo))ds = 0}

=  e x p  —ft [m(ua(s)) + cz4(s, 0)]ds}.

By the  scaling property (4.26),

Q o {t - w R ,  a}

(4.34)

o

(4.35)
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0 1 3 a - 2

diffusions

co

(4.36) = exp ds J ul (s, t x)m(dx)

t -1/3 a -1 
10 

1 /3 a - 2  

CUx
i  (S , 0 )C IS } .

Since u(t, x) solves (4.25), as in  the  proof o f Lemma 4.6,

Jt 1

Eu (s, x) — xt4(s, 0)] ds

=  f d fy [2u 1 (t, z) +  f  u
o o o

2 ds] dz
x y t

< x 2 u1 (x)[1 + —
t

ul (x)].
2

Using this and  Lemma 4.6 we obtain

t1/3a - 2

Jim Jd s ul (s, t - 1 /3 a - l x)m(dx)

(4.37) = firn t 1 3 a - 1

t -■ co

C O / 3 a -  2 c o

L i! (S , 0)ds xm(dx)
o

= a -
 3  1.1x

1 (0) J xm(dx).

Hence from (4.36) and (4.37) it follows that

CO

lirn Q0 It - 1 1 3  kga }  = exp a -
 3  Ux

i (0)t-■ [ C fX M(d X)1}.
0

The explicit value of u!(0) can be found by a  sim ilar argum ent as [ 18].

5. Central limit theorems for the immigration processes

L e t (Ye , Qm)  b e  an  im m igration process associated w ith an immigration
measure mE M p ,(S). By Theorem 1.2, we have Qp -almost surely,

(5.1) Y( f ) = Y o (T, f ) + f t m(Te _s f )ds + Te_sf (x)M(dsdx), fe  Cp (S),
0  s

w here  M(dsdx) i s  an  orthogonal m artingale  m easure o n  [0, co) x  S  having
quadratic variation measure

(5.2) <M> (dsdx) = ds Ys (dx).

O ur proof of the first central limit theorem is based on  the  following
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Theorem 5.1. Suppose that m is (7)-inv ariant and  that f o r each f E CK (S) +

there is a constant C (f )>  0  such that

fo

(5.3) Tsf II ds C (f).

Then f o r each fE C,,(S) +  the distribution of

Yt(f) —  tm(f) (5.4)
.N/Var (li( ( f ))

under Q 0  conv erges as t co  to  the norm al distribution N(0, 1).

For the  proof we need a sim ple fact on martingales.

L em m a 5 .1 . S uppose  f o r e ac h  t >  0  w e  h a v e  a  continuous martingale
(M (

u
)̀ ,u >  0) with Mg ) = O. If  there ex ists u(t)—> co such that <M" ) >„( )  converges

as co  to  som e  constant a > 0  in  probability , then the distribution of  M u"(
),)

converges as  t Go to the norm al distribution N(0, a).

P ro o f . N o te  th a t  fo r  each  t > 0, (M V) i s  a  tim e change of a  standard
Brownian motion B" ) (u), i.e., MV = B (`)(<M (`) >u). Then for BE R  and e > 0,

E  exp { i0M2 ) } exp {i0B( )̀ (o-)11

= Elexp { iBB" ) (014" ) % ( ,) )1 — exp {iBB( )̀ (o-)11

101 E sup { B ° (u) — Bm(o-)1 : l u — + 2P

which yields the desired conclusion.

Proof  o f  Theorem 5.1. Let feC„(R d) +  b e  f ix e d .  N o te  th a t  b y  (5.1), (5.2)
and the (Tr)-invariance of m we get

(5.5) V(t):= Var (Y ,(f))= (t — s)m((T,f) 2)ds.

In  order to apply Lem m a 5.1 we set

(5.6) M4`)(f ) = I  f u7 { ,f ( x ) M ( d s d x ) .
V(t) o  s

where Ts f =  0  for s < O by convention. Then for every fixed f  and
u> 01 is  a  continuous martingale and

<A4 ( )̀ (f )> t=  V ( t ) 1  f t  1 Ç ((t-s f) 2 )ds

=  1 + V(t) 1d s t _ ,.(T , )2 (x)ds M(drdx).
o S  r

Combining this with (5.1)—(5.6) and the  present assumption we get

fm (f ),

{ I <A4( `) >.( t) — a I > El ,
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Qol<M" ) (f)>t — 1 12

