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The initial boundary value problem for
linear symmetric hyperbolic systems

with boundary characteristic
of constant multiplicity
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§ O. Introduction

This paper is devoted to th e  study of the  in itia l boundary value problem
for the first order symmetric hyperbolic systems with characteristic boundary of
constant m ultiplicity. W e shall show  the existence and the differentiability of
so lu tions. Although we study the linear theory in  this paper, the m ain result is
stated in  such a  way that it can be applied to the  proof of the convergence of
iteration scheme in  studying the  quasi-linear initial boundary value problem.

L e t  Q  R", n > 2, be a  bounded open set lying on  one  side of its smooth
boundary T .  We shall treat differential operators of the  form

L(v) = 240 (v)0, + Ai (v)0;  + B(v),

where (3, = alat =alaxi , and v = t(v i  (t, x), v 2 (t, x), vi (t, x)) is a given smooth
function of the time t  and  the  space variable x = (x 1 , x 2 , ..., xn). It is assumed
th a t  i lk  ), 0  < j  <  n , a n d  B ( .)  a re  real 1 x 1 matrices depending smoothly on
their argum ents. Therefore A i (v), 0 < j  n, and  B(v) are  smoothly varying real
1 x 1 matrices defined fo r  (t, x)e [0, T ] x  f-2. W e shall study th e  mixed initial
boundary value problem

(0.1) L(v)u = F in [ 0 ,  T ] x  Q,

(0.2) M u = 0 o n  [0 , T ] x

(0.3)u ( 0 ,  x) = f (x) for x e 0,

where t h e  unknown function u = u(t, x ) is a  vector-valued function with 1
components a n d  where M  (x) i s  a n  1 x 1 real matrix depending smoothly on
x e r .  W e  assum e  th a t  M  is o f  c o n s ta n t  rank everyw here o n  F .  The
inhomogeneous term  F  o f  t h e  equation a n d  th e  in i t ia l  d a ta  f  a r e  given
vector-valued functions defined on [0 , T] x  S2 a n d  0 , respectively. Let y = (y 1 ,
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y2  ..... v ) b e  the outward unit normal to  F .  Then, Av (v) = E i
n

= i v i i l i (v ) is called
the boundary m atrix . If the  boundary matrix A ( v )  is invertible everywhere on
F , then the  boundary F  is said to  be non-characteristic . If  it is not invertible
but it has a constant rank on  F , then the boundary F  is said to be characteristic
of constant multiplicity.

A  general theory for the case where the  boundary is non-characteristic has
been developed by Friedrichs [6 ], Lax-Phillips [11], Rauch-Massey III  [21], and
o th e rs . The case where th e  boundary is characteristic has been discussed also
by several authors. In particular, the existence of solutions and the well-posedness
in the L2 -sense have been proved by Lax-Phillips [ 1 1 ] .  In  studying the regularity
theory fo r th is case , a  difficulty which is termed the  loss o f derivatives in the
normal directions has been  observed  by  T suji [2 5 ] a n d  o th e rs . A  regularity
theory has been given by [14 ], by assum ing that there is an extension of the
outward unit normal vector field to  a  C° -function defined o n  a  neighborhood of
F  su ch  th a t th e  corresponding extension of the boundary matrix A ( v )  h a s  a
constant rank there. However, for many physical problems, this hypothesis fails
t o  ho ld . T he  ex istence  o f so lu tions and  the  well-posedness in  L2 -sense were
shown by Rauch [20] under a  weaker assumption that the boundary matrix  A (v)
is  of constant rank  on ly  o n  F .  (N o te  th a t the m axim al nonnegativity of the
boundary subspace is assum ed alw ays.) H e  ob ta ined  a lso  th e  regularity of
solutions in the tangential directions.

T h e  resu lts ob ta ined  so  f a r  d o  no t seem  to  be  su ffic ien t to  hand le  the
quasilinear initial boundary value problem  w ith characteristic boundary. One
reason is that the assumptions on the coefficient matrices are too stringent. W hen
we concern ourselves with the quasi-linear problem, the entries of these matrices
must lie in the function space in which the solutions are supposed to exist. Even
from  the  view po in t o f the  linear theory, the  function space H I (Q), in  which
only the tangential derivatives are  taken account, seems to be somewhat simple.
(For the definition of H L (Q ), see [ 2 ] . )  It has been recognized in  the  study of
the characteristic initial boundary value problem, that the normal differentiability
of order one results from the tangential differentiability of ordr tw o .  This seems
t o  b e  a  suitable  in terpretation o f  t h e  lo s s  o f  derivatives in  th e  n o rm a l
directions. The function space 1-1 ,1" (0 ) ,  that w e use  in  th is paper, embodies the
above mentioned observation. It is suitable for constructing a  linear theory in
th e  sense that not only the  a  p rio ri estimates of solutions are obtained in  this
norm  b u t th e  compatibility condition can be g iven a n  appropriate meaning in
this function space. However we d o  n o t enter in to  de ta il he re . W e note that
th e  function space H T (Q ) w as used  in  th e  w orks o f  C hen  Shuxing [4 ] and
Yanagisawa-Matsumura [26]. It should be rem arked that even in  the case of
the  characteristic initial boundary value problem  there is an im portant class of
physical problems for which one can get the full regularity ([1], [5], [22], [23])
in  th e  sense that th e  regularity theory is stated in  term s o f  th e  usual Sobolev
space I lm (Q ) .  General criteria for characteristic initial boundary value problems
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h a v in g  su c h  p ro p e r ty  h a v e  b e e n  g iv e n  b y  O h k u b o  [ 1 6 ]  a n d  a lso  b y
Kawashima-Yanagisawa-Shizuta [9].

The content of th is paper is a s  fo llow s. In  § 1 , we give the  definitions of
1-1 ;(Q ) and the related function spaces, that will be used in  this p a p e r . We state
the  m ain  theorem i n  § 2 .  Some remarks a re  a lso  g iven. W e shall prove our
main theorem in §3, assuming that any data satisfying the compatibility condition
o f  c e r ta in  o rde r can  be  app rox im a ted  by  sm oo the r d a ta  w hich satisfy the
compatibility condition of higher order and that the uniform estimate for solutions
to  the approximate problem (see (3.34)—(3.36)) holds. In §4, the existence of an
approximate sequence of data that was assumed in  the  preceding section will be
sh o w n . I n  § 5 ,  t h e  approx im ate  p rob lem  is reduced  to  th e  c a s e  o f  a  half
sp a c e . This is a  preliminary to the next section. In  §6, the proof of the uniform
estimate assumed in  § 3  w ill b e  g iv en . In Appendices, we shall prove several
lemmas used in this paper. The m ain result of this paper was announced in [18].

§ 1 .  Function spaces and notations

Let a =  (a, , ,  a n)  b e  a m ulti-index and let lal = a, + ••• + a n . W e  w rite

act a.x 2 2 aenen.

Hm(Q), m  > 0, denotes the usual Sobolev space of order m . T h e  norm is

IIf l m =((  E ac;cf  112 )2  .
1.1,m

Here II • II denotes the L 2 -n o rm . W e recall that a  vector field A E C (S 2 ; Cn) is
said to be tangential if  <A (x ), v (x )>  =  0 for all x ef2.

When Q OE II" is a  bounded open set w ith  sm ooth  boundary , H ;(0), m  0 ,
is defined as the  se t o f functions having the following properties:

i) u (Q).
ii) Let A 1 , A 2 , ...,A  be tangential vector fields and let A , A , ,  Ak'  be non-

tangential vector fields. Then A , A 2 • • • • • A k' ue 1.? (0), if j+  2k <m.
H ; (0 )  is norm ed a s  follow s. W e choose a s  usual an  open  covering o f T,

diffeomorphisms, and c u t  o ff  functions, say , (9e ,  t i ,  X i, 1  <  i <  N .  T h en  u( i )  =
(x iu). Ti

- 1  h a s  a s  its n a tu r a l  d o m a in  ,4 +  =  { x  I  Ix ' <  1 , x , >  0 }  w ith  I"
corresponding to x, =  O . The tangential vector fields given by Ok, k =  2 ,...,n , in
local coordinates are  linearly independent. O ne sees that any tangential vector
field can be written in  a  neighborhood of a  po in t on  I" a s  a  linear combination
of x 1 01 , 02 ,..., On w ith C '-coefficients. It is assum ed that the normal vector field
0, corresponds to —  0, in local coordinates. Let S-26 be the set {xES-2 I dist (x, I")
>  6}. L et xo  b e  a  cut off function such that xo  =  0  o n  a  neighborhood o f I '
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and let zo  =  1  on some 0 1 .  W e may assume that EN,  0  x7. = 1  on  g2. Then the
norm  in  11(Q ) is

(1.1) u = 11Xou +  E xiu
i =

(1.2) Xiu II m2 * = E oatanal u(') 111.2(R.,.
' ictI +2Ic m

where a = (a , a n ), a I =  a l  +  •  •  •  +  a , „  and

0`,.`an = (x oirl 012 •  0 ,̀̀,".

N ote that act' .  in  (1.2) can be replaced by

= 011 OY • • • ,̀ ,” ,

because the corresponding norms are equivalent to each other. W e shall use the
sam e notation for these  no rm s. W e  notice a lso  th a t th e  norms arising from
different choices of (9i , T i ,  xi are equivalent.

L e t  u s  in troduce another function  space , w hich  is qu ite  analogous to
H ( Q ) .  We consider the following property:

ii)' Let A 1 , A 2 , ..., A i  be tangential vector fields and let A i, Ak' be non-
tangential vector fields. Then A  A 2  • • •  A A Ap A'i  A; • • • A k' E  L2 (S2), if j+  2k <
m + 1 and in addition j  +  k  < m.

T he se t o f functions having the  properties i), ii)' is denoted by  H ( Q ) ,  where
m > O. The norm  in  this space is given by

(1.3) lu 112 = Zou + X•u
i= 1

(1.4) Xiu = E °LnOkl U (

)

) 1112 (.59 +) •
la1 +2/c m + 1

W e have in general a  continuous imbedding Hm(Q) c H ( Q )  c HV g2).
Let X  b e  a  H ilbert space and  le t I  c  R  b e  a  closed finite interval. Then,

C(/; X ) denotes th e  space o f strongly continuous functions o n  I  taking values
in X .  Similarly, we denote by C (/  ; X ) the space of weakly continuous functions
o n  I  w ith  v a lu e s  in  X .  C ( I ; X )  i s  a  Banach sp ace  u n d e r the maximum
norm . T he  topology of Cw ( I ;  X) is the uniform weak convergence topo logy . Let
{Lt } b e  a  sequence in  C ( /  ;  X ) and  le t u E C (/  ; X ) .  If  uk (t )  converges to  u(t)
in  th e  weak topology o f  X  uniformly in  t e l ,  w e  sa y  th a t th e  sequence {h}
converges to  u in  C (/ ;  X ) .  W e note tha t for any u e C ( I ; X )  we have

sup du(t) <  co.
tel

I f  o therw ise , there  is a  convergen t sequence It i l s u c h  t h a t  u(t i)11 —> co ad
cc. T h i s  contradicts the resonance theorem . In  this sense, C (/  ; X ) may be

regarded a s  a  closed subspace of L '(1; X ).



Initial boundary va lu e p rob lem 147

Let m > O. We define Xin ([° , T]; ‘2) to be the space of functions such that

u e C([0, T]; Hm - i(Q)), 0 < j  <  m.

Here 0-iu, O  < j  <  m , a r e  th e  derivatives o f u  in  th e  d is tr ib u tio n  sen se . L e t
u e r " ( [ 0 ,  T ] ;  0 ) .  We set

III u(t) 111m — alu( t)II,,—;

j = 0

for t  [0, T ] .  The norm in  X m ([0, T ]; Q) is given by

U,  T ] ; 1 2  ) °maxi, H u(t)H in .

Xm([0, T]; 52) is a Banach space under this norm.
Similarly, X ([O , T ]; Q), m  > 0, is defined as the space of functions such that

Oit u e Ca°, T ] ;H ( Q ) ) , 0 < j  <  m.

The norm in  X ( [ 0 ,  T ]; Q ) is

U X T  ([0,11;12) —  orllia<xi , 11114 (0 rn,*
in

14 (t) =  E iIm—j,* •
j= 0

It is seen that X ( [ 0 ,  T ]; Q ) is a Banach space under this n o rm . L e t u s  recall
that we used an open covering of F, diffeomorphisms, and cut off functions, that
is, e i ,  T i ,  Z i ,  1 < i < N , in defining the norm in H ( Q ) .  Let 0 ) (0 =  (z u(t)). T i-  1  .

Then we have

(1.5)I I I  u ( t )  I e , *  =  III Xou(t) +  E III IiIm,*'
1=1

(1.6)I I I  Z i u ( t ) = E manaklu(i)(0111.2( ,,),
I 7' +  2k .çm

where y = 00, Il + IOEI, and

Dtan =  a it actcan = aŒ22.• • acìin.

We note that DTan in  (1.6) may be replaced by

fly = OPŒ*  = (32 22 • • a C;,"

because t h e  corresponding norms i n  X ( [ 0 ,  T ]; Q )  a r e  equivalent to each
other. We shall denote both norms by the  same notation.

Let m > O. We define Y ;([0, T ]; Q) to be the space of functions such that

Olu e Cw ( [0, T ]; H (Q)), 0  j  <  m.

Let {uk }  be a  sequence in  17([0 , T ]; Q) and let u e Y ;([0, T ]; Q ) .  We say that
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uk  converges to  u  a s  k o o  if, for any 0 < j  < m, uk (t) converges to  a u ( t )  as
Ic —o o  in  th e  weak topology o f HZ - ((2) uniformly in t  [0, T ] .  This defines
the topology of Y:( [0, T ] ; Q ) .  W e denote by Z;(0, T ;  0 ) ,  m  0, the space of
functions such that

a t u  L '(0 , T; H (Q)), 0 < j  <  m.

The norm in  Z ;(0 , T ; Q ) is defined by

111 U 111 5 " (o  , T 12) = o r<rr n i  o < t < iess sup 110.1u ( t)Il m _ * .

Then Z ;(0, T ; Q ) is  a Banach space under this norm.
We define Y rn(Q ; P ), m  >  0 , to  b e  the  space of functions such that

u e H ;(0 ) , I3 u ,(Q ).

H ere  P = P(x), x  e  Q , is  a  sm ooth extension of P  =  P (x ), x e F, th a t  is, the
orthogonal projection onto ( x ) ±  which will be described later in condition vi)
of Theorem  2.1. W e introduce a  norm  in  Ic'm(Q ; P )  by

/4 11,2e-(.0 ; p) =  ti +m , •

I r n (Q ; P )  endow ed w ith this norm  is a  H ilb e rt space. D ifferent choice o f  P
yields an  equivalent norm.

Let 14;(0, T ; Q ), m  >  0, be  the  space of functions such that

u e L2 (0, T; i(52)), 0 < j  < m.

If we define o n  this space a  norm by

U 11147 (O,T ; 2) = 111U(t)111r2n,* dt,

then  W ;(0 , T ; Q )  i s  a  H ilb e r t  sp a c e  u n d e r  th is  n o r m . I t  i s  s e e n  th a t ,  if
u e W,r(0, T; Q ), then w e have

aju e C([0, T ]; H i 1
- i (0 ) ) , 0 < j  < m — 1.

