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Remarks on logarithmic Sobolev constants,
exponential integrability and

bounds on the diameter

By

M . LEDOUX

Although the first two results we aim to simplify deal with abstract Markov
generators on  probability spaces, we would like to briefly present the purpose of
th is  n o te  in  th e  setting o f  th e  Laplace-Beltrami operator A  o n  a  complete
connected Riemannian manifold M  o f  finite volum e V . W e w ill consider the

normalized measure dp = —

1  

dv  where dv  denote the Riemannian measure and let
V

V  be the  Riemannian gradient on M.
F o r  a  nonnegative bounded (say) real valued function f  o n  M , le t  E (f )

denote the entropy of f  with respect to  p  defined by

E ( f )  = f f lo f d i  — f f d p  log ( f f  d p ) .

W e will say that A satisfies a  logarithmic Sobolev inequality if there exists p > 0
such that for a ll C ' ,  compactly supported o r  bounded, functions f  o n  M,

p E (f 2) 2 if  (—  f )d p  = 21117 f1 2 dp.

The largest possible value po f o r  p  is called the logarithmic Sobolev constant of
the  Laplacian A  o n  M , o r  simply of M.

More generaly, one may consider, following [B], inequalities between entropy
and energy of the type

E(f2) (PG I V t i Ili)
for all C  bounded functions f  w ith  f  2  =  I where 0  is a  nonnegative function
o n  [0, on).

With these notations, S. Aida, T. Masuda and I. Shigekawa [A-M-S] recently
showed that, when po > 0, whenever f  is a  function on  M such that 11 117 f I 1
(that is f  is  Lipschitz w ith  Lipschitz norm  less than  o r  e q u a l to  1), then, for
every 0 < a < po / 2,
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(1) leaf 2 dp < oo.

Moreover, le'f'dp, exP (crePo(Po 2 c)f  113).
D. Bakry and D. Michel (see [B-M] for a special case and [B] for the general

resu lt), using  refined  semigroup m inorations, sh o w e d  th a t u n d e r  a  general
inequality betw een entropy a n d  energy, th e  diam eter D  o f  M  satisfies the
quantitative estimate

D < f.0
0(x 2 )dx.

o  X 2

In  particu lar, if  the  la tte r integral is finite, every Lipschitz function o n  M  is
bounded.

Finally, L. Saloff-Coste [S C ] recently proved that if  th e  Ricci curvature of
M  is bounded below , the existence of a  logarithmic Sobolev inequality fo r A
forces M  to  b e  co m p ac t. Moreover, fo r some constant C > 0 only depending
on the dimension of M  and the lower bound o n  th e  Ricci curvature,

(3 )
D C <

log D  po

as soon a s  D > C.
As announced, the purpose of this note is to  provide short and elementary

proofs of these three results. In  the proof of (1), we closely follow the argument
o f  [A-M-S] (originally due to  I. H erbst a n d  E. B. Davies a n d  B. Simon [D-S])
with some improvements in the exposition and show in particular that the strong
exponential integrability (1 ) also  holds under defective  logarithm ic  Sobolev
inequalities (see also [A -S ]). This m ethod is used to give a  very simple proof
of the bound (2) on the d iam eter. In  the  last part, we establish (3) and actually
improve the quantitative estimate by removing th e  logarithmic factor. A s  we
will see, it then turns o u t to  be  sharp.

1. Exponential integrability and bounds on the diameter

The framework of the first two results (1) and (2) deals more generally with
abstrac t Markov generators a n d  w e  n o w  tu r n  to  s o m e  n o ta t io n  in  this
respec t. O n  some probability space (E, p ) ,  le t L be a  Markov generator with
(L2 -) domain g .  W ithout going far in to  the  technical details (refering t o  [B],
[D - M- M ], [A-M-S]), we will assume that there exists an  algebra s l of bounded
real valued functions o n  E  contained in  g  and  dense  in  L2 (11). We moreover
assume tha t d  is  stable by  L and by  the action of C  functions and  tha t L is
invariant for y  o n  d .  O ne can introduce the  "carré du  cham p" operator by
setting

T (f , g )  =  L (fg) —  fLg —  gLf

(2)
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for every f ,  g  in  sit. In particular, by  invariance, $ f (— L f)d ,u  =  jr(f, f)d p  for
every f  in i i .  A s an  additional m ain assumption o n  L, we will assume tha t F
is a derivation in the sense that when 9 is a  real C  function, for every f ,  g in sit,

F ((p (f), g) =  9 '(f )F (f ,  g).