=  
V  ( t ) 2  

Qo f i t d r f (f Ts- r(rt-sn 2 (x)dx) 2 (dX)}
1

0 S r

<  
v  (0 2  

1'

0 

dr (1.

r 
T t -sf dS ) Q 0 { Y M T t - r f ) 2)}

1 t t 2

< C (  f  )2  f t r(t — Oin(( f ) 2 )dr
V(0 2  o
tC( f )2 

V (t)

which vanishes as t—*cc if $O° m((Tsf ) 2 )ds= oo. On the other hand, f0° m((Ts f ) 2 )ds
< co im plies that V(t) const. t a s  t --+ oo, so that

1 
2 f

s(t — s)m(('Ts f ) 2 )ds
t 0

Et

Lç. E f  m((Ts f ) 2 )ds + m((Ts f ) 2 )ds,

which vanishes a s  t oo and  y —> 0. Thus w e have limt _,G0 Q 0 1 <M ( ') (f)>, — 11 2

= 0, completing the  proof of Theorem 5.1 by virtue o f Lemma 5.1.

Proof o f  Theorem 1.9. We first note that for any irreducible Lévy semigroup
(T1)  th e  estimate (5.3) is know n; see Theorem  4.3 o f  [2 8 ]. Suppose th a t  the
symmetrized semigroup ("I) is transient. Then w e have for fe C,,(1V) + ,

1
m(CTs f ) 2 )ds = — m( f f ) < co,10 2

and

Var f ) m (  f  f  )02 a s  t o o .

By Theorem 5.1, the distribution of

(5.7) CIT,(f) — tin (f)]/ NA
converges t o  N(0, m (f6f)t12). N ext suppose th a t  th e  symmetrized semigroup
(T1)  is recurrent. Recalling that m = c2, we fix som e 4) e C „(10+  w ith  40) = 1
and let

(5.8) h (t) =  0  t — s)4(T,44 2 )ds.

Then $0° m((Ts f ) 2 )ds = co im plies that t -  h(t) Co a s  t —* co. B y  T h e o re m  5.3
of [26], if f, g e C,(10 + w ith  2(g) > 0, then
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(5.9) 11m f i's f(x)ds(1 t s  g(x)ds) = 2(f)1.1.(g)t-.. . o o

uniformly for x and y  in  each com pact se t. Using this we obtain that for every
f EC„(R d )± ,

lim h(t) -  1  Var { Y, ( f ) }

-1
= lim  c (t - s)((T , f  ) 2 )ds (t - s)4(T ,d9) 2 )ds) = cA(f ) 2 .

By Theorem 5.1 and (5.9) the distribution of (5.7) converges to N (0, cl(f ) 2 ). Since
fE C„(Rd ) +  w a s  arbitary, i t  is  a  rou tine  task  to  see  the convergence of (5.7) in
the  sense of distributions in g '(R d ) , and the  theorem is proved.

Next we proceed to the proof of Theorem 1.10. Recall that now (T) is the
standard Brownian semigroup on R d and the im m igration m easure is m(dx) =
y(x)A(dx) with y satsfying (1.27). By (2.30) and the symmetry of (Te) we see that for
f  eC„(10 +  ,

(5.10) Qo Yt( f )1 = f t 1(y Tu f  )du,

(5.11) Var {Y,(f)} 
=  o  

r f r  2 (Tuy • (Tr-uf) 2 )du,

(5.12) Coy (Ys (g), f ) )  = fs dr f r A(Tu y • Tr ,g  •  T t _s + r , f ) d u
o o

Lemma 5.2. If  f c C , r (R d )+ ,  then as t -0 a),

(5.13) Qotif t (f  )1 = 11.(f )bt + o(b t ),

w here br is giv en by

F(cx + d12)
(5.14)b =  

7 r d 1 2  ( 1  +
A sta)t'+.

tha t (1.27) implies y(x) const. (1 + x1 2 1 )

Ty (x) const. (1 + t" + x1 2 2 ).

P ro o f .  Note

(5.15)

Furthermore,

Therefore

lim t T t y(x)

= lim (27) - "  i t 'y ( x  + .z )exp { -1z1 2 /2}dz1-00



268 Measure-valued branching diffusions

(5.16) = (2 m) " flz1 2 a a(z/IzI)exP { -1z12 /2}dz

= (27r) - d /2r 2 Œ4(a) exp { .-r 2 /2} rd d r

= n-di2F(cx + d12).1s (a).