We define Vm(0, T ; Q ), m  >  1 , to  b e  the  space of functions such that

u e W:(0, T; ,Q)

and

Olu(0) e lim 0 < j < m — 1.

By defining a  norm  on V* P"(0, T ; Q ) by
m - 1

11VV(0 ,T ;n) = II,• U (OT ; .0) E a/140)11.2 -1-p
j = 0

V*1"(0 , T ; Q ) is  a  H ilbert space.
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The above notations for function spaces will be used also for vector-valued
function spaces.

Finally, when X  and Y are Banach spaces, we denote by  (X , Y) the space
of bounded linear operators from X  in to  Y . If  X  =  Y, we write simply (X )
instead o f Y (X , X ).

§2. The existence and differentiability theorem

Before stating our m ain result, we recall two n o tio n s . O n e  is  the maximal
nonnegativ ity  of the  boundary co n d itio n  an d  th e  o th e r  is  th e  compatibility
condition. K er M (x) is  sa id  to  b e  a maximal nonnegative subspace of A s (v) if
A ( x ) (v(t, x ) )  i s  positive  sem idefin ite  on K er M (x) but n o t  o n  any subspace
containing Ker M(x) as a proper subspace for (t, x) e [0, T ]  x F .  When Ker M(x)
is  maximal nonnegative, w e  say  a lso  tha t th e  boundary condition is  maximal
nonnegative. The compatibility condition of order m — 1 is  s ta ted  a s  follows.
Given the system (0.1) and the initial data (0.2), we define f i , ,

 p  > 1, successively
by formally taking derivatives o f o rde r up  to  p — 1  o f the  system with respect
to  the time variable, solving for Oru and evaluating at t = 0. T h u s  f p  is written
a s  a  sum of the derivatives (with respect to  the space variables) of f  of order at
most p and the derivatives (with respect to  the space and  the  tim e variables) of
F of order at most p — 1. A concrete expression for f p  will be given in § 4. We
set f ,  =  f .  Then the compatibility condition of order m — 1 is that

(2.1) M fp  = 0  o n  F, 0 < p < m — 1.

W e shall write sometimes A p (L(v); f, F) instead of f p  i n  th is  paper, since f p  is
determined by L(v), f ,  and F.

The m ain theorem of this paper is the following

n
Theorem 2.1. L e t m > 1 b e  an  integer an d  le t  1.1 = max ( m , 2  —  +  6 ).

2
Then the initial boundary  value problem  (0.1), (0.2), (0.3) has a unique solution u
in X ( [0 ,  T ]; Q ), prov ided that the following conditions are satisfied:

i) Q c R" is a bounded open set w ith boundary F  o f  C r -class.
ii) M (x ) i s  a  real m atrix  v alued f unction o f  C ' -class def ined o n  F  and

dim Ker M(x) is  constant on F.
iii) v  l ie s  in  X :([0 , T ]; K2) an d  tak es values in R '. Fu rth e rm o re , Oi_i v(0)e

H 21 2 '(0 ), 0 < i  < 12.
iv) v(t, x) lies in Ker M(x) f o r (t, x) c [0, T ] x  F.
v) Ai (v(t, x)), j = 0, 1, ... , n, are real symmetric matrices f or (t, x) e [0, T ] x Q, if

v lies in  C( [0, T ]  x f2) and  takes values in  R'. In addition, Adv(t, x)) is
positive definite f o r (t, x) e [0, T ] x Q, i f  v satisf ies the same assumption.

vi) T here ex ists a  subspace ./1/. (x ) o f  0  , defined f o r xe  F, such that w e hav e
Ker .4, ( x ) (v(t, x)) = ./V(x) f o r (t, x )e [0 , T ] x F  i f  v  lie s  in  C( [0, T ] x K2),
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satisfies iv), and  if  it tak es values in 111. Here A r(x ) is independent of v.
vii) dim ./1((x) is  constant on F  and 0 < dim .A1 (x) < I.

viii) Ker M(x) is a maximal nonnegative subspace of A v (x ) (v(t, x)) f or (t, x) e [0, T ]
x F, if  y  satisf ies the same assumption as in  vi).

ix) Fe  W:(0, T; 0), OF (0) e Hm-  t (Q ), 0 i m  —  1 , and f  HP" (0).
x) The data f, F  satisfy  the compatibility condition of order m — 1 for the initial

boundary value problem  (0.1), (0.2), (0.3).

The solution u obeys the estimate

(2.2) 111140 III m,*C ( M 1, K 1 )111 f 11 +  Ill F (0 )111.- ec  (m *,d̀

+  C (M ) f t ec  (K m' - t )  F

f o r  t E [0, T ] ,  w here K m _ 1 a n d  M r*, r =  —  1, it, are  c o n s tan ts  such that
v (0 ) - 1 K m _ 1 a n d  Illv Ill„, „,x,,;([0,71;f2) M,?, r = -  1, ji, respectively. C ( . )  and

C (., • )  are  increasing functions o f  each single variable with positive values.
Moreover, the solution u has an ex tra regularity  in the following sense. L et

P  =  P (x ), xer, be  the orthogonal projection onto .)1((x)±  an d  le t  P = P(x), xeS2,
b e  a n  arb itrary  sm ooth  e x te n s io n  o f  P . T hen  P u  l i e s  in  X,T* ([0 , T ]; Q ).
Il Pu(0111., * *

Remark 1. T he case  where m  = 1 is covered essentially by th e  result of
R au ch  [2 0 ]. The function space used there is H ( Q ) .  Since only the tangential
derivatives are  taken into account in  this function space, we have in  general a
continuous imbedding I 1 ,Km  (Q )  q  H (Q ) .  However, when m = 1, these function
spaces coincide with each other. Namely, 11*

i  (Q )  =  t
i
an (f2). We refer the reader

for the case m = 0 to Theorem 9 and for the case m = 1 to Theorem 10 in [20].

Remark 2. C ondition  ix) for the  se t o f data  f ,  F  seems to be somewhat
stringen t. But, b y  a  lim it argument, w e  can  ob ta in  a  m o re  general condition
fo r  th e  d a ta  f ,  F  lead ing  to  so lu tio n s  in  X ([0 , T ];  Q ) .  In th is  connection,
w e po in t ou t th a t  th e  necessary condition for the existence of the solution in
X,7([0, T ]; Q ) is that

f E Yrn(Q; P ) ,  f p e Yrn -  P (S2 ; P), 1  <  p < m,

and the compatibility condition of order m — 1 is satisfied, provided that
F e W;(0, T; Q ) .  The proof of this fact and a sufficient condition for the existence
of the solution in X,m([0, T ];  Q) mentioned above will be given in  a  forthcoming
paper.

Remark 3. Instead of condition vii), w e  m a y  assum e that dim  ( x )  i s
constant on each component of F, although it is not identically zero on F .  In
this case, condition ii) may be weakened so that dim Ker M(x) is constant on each
component of F.

is bounded by  the right hand side o f  (2.2) f o r te  [0, T ].
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§ 3. Proof of the main theorem

First w e shall show the existence of aproximate systems a n d  approximate
initial data for which the  compatibility condition of order m is satisfied.

Lemma 3 . 1 .  L et f , F, and v  be as in Theorem 2.1. Then there exist sequences
{fo' {F ,}, and Iv k l  haying the following properties:

f k e Hm +  2 (Q ), k  > 1, and fk f  in Ilm(Q).
ii) Fk e Hm + 2 ([0 , T ] x Q), k >  1 ,  and Fk —+ F in  W 4m(0, T; Q).

Furthermore, F k (0) O F ( 0 )  in  1 1 ' 1 -  i (Q ) f or 0 < i < m — 1.
iii) vk e X " + 1 ([0 , T ]; Q ), k  > 1 , and v  in X ([O, T ]; S 7),

v,,(0)—> ev(0) in 11 11 - i (Q) for 2 I i In addition,
yk (t, x)e Ker M(x) f o r (t, x )e[0 , T ] x F, k  1 .

i v )  For the initial boundary value problem

(3.1) L(vk)u = Fki n  [ 0 ,  T ] x

(3.2) Mu = 0 o n  [0, T ] x  F,

(3.3) u(0, = f,, (x) fo r  x E Q,

the data fk an d  F k  satisfy  the compatibility condition of  order m , that is,

(3.4) Mzlp(L(vk); fk , Fk ) = 0 o n  F, 0  p  m .

In order to show Lemma 3.1 we need the following Lemmas 3.1A and 3.1B.

L em m a 3.1A . L e t  f ,  F , an d  v  b e  a s  i n  Theorem  2.1. T hen there ex ist
sequences Ifk l  an d  IF k l  satisfy ing i), ii) o f  L em m a 3.1 and, furtherm ore, the
compatibility condition of  order m  f or the initial boundary  value problem

(3.5) L(v)u = Fk in [0, T ] x  Q,

(3.6) M u = 0 o n  [0, T ] x F,

(3.7) u(0, x) = f k (x) fo r  x e

that is,

(3.8) M dp(L(v); fk , Fk ) = 0 o n  F, 0 < p < m.

Lemma 3.1 B .  L et v  e X ;([0 , T ]; D ) an d  le t * (0 )E  II '  2
 - '(2), 0 _- i s ,

w here s is an  integer such that 2s > [a]. L e t  furtherm ore v (t, x )eK er M(x) f or
2

(t, x)e [0, T ] x F .  T h e n  th e re  e x is ts  a  sequence Iy k l h a v in g  th e  following
properties:

j )
x  2 s +  2

( [ 0 ,  T ]; Q), k  > 1.
ii) v ky  in X :([0, T ]; Q ).
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iii) v,,(0)O v ( 0 )  in  Ils - i (Q) f o r  0 < I < s.
iv) vk (t, x) e Ker M(x) f o r  (t, x )e [0, T ] x  F, k  > 1.

Assuming for the moment that these lemmas are true, we complete the proof
of Lemma 3.1.

Proof  of  L em m a 3.1. By Lemma 3.1A, there exist sequences { fk }  and  {F„}
satisfying i), ii) of Lemma 3.1 and (3.8). By means of these sequences { fk } and
{Fk l ,  we construct a  sequence {Uk } "±2([0, T ]; ,Q) satisfying

(3.9) Of Uk ( 0 )  = p (L(v); f,„ Fk ) i n  Q ,  0  p  m .

Set hp ,k  =  p (L(v); fk , Fk ), 0 p m ,  k  1. Since * ( 0 ) e  H 2 "+ ' ( Q ) ,  0 i y,
f k e Hm + 2 (Q), k  1 , a n d  since Ot

i F k (0)e 1-F" ' ( Q ) ,  0 i m  —  1 , k  > 1 , it  is
shown by Lemma C .1  i) and  Lemma C .3 in  Appendix C  tha t hp ,k e Hm+ 2 - P(Q).
L et rip ,k  eHm + 2 - P(R") be  an extension of hp ,k  so  tha t the re  ex ists  a  constan t C
such that Mh P , k II H 2 - P ( R )  C  hp,k N ow  w e use an argument given in
[1 2 ], pp. 3 1 -3 2 . Let L o  b e  a  scalar, strictly hyperbolic operator of order m + 1
with constant coefficients. Let us consider the following Cauchy problem,

L o =  0 i n  [0 , T ] x  R'',

Ok(o) = Flp,k i n  Rn , 0  <  p < m,

where th e  unknown U ,, i s  a  vector-valued function with 1 com ponents. The
standard existence theorem  show s th a t th e re  e x is ts  a  u n iq u e  so lu tio n  Cjk  e
Xm + 2 ([0 , T ]; Rn) o f  th is Cauchy problem satisfying th e  usual energy estimate.
T hen  th e  desired sequence {Uk } Xin +  2  ([0 , T ]; Q ) is  g iv en  b y  se ttin g  U, =
( 41[0,T]X f2• W e have

(3.10) Uk Illx-+2([0,T];(2) C  E  m h p ,k I lm + 2 - p •
p=0

L et C k  be a positive constant such that

(3.11) U X '([0 ,1];12) Ck  •

W e assume in what follows that C„ o o ,  because in  general th e  left hand side
of (3.11) is not uniformly bounded in  k.

By Lemma 3.1B with s = /2, there exists a  sequence {v,,} such that

vk e X 4 + 2 ([0, T ]; Q), k > 1,
vk v  in  X;,̀  ([0, T ]; Q ),
a!v„(0).- * ( 0 )  in  1-P - i (Q), 0 i <
vk (t, x) e Ker M(x) for (t, x) e [0, T ] x  F, k  > 1.

(3.12)

Lemma A.3 in Appendix A combined with Lemma C.4 in  Appendix C  guarantees
the existence of the subsequence {v,,,} such that
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1
11 A j0 ) k i )  — Aj(V) MI Xr([0, T];(2) 2 3 0 j n,

Ck,

1
B(vki ) — B(v) n ( [ 0 , 1 ]; (2 ) r 2

1
110/1i (vk i )(0 ) - 0 A i (v)(0)11 _ i - , 0 < j< n , 0 < i< m - 1 ,

Ck i

B(Vk 1)(0) — oa (0)11 _ —
1

, < 111 1.

We denote this subsequence Ivk i l  again by lvk l  by abuse  o f no ta tion . N ow  let
us consider the initial boundary value problem

(3.14) L(vk)u = Fk'i n  [0, T ] x  Q,

(3.15) Mu = 0 o n  [0, T ] x F,

(3.16) u(0, x) = fk (x) fo r  x e Q,

where

Fk (A 0 ( l l k )—  240 (v)) UkE  ( A ; (v) — Ai (o)ai Uk (MVO — B(v))Uk .

Recalling the definitions of f k , Fk, llk , Uk, and condition iii) of Theorem 2.1, we
see by (3.9) and (3.12) that

(3.17) X ([0 , T ]; Q ), k 1, and  (3F,(0)eHni - i (S2), 0 i < m, k > 1.

By Lemma A.1, Lemma C.1 i), (3.11), and (3.13), it holds that

(3.18)
F in  W :(0, T; Q),

t ;( 0) —> 0 (0 )  in Hm- 1 - i (Q) as k co, 0 < i < m — 1.

Making use of (3.9), we have

(3.19) .4,(L(v0; fk, Fi) = A (L(v); fk, F k )  in  Q, 0 < p < m.

Utilizing (3.19) and (3.8), we obtain

(3.20) Mzlp(L(vk); f k , Fic ) = 0 o n  F, 0 < p < m.

B y (3.12), (3.17), a n d  (3.20), f k , F  a n d  vk  s a t is fy  th e  assum ption o f  Lemma
3 .1 A . Hence for any k there exist sequences {AA and IFk ,i l  having the following
properties:

(3.13)
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k, 1 1

fk in  Hm (Q) a s  1 co, k 1,

(3.21)
Fk ,i eHm + 2 ([0 , T ] x Q ), k, 1 > 1,

F1, in W,m(0, T; Q ) as 1 co,
a z (0 ) in  f r  ' I Q )  a s  1—* co, 0 <  i < m  — 1, k  > 1,

MzI p (L(v k ); fk ,i, Fk ,i) = 0  on  F, k , 1 > 1, 0 < p < m.

We choose a  suitable 1 fo r  each k , say  1(k), so  that { f k ,i ( k ) }  a n d  {F k m k ) } are
desired sequences. This completes the  proof of Lemma 3.1.