It is w ell know n that the  definition of the operator F  may be extended to
a ll o f  th e  dom ain of the D irichlet form  & (f, f)=  ff(—  L f)d p  <  oo . F o r  our
purposes here , w e  w ill s im p ly  ag ree  tha t a  function f  o n  E  is  such  tha t
II F (f,  f )  <  1  if  there  is  a  sequence (f„),,„„ in  sit such that II F(f„, fn )Il oo 1
fo r  every n  which converges p-almost sure ly  to  f. Such a  function may be
considered as a Lipschitz function with respect to  L  (o r F ) .  F or example, for
th e  L a p la c e  o p e ra to r  o n  a  R iem annian m an ifo ld  M  o f  f in ite  volume.
F ( f ,g )= V f .V g  for smooth functions f  a n d  g  (for example C '  a n d  bounded
o r c o n sta n t ou tside  som e c o m p a c t se t)  a n d  a  function f  o n  M  such that
r( f, f)11„, 1 in the preceding sense is simply a Lipschitz function with Lipschitz

norm II I FYI L <  I. O n e  further im portant example included in  this abstract
setting is the Ornstein-Uhlenbeck generator on a Wiener space (E, H, p) for which
II f )  <  1 i f  a n d  o n ly  i f  t h e  Malliavin derivative D f  o f  f  satisfies
II I Df (see [A -M -S]). Equivalently, f  is 1-Lipschitz in the directions of
the Cameron-Martin Hilbert space H  [E-S].

In  this framework, one m ay speak of the "diameter" o f the  space E for L
i n  t h e  fo llow ing  sense  (c f. [B -M ], [B ]). I f  f  is m e a s u ra b le  on E .  s e t
f (x, y) = f (x) — f (y) o n  E x E .  Define then the  diameter D  of E by

D = sup MI II L-
fes1,11r(fM11.

It is  easily  seen  tha t th is defin ition  co inc ides w ith  th e  usual diam eter in  a
Riemannian setting.

To ease the notation, w e use sometimes <f> to  d e n o te  the  expectation of
a n  integrable function f  o n  (E, p ) .  A s before , w e then  say  that po  i s  the
logarithmic Sobolev constant of L  if for all functions f  in  st,

P0E(f 2 ) 2  <f ( - 1-.0> = f)>.

O ne speaks o f  a n  inequality between entropy and  energy if  fo r all functions
in  sat with <f 2 > = 1,

(4) E(.1.2) O (< r (f, f )> )

where 0  i s  nonnegative o n  [0, oo). I f  w e  assume 0  t o  b e  concave, we can
replace 0  by the family of its tangent lines so that inequality (4) may be expressed
equivalently by a family of (generalized) logarithmic Sobolev inequalities (cf. [D])

E (f 2 ) (0 (x )  —  x 0 '(x ) ) ( f 2 > 0 '(x )< F ( f ,  f )> , x > O.

W e  m a y  n o w  t u r n  t o  t h e  p ro o f  o f  (1 )  a n d  (2) w h ich  w e  trea t
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simultaneously. L e t  first g e si be such that II F19, Oil c oI .
inequality (4) t o  th e  family o f functions f =  2 e  R. Let

the Laplace transform of g and observe th a t G'(2) = fge 2g dp (

(2 0 0). Now, since F is a derivation, T(f, f) = (2 2 / 4)e2g I' (g, g)
(4) yields that, for every A,

2G'(2) — G(2) log G(2) G (2 )0 (
2 2  

).
4

L et then H(1)= 1  log G(2), 2 > O. The preceding inequality reads
A

(5) H' (2) 1  0  )
224

for every A > O. Since

H(0) = lim 1— log G(2) — 
G'(0)

 <g>,A-.0 2G ( 0 )

it follows that, for every A > 0,

1 A U2
—  log G(A) = H(2) = H(0) + (u)du <g> + f 1 2 ( ) du.

o u 4

W e will apply
G(2) = feAgdp be

=  —

1 2 log f 2 dp)

so that inequality

Therefore,

(6)

for every A > O.

e

A U2A (
g - < g ) ) dtt < exp (A  f 0 ) du

o u 4

.  1 u2
N o w , a ssu m e  t h a t  C =

(
So — 0   du — 1

1 f,:7 
x 2  

0 (x2)dx < co. B y  the
u24

preceding inequality applied to g and — g, for every A > 0  and  every E > 0,

ti(Ig—<g>1 C-FE) /i(g—<g> Cd-c)+12(—g — <—g> > C-Fe) _< 2e-
A ( C + E ) e A C .