By (5.10), (5.15) and (5.16) we obtain

lim t - a - 1 Q0{Yt(f)}t - .

t ft ds f y (x) T, f (x)dx

dr I f (x ) t - ' Trt y(x)dx
Jo 

= ds (x) lim t Trt y(x)dxt - .

As(a) A(f
n d 2 ( 1  + co

Lemma 53 . If  f  e C„(R d )±  , then as t co,

Var IY,( f  )1 = A( f ) 2  h(t) + o(h(t)), f o r d  = 1  an d  2,

= f  G f  )h(t) + o(h(t)), f o r  d  3,

where h(t) is defined by (1.29).

P ro o f. Since T, f (x) const. (1 A  C d /2 ) ,  it follows by (5.15) that

(5.18) f  t T , Y ( x ) ( T u f  ) 2 (x)dx const. (1 A  u - d1 2 ).

Then for d > 3, by  (5.11), (5.16) and (5.18) we get

lim t 1 Var { Y t( f)}  = lim t t  d r  r  d u  Tr , y ( x )  f  (x) 2 dx
t - . t- 00 oo 

lim  f
1 

ds d u  t - œ  T.st -u7(x)Tuf (x)2 dx
f c °,

(5.19) = d s f :  du 11.1 .mo t Ts, (x) T„ f (x)2 dx
Jo

F (cx + d/2)
A s ( a ) 1

0  
/11(Tuf) 2 )du

m d / 2 0 +  

2 2 F(Œ + d12)
As1c1)2 ( f  f

n ai 2 (1 + 

2" -  E  (cc + d/2)

(5.17)
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proving (5.17) in the case d >  3. To get it for d =  1 and 2, we use the following
relation for the Brownian transition density g,(x, y) = g,(x — y):

(5.20) gs(x, y)gt (x, z) = gs t i t s + 0 (x, (ty + sz)/(s + t))g s + ,(y, z)

to find that

fTr y(x)Ts g(x)T ,f(x )dx

= f dx
 f i

Tr y(x)g s (x, y)g,(x, z)g(y)f(z)dydz

(5.21)
=  f ig s ± t (y, z)g(y)f(z)dydz Ta(x)gsti(s+t)(x , (s  +  t ) 1 (ty + sz))dx

= fi Tr + si I (s+ t)T ((tY SO S tflg s + ,(y, z)g(y)f(z)dydz.

When d =  1, using (5.11), (5.21) and (5.16),

liM t 3 1 2  Var { Mfg

(5.22)

= urn t 3 1 2  f r dr Tr du if Tr _„ 12 y((y + z)/2)
0 0

g2u(Y, Z)f(Y)f(z)dydz,r  = st, u = vst,

lim  1
 1 1 r -

s ds f v - '/2 dv f i t  œ Ts(2-0t/27, (1Y + z)/2)
'  o

f  f  ( z )  exP {H Y  z12/4usr}dydz

=  
r ( c x  +  1 / 2 )  

As(a)A(f )2 f1 v- 1 /2 (2 — vrdv.
27r(2a + 3)

Similar techniques give the analogous result for d =  2,

lim t 1 log 1 tVar { Yt ( f ) }t-so

lim 
1  

d r  f "Mdu if T r - u / 2 Y + z)/2)t2 +1 log t fo0
g2u (y, z)f (y)f (z)dydz

= lim
1

ds
Jo

fst
 d u  I f T s t - i t t 2 Y ( ( Y  +  z)/2)

1tŒ log t
g

1
1

2 „(y, z)f (y)f (z)dydz, u = (st ) r,

lim dsfo

(st)' - r  log (st)drlog t Jo
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1 

4n(st) 1 —r 
i f  _ 2Y ((Y  + z)I2)f (Y )f (z) exP

=  rim ds j"  dr I f  t -œ Tst-./27((Y + z)/2)t-.0 47r 0o

— z12 /4u1 dydz

f (3)) f (z) exP f — z 1 2 / 4 u l d y d z
2 ' - 3 F ( Œ  +  1 )  

A sla/A lf7r2 (oc + 1)

The proof is complete.

Lem m a 5.4. If  g, f  e C,c (Rdr an d  t  > s  > 0, then a s  M  c o ,

(5.23) Coy (Ys m (g), Y,m (f))= .1.(g)2(f)K(s, t)h(M ) + o(h(M )) f or d  = 1 ,

=  0 (log 'M )h (M )  f o r d  = 2,

= 0(M 1 - `112)h(M) f o r  d  3,

where h(M ) is given by (1.29), and K(s, t) by (1.31).