The proof of Lemma 3.1A will be given i n  § 4 .  Now we give a  proof of
Lemma 3.1B.

Proof  o f  Lem m a 3 .1 B . We construct a  sequence {wk } having the following
properties:

w k E  C '([0 , T ]; f r(0 )), k  1 ,
Wk  —> y  in  X ;([0 , T ]; Q ) as k co,
awk(o)e H2s+ (Q ), 0 <  i < s, k  > 1,
8 iwk(0 ) av(0) in  H 2 5 + 1 1 0 )  a s  k o o ,  0 <  i < s,
wk(t, x)e Ker M(x) for (t, x) e [0, T ] x F , k > 1.

T o  th is  e n d , w e ch o o se  V e X 2 ' ( (  —  co, O]; Q )  su c h  th a t a v (0 ) =  *0 ),
0 <  i < s, V (t, x) e Ker M(x) for (t, x)E(—  co, 0 ] x  F, and set

u(t, x) in  [0 , T ] x Q,
i)(t, x )=

V(t, x) in ( — co, 0 ] x  Q.

We can construct such a  function V , if  we use  Lemma 3.1C  after replacing s
b y  2 s  a n d  setting gi = v(0), 0  i s ,  g i = 0 ,  s < i <2s —  1. W e h a v e  fie
X((— co, T ]; Q ) a n d  e  X 2 s+ 1 (( — oo, 0]; Q).

Let p  be in  C (R ) and le t the  support of p  be contained in  [0 , 1]. A ssum e
that f p(t)d t = 1 and  that p(t) >_ 0. Set

wk(t, = (P1ik7i5)(t, x)

where p l / k (t) -= k p(k t). Then we find that {wk }  is  the  desired sequence.
It is easy to see that there exists a  sequence {wk ,i }  such that

wm e C"([0, T]; HP(Q)), p >_ s, k , 1 > 1,
(3.23) wk  in  C ( [ 0 ,  T]; 1-1(Q)) as / oo, g > 1, k > 1 ,

aw k ,,(0) -3 Ow k (0) in  H 2 s+ 1 (0 )  a s  1—> oo, 0 <  i < s, k  > 1.

Such a  sequence can be constructed by using a  mollifier i n  t h e  x  variable
mentioned in  th e  proof o f Lemma B.3 in  Appendix B .  We define a  sequence
vk,i by

(3.22)
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(3.24) vk,i(t) wk,t(t) -  R45 + 4(P(KerM)I Y W k ,1 (t ),  0, ,  0  ) ,  te [0, T ],

2s+ I times

where  (KerM) 1 i s  the orthogonal projection onto  (Ker M (x))' for x e F  and  y is
t h e  t r a c e  o p e ra to r  o n  F ,  a n d  w h e re  R 4 5  + 4 d e n o te s  t h e  operator from
I E , ,s 0 

H 4 s +  3  -  2
i (F ) to H : ' ( Q ) ,  that was defined in Lemma B.2 i), ii) in Appendix

B .  By using (3.23), it is seen that

(3.25)

{ Y wk,i(t) -* Yawk (t) in Hs - 1 (F) as 1-> oo uniformly on [0, T ], i >  0, k> 1,

Yaitwk,i(0 ) -  Yalwk(0) in H " (F )  as 1-> oo, 0 -_ i < s,k > 1.

Furthermore, by Lemma B.2 ii), we have

ti R4s + 4 ( P (Ker Y wIca(t) , °, • • • )

2s+ 1 times

= a 1
?4,5+4,s(P(K erM )IY W k ,l(t), 0, , 0

[I] -1 times

=  R 4 s +  4 , s ( P ( K e r M ) I Y ° f  wk,1(t) 0,..., 0 ) 0 in H ( Q )  a s  1-> co

[fl - i  times

uniformly o n  [0, T ] ,  i >  0, k >1,

because P (K er M )I of W k,l(t) P (K e r M )1 wk (t) = 0 in  115 - ' ( F )  a s  1-> cc) uniformly
o n  [0, T ]  for 0, k >  1 .  Recall that, by the  last property of (3.22), we have

x)e Ker M(x) for (t, x)e [0, T ]  x F  and  k 1 ,  i >  0. Similarly,

atiR 4s + 4 (P(Ker M)17Wk,/(t), 0, 0  ) It =

2s+ 1 times

- 43[ R4s+ 4,2s+ 1 (P(Ker M) 1 YWk,l(t) ,  0 1 ••• 0 ) 11= 0

s- ltimes

- R4s+ 4,2s+ 1 (P(Ker M)1 yOidv"(0 ), 0, ..., 0) 0 in  11,2s(Q)

s - 1 times

a s  1-> oo, 0 < i < s, k> 1,

because P(Ker YOti wk3(0 ) - 4  P  (Kee (3ti w k (0 ) =  0 in H 2 (F )  as 1-> oo for 0 i s ,
1. H ere w e used again the  last property o f (3.22). These observations in

conjunction with the properties (3.23) yield

(3.26)

vk d eX :s + 4 ([0 , T ]; Q ), 1,

v " ->  wk in  C ([0 , 7 ] ; 115
4, (0 ) )  a s  1-+ q >  1, k >

Ofvk,i(0) . w,(0) in H ( Q )  c  Ils (Q ) as I  -÷ oo, 0 < i < s, k >1,

vk,i(t, x)e Ker M(x) for (t, x) e (0, T ]  x F, k,1> 1.

We choose a  suitable subsequence of 1, say 1(k), so  th a t 11k, i (k ) has the following
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properties :

vkmk) e X 2s+ 2 ([0 , T ]; Q), k > 1,

V k,l(k) V  in  X ;([0, T ]; Q) a s  k co,
vk , 40(0 ) —>  v(0) in  Ils(Q) a s  k oo, 0 < i < s,

vk,no(t, x)e Ker M(x) for (t, x)e [0, T ] x T , k  > 1.

T his is seen  by  com bining  (3.26) w ith  (3 .2 2 ). T h e  p roof o f  Lem m a 3.1B  is
complete.

Lemma 3.1C. L et gi e Ils + 2 - i (Q), 0 [i < s — 1, where s >  —

n  

is an integer.
2

A ssum e th at  g i (x) e Ker M (x ) f o r  x e r ,  0  . . i  s  —  1 .  T hen  there  ex ists  Ve
Xs + 1 ((— co, O]; Q) such that aV (0)= g i , 0  i __ s — 1, and V (t, x)eKer M(x) for

x) e (— co, 0 ] x  T.

P ro o f . We consider the  following initial boundary value problem.

(3.28) U + (A ,(g o ) + cl)a,U = G in [0 , T ] x ,Q,

(3.29) M U = 0 o n  [0 , T ] x

(3.30) U(0, x) = g o (x) fo r  x e Q.

Here y  is  a  smooth vector field o n  .C2, which extends the  outward unit normal
vector to the boundary F .  The matrices A i , j = n ,  and M  are those which
appear in  the  orig inal in itia l boundary value problem  (0.1), (0.2), (0.3). Recall
th a t A , =E r

j!= i vi A i , ô = r ; _ i v ,  and  th a t  U  is  the  unknown function. W e
impose the following condition on G,

.f Ge + 1 ([0, T ]; Q),
G(0) = g1 + 1 + 2=n(g0 ) g1 , 0 i s  —  1,

w h ere  A (g o ) = A (g 0 ) + el. W e  a s s u m e  fo r  th e  m o m e n t  t h a t  s u c h  a  G
exists. W e  c la im  th a t  for E  >  0  small,

i) the  boundary matrix  A (g 0 ) is nonsingular o n  T,
ii) Ker M(x) is a maximal nonnegative subspace o f /1 (x ) (g0 (x)) for x e F,

iii) the data go ,  G satisfy the compatibility condition of s — 1 for the initial
boundary value problem (3.28), (3.29), (3.30).

The properties i), ii) are checked easily. W e show the property iii). It is proved
by induction on i  that

(3.32) U(0) = gii n  Q, 0 < i < s — 1.

The left hand side of (3.32) denotes A i (L o , go , G) in  the  nota tion  introduced in
§2 , where L o = at + (A,(g o )  + s l)a,.  Obviously, (3.32) holds by definition when
i =  0 . If (3.32) is valid for i = k , then we have

U(0) = al:G(o)— A (g 0 )0 U(0)

(3.27)

(3.31)
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= g k + 1 + yel (g0)0,g,

glc-1-1•

This proves (3.32) for i =  k  + 1 .  It follows that

M  U (0 ) =  Mg i =  0 in  Q , 0  <  i < s — 1.

Therefore the  compatibility condition of order s —1 is satisfied for the initial
boundary value problem (3.28), (3.29), (3.30). We use here Theorem A.1 in [22]
and  conclude the existence of the solution U  X ' (  [0, T ] ;  0 ) .  It is seen by
(3.32) that

(3.33)8 U ( 0 ) =  g ii n  Q ,  0  <  i < s— 1.

Let x be a  smooth function defined on [0, co) with support contained in  [0 , T ]
and le t x(t) =  1  fo r t  n e a r  0 .  Set

x(t)U(— t, x) fo r —  T <  t < 0,
V(t, x) =

0 fo r  t < — T.

Then V has the  desired properties.
F ina lly  w e  construc t the inhom ogeneous te rm  G .  B y defin ition  g1 ± 1 e

Hs + ' ( . (2 ) ,  0 <  i <  s —  2. Since g o e  H s+ ,2(—,s i )  w e have by Lem m a C .3 if,(g o )E
H s+2( Q s.) W e observe that

min {s + 2, s +1—  j, (s +  2) + (s + 1 — i) — ([— ]+  1 )1 >  s  + 1  —
2

T h e n  b y  L e m m a  C .1  i) , it  is  se e n  th a t ile,(go )av gi eHs + 1 - i (Q ), 0  i — 1.
Therefore

G(0)e Ils + 1 - 1 (Q), 0 i < s — 2.

Using the same method as in the proof of Lemma 3.1, we obtain GEXS + 1 ( [0 , T];
Q) that satisfies the condition (3.31). This completes the proof of Lemma 3.1C.

Rem ark. L et C b (( — co, 0] ; Y ) b e  th e  space o f  continuous a n d  bounded
functions defined on ( — co , 0 ] tak in g  v a lu e s  in  a  B a n a c h  space Y . Then
Xs((— co, 0]; Q ) denotes the space of functions such that

0.1u e Cb ((— co, U]; H ( Q ) ) , 0  j  s .

The norm is

U  X .((—  x ,0 ];.(2 ) SUP U ( t )  IL •
t.ç 0

Similarly, X,((—  co, 0] ; Q)) is defined by replacing W ( Q )  b y  W. - 1 (Q).

T o prove the  m ain  Theorem, we proceed a s  fo llow s. L e t { fk }, IF,}, and
{v,}  b e  th e  sequences w hose existence is g u a ra n te e d  b y  L e m m a  3 .1 . Let
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Uk e ([0, T]; Q) satisfy Of Uk (0) p (L(vk ); fk , Fk ) in  Q, 0 < p  m .  Such a
sequence {U k }  can  be  found by  th e  same argum ent as in  the  first part of the
proof o f  Lemma 3.1. L e t C„ b e  a  constan t such thatIll U III- k X*,([0 ,7];(2) C .
W ithout loss of generality, we may assume th a t C„ co . W e define  a  smooth
function v o n  52 a s  fo llow s. F o r  x  i n  a  suitable neighborhood o f  F , w e put

= v(x'(x)), where x'(x) denotes the point on the boundary F  nearest to x .  For
x e not belonging to this neighborhood, v(x) m ay be chosen arbitrarily. Let

V •
L ( l lk ;  V , k )= A o (vk )a, + (A .(u k ) + )  a • + B(VO•

j=1 j

We consider the initial boundary value problem

(3.34) L(uk ; y, k)u = Fk' in [0, T ] x Q,

(3.35) M u  = 0 on [0, T] x F,

(3.36) u(0, = fk(x) fo r  x e Q,

where

1 n

Fk"  —  F k   E vi a, U k
CI7 j = 1

F o r this initial boundary value problem we prove the following lemma.

Lemma 3.2. Le t k be a sufficiently large integer. Then we have

i) The boundary F  is non-characteristic fo r the system (3.34).
ii) The boundary subspace, that is, Ker M(x) is still maximal nonnegative on

[0, T] x F  for the system (3.34).
iii) For the  in itia l boundary value problem (3.34), (3.35), (3.36), the data f k

and Fk' satisfy the compatibility condition of order m.

P ro o f .  The statement i) is shown by straightforward calculations. The proof
of ii) proceeds along the line of [22], pp. 67-68. The statement iii) readily follows
from the definition o f  Uk  a n d  Lemma 3.1 iv).

These observations lead us to  the following result.

Proposition 3 .3 . Le t m> 1 be an  integer. T h e n  the initial boundary value

problem (3.34), (3.35), (3.36) has a unique solution uk  i n  X ' 1 ([0, T]; (2), which

obeys the estimate

(3.37) III 14 '10 .,* C(Mun u(0) III.,* ec ( m *ot

+
1

Uk
cof.),

.(10,71;me

+  C (M ) ec(m*mmt - z) F k ( r ) eh,
o
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f o r te [0 ,  T ],  where M
[  n ]

a n d  M *  a re  c o n s ta n t s  independent o f  k  such that
f

+ 2 ti

1111)k111 A l
'  2  ([0,T]; f2) M 

[

7

2 1 +  2  
and  III v- k 1,

III, XN0,71;12) -.
M

 A* f or k  > 1 , respectively, and
w here C (.) is an  increasing function o f  its argum ent with positive values.

Moreover, Pu k  lies in X  *m* ([0 , T ]; Q ), where P is  the smooth matrix  valued
function on Q defined in Theorem 2.1. The following estimate holds for t e [0, T ].

(3 .3 8 ) III Pu' (t) Mm,**

C(M:- 1) { III uk (0 ) Ill., * +  III Fk(0 ) Ill.-1,0 ec (m 1`)`
C(M:_ i )

+  III Elk III x- , ■ ([0, 7];12)eC(Ae;at ± 0 .w ) eC(M*4)(t-r) 111 Fk(r) Ill m ,*  dt•C2k o

P ro o f . T he  ex istence  o f the  so lu tion  uk  e  X "'" ([0 , T ]; Q ) is shown by
applying Theorem A .1 in  [2 2 ], which is the existence theorem for the initial
boundary value problems with non-characteristic boundary. (See also [ 3 ] . )  Note
that we need Lemma 3.2 to apply the  theorem to our situa tion . T he  estimates
(3.37), (3.38) will be proved later in  §6.

The existence of solutions stated in  Theorem 2.1 is proved in  several steps.
We prepare for this purpose the following propositions and lemmas. We observe
from (3.37) and the definitions of fk , F k , a n d  Uk that III uk

 I I I  X" ([0 T];(2) is bounded
by a constant independent of k , that is,

su p ([0 ,T]; S2) < °° •

Therefore, {uk} is contained in  a  ball in Z (0 , T ; Q) centered at the origin. Then,
by a  weak* compactness argument, we can choose a  subsequence fficq such that,
for any 0 < j < M ,  l a t z b l  converges in the weak* topology of L (0 ,  T; H V i(Q))
a s  i —> cc. L e t  u  be th e  limit o f  {te' } . Then th e  limit o f  tait uk ' l  is ailti for
1 < j < ni. T h i s  is seen by the  fact that the  limit o f  lait ukil in the distribution
sense equals Ob./. We denote this subsequence still by lull  in  the  following.