As A —> co, we get that 11g — <g>110 , C .  Inequality (2) then immediately follows
by the very definition of D.

W e  tu rn  to  (1 )  and assum e thus the  ex istence  o f a  logarithmic Sobolev
2

constant po > O. W e m ay therefore take 0(x) = i—  x  n  (6 ) . H en ce , fo r every
A > 0 (actually every 2 by replacing g by — g), P°

feA(g - <g))du < eA2 1 2 P°.

By Chebyshev's inequality, for every t > 0  and  2 > 0,



Logarithmic S ob o lev  constants 215

11 (9 — <g> t) < e
- Ale

2 /2 p0,

and, optimizing in  A,

(7) < g> t )  <  e - P0(2 / 2

By applying the  result also to —  g ,  for every t > 0,

(8) P(19 — <g>1 t) < 2e - P0t2 /2 .

This inequality thus holds for every function g  in  d  such that 11 r ( g ,  g ) 1.
L et now  (a ) neN be  a  sequence in d  w h ic h  converges a-alm ost surely to g  and
such that 11 r ( g ,„  g n)11. 1 for every n. Let m be large enough so that ti(10 , 1 m)
> Then, for some no and every n > n o , /L(  g1<  m+ 1 )>  4 . Choose furthermore
to >  0 w ith 2e - P4 /2 <  I . S in c e  e a c h  g n satisfies (8), it follows, by intersecting
the sets flg„1 m  +  1} and Ila n  — <gn >I to } , th a t  <gn >I t ,  +  m  +  1 for every
n  >  n „ . Moreover, coming back to (8),

P(19.1 t  +  to + m + 1) < 2e - " 2 /2

fo r  every n > no a n d  every t >  O . In particular, su p n f g n
2 d/.4 <  co  so  th a t, b y

uniform integrability, it immediately follows that every Lipschitz function g  on
E  such that 11 r ( g ,  g)11 00 1  i s  i n t e g r a b l e  a n d  sa tis f ie s  (7 ) . In particular,
eag2 c/ft < oo for every a < p o /2. L e t u s m en tion  how ever that th e  deviation

inequality (7) is a  much more precise and  useful tool than rather only the latter
integrability property. This is particular the case in the context of abstract Wiener
spaces a n d  Gaussian m easures on  B anach  sp a c e s . F o r  example, i f  p t i s  the
canonical Gaussian measure on 12" and g  the Euclidean distance 1•1 to  the origin,
then, for every t > 0,

J (x E R " ; 1-, C1 t) <

T h e  deviation inequalities (7) actually belong to th e  fam ily of concentration
inequalities of isoperim etric f la v o r . W e  re fe r  to  [L -T ]  a n d  [L 2 ] fo r  m o re
information on this a sp e c t . It should be m entioned also that this approach to
deviation inequalities o f course  requires first th e  knowledge o f  a  logarithmic
Sobolev inequality and that usually the arguments needed to prove a  logarithmic
Sobolev inequality yield in  a  d irec t and  shorter way these deviation inequalities
(see e.g . [L i] for the Gaussian example).

T h e  preceding strong exponential integrability under logarithmic Sobolev
inequalities actually also holds under the  so-called defective logarithmic Sobolev
inequalities of the type

(9 ) E (f 2 ) <  a ( f 2 > + b<F(f, f)> , f e d ,

for some a, b > O. T h u s ,  in the preceding notation, 0(x) = a + bx, x  O. In d e e d ,
com ing back to (5), fo r every g eJzi with 11 r(9, 9)11. 1, w e see that w e also
have, for every 2 > 1,
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1
—log G(1) = H(A ) = H(1) + J;,

Hence, for A > 1,

A 1
H'(u)du log G(1) + a + — bA.