Proof . Noting that f  has compact support, we observe by (5.12) and (5.15)

h(M) - 1  Cov Y tm(f))

= h(M ) 1 i s m  d r  f  du f my(x)Tu g(x)To _s ) m ,„f  (x)dx
o o

const. h(M) - 1

i
dr [(t —  s)M + u] 2 du f g(x)Tr y(x)dx

sm sm

PM Tr
=  dr du f  Tr- uY(x)Tug(x)Tit- m m + u f  (x)dx

o o

= f1 1
sM dp f  psM  dig f  To -opsmAx)T„„smg(x)Tt-s+ pqs)m f(x)dx

o o
p i Pii

= s 2 M 2p d p dq Tr ( .) m )(11( • ))90- s+ 2pqs)m(Y , z)q(y)f (z)dydz,
J oo

13 0

sM

▪ const. h(M) - 1 1W + 1 [ ( t  —  s ) M  + d i2dU
0

< const. M 1  - d /2f o r  d > 3,

• const. (log M) - 1 f o r  d = 2.

For d = 1, setting r = psM  and u = pgsM , and using (5.21),

Coy (17
0 4 (g), Yt m (f ))

where
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r( - )  = 
ps[t —  s + pqs(2 —  q)]

t —  s + 2pqs

and

(t —  s + pqs)y + pqsz
n1 ( ) t —  s + 2pqs

Then by (5.15)

Ern M 3 1 2  C01, ( Ys m (g), Y,m(f))m—co

1 /1
fim  s 2 p d p  d q  11M) )xf -

g(y )f(z )
{

IY — 
d y d ze x p

.\./27r(t — s + 2pqs) — s + 2pqs)M

1 1s 2  2 ( g ) 1 ( f ) 11 r( • ) 2.1 —  1  F(a + 1/2)4(a)
 d q

o
. p d p  

o n..\/(t —  s + 2pqs)

2" - 3 /2 7r - 1 s 2 ( a+ ll a x  +  /2)2 5 (a)A (g)2(f)

J J — s + 2pqs)V t —  s + 2pqsI i

 m Œ + Et — s + Pqs(2  — dpdg

F(Œ +  1 /2)r - 1 1 2 ( 2  —  r )Œ . dr.K (s, t)4(a)),(g)/1(f ) 
n (2 a  +  3 )  o

The lemma is proved.

Proof o f  Theorem 1.10. It suffices to show that for all • • • ,f „  C „ (1 0 +

and 0 <  t i  < ••• < tn ,

E Z 71) (fi) —'  E 4 ( f )
1=1i = 1

in distribution as M  co. Note that

E 4 4 ')(f1)=
i=1

where M m ) ( f i , •  ,f„) is  a  continuous martingale in t > 0  defined by

M m ) (f i• - • •fn) = h(M) - 1 1 2 T t  _sfi(x)M (dsdx).
o =

By (5 .1) and (5.2),

<N (m ) (f i, • • • ,f„)›tof
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t„M
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Ç n

= h(M) -

O

t„ M

( E
i = 1

_ f i (x))2 Ys (dx)ds

= h(M) - ds dr T ,y (x ) (  E  T i m  , f i (x)) 2 dx
0 0 i 1

t„M

h ( M ) 1  Jd s Ts (  E _  f i )2 (x) M (drdx).
1=1

U sing Lem m as 5.3 a n d  5.4 w e have

t„ m j•s

M-lim  h(M ) - d s  d r  T,_,.y(x)( E  Tt, , f i (x))2 dx
i=1

=—E,l(fi )2cf+3/2 + E A( fi ).1.(4)K(t i , t.)f o r  d = 1

= —1 E A ( f i ) 2  tic +  312 f o r  d = 2
2 i

= 1  E A( fi G fi )tr  3 1 2 f o r  d > 3.
2  i

O n  th e  other h an d , b y  (5.2),

h(M) - 2 Q0 [ f o
 m  dsf s

o T s -r ( T t  - sfi) 2  (x) M(CIITIX)12

I t „ M t„M 2

= h(M ) -  2 d r d u  T,.,y(x)[i ' ( E  7;i m „ f i )2 (x)ds] dx.
0 0 0i 1

U sing (5.15) repeatedly w e see that th e  above v a lu e  is bounded by

t„m 3
const. h(M ) - 2 M 2 +11  A s- d /2 ds

o

w hich  goes to  z e ro  a s  M  —> co  b y  (1.29). T hen th e  desired conclusion  follows
by Lem m a 5.1.
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