Lemma 3.4. L e t m  > 1 . L e t { u k (t)}  b e  the  subsequence described above.
T hen tu k ( t)}  converges as k — > c o  in  t h e  w eak  topology  o f  H ( Q )  f o r  any
t e [0, T ] .  The limit u(t) coincides with the lim it of { ti k (t)}  in the weak* topology
o f  /2"- (O, T ; 11(0)) f or a.e. t e  [0, T ].

P ro o f .  Let E > 0 and  le t o of O D ). We fix te [0, T I2] and choose 5 > 0
small enough. By the assumption {uk} converges as k co in the weak* topology
of Lx(0, co ; H ( Q ) ) .  Since (1/(5)x1,,, „ 10 e  (0 , c o  ; ( Q ) ) ,  we have

1  ist+,5 1 ( t +
(3.39)(3.39) ;-•5 (4), uk (s))ds — —6 ( 0 ,  u t (s))ds < e f o r  k, I > N,

where N  is a n  integer depending on e, ô , t, and  4). The left hand side of (3.39)
is rewritten as
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1t -
(4), Uk (t)) - (4 ), U l (t)) iT5-1 f i

t
+  ( 0 ,  t i k (S) -  U k ( t ) )4 S  - t (4), 141 (S )  -  ul (t))ds

Since

s  a
uk(s)— uk to= — uktT)dT,

0T

we have

uk (s) — uk (t)II M(s — t),

where

M  = sup Illuk x7m0,1-1;(2) •

Similarly,

II ut (s)— u1(t) 11 m(s — t).
Hence, we see that

6
(q u k (t)) — (0, u 1 (t)) — M114 )11 — M 114)11 < e fo r  k, 1 > N.

L et us choose .5 such that SM114)11 < E. Then we have

1(4 , uk (t)) — (0, ul (t)) I < 2E fo r  k, 1 > N,

where N  is an  integer depending on e, t, and 4). Replacing xt,,,, 61 b y  xr, -6,0 , we
repeat th e  same argum ent as above fo r te [T1 2 , T ]. T hus w e see  that { /k W}
converges weakly in  L2 (2) fo r any  t e [0 , T ]. O n  th e  o ther hand, w e have a
uniform estimate for uk (t), tha t is,

SUP Iluk (t)(1„,,* M .

It follows from  these observations that {Le (t)} converges weakly in  I- I ; (Q ) for
every te [0, T ] .  The last assertion in the lemma is easily seen by the uniqueness
o f the  lim it. T h is completes the  proof of Lemma 3.4.

Proposition 3.5. L et m  > 1. Then the lim it u o f  th e  subsequence { uk }  which
lies in  Z;(0, T; Q) satisfies (0.1), (0.2), (0.3).

P ro o f . Let

M — sup u k .7('([0,T1:0)•

W e  re c a ll th a t  e a c h  o f  t h e  uk 's satisfies (3.34). T h e n  w e  o b ta in  f o r  any
e C((0, T) x Q)
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(3.40) <A0(vk)0,uk, 0> + <24;(vk)ajuk , 0>

1 +  E <vi ai uk, 0> + <B(vouk, 0>

i n

= <Fk, o> +  E <v.a•uk, o>"
where

çr
<f, g> .j. f • dx d t.

0 1 2

Integrating the above by parts, we have

(3.41) — <A0 (vouk, a,0> — <(0, , e10(vk))uk , 0>
n i i

— E <A,(vouk, ai o> — E qai ii i (vo)uk, o>
i=1 ;=,

1
 E <I4k , aj(17

.10)> <B(VOI4k, 0>
Ck J 1

1 n
=  < F  4)> + E <viaiuk, 4)>.

Ck j

The convergence of the first term on the left hand side of (3.41) is seen as follows.
W e have

(3.42) I<A0frk/uk — A0 (v)u, a,0>1

1<(A0(vk) — Ao(v))uk , .9,01 + I<A0(v)(uk — u), 4)> I.

The first term on the right hand side of (3.42) is bounded by

C  111 A 0 (v )  —  0(0111 x![31+ 2  ([0 ,T);12) su p  m a x  11uk (t)11 m a x  110,00 M,
k  0_<1.1sT

which in  turn is estimated by

C K M v , ,  — y x! 3[ 1+ 2 ([0,7] ; 12) max .9,0(011

by using Lemma A.3. Here K  is a constant depending on sup 111vkl11xeD+2([0,7];12) •

This shows tha t the first term  on the right hand side of (3.42) becomes smaller
than arbitrarily given e > 0 for sufficiently large k. The second term on the right
hand side of (3.42) is rewritten as
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(3.43) (uk(t)—  u(t), Ao(v(t))
*

a i4 (0 )d tof
I t  is easily seen that A0(v(0) * aorPEC([0 , 7 ] ; L2 (Q ) ) .  Hence

m a x  11,40(00)* at0(t)
O T

<  co.
< t<

W e have also

su p  m a x  11 u" (t)  +  s u p  Ilu(t)( 2M.
k  0 - ç t . s T 0 .ç t.çT

O n  the  other hand, uk (t) converges to  u(t) weakly in  L2 (Q) fo r each t  [0, T ]
by Lem m a 3.4. Therefore, by Lebesgue's dominated convergence theorem, the
second term on the right hand side of (3.42) converges to 0 as k c o .  Next, since

1 " M T  "
 E 1<uk, ai (vi d))> 1   E  m a x  11 -(v .4)(t))11

i=i C2 • 0 < t < T J
k  J = 1  —

we have

n

(3.44)
1 

E  <v•a.uk, 0> ,O"
as k co. By the definition o f C k ,  we have also

I n

(3.45)   E <v.a•uk ,"
as k —> co. Since the other terms on the left hand side of (3.41) are treated more
o r  less in  a  similar way, we om it the details. W e  have finally

(3.46) — <A0 (v)u, aprP> — 081110(v))u,

— E <A (v )u, 0,0> —  E <( A ,(0)u, 4)> + <B(v)u, 0>
j=1 .1=1

= <F, 0>•

Integrating (3.46) by parts, we have

(3.47) <A o(v)a,u + E A (v)0u + B(v)u —  F, cP> = O.
J=1

Since 4) is arbitrary, w e obtain (0.1). W e show  th a t  u  satisfies th e  boundary
condition (0.2). Let us assume for the moment that m  >  2 . Since u E Cw ( [0 , T ];
IF: (0 )) b y  Proposition 3.9, we have

s u p  d u(t) 1  < cc.
0.<1.çT

N ote tha t H,7(2) c 11 1 (0 )  if m  >  2 . W e have also
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sup max Ilu k <  00
k1 : 1 T

by Proposition 3.3. Then, combining the interpolation theorem for the Sobolev
spaces and  Lemma 3.6, we conclude that

sup Mu k (t) — u(t)11 1— >  0
0 < r ‹ T

a s  k c o  f o r  g >  0  sm all. H ence  u k (t)1, u (t)1 , i n  111 ' ( F )  fo r 0  < e  <
uniformly i n  t. T h is  im p lie s  tha t M u(t) =  0  o n  F ' f o r  t e [0, T ] .  Now we
consider the case w here m  = I. Since  H ( Q )  = (Q ), we have

M  = su p  m a x  P u k (t) <  °C)

k

b y  P ro p o sitio n  3 .3 . W e  f ix  t arb itra rily  a n d  n o t e  t h a t  t h e  imbedding
H i (Q )  H 1 (Q ) is compact for 0 <  c  < 1 .  Therefore there is a  subsequence of
{/3 uk (t)} which converges in H 1 - ' ( 2 ) .  B u t  by Lemma 3.4 the sequence {Puk (t)}
converges w eakly i n  L 2 ( 2 )  t o  P u ( t ) .  I t  fo llo w s  th a t  th e  sequence {P'u'(t)}
converges in H i

-  E(Q )  t o  Pu (t)  without choosing a  subsequence. Let A  b e  a
smooth ex tension  o f M . Then

/171Puk (t) —0 /4-  Pu(t) in H 1 ( Q ) ,

for t e [0, T ], if 0 <  e  <  1 .  Hence

117/Pu k (t)I F Ï71 /3u (t)

for t e [0, T ], if 0 < e < 4 ,  th a t  is,

i n  H /  (F),

muk(01,-,  Mu(t ) in  H 2 ( P ) .

Notice that M P = M  on  F .  Since Mu k (t) =  0  on  F  for k  > 1 and t E [0, T ] ,  we
see that Mu(t) =  0  on  F  for t  [0, T ] .  Thus u  satisfies the boundary condition
(0.2).

Finally we check the initial condition (0.3). By our assumption, u k (0) = fk
converges to f  in  I r ( Q ) .  O n the other hand, u"(0) converges to u(0) weakly in
L2 ( 0 )  b y  L e m m a  3 .4 . T h e n  w e  have u(0) = f  b y  t h e  uniqueness o f the
lim i t .  H e n c e  u  satisfies t h e  initial c o n d itio n  (0 .3 ) . N o tic e  that actually
u E C( [0, T ]; L2 (Q)), which follows from  th e  fa c t th a t  0,u e C([0, T ]; L 2 (Q)).
This completes the  proof of Proposition 3.5.

Lemma 3.6. L et m  > 2. L e t ilk e X" 1-' 1 ([0, T ]; ,(2) be the solution of  the
initial boundary  value problem  (3.34), (3.35), (3.36) obtained in Proposition 3.3.
Then the whole sequence {Le}  is a Cauchy  sequence in C( [0, T ]; L 2  (Q)).

P ro o f .  Since each of the u k 's  satisfies (3.34), we have

(3.48) L(v, ; y, k)uk — L(v,; y, Out =- F —  Fi'.
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W e rewrite this equation as

(3.49) Ao(vk)Otwk, E A i (v)a 1
wk , 1

j=1

i n
 E

, - 1

—  4,1*

Here
k  IW  ' =  U k —  u ' ,

k ,I  = (110()k ) A o (V i) )atU i —  E (Ai (v )— A ; (0 )a i ui

1 I n

( —  —  — )  E v.a.ut— o(v) — B(vi))/4'+(Fk — FC ?  i=

n n

4-  — 7 E vi a;  Uk   Ecr
F or simplicity, we write in  what follows v, w, and J  instead of vk , w", and
respectively. W e take the  inner product of (3.49) w ith w and  integrate it over
Q . Then w e estim ate  each term  by a  standard  m e th o d . The nonnegativity of
the boundary condition for (3.49) is used when we deal with the integrals on the
boundary . S ince  A , is positive definite, we obtain finally

(3.50) w(t) Cllw(0 ) +  CM(vk) f w(T)11dt + C 11./(r)Ildt.

where

M(vk ) -- 
O T '

 + Il Div 4 (vk(t))11[3] + i + II B(vk(t))11[3] ± i l,
n

Div .T4' = 0,A0 +  1  a j Ai .

Since vk -4 v in X( [O, T ] ; Q) with /./ = max ( m, 2 —n  +  6) , M(v k )  is uniformly
2

bounded in  k, say, b y  M . T h en , by Gronwall's inequality, we get

T

(3.51) Ilw(t)11 C (II w(0) 11 ec m  T  + f11 J(011 dtec m T ) .
o

It is easy to see that

w(0) 11 = liuk(o)  — u1(0 )11 = fk

J = Jk , i  is estimated as follows.
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.ro CK T114,1(T)Ildt vk — y1 .x„2[31 ' 2(io, T1;12)111 121 4 ( [0 ,1 ] ;12)

+ CT(I1  
C

111141111X,([0,T];f2)

CT 1 1
+ Fk(z) — Fi ( r) 11 +  C T ( —+ —

Ck  C ,

H ere K  is  a  constan t depending on III v k  X!ES1 ([0  ,T ]; S. 2) and 1111)1 111 2 7x . 1-1+ 2([13,1];f2)•

Since v k  v  in  X ( [ 0 ,  T ]; Q ) a s  w e noted above, w e see that K  is uniformly
bounded in  k, 1. O n the  other hand , Ill u' IllX([0,T];(2)2 is uniformly bounded in  1.. 
Then, by the properties of fk , vk , and Fk  sta ted  in  Lemma 3.1, we conclude from
(3.51) that 11 uk(t) - 24'(t)11 0  uniformly in  t  as k, 1 —> cc. T h e re fo re  the sequence
Lik i s  a  C auchy  sequence in  C ° ([0, T ]; L2 (Q ) ) .  T h e  p roof o f  Lemma 3.6 is
complete.

Lemma 3.7. L et X  and Y  be Hilbert spaces such that X  q Y . A ssume that
X  is  dense in Y. L e t I  = [a, b] and  le t the  sequence {u k }  in  C (I ; X ), k  > 1 ,
have the following properties:

i) The suprem um  norm  o f  u k  in  C ( 1  ; X )  is bounded by  a constant not
depending on k , that is,

M  = s u p  s u p  I uk(t) (Ix <  +  oo.
k  0 < t< T

ii) T here is a u e C w (1; Y ) such that the sequence {u k (t)}  converges to u(t)
as k —> co  in  the  weak topology of  Y  uniformly in  te  [0, T ].

Then the lim it u lies in  C (I; X ).

P ro o f .  L et t e l .  Since {uk (t)}  is weakly sequentially compact, there  is  a
subsequence {uk ,( t)}  su c h  th a t uk i ( t)  converges as j —> c o  weakly in  X .  This
im plies that there  is a t least one accum ulation point of {uk (t)}  in  X  endowed
w ith th e  w eak topology. O n  th e  o ther hand, b y  condition ii), there exists at
m ost one accumulation point of {uk (t )}  in  the weak topology of X .  Hence the
whole sequence lu k (t)}  converges weakly to some limit in  X  for any  te [0, T ].
This lim it m ust coincide with u(t) stated in  co n d itio n  ii) . N ext w e show that
{uk (t)}  converges to  u in the weak topology of X  uniformly in t. Let X * and Y*
b e  th e  a d jo in t  spaces o f  X  a n d  Y , respectively. W e have  Y *  q  X *  and
furtherm ore Y * is dense  in  X * .  L et f  e T * .  T hen (uk ( t) , f )  i s  a  continuous
function of t by condition  i). It follows from condition ii) that (uk (t), f) —> (u(t), f)
as k —> co uniformly in  t E l. Hence (u(t), f ) is a  continuous function of t. Now
let g e X *  .  W e have

(3.52) (uk(t), g) — (u(t), g)1

(uk (t), g — f)1 + 1(u k (t), f) —  (u(t), f)I + 1(u(t), f —  g)1.
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Then the first term on  the  right hand side of (3.52) is bounded by

s u p  s u p  Muk (t)11,11g — f  Mx * < ME,
k 0 < i< T

if we choose fe  Y* such that Mg —f  I x  <  e .  The middle term of the right hand
side  o f  (3.52) becom es sm aller than e  b y  tak in g  k  sufficiently la rge  fo r fixed
f. The last term  of the  right hand side of (3.52) is estimated by

s u p  Ilu(t) Mx M f  —  gllx .< me,
0 < t ‹ T

since II u ( t )  x l i m  uk(t) x < M . T h is  completes the  proof of Lemma 3.7.
oo

Lemma 3.8. L e t  X  an d  Y  b e  H ilbert spaces a n d  le t  I  = [a, b ] .  Let
T(t)e  Y (X , Y ) f o r te l an d  le t T (t) be a  continuous function o f  t  in the norm  of
Y (X , Y). W e define Tf f o r feC„(1 ; X ) by

(T f)(t) =  T (t)f(t), t e l .