4

(10) f egdtt ( 1 eg du) e 2 1 4 .

LetL et us choose first A = 2. Then e2 gc/1i C(fecift) 2 w ith  C = Let m  be
large enough so that /2(1 g m) 1/4C. Then Meg ern) < 1/4C and

je g d p  ern + ii(e g  > e ) l /2 e 2 g d p

< em + \ /Cti(eg e m ) ' 1 2 J e d /

< 2em.

Returning to (10), for every A  > 1,

Je A gdy <
e m , i + a , t + b , 1 2 1 4  <  e C 'A 2

where C' = 1 +  m  + a + b / 4 .  Using Chebyshev's inequality as before, we see that

[t(g > t) < e - t2/4c

a t least for every t 0  large enough (depending o n  C ') .  T h e  same inequality
applies to — g. Moreover, the proof was presented in  such a  way to show that
th is inequality  a lso  applies to  any  g  i n  E  with 11 F(g, g)11,c <  1 since, besides

T (g, g)11. < 1, th e  only  param eter used o n  g  i s  m . In  p a r tic u la r , under a
defective logarithmic Sobolev inequality (9), J e d,i < oo for some a > 0 for every
g  w ith  11F(g, g)L o <  1, im proving thus upon Theorem  3.2 i n  [A -M -S ]. This
result has been also obtained in [A-S] where further integrability properties under
only U -bounds o n  F(g, g) are described.

2. Logarithmic Sobolev constant in Riemannian manifolds with Ricci curvature
bounded below

In  the final part of this w ork, w e turn to a  proof of (3). A s  i n  [SC], our
argument is based o n  th e  parabolic inequality by P. Li and S.-T. Yau, however
at som e elem entary  level. L e t th u s  M  b e  a s  in  th e  in tro d u c tio n  a  complete
connected (noncompact) Riemannian manifold of dimension n  with normalized
Riemannian measure d u . W e assume th a t  th e  R icci curvature R ic o n  M  is
bounded below  by —  K , K  > 0. W e  d e n o t e  b y  po t h e  logarithmic Sobolev
constant of the Laplacian A  on M  and assum e in  what follows that p o > 0.

L et 13 , e " ,  t >  0 , b e  th e  heat semigroup o n  M .  The Li-Y au inequality
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[L-Y] (cf. [D]) indicates that for every positive C  function f  on M , and  every
a >  1 , t > 0 , a t  e a c h  point of M ,

1VP1f A P f  n a 2K t
a <  +  

(P, f )2P i f 2t a — 1

(N ote that w hen K  = 0  one may choose a  =  1 .)  In  th e  sequel, we simply take
a  =  2 .  W e will not try actually to sharpen our choices o f constan ts . Anyway,
this could only improve the constant C in (3) but no t the dependence on po . In
particular therefore, for every 0 < t < 1,

f  y
Pi f  <  t

where y = y(n, K)= n(1 + K) 1). Fix f  positive and smooth o n  M .  Letting
F(t)= P i f ,  0  <  t 1, evaluated at som e p o in t  in  M , th e  preceding inequality
implies that yF(t) + tF'(t) 0  for every 0 < t < 1. Therefore, the function CF(t)
is increasing on (0, 1] so that

P t f  —
1

P  f, 0 < t < 1.

Now, by  the fundamental relation between logarithmic Sobolev inequalities and
hypercontractivity due to L . Gross [G], we know that the heat semigroup  (P 1) > 0t)t o
has hypercontractivity constant p o , that is, for every 1 < p < g < co> II Pt f  q f  II,
a s  soon a s  e "  >  [(g — 1)I(p — 1)]h/ 2

. W e  ap p ly  th is  p ro p e rty  w ith  p = 2  and
t = 1 so that g = 1 + e2" .  Therefore, taking the Lq-norms of both sides of (11),
we get that, for every Cc° bounded function f  on M  (positive or not),

1113 ,f P 11f112, 0 <  t  < 1.