Then we have T fe C (1 ; Y ). T h e  mapping fi— T f is a  continuous linear operator
f rom  C (1 ; X ) into C ( I ;  Y).

P ro o f .  W e  d e n o te  b y  X *  a n d  Y *  th e  a d jo in t  spaces o f  X  and Y ,
respectively. Since T (t )e Y (X , Y), we have T (t)*  E Y (Y *, X *). T (t)* , te l, is  a
continuous function of t  in  the  norm  of Y (Y*, X * ) .  L e t  e Y*(t). Then

( T(t)f (t), 0) = (f (t), T(t)* 0).

T he  righ t hand  side  is  a  continuous function o f  t. T h e  la s t assertion of the
lem m a is easily seen. This completes the  proof of Lemma 3.8.

Proposition 3.9. T he initial boundary  value problem  (0.1), (0.2), (0.3) h as a
unique solution u in  Y4:"([0, T]; S2).

P ro o f . W e recall that W I is a  subsequence of the solution of (3.34), (3.35),
(3.36) such that, fo r any  0 < j  < m, {aluk }  converges in the weak* topology of
L'(0, T; H (Q ) ) .  Let u be the lim it of lu ll  as k —> co. Then we have ait u"—*
0.!ti as k —> co for 1 j  m .  W e shall show that a lu e C ( [0 ,T ];H V ia -2))) for
0 < j  < m .  First we consider the case where ] =  0. Since Uk e C([0, T ];  H (Q )),
k >  1, we have a fortiori it' e T ] ;  H (Q ) ) ,  k  1 .  Moreover,

su p  m ax  11 u k (t) < co.m,*

O n  th e  other hand, Uk converges to  u in  C([0, T]; 12 (Q )) by Lem m a 3.6 and
hence in C„([0, T ];  L2 ( 2)). Combining these observations and applying Lemma
3.7 w ith X  =  H (Q ) and Y =  L2 (0 ) t o  lu ll ,  w e conclude that u  C ([0 , T ];
H (Q ) ) .  Next we prove the  general case by  the induction on j. L et us recall
tha t u satisfies (0.1) which is rewritten as

k 1 3 . ,ç t T
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Ot u =  Gu +

where

G = — A i ei -
=

= A i, 1 < j < n, = AT 1 B, A V  F.

W e set

G, = —
 Ê

—  ,
= '

2y) = =

Then, by Leibnitz's rule, we have

(3.53) Ou = G(t).V  u +IE2 1 —  1 G, _ _,(t)Ou + a; -  1

i= o\ i

W e assume th a t O tte  C ([0 , T ]; 1 (Q)) for 0  <  i < 1 —  1  a n d  w a n t to  show
that Ott E Cw ( [0, T ]; H V I (Q )) . Since F e W :(0, T; Q), we have P  W :(0, T; Q)
a ls o .  This implies that erf e C([0, T];  0  j  m  —  1. In particular
0 - 1 PE C ([0, T]; HZ -

1(Q ) ) .  Therefore, the last term  o n  th e  right hand side of
(3.53) i s  a  m em ber o f  C ( [ 0 , T ]; H 1( 0 ) ) .  W e  n o te  that O 1 e2(1-1,7 - l (Q),
H Z ' 2 (0 ))  for 1 j  n where 0 < i 1  — 2. T h e n  w e  have 0; (0;ti)e Cw ([0, T ];
H  2  ( Q ) ) .  It can  be  show n by  using  L em m a B .1  iii) tha t ;e1)1 - 1 - i ) ( t )  i s  an
operator o f  Y(HT - i - 2 (12), HZ - 1 (Q )) fo r each t e l  a n d  th a t  i t  is  a  continuous
function o f  t  in  t h e  n o rm  o f  Y (H Z - i - 2 (Q), H ( Q ) )  fo r  0  <  i < 1 — 2  and
1 < j  <  n . T h e  sam e is true for /3 (1 -  " ( t ) .  Hence by applying Lemma 3.8 we
see that

G , 1 _ 1(t)Ou = —  E  Ay-1- 0 a i ( a ti -  _  ( 0 0 ,i u
=

i s  a  m em ber o f  C ( [ 0 , T ]; H V 1(.(2)) p r o v id e d  th a t  0  i 1  — 2. T h u s  the
middle term on the right hand side of (3.53) is a  member of C ( [ 0 ,  T ];
Finally we consider the first term on the right hand side of (3 .53). To this end,
we write

G(t) = A 0 (t)  (A,(0a, + A(t) + B(t)),

where

A (t)  = E vi A;(0 , a, =  E via»i=i

A (t) = E  (A ; (t) — vi A,(t))0 i ,
=
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and  where y = (y i ,...,y„) is  a  smooth extension of the outward unit norm al to
F .  L et us look at

A,T1 (t) (A (t) + B(t))0 -  u .

W e  have 0; -  u e C„([0, T]; H7, - 1 + 1 ( 0 ) )  b y  th e  assum ption of the induction.
We observe that A (t) is a  tangential vector field, although its coefficient matrices
a re  n o t in  C (D ).  A o (t)  A ( t)  is  a n  operator o f  ..r(H Z - 1 ± 1 (Q), 11,7 - 1(Q )) for
each te I  a n d  continuous in  t  in  th e  norm  o f  2' (11 '(52 ), H ,7 - 1( 2 ) ) .  This
can  be  show n  by  u sing  L em m a B.1 iii). Therefore, by Lem m a 3.8, we see
t h a t  A0 (t) - 1  A (t)0; -  l ucC  ([0 , T ]; H (Q ) ) .  T h e  sa m e  argum ent h o ld s  for
A0 (t) - 1 B(t)0; - l u. F in a lly  w e  tr e a t  Ao (t) - 1  A .(t)a v (ô 1 u) th a t  re m a in s . Let
P = P(x), x e Q , b e  a  sm ooth extension of P = P(x ), x e F, where P(x ) i s  the
orthogonal projection o n to  .Ar(x)± . R ecall that, by  Proposition 3.3, e
C ([0 , T ]; H L- 1 + 1 (Q )) and  that

M = sup max II PO -  1  Uk (t)) Ilm - 1 + 1 ,**  <  CX) •k

Since 1 < 1 < m and H (Q )  = 1 1 1 (0 ) , the imbedding 1-1
1 + 1  L 2

(s2) is compact.
Hence, for each t e [0, T ],

1  u k
(t)} has a subsequence that converges in L2 (0).

/-1-1This subsequence also converges weakly in  H (0) b y  the  uniform estimate
in  this space. A ctually, by the uniqueness of the lim it o f { i3 0; -  u k (t)} , we need
not employ the subsequence. The whole sequence {P0 - 1 uk (t)}  converges weakly
in  11 (0 )  for each t e  [0 ,  T ].  The lim it /3 8',-  u ( t)  satisfies the estimate

s u p  11 15 (a -  1  u(0)11._1+ 1, * *
0<t.5_7'

Since P u e c([0 , T]; 11 `+ '(Q )), w e get P u e C([0, T ]; H T ; 1 + 1 (Q)).
Then it follow s that 0/3 (0; - l u)e C([0, T]; 11:1 - 1( Q ) ) .  N ote  th a t if  m > 1 we
have 3 v f e H ,V 1 (Q )  fo r  any  f e H L ( Q ) .  Now A 0 (t) 1 A ( t)  i s  a n  operator of
2 '(H :1 - 1(0 ) )  for each  t e l .  M oreover, it is a  continuous function o f  t  in the
norm of 2(H ,7 - 1(Q ) ) .  Hence we have 2,3P a; -  u e C([0, T ]; HT -

1(Q )), where
w e set ;4- (t) = A cT 1 ( t )A ( t ) .  L et us write

(3.54) 2,(t)av(ô- u) = 2,(t)a,(Pa -  l
— 2,(t)(3,P)(a -  u) + 2,(00 —

The secondsecond term on the right hand side is a member of C( [0, T ];
I +  I

( Q
) )

by Lem m a 3.8. To discuss the  last term  o n  th e  right hand side, we note that
2„(1 — P)0„ is a  tangential vector field because 71„(1 — P) vanishes on F .  Hence
this term  can be dealt w ith in  the  same way a s  we treated A0 (t) - 1 /10 (t)(0 - 1 u).
The first term on the right hand side of (3.54) was discussed above. Consequently,
w e get 4 e ( 0 ; - 1 u)e T]; H,7 - 1(Q ) ) .  Sum m ing up these observations, we
conclude that th e  first te rm  o n  th e  righ t hand  side  o f  (3.53) is  a  member of
C ([0 , T]; Hm - 1 (Q ) ) .  Therefore all the terms on the right hand side of (3.53)
lie in C (  [O, T ]; 1 P - 1 ( Q ) ) .  This implies that al

t u e Cw ([0, T]; Hm -1(Q)).



Initial boundary value problem 169

We prove the uniqueness of the solution of the initial boundary value problem
(0.1), (0.2), (0.3) in  I 7 ( [0 , T ] ;  Q ) . F o r  sim plicity w e assum e th a t  m  =  1 . If
u E Y:([0, T ]; Q ), then we have

(u(t), 0) — (u(s), 0) =  (  u(t), 0)d-c
s a t

for 0 < s <  t <  T and 0 e L2 (Q ) .  This implies that u = u(t) is strongly continuous
and in addition weakly differentiable in  L 2 (.(2) in  te  [0, T ] .  Hence the following
equality holds for t e [0, T ].

0
—(u, A o (t)u)= (0,u, A o (t)u) + (u,( A 0 (t))u) + (u, A 0 (t)( u)).
Ot

This enables u s  to  o b ta in  the L 2 (0)-estimate of the solution  u e  Y :([0, T ]; Q)
by  the standard energy m ethod. Then, it  is  c lea r  th a t if  u , a n d  u 2 belong to
Y :([0 , T ];  Q )  a n d  satisfy (0.1), (0.2), (0.3), they m u s t  co incide  w ith  each
o th e r .  This proves th e  uniqueness asse rtion . T he  proof of Proposition 3.9 is
now complete.

Remark. A s a  consequence of the above proposition, it tu rns ou t tha t the
whole sequence W I converges in the weak* topology of L (O, T; 1-17,(Q)) to u
without passing to a  subsequence. Also, the whole sequence {0.41`} converges in
the weak* topology o f L '(0 , T ; II (Q)) to Olu for 1 j m.

Proposition 3.10. T h e  so lu tio n  u  obtained in  Pro p o s itio n  3 .9  lies i n
X 47([0, T ]; Q).

P ro o f .  O ne of the  ingredients of our proof is the  use  of Rauch's mollifier
introduced in  [ 2 0 ] .  Except for this point, the argument is analogous to that of
M ajda [13], where the Cauchy problem  is studied. The detailed proof will be
given in  a  forthcoming paper [24].

§ 4 . P ro o f of Lemma 3.1A

We follow the line of the proof of Lemma 3.3 in  [ 2 1 ] .  However, we must
argue m ore carefully, fo r  lack  o f  regularity of the coefficient matrices of the
equation. Besides this, the  boundary matrix is singular in  ou r c a s e . Therefore
w e  c a n  e m p lo y  t h e  p r o o f  o f  L e m m a  3 .3  i n  [ 2 1 ]  on ly  a fte r su itab le
m odifications. The fp 's  mentioned in  §2  a re  defined inductively by

(4.1)

fo = f ,

fp = (

,=o

1)
 G,(0)4_ 1 _ ; + Of - (A o (v) -  (A o (v) -  F )  (0 ) , p 1, in  Q.

7  

Here
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G 0 ( t )  =  -  E i l o (v) '  A i (v)0 — A 0 (v) ' B (v),
= 1

G.(t) — E am o (vriA,(0)ai — (A0 (v) -  B ( v ) )
J=1

=  [0„ G, _ (t)] , i >  1.

We observe that f p , p 0, defined by (4.1) can be written as

(4.2) fp  =  Bp  f + E p F ,  p  0 , in Q.

Here Bp  and Ep are defined respectively by

(4.3)
Bo f  =

[ B p f = E C (p ; q ; i  ,  ,  q ) G (0) • • • G, , (0 )f, p > 1,
i i +•••+i,- f -q =p

and

EoF = 0 ,

E,F = (A o (v) -  F )(0 ) ,

E F
(4.4)

p - 2

= E C ( p ;  q ;  1 , ,  i q ) G i ,(0) • • • G•,(0) x
ry=0

x  07 (A 0 (v) -  F ) (0) +  Of' (A o (v) ' F) (0) , p 2,

with

The summation on the right hand side of (4.3) is taken over all 1 < q  <  p  and
the q-tuples ig) such that i + • • • + i q  +  q =  p. The summation on the right
hand side of (4.4) is analogous to  th is. In  order to get a  concrete expression
for the product of the first order differential operators G,,(0), appearing
in (4.3) and (4.4), we set for i > 0

Ay) = 0;(A 0 (v) -  i t i (v)) (0), 1  j  n .

A 1 =  a(A 0 (v )  B (0 )(0 ).

When Op + , appears in the following, it should always be replaced by the identity
operator. Let S(q) be the set of q  x  q  upper triangular matrices a. whose entries
are either 0  or 1 and whose rows contain at most one entry which equals 1. Let
1 n  +  I. W e define S (q ; j , )  to be the set of a E S(q) such that,
if j k =  n  +  1  then each entry of the k-th row is zero, and if j ,  n  +  1  then the

C (p ; q ; i 1 , . . . , i q )

( p  —  1 ) ( p i i ) (p — q — (i, + ••• + i q _ , ) )

i
q
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k-th row contains one entry which equals 1. Then, we get

G) 1  (0)• • G i a (0) f = E (A(iiii)0;1)( 422)a.,2)... (A(1,0 a i) f
j g .çn+1

A,)(0,T(1,2)A y 22))(.7, ,(1,3)av2,3)A(i i,3))...
<  ...  <n + 1 aES(q................0j1 ,...,j

ix

x  (a 1; (1,q) aoi ( q -, 1 ,0  A (1 0 ) av 1 , 1 ) . . .  0 7 (q ,q ) f, 5

where o- (m, k), 1 < m, k  q ,  stands for the (m, k)-entry of a.
L et a e S(q; j i , . . . , j q )  a n d  le t 1 i n .  We define q ( a )  t o  b e  the  number

o f  k  fo r which a(k , k ) = 1 and, in addition, j k  = i. W e w rite  çp(a) =
(p ( a ) ) .  Now le t 1 = (1 1 , ...,1,,). W e set

A (p; q; i i , . . . ,  q ;  1) = E A q 1)( 49,0 ,2 ) A q 2),
.11 J1 J2

,j)  ............+ l a e S (0 . i  ......
4).(a)= I

x  (ac:h(1,3)0V2,3)Ay33)) . . .  (ooi i(1,q) acir(q 1, q )  A y0 ) .

Then, Bp f  and E p F  are  written a s  follows.

(4.5) B p f  = E  A(p, 1)0!, f, p  > 0,

p— 1

(4.6) E p F  =  E E A(p — 1 — n, 1)01
),07(A 0 (v) ' F)(0 ) , p > 1.

ry=- 0

Here

A(p, 1) = E C(p; q; q; 1), P 1.
i l -1 - • • • +  i g +q=p

W e set A(0, 0) = I  for convenience.

Lemma 4.1. L et v  e X  ([O, T ]; f2) and let Ov (0)e H 4 +  i (12), 0 i y ,

where y  = max (m, 2 [ -
n  

+ 6 ) .  L et v (p,11) = 2,u + 2 — p + m ax  W I, 1). T hen
2

(4.7) A(p, 1)e 11" (P' 111) (Q), 0 p + 1.

P ro o f .  W e have by  Leibniz's rule

AY )  = (()(A  (v) -  A  i (v ))) (0) = E (O.; A o (v) -  1 ) (0) (Or; A j (v)) (0),
s + r = i  S

0 < i < jt , 1 < j  n + 1.

By exploiting Ov(0)e H 4 + 2 (0), 0  <  i < y , we can use Lemma C.5 and Lemma
C .3 to obtain

(4.8) 07,40(v)-1(0)e + - 5 (Q), 0 < s <
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and

(4.9) a rt il i (v) (0) e H 2 0 - 2 -  r(Q), 0 < r < i ,  1  <j < n  + 1.

This yields by Lemma C.1 i)

(4.10) A (p e H 2 2 ( .(2 ) , 0 < i < p , 1  < j < n  + 1 .

It follows that
aa (1 ,k ) ao (k  -  1 ,k/ A ( .ik) G  H214 + 2 - (ik +a(1 ,k )+•••+a(k -  1 , 1 )/(Q ) ,

.11 J k  -  1
2 < k  <

Applying Lemma C .1  i) repeatedly to each term of A (p; g; i l , . . . , i p ; I), we have
finally

A (p; g; i l , . . . , i g ; Oe H212+2 - 0, + •••+i g +zz = 2 Ek„,- 2,a(m,kno ) .

W e define p  = p(j i , . . . ,  4 )  t o  b e  th e  num ber o f  k  such that
E S(q; Then we have

q k -
E u (k , k )+ E E a(m , k ) = g — p.

k =1 t = 2 m = 1

Since tr a  = 149 (0 1 , this implies

i k  =  n  + 1. Let

Therefore

q k -
E E o- (m, k) g  —

k = 2 m 1
P — 149 10 .

A (p; g; i i , . . . , i q ; 0E1-1 2 P+ 2 - ( i i + — + i g- P-1 1 1 ) (S2).

We observe that if 149 (01 = 0, then a (g, g) = 0, that is, each entry of the q-th row of
a is z e r o .  Thus, (p (a)l =  0 implies that p  1. Consequently, we have 1 < p  +

i49 10 1 .  Hence

p + max (/ I, 1).

We see therefore

A (p; g; i 1 ,...,i0 G H 2 Y+2
-

( ii +"•+ig+q - max( lio ) ) (0 ) .

Since j 1 + ••• + iq  + q p ,  we obtain

A (p, 1)e liv (P' 1̀ 1) (2 ).

The proof of Lemma 4.1 is now complete.

Corollary 4.2. Let v  be as in Lemma 4.1. Let Bp  and E p  b e  the differential
operators defined by (4.5) and (4.6), respectively. T h e n

(4.11) Bp e Y (Hs(Q), Hs - P(Q)), 1 < p < + 1 , p  s + 3,

(4.12) Epe2'(V ;(0, T ; S 2), Hs -  P(Q)), I p + 1 , p  < s < 2 ji + 3.
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Proof. First we prove (4.11). L et 0 p + 1. Then, by Lemma
4.1, A(p, 1) is a member of Ilv (P. 111) (Q ) . Since p < s < + 3 and Ill < p, we have

min fv(p, s —
10 ,1 11) + (s —  111) — [ 1112 1—  1 }  s  —  p.

Hence, by Lemma C.1 i),

(4.13)I I  Bpf C A(P, O 11 v(p, in) II aixf II c IIIf Is
111 1,

for f e 1-Is(Q), p < s 2 p  +  3. This proves (4.11).
Next we show (4.12). Let F e V;(0, T; S2) where p s  2 p  +  3. We recall

that A(p — 1 — q, 1) is a  member o f  Hv(P- 1 - 1 ' 111) 4 4  O < q < p —  
1,  0  < i l  <

P 1 — +  1, by Lemma 4.1. Since p s + 3 and p — 1 — q, we
have

min {v(p —  I — TOW, s - 1 — 17 v(p - 1— q,111)+(s - 1— q - 111) — [
]

- 1}

> s — p.

By using Lemma C.1 i) and Leibniz's rule, it is seen that

(4.14) II E pF 11,- p
p-

• E A(p — I — q, al„37 (A 0 (0 -  F ) ( 0 )11s- p
n — 0 In . 4g - - 1 — n

p -1
CE A(p — 1 — q, 0 II v(p— 1 —

q=0

x 0 (v) - 1 11(0) I 1-
p -1

• C E 8700(0 - 1 F)(0)11,-
ry=0

p -1

• c E A0(0- 1 (0)0(0)11s-
ry=0

We see that

min { 4 + 2 —  s — 1 — C, (2p+ 2 — ) +(s — 1 — ()—[
n

]-1} > s — 1 — q.
2

Then we use Lemma C.1 i) to obtain

p— 1
(4.15) E  E /WO- (0).0  F 0111,- -

q=0

p— 1

L E 0,40(v) -  '03)112,,+2 - F (0 )  s — 1 —
4+=r7
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P -
C  E 11a7F0)11s_i_,,

n= 0

<  C  F  III v:(o ,T n ) '

Hence, it follows from (4.14) and (4.15) that

E C FIII v:co, T ; fl)•

This proves (4.12).

Remark. Corollary 4.2 can be proved directly by using the formulae (4.3)
and (4.4). Nevertheless, it is worth while presenting the above proof that is not
the shortest, because it serves as preliminaries to our proof of Lemma 4.4.

Corollary 4.3. Let feHm(Q) and let Fe1 :(0 , T; Q), where m> 1. L et ye

.)Q ,([0 ,1 ]; Q ) and let 3v(0 )el- (0 ), 0  -,i-._. it —1, where it= max (m, 2 [ —n ]

)

+  6  .  Then we have

(4.16) 11Bp.f 11.-p C(K p- 1) II f

(4.17)M  EpF p C(K p - 1) Ml F (0 )111.- 1,

f o r 0 p m .  Here 1(,_ 1 is  a constant such that 11100 )111p-1 < K„_ 1 an d  C( . )
depends increasingly on its argument.

P ro o f. Let

K ( p , = —  1 —  p + max (1/1, 1).

Then, as a particular consequence of Lemma 4.1, we have

A (p , e  W (P.I11)(Q), 0 <1/1< p m.

Replacing v(p, 111) by  k(p, Il) in the proof of Lemma 4.1 and verifying that the
use of Lemma C.1 i) is still valid, we see that

A(P, C(K _ 1 ), 0 p  m.

T h e n  w e  retrace the p ro o f  o f  C orollary  4.2, rep lac ing  aga in  v(p,I11) by
k(p,1/1). Lemma C.1 i) is also applicable to  th is case. This should be checked
whenever we use the lem m a. Except for this point, the proof is similar to that
of Corollary 4.2. W e obtain finally the estimates (4.16) and (4.17).

In what follows, we make use of the surfaces parallel to  F .  W e mark off
a segment of constant length 6, directed inward (resp. outward) to F, along the
normals at every point of F .  For a sufficiently small 6, the locus of the end
points of these segments forms a closed surface, which does not cut itself, and
which lies inside (resp. outside) F and has a smoothly varying tangent plane. Let
T.,  denote this surface. For every point i on F  there is a corresponding definite
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point x  on F ,, which lies on the norm al to  F  at Conversely, for every point
x  on  F 6  the re  is  a  corresponding definite point o n  F .  The norm al to  F  at
is also normal t o  r 6  a t x . T o  e v e ry  point x in a neighborhood of F we associate
the outward unit norm al to  F  a t  the corresponding point =  i ( x )  o n  F , which
is the nearest point to  x  on  F .  This is equivalent to saying that to every point
x  near F  we associate the  outward unit norm al to  /"6  a t  th is  point, where i s
the distance f ro m  x  to  F .  Thus w e obtain  an  ex tension  of the  outward unit
normal originally defined only on  F .  Explicitly this is given by v(i(x)), bu t we
continue to denote this extension by the sa m e  v . The vector field ay =
is defined o n  a  neighborhood of F  in  R", say G, in  th is sense.

Lemma 4 .4 . L e t  x e G n S 2  an d  le t  f  b e  a  sm ooth function def ined on
G r i f l .  Then the differential operator B p  can be w ritten in the form

p - 1

(4.18) Bpf = (24 0 (v(0)) - 1  A v(v(0))) P  0 1,j  +  E C p,p- f ,
i = 0

1 <  p  <  y+  I,

where C p , p _ i  is  a  dif ferential operator o f  order at m ost p —  i involving only the
differentiation in the direction tangential to the surface w hich is parallel to F  and
on which x  lies. Moreover, we have

(4.19) Cp,p_1e1/'(1-1s- 1(G n 52), Hs - P(G n g2)),

1 < p <  it + 1 , p 21 + 3.

P ro o f . W e study B p  by  u sing  a  partition  of unity and changes of systems
of local coordinates. L e t U  be a  neighborhood of some point on the boundary
F  and  le t 0  be the diffeomorphism from U  to B 1 (0) defined in  §5 after the proof
of Lemma 5.2, where B, (0) is the open ball of radius 1 centered at the  o rig in . We
regard Bp  a s  a n  operator acting on the space of smooth functions with supports
contained i n  U .  S ince  Bp  i s  t h e  s u m  o f  t h e  te rm s  lik e  constan t times
G, 1 (0) ••• G.(0), we study each G.(0) in the local coordinates. W e denote by 0,,
the transformation of linear differential operators induced by 0 .  Let

,(G ,(0)) = E Ay)D., + fo,

where D  = 010y1,  1  <  <  n. Then

A(.0 (j, k ̀
4

-"ki) x (Y),
k= 1

f j ( t )  = L =  f l y ) ,

where c0.,, k = 0 0 ,1 (x ,  a n d  V/ = - 1 . It is obvious that

0 ,,(G ,,(0 )-•G i g ( 0 ) )= 0 * (G i i (0 ))-• •0 .(G i g (0)).

Hence each term of  P ( B )  h a s  the form
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const. ( E )i(i ii)Di + Jj".))•••(E Ayopi +
i= 1i = 1

It follows that
p - 1

0 , (B p ) = (;1 (
i
( ) ) )P +  E (const. E (p, (i, 1'))D y

y ,) Di
i

i=o

where A(p, (i, 1')) is  ana logous to  A(p, (i, 1')) and y' =  (y 2 , y„), = (1 2 — • d.).
W e set

(4.20) C p , p -  =  W,(const. (i,

Then C r . p _ i is  a  differential operator of order at m ost p having the property
described in the statement of Lem m a 4.4. W e prove that C p ,p ._  ie n Q),

nt2)), 1 p + 1, p s +  3 .  Let f e H s - '( U ng2), 1 2 p  +  3 .
I t  is  c le a r  th a t  f  (W ( • ))E  i s - i (B iF (0)) w ith Bt (0)—  B i  (0) n R",.. W e  n o te  that
;I(p, (i, l')1e1-1" ( P' i + 1 1 1 ) (BiE (0)) by Lemma 4.1. Since

0 ,(C r p _ i )f(W (y)) =  const. E (i,1'))Dyu,f(W(y)),

it can be show n by an argument similar to that given in  the  proof of Corollary
4.2 that

0 ,(C p ,p _ 1) e  ( H ' ( B t  (0)), l i s - P(B i
f  (0))),

1 p j t  + 1 , 2p + 3.

W e  n o te  t h a t  s o  f a r  t h e  operators C p , p - i, i p  — 1, a r e  defined only
locally. Let f  be  a  function defined o n  G n .Q . W e choose a partition of unity
subordinate to a  suitable finite open covering o f  T'. Let f u ) =  )(i f ,  j= 1 , . . . ,N ,
w ith xi  cu t o ff  func tions. F o r  each f u ) , C p ,p _ i f u ) is  de fined  by  the argument
a s  above . W e  set

(4.21) C , _  1 f  =  E
i=t

Thus C p ,p _ i is defined a s  a n  operator acting on I ls - i (G n S 2 ) .  It can be shown
that the operators C p ,p _ i , 0 i < p—  1, are determined uniquely by Br  H e n c e ,
the  proof of (4.19) is complete.

We define a  new inner product in  C ' by

(4.22) <u, w>„ = (A0 (v(0 ))u , w) for u, w EC'.

Then A 0 (v(0)) - 1 ,4„(v(0)) becomes a selfadjoint operator, that is,

<A0 (v(0)) - 1 A,(v(0))u, w>, = <u, A 0 (v(0)) - 1 /1,(v(0)) 0 0f o r  u, w ECI.
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W e set

L(x) = (A 0 (v(0)) - 1 24,(v(0)))(x) fo r  xeGn f2.

Let i  be an  arbitrary point lying on  F .  Let C(X) be  a  closed rectifiable Jordan
curve  w ith  positive direction enclosing all the  non-zero  eigenvalues o f  L(5 ).
Define T(X) by

1 1
TOO = — (1 — L(X)) - 1 d1.

2 7 ri C()

Since X is an  arbitrary poin t on  /', we obtain a  complex matrix-valued function
T ( )  o n  F .  F or any X , there is a  suitable neighborhood of i n  Rn, say U(i),
such that w e have

(4.23) T(x) = 1
1
— (2 — L(x)) -  chi, fo r  x e u(i)n

27ri c(x) 1

Notice tha t the eigenvalues of L(x) depend continuously o n  x  because L(x) is  a
continuous function o f  x. T his enables u s  to  choose  o n e  a n d  th e  same path
C(X) for a ll x e U(X). W e m ay regard T(x) a s  a  matrix-valued function defined
o n  G i l a  W e define Tp (x ), p > 1, by

(4.24) T (x ) =  1 1 ( 1  —  L ( x ) ) - 1 d1 fo r  x e n Q.
2 n i  C ( )  A P

T (x ) is also a complex matrix-valued function on G n a  Then T i (x ) = T (x ) . We

u se  Lemma C .6  w ith  r = 212+ 1, A (2, x ) = 2 — L(x), a n d  (p(1) = 1 . T h e n  i t
P

turns o u t that A

(4.25) Tp( • )E 11 2 2 (G n,Q; B(0)), 1.

W e set

1, „(Y ) = ((A 0 (1, (0)) - 1  A v (v(0)))(0 1' = L(x)P, p 1.