It is well-known that such a semigroup estimate is equivalent to a (local) Sobolev
inequality . To som ew hat keep track o f the  constan ts  le t u s briefly recall the
steps o f the  a rgum ent. By interpolation, for every f  a s  before,

111),f 0 <  t  < 1,

where —

1
— 1  = — 1  ,  0  <  0 < I. L e t  u s  choose simply 0  such that

i 0 \ 22 r 2 g
LIT =  .  N ow , using that

4

A r ,

o fi
e

1 1
 '( -1=   Pidt,

it rather easily follows (cf. e.g. [D ] or [V-SC-C]) tha t for every smooth function
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f  o n  M ,  (I —  z1)
- 1 / 2 , , ,_I II; that is

(12) 11f 8(11f + 11 lv f 1 Ili).
T he numerical constant 8  h as n o  reason  to  be  sh a rp .)  It is rather surprising
th a t a  Sobolev inequality of logarithmic type implies a  true  Sobolev inequality
(of pow er type). This may be considered a s  an  effect of cu rva tu re . O ne could
now deduce from this Sobolev inequality (12) th a t D  is bounded and  thus that
M  i s  com pact by  various a rgum en ts . F o r example, this inequality could be
iterated (very much a s  in  M oser's iteration principle). A n  alternate argument
combines minorations of volumes of balls together with the fact that M  has finite
vo lum e. Taking into account our first part, w e prefer to follow  the  approach
by D . Bakry a n d  D. M ichel [B-M] a n d  bound th e  diameter D  o f M  w ith (2)
and some inequality between entropy and en e rg y . This method seems indeed to
yield rather sharp bounds in  general (cf. [B] ). To this aim, fix a  function f  with
f  112 = 1 and consider the probability measure dv = f 2 d y . By Jensen's inequality,

log lpfil,? = -

2  

log GI flr-2 d v ) 
r  —

r
2

logf 2 dv = 
r  —

r

 2  

E(f 2).

Hence (12) implies that

E (f 2 ) 0 1(111[7f 1 11i), 11f112 = 1,

with 0, (x) = log (8 + 8x), x > O. In addition, we also have by the definition
r — 2

of the logarithmic Sobolev constant po th a t

E(f 2 ) 2111 lv f 1 11i), 11f 112 = 1,

with 0 2 (x) =   2 x, x  O. W e therefore get a n  inequality between entropy and
Po

energy (4) w ith 0  = min ( , 0 2 ). According

2

to  (2),

r 1
D < f x 2  0 (X 2 )d X  

Po

f
l o g  (8 + 8x2 )dx
x 21 r — 2

2< —
Po

+ r
r — 2

where C, > 0 is num erical. Now, recall that q = 1 + e2 1 0, y = n(1 + K) and that

(  1 1 1 ( 1 1
2  — r ) 4y 2 q ) •

W e then simply observe that

— 1 + e2P° 20y — 4y   4 y
r — 2 q — 2 1 + e2P° — 2 min (1, po)
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Therefore,

(13)D <
— min (1, Po)

where the  constan t C  only depends o n  n  a n d  K .  The conclusion follows since
w hen D > C , p o  <  1 a n d  th u s  D < Cl p o . T h is  b o u n d  is  sh a rp  s in ce , a s  is
m e n tio n e d  a t  t h e  e n d  o f  [ S C ] ,  classical a rg u m e n ts  f ro m  t h e  th e o ry  of
hypercontractivity show  conversely that when A, >  > 0 , where A , is  th e  first
eigenvalue o f  — .61, then

Po —

D

where c > 0 only depends o n  n, K  a n d  e  Recall also from [SC] that there exist
(compact) manifolds of constant negative sectional curvature with arbitrarily large
diameter a n d  A , uniformly bounded away from z e r o .  O n e  consequence o f  (3)
o r  (13) is  th u s  th a t  t h e  r a t io  p o l Ai ( a lw a y s  <  1 )  c a n  b e  m a d e  arbitrarily
sm a ll. This is in  constrast with the case of com pact m anifolds with nonnegative

4 n
Ricci curvature fo r  which A, po  A ,  [R ] .  N o t ic e  that, together with

(n + 1)2

(13), we recover in this case a weak form of Cheng's inequality A, <  tur 2  I D2  [C ].
It should be noticed finally that, rather than hypercontractivity, the  preceding

proof of thecompactness of M  under the condition p o  > 0  only uses actually that
there exist t o >  0  a n d  1 < p < g < o o  such that Pt 0  i s  a  bounded operator from
LP into Lq.
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