Then L 1 (x) =  L(x). W e  h a v e  Tp (x)L p (x) = L p (x)Tp (x ) = P(x ), p  1, x e G
where

1
=   (1 — L(x)) - 1  d1 fo r  x e uon

2 ni c(x )

Actually, P(x ) is  the sum of eigenprojections corresponding to the eigenvalues of
L(x), which do not belong to the zero-group. Hence P(x) is a projection operator
acting on C ' .  We call T ( x )  the pseudo-inverse of  L ( x ) .  W e shall show that
L ( .)  b e lo n g s  to  a  Sobolev space o n  G n Q . Since A0(v(0))-1.E.H2p+2(Q) by

(4.8) and  Ar (v(0))E1-12 4 2 (Q) by (4.9), an application of Lemma C.1 i) yields

L p ( • ) H 2 "2 + 2 (2 ; B(C)), p 1.
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We extend M(x) to  a  Coe-function defined o n  Q which is denoted by the  same
M (x ). W e m ay assume w ithout loss o f  generality  that M (x) i s  a  selfadjoint
operator acting on C` equipped with the new inner product introduced above. In
fa c t, if  t h is  i s  n o t  th e  c a se , w e  m a y  replace M (x) b y  M ( *) (x )M (x ), where
M ( *) (x) = (.4,(v(0)) - 1 M*A o (v(0)))(x). T h e n  <M(x)u, w> 0 = <u, M (*) (x)w>c, for
u, w e C`, tha t is, M ( *) (x) is  the adjoint operator of M (x ) .  N ote tha t M(x)u = 0
if and  only if M ( *) (x)M(x)u = O. W e  set

1
(4.26) Q(x) — f  (2 — M (x)) -  (IA fo r  x E U(i) n Q

2 7 ri c(x)

where C O  is, like the one used in  (4.23), a  path with positive direction enclosing
all the nonzero eigenvalues of M (x) where x lies on F .  Q(x) can also be regarded
as a matrix-valued function defined in  G n D. W e see that Q(x) is the orthogonal
projection o n to  th e  d ire c t  su m  o f  t h e  eigenspaces o f  M (x), s u c h  th a t  the
corresponding eigenvalues d o  not belong to  the zero-group. Let

(4.27) K(x) —  1
 f  1

—  —  M (x ))' fo r  x E U  n Q.
2ni -coo

Then K (x ) is w hat w e call the pseudo-inverse of M (x ). W e have K(x)M(x)
M (x )K (x )=  Q (x ). By using Lemma C.6, we obtain

Q (•)eH 2 g+ 2 (G n0 ; B (0 )).

Combining this with (4.25), we get

Tp Q (•)E 1 1 2 "1 + 2 (Gns2; B(C)), p >  1.

H ence, denoting  by  Tp Q  the m ultiplication opera to r de fined  by  Tp Q ( • ) ,  we
conclude that

(4.28) TpQE Y(Hs(G n Q)), 0 s 2p + 2.

Proof  o f  L em m a 3.1A. Following th e  line o f  th e  proof o f  Lemma 3.3 in
[21] with suitable modifications, we construct f ,  and  F k . By Lemma B.3 with
r = s= 2m + 3, it is  seen  tha t the re  ex is ts  a  sequence {F „} i n  C2 ' 3 ([0, T ];
H 2 ' 3 (0 ) )  su c h  th a t Fk —> F i n  V(0, T; Q ).  W e choose a  sequence Igkl  in
H 2 m+ 3 (Q) with gk —> f in  H m (Q ). Then, we write the  desired sequence I f o  as
f„ g k — hi,  where hk e H ' 2 (0 )  m ust be so chosen that h,, - 0 in Hm(Q) and

(4.29) MBphk = M(B p gk  + Ep Fk ) o n  F, 0 < p < m.

The construction of hk  is  as follows. By Lemma 4.4, the equation (4.29) is written
as

m h k  = M g ,,,
o n  F.

(4.30)
mo0(v(0)) - 1 A,(vomP0hk +
= M(B p gk + E p Fk ), 1 <p <m,
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Then it suffices to solve

hk Q gk ,

(v(0)) - 1  v ( v ( 0 )))P af,hk

= .2((Bpgk + E pFk) E I:= p ic p ,p - ia th k ),

(4.31)
o n  F.

1 < p < m,

N ote tha t M Q = QM = M , because M  is supposed to be a selfadjoint operator
acting on C 1 w ith  the inner product defined by (4.22). To solve (4.31), it suffices
in  turn to solve

hk Q gk,
o n  F.

Of,hk  = T p Q((B p g ,+ E p Fk ) —Ef'.70
1 C p ,p _ i 0;11,),

1 < p < m,

R e c a ll th a t w e  set L ,,  =  (A 0 (v (0)) -  A v (v  (0)))P a n d  t h a t  TL,, = L p Tp =  P  for
p  >  1 .  Here P  and  Q  are orthogonal projections onto (Ker L)-L and (K er M )',
respectively, for x e F .  By the maximal nonnegativity, we have Ker A Ker M
o n  F .  Hence Ker LOE K er M  o n  F .  It follow s that (K er D  (K er M )' on
F. T h i s  im p lies tha t PQ  = Q  o n  F .  Hence (4.31) follows from  (4.32). The
equation (4.32) reduces to

(4.32)

(4.33) aPh —  hp . o n  F, 0 < p < m ,

where

b0,k = Qgk
p- 1

bp ,k  = T p Q(B p g, + E p Fk ) — Tp Q  E
i=0

L e t  d p , 0  <  p  < m, denote the  operator defined by

1 < p < m.

do ( f , F) =  Q f,

S ip ( f ,  F )= T p Q(B p f  + E p F), 1 < p < m.

Then, by Corollary 4.2 and (4.28), we have

(4.34) sdpe Y (Hs(Gn.Q) x V:(0, T ; GnQ), Hs - P(G n Q)),

1 p p s  2/4 + 3.

L e t 2 0  =  d 0 . D e f in e  the  operators Pi,,, 1  <  p  < m, inductively by

P - 1

(4.35) 2p = — Tp Q  E  c p  _

where
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(4.36) Y (Hs(Gn,Q) x T ; GnQ), Hs - P(GnS2)),

1 2/./ + 3.

It follows from (4.19), (4.28), and (4.34) th a t th e  operators Mp, 1 < p  < m , are
well defined. Setting s = 2m + 3 in (4.36), we have

(4.37) bp k = Fk)eH2m +3-P(GnQ), 0 < p  < m.

L e t a p , k  = p ( g k ,  F k )  a n d  le t  ap  =  s i p ( f , F ) .  N oting  tha t g, -* f  i n  IIN G n Q)
and  Fk . -  F  in  1/m(0, T; G n f l) , and  then using (4.34) with s = m , we have

ap ,k -  ap  =  sip(9k Fk  F )  0  in n S2), 0  p  < m  -  1.

Let bp  = F ) .  W e have also

bp ,k --*bp  i n  Hm - P(G n ,Q ) a s  k  -) oo , 0  < p  < m  - 1 .

Hence

y(ap ,k ) -> -y ( a )  i n  H m  P  2 (F )  a s  k -■ co, 0 <  p < m  - 1 ,

and

y (b p ,k ) y ( b p ) i n  H m  P  l (F )  a s  k cc), 0 <  p  < m  -  1.

Here y  denotes the trace operator o n  F. Since M fp  = 0  o n  r, 0  < p  < m  -
and Q = K M , we h a v e  y (a )  =  0 , 0  p m  -  1. By induction on p, this shows
that y(b p ) = 0, 0 p  m  -  1 .  N ote that, by (4.35),

bo  =  ao ,
p  -1

bp  =  ap  -  T p Q  E C p ,p _ i bi , 1  < p  < m.

This proves that

(4.38) y(bp,k)-■ 0 i n  H 2 ( F )  a s  k aD, 0 < p < m  - 1 .

Recalling (4.33), we define a  sequence ty k l  in H 2 m+ 3 (52) by

Yk R 2 m +3 ,m ()0 0 ,k ) , •  •  ,Y (b m  -1 ,k ) ) •

Here R 2 „, + 3 ,„, is the  operator described in  Lemma C.2 ii) with p, g  replaced by
2m + 3 amd m, respectivly. Then it follows that

(4.39) y k  -* 0  i n  H m (Q ) a n d  y(af,y k ) = y(b p ,k ), 0 < p < in -  1.

We write hk  = y k  + z k  where z k I - 1 ' 2 (Q) m ust be so chosen that

z k -■ 0  in  Hm(Q),
(4.40) afz k = 0  o n  r, 0  < p  < m  - 1 ,

0?„'lzk b m , k Y k  = h m ,k  = W k  o n  F.



Initial boundary value problem 181

L et C k  be a constant such that II Wk( F )  Ck . W ith o u t  lo s s  of generality we
may assume tha t Ck CO. To solve the set of equations (4.40) for z k we reduce
our problem  to the case where Q = R . T h e  co n stru c tio n  o f  such a  sequence
o f functions fo r  th is  case is g iven in  [ 2 1 ] .  W e  sta te  it h e re  fo r  th e  sake  of
completeness. Let th (r)=  m !rm O (C r), where C N R )  w i t h  C O  = 1 for r near
0. T h e n  tw (0) =  0  fo r  0 i —  1 and 1/4 1") (0 )  =  1 . Also,111/./ II„ k .11(0.

const. c k-- 2. Then the  desired sequence tz k l is given by

(4.41) zk = Ok1x ) wk ,x2, • ••, n) •

Since tfrk eC ,f(R )  and w, e + 2 (Rn - 1 ) , we have z k  e Hin +2 (Rn+  ). In  a d d itio n ,

aPizk lx,=o = (ai;th)wk Ix, =0 = 0, o < p < m —  1,

°1.1n 3czk 11 — fr wk Ix' = 0  =

and

11 ZkIll-P.(1r) ) t "k 11"40 , co) • II W k  H 'n  (R " 1 ) Ck 0 a s  k co.

Thus, (4.40) is proved. W e see that

hk eHm + 2 (Q ), h k —* 0  in  I lm (0 ) .

Since

OP h — bk p,k o n  F, 0 < p < m,

we find that {h k }  is  the  desired sequence. This completes the  proof of Lemma
3.1A.

§ 5 .  Reduction to the problem in the half space

In  th is section, we reduce the initial boundary value problem (3.34), (3.35),
(3.36) to the  one  in  the  ha lf space . This is  a  preliminary fo r the  proof of the
estimate (3.37) which is uniform in  k. F o r  simplicity, we write e  in place of
11C(k) 2 . W e w rite also v„ f„  F „  LI, instead of v,„ f k , Fk , U  k  in  th e  following.
N eedless to say, E is  sm a ll en o u g h . T h en  th e  problem (3.34), (3.35), (3.36) is
written as

(5.1) i l o (v e )Oe u + A (v)au  +  B (v g )u + E E  v u =F e + E E  vi ai  ue

i=

in  [0 , T] x Q,

(5.2) M(x)u = 0 o n  [0 , T ]  x  F,

(5.3) u(0, x) = fe (x) for x e Q.

First, we prove the  following lemma.
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Lemma 5.1. A ssume that conditions i) - viii) o f  Theorem 2.1 hold. T h e n , f o r
an y  eF, th e re  ex is ts  a  neighborhood U of  •i and an I x I unitary  m atrix  valued
function T(x)e C '(U  n 0 ) having the follow ing properties: L et x e unr and let

Ker M ( x ) .  T hen, uedi(x ) is equivalent to T(x)u e J .  A lso, ue.A f(x) is
equivalent to T(x)ue.A 7 . H e re and .A 7  are  subspaces o f  C  independent of x
such that ./17.

P ro o f . Since ./r(x) is a  smoothly varying subspace by condition vi), we can
choose a n  orthonormal basis le i (x )} = ,,,, of Ar(x) which depends smoothly on
x in a neighborhood of s a y ,  Un F. Let 12 =1 — dim 4 1 (x ) . Then, by condition
ii), 12 i s  constant on F .  The maximal nonnegativity im plies that .Ar(x) J i ( x )
o n  F .  Hence 0 < 12 < 1 1 . ..1/(x) varies smoothly with x , so w e can choose an
orthonormal basis fe i (x)11L, 2 ,  ,  of dt(x)m ir(x) ±  w hich is also a  smooth function
of x  o n  U n F . F in a lly , le t le i (x)} 1 b e  a  smoothly varying orthonormal basis
of .11(x)±  defined on  U n i .  N o t e  that d i(x )' c .A(*(x)± . The collection le i (x)}=,
is an orthonormal basis of C' which belongs to C"-class on  U n F .  Define T(x) by

T(x) = f(e x eU n F.

Then T(x) is a  unitary matrix valued C'-function o n  un F .  Let y = T (x )u . Let
= fy e y, = • • • = y i2 =  01  a n d  l e t  .;17  = 1y e y, = • • • =  y, 1 =  0 1 . Then,

u e di(x) is equivalent to y E d i .  Also, u  A f(x ) is equivalent to 1) e.'17  . We take
a n  arbitrary C'-extention o f  fei (x)} i , w hich  w e denote  again  by  th e  same
{ei (x )} = ,. W e orthogonalize this basis in  th e  descending order o f the  suffixes
o f  ei (x ), starting from  ei (x ) , b y  th e  m ethod o f  S c h m id t. L e t  u s  denote the
resulting orthonormal basis by  R i (x)11= 1 . Observe th a t  ei (x) = é i (x), xEU n F.
Define T(x) by

T (x) = (6 1 (x)* 6(x)*) , x e U n n .

Then T (x ) has the  desired properties.

Lemma 5.2. L e t yeXE 3 3 ± 2 ([0, T ]; Q ) an d  le t  v  tak e  v alues in r .  Let
M 

[3  +  2
1b e  a c o n s tan t  such that v A l ' 2 , 71;fi) < M

[ 3 + 2
. Assu m e  that1 

conditions i), ii), iv) - viii) o f  Theorem 2.1 hold. T h e n , f o r an y  eF, th e re  ex is ts  a
neighborhood U  o f  i  th at  d e p e n d s  o n ly  on M

[  
,
2 ] + 2

 h a v in g  th e  following

properties: L et I, = I —  dim .A ((x ). (B y  condition viii), 1, is constant on F. N ote
that, by  condition vii), 0 < 1, <1.) L et T (x ) be the unitary matrix valued function
defined on a neighborhood of 5c. which was constructed in the proof  of  the preceding
lem m a. L et us w rite T (x )A (v )T (x )* in the f orm  of  a block  matrix , namely , let

T (x )A ,(v )T (x )* =( o n  [0, T ] x (U no).

H ere  A f ,' an d  ;PP' a r e  I ,  x I ,  a n d  (I — 1,) x (/ —  11 ) submatrices, respectively.
A ccordingly, ii i

v
i l  i s  an  I ,  x (I — 1,) subm atrix  and Â ',"' = (Âf, 11)*. Then A. ,̀' i s
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invertible on [0, T ] x (U n52) and satisfies

(5.4) c(u[s1,.2) o n  [0, T ] x (U n f2).

Here C ( M

[ 1 ]  +  2
) is a constant depending only on M . Furthermore, A.I, E = 0,ril

2J
l 

+ 2L

= 0, 24. 5 11 = 0, on [0, T ] x (U n

P ro o f . L e t T(x) b e  the  unitary matrix-valued function given in  th e  proof
of Lemma 5.1. Assume tha t T(x) is defined on  a  neighborhood U of E F .  W e
write T(x)24,(v)T(x)* in  the  form of a  block matrix, namely,

A'r,H
T(x)A,(v) T(x)* = o n  [0, T ] x  (U n Q),

A r t , 11

w h e re  Â '
 ( A . ,/ / / ) * .  

Then it follows from condition vi) th a t ii /
v

/1 = 0, = 0,
;IV/ = 0 o n  [0, T ] x (U n F ) .  Since rank A , = rank ;1/„/ = /,, is invertible

on [0, T ] x (Un F ) .  Let K  be the set of v e X r 2 1 + 2 ([0, T ]; Q) that takes values
in  W and  satisfies condition iv) and the estimate

111 y XED + 2([0,T];12) M
[ 1 ]  +  2 '

N ote tha t X [ 3 ] + 2 ([0, T]; f2) c C 1 ([0, T]; .11 1 3 ] + ' (Q)) is  a  continuous imbedd-
ing. On the other hand, the imbedding of the latter space into C([0, T]; C(Q)) =
C([0, T ] x f l)  is com pac t. Therefore, K  is  a  precompact se t in  C([0, T ] x 0).
W e denote by k the  closure o f K  in  this space. A ny function belonging to K
takes values in R', satisfies condition iv), and its norm in this space is bounded by
Co M

[ 1 ]  +  2  
where C o is  the norm of the continuous imbedding X 

[ S ]  +  2

([0, T ]; Q)

C([0, T ] x  Q ). T h e  m a p  (t, x, det A/4,0 (x, v(t, x))1 is continuous from
[0, T ] x (U n r )  x k into R and the value of this map is always positive . Hence
there exists a constant 

d ( M [ 1 ] +  2
)  depending only o n  

M [ 1 4 1 + 2  
such that

inf Idet v(t, x))I d(M
[ S ] + 2

) > 0,
t,x,v

where the  infimum is taken over (t, x, v)e [0, T ] x (C n r )  x K .  It follows that

sup 1(.,2141 (x, v(t, C
l
(M

[ S ] + 2
).

t,x,v

H ere  the suprem um  is  ta k e n  o v e r  (t, x, v)e [0, T ] x (U n F ) x k, because the
cofactor m atrix  of c a n  b e  e s tim a te d  b y  a  c o n s ta n t depending only on
M

[ ] +  2

. Next, le t xe Un Q .  L et us write

;If! (x, v(t, x)) = (x' (x), v(t, x' (x))) + R,

where x'(x) is  the  po in t on  I" nearest to x .  Then

(AY(x, v(t, x)))-1
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= (1 + Of! (x' (x), v(t, x' (x)))) -  1  R) -  (;1 1„I  (x' (x), v(t, x' (x)))) '

T he remainder R  can be estim ated by (5 tim es a  constan t depending only on
M

[ 1 ]  + 2  
i f  Ix — x'(x)1 < (5, b ecau se  x ES] + 2

( [ 0 ,  T ]; C([0, 1 ]; C 1 ( 2 ) )  i s  a

continuous imbedding. Namely

'RI 6 C2(M[1 ] , 2)•

W e choose (5 so that

1
0 <( 5 < 

2C i (M E n +  2)C 20 [1]+

Then we have

1(141, 1 (X, V(t, Or 1 1 2 Cl(M[3] + 2 )

for (t, x, E[O, T ] x (U n V ) x  K , where V = Ix e Q  Ix —  x'(x) < 61. We denote
U n V  still by U .  This completes the proof of Lemma 5.2.

Let •i be an arbitrary fixed point on F .  We may assume that F is represented
by x 1 =  t/f(x) in  a  neighborhood W of where x' = (x 2 ,...,x„). We consider a
suitable neighborhood V  o f  t h e  o rig in  i n  R "  a n d  define a transformation

=  W(y) = (W 1 , W „ )  from  V  in to  W by

V111.0 = + Y) + + JOYi,
[ W (y )  =i i +y i —  (1 (i' + y '), + Y ' ) Y i , 2  j  n,

where x = (x1 , , = ()Z , i'), y  = (y  , y  2 , y„)= (y 1 , y '), and v (x) = (v1 , ,
is  the  outward unit norm al to  F .  N ote tha t ((//(x), x') lies on  F .  It is shown
that the Jacobian J(W (y)) evaluated at Yi =  0  does not vanish. Hence the inverse
transformation of W exists which we denote by 0  = 0(x) = (0 ,,..., On). L e t U
be the image of V  b y  W . Then 0  is a  diffeomorphism of class C°"' from U  onto
V and 0(U n = Vn 1Y I Y i =  01 . Since Q is represented by x 1 > (//(x) in  U, we
have 0(U n Q) = V n{ y ly i > 0}. F or any  xeO n U , there exists a unique point
x'(x) on F  which is nearest to x. This is assured by the existence of the inverse
transformation 0 .  T h e  outw ard un it no rm a l v  t o  F  c a n  b e  e x te n d e d  to  a
vector-valued function defined i n  a  neighborhood o f  F  by setting  v(x'(x)) for

a
x e U .  Then the vector field vi  defined on U  corresponds to the vector

ax •a
field   b y  the transformation 0 .  Namely, for any differentiable function g,

ayi
we have

a a E  g(x)—  g(W(y)).
j 1 a x ; a y ,

Now we return to the problem (5.1), (5.2), (5.3). The solution u of this problem



Initial boundary value problem 185

depends o n  t h e  pa ram ete r E, a lth o u g h  its  d ep en d en ce  is  n o t ex p lic itly
w ritten. F irst w e observe that each y, satisfies the boundary condition and hence
we have .i1/- (x) = Ker A v ( X ) (y,(t, x)) for (t, x) E [0 , T ] x  F and E sm all enough. This
enables u s  t o  u se  Lem m a 5 .1  fo r  th e  problem  (5.1), (5.2), (5.3) with arbitrary
e. O n  th e  o ther hand , y , converges t o  y  in  X ([0 , T ] ; Q )  b y  i i i)  o f  Lemma
3.1. This implies that the norm of ye in  X [ 3 1 + 2 ([O, T ]; Q) is uniformly bounded
in  e. Therefore, Lemma 5.2 holds with y =  y , .  In particular, the estimate (5.4)
h o ld s  o n  a  neighborhood [0 , T ] x  (U n (2) independent o f  e  w ith  constant
C(M ) which is also independent of e. We take an appropriate finite coveringB1+2

of Q  such that n F i = 1,...,N , c  Q  a n d  each °II, has the
above mentioned properties. W e choose a partition of unity {(pi}li o  subordinate
to this covering such that 17 o (p? = 1 and  (pi > O.

L et w = w(x) be a  function defined on  0/11 n Q . W e  d e n o te  w (V (y)) defined
o n  Vn ly I y i  0 1  by i  =  '1,i5(y). This convention w ill be used in  th e  following.
F o r any solution u to  the initial boundary value problem (5.1), (5.2), (5.3), let us
put /41 = ui (t, y) = Ti (y)((p i u)(t, y). Here Ti (y) is the unitary matrix valued function
constructed in  the  proof of Lemma 5.1. Recall that u e ( [ 0 ,  T ]; Q) by the
existence theorem of solutions for the non-characteristic initial boundary value
p rob lem . Then, supp c  V n  { y  y ,  0 }  and u i X m + 1 ( [0, T ]; vn ty I y, 0 1 )  is
the solution of the following mixed problem in  th e  half space.

(5.5) A i
o (y, 5)  +  E  A)(y, + .13̀ (y, i3,)1(̀ e  — H

Oyi

i n  [0 , T ] x  fy , I y  >  01,

(5.6) M itt = 0 o n  [0, T ] x  ty I y  =  01,

(5.7) u1(0, y ) =f (y ) fo r  y el)) I y i  > 01,

where

= 17e(t, = i(Y) =

Aio(Y, 1-5 )  = Ti(Y)A0(ijOT(.0*,

• 170 = — Ti(y) E i7iAge)Ticyr,
i=1

•••• •••■ • •

• = Ti(Y ) E  "

•

 1 1(k)(
1=1

')(Y )Ti(Y )*Ox i

(Y, i5E) = T(y)B03c)Ti(v)*

2 < j  < n,

H i = H i (E; Ci„ Ti(y)((piFc)(t, y )  + e (y ) (v,(p i
° U e )(t, y )

= \
n ( a ( p i

f l ( â \
 T i (y) E  A (i5 )  u)(t, y) + ET(y) vi  u)(t, y )

= 0.x; i=1a x ;
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••■ ■ • • .

n n a
+ T (Y) E  A i ( ) ( ; )(Y)Ti(Y) *  a T A Y ) (9iu)(t,

j= 2 1 = 1 a X 1 Oy

Ti(y)
Ti(y) i

•

 7 1/11(5e)Ti(y)* ° T i (Y ), (9iu)(t, 3') e  , iu )(t, Y)
1=1Y i Y

and  where

E(y) T i(y )(9if c)(y ).

Since 13, e XP + l a°, T ] ; 01), L eH m + 1 (52), and  Ti e c N v n l y lY i  OD,
it is seen by using Lemma C .3 that

i5J€ X 4 + 1 ([0 , T ] ; 01), 0 <j < n,

B i (y , 5 ,)eX 1 ([0 , T ]; V n  { y y 01),

f e i e l l m + 1 ( Vn{Y1Y1 0}).

W e have also

f l i ( e ;  FE , i5„ ii)eXm([0, T ] ;  vn ly I Yi 0 1),

because LIe eX " '" ( [ 0 ,  T ] ;  Q ) a n d  Fe e Tr + 1 ( [0 , T ]  x  Q ) .  N o te  th a t  M i i s  a
constant matrix by virtue of Lemma 5.1 and that the boundary subspace Ker M i

d e f in e d  b y  (5 .6 )  is m ax im al nonnegative o n  [0 , T ]  x (vn{ylyi = 0}) for
— fie) +  e I .  W e write Ai

i (y, i5e)  in  the  form of a  b lock  matrix, namely,

A i l /  (6 ) A il/  //(e)

Ai(Y, i5E) =

AT I (e) (e)
i n  [0 , T ]  x  (V n{yly, >  01 ),

where 4 1 (e) and A r(E ) are 11 x  /1 and (1 — 11 )  x  (1 — 1,) submatrices, respectively.
By Lem m a 5.2, 4 1 (e) is invertible o n  [0 , T ] x (Vr1{Y I yi 0})  for any  e  and
satisfies

(5.8) (AVI(e))-il C(M
[ 1 ] + 2

).

In addition, Ail f f (e) = 0, A " ( c )  0 ,  A r (E ) = 0 o n  [0 , T ]  x  (v n  {y  y i =  0 }).
Finally  w e observe th a t, i f  u  i s  a  so lu tio n  o f  th e  initial boundary value

problem (5.1), (5.2), (5.3), then, u0  =  904 is  the solution of the following Cauchy
problem.

(5.9) A0(v) 0  +  E A ( v ) u °  + B(v)u° + e  E v.
I

a.u° = H°

i n  [0 , T] x V o ,

(5.10) u ° (0, x) = f : ) (x) fo r  x  / 0

Here

H° = H ° (e; F „ U t , v e , u) = 9 0 F , +  E Ai (v)(ai (pou + E  E v i (Di tpo )u
i= t=
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E  E y po ai uE,

fE
°
 = (pofe.

§ 6 .  The Proof of the uniform estimates

I n  th is  section, w e  p ro v e  th e  estim ates (3.37), (3.38). The existence of
u e rn + 1 ([0 , T ]; Q ) th a t  sa tis f ie s  (3.34), (3.35), (3.36) is  a s s u m e d  h e re . Let
Q = R .  F o r  a n  arbitrary smooth function w defined o n  [0, T ] x  R , w e  set

ft w(t)111,2. , t .  =  E  M D :W (0  112 ,

where 1);,' = •  a c , ; -  and y = (j, a). We write also

ft w(t)Ill! * ) = E w(t) 112 .
Ivi +2k<ni

k>1.

Then

ft w(t)Ill!,tan + w(t) = w(t)111!,*.

L e t  u s  w rite fo r the  m om en t Ai
i (y, fiE) = A(c), 0 < j  n, B i (y, 15) = B(e), and

H i (c; P „  „ T P ( 0 .  W e rewrite (5.5) as

( A ( y )  A "  ( c ) '\  t ( u i
l (  A i  (  ) a (

A i: (E) Uijj ) j  = 4 1  I  (E) ( E )  )  j )

B il I (E) B "
 (c)(6)

(
Hit(e)

Ea 1 i• )B 1 (c) " ( 0 — ) = (uf f H ' ll(e)

i n  [0, T ] x R .

H e r e  ui = u)eCh1 x 111(E)=̀ (Hil(c), 1-111 (e))eC 1' x  C I - 1  w i t h  /1 =
/ — d i m  (x). A i

i
i i (v) and A " 11 (c) are 1 1 x / 1 a n d  (1 — 1,) x (1 — 1) submatrices,

etc. W e prepare tw o lem m as that play a crucial rôle in the proof of the estimate
(3.37). Let u e X " '  ([0, T ]; Q) satisfy (3.34), (3.35), (3.36). Let ui , 0 be
the  functions defined in  terms o f u a s  in  th e  previous sec tio n . W e recall that

1 < i < N , comes from the boundary patches, while u°  corresponds to  the patch
tha t does no t in te rsec t w ith  th e  boundary . E ach  ui sa tisfies  (5.5), (5.6), (5.7),
where 1 < i < N .  O n the  other hand, u°  satisfies (5.9), (5.10).

As we observed earlier, iii) of Lemma 3.1 implies that there exist constants
M

[ f l ] +  2 '
, r = —  1 , u ,  satisfying

Illy 6111 Ai +  ([( T  f 2) M
[1 ]  +

1111)& 111 X::(10,1112) r = y — 1,

(6.1)

for any v.
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The first lemma of this section proves the estimates for u  that are uniform
in  e.

Lemma 6.1. There ex ists a positive constant e , depending only on M
[ 1 ] + 2such that the follow ing estim ates hold: For t e [0, T ]  and 0 < e < E0 ,

(6.2) III u t ( t )

+ C (M )

C(M [s] +) Illul (0 )1II.,tan

( u ( x ) 1 , ( * )  + III uter) + Id 111 (8, r) III d
0

(6.3) M u ( t )
m+ i,(*) C(

1
vf:-1) { u(t) +M H t (8, 0111.-1,*1

(6.4) Ml u 1 ( t )  M m,(*) C(Mun +) III u ( 0 ) .,(*)

' t+ C (M ) ( ulAT)111.+1,(*) + u (t)j + H i ls, r)MI.,(*)) ch. 

Here M m*  and M :_ 1 are the constants described above. C ( . )  takes positive values
and is an  increasing function o f  its argum ent that is independent o f  e.

The next lemma gives the estimate for u° that is also uniform in  E.

Lemma 6.2. For te [0, T ],  we have f o r any  e

(6.5) u°(t) C(M [s] + ) MIu
° (0 )

+  C (M ) J(Ml u° (t) III"  +
0

Here 
M [ 1 ] + 2  

and M : are the constants described before the preceding lemma and

C (. )  is sim ilar to the one appearing in the same lemma.

Assuming fo r  a  while that th e  above two lemmas are valid, we prove the
estimates (3.37), (3.38).

Proof  o f  th e  estimates (3.37), (3.38). F rom  the  definition of the  norm , we
have

(6.6)M l  u ( t )
le(t) 1M .,tan + Ml u(t) III.,(*) + 1M u ill(t)III.,(*)

for 1 < i < N .  The first and the third terms on the right hand side are estimated
by (6.2) and (6.4), respectively. The second term on the right hand side is bounded
as follows.

IM u (t )  Ill., (* )d l + 1,( ) dt + Id ui/(0)MI., (* ) .
Jo

Combining these estimates we obtain from (6.6)

III tii (t)111„,,,, c(m [ f l  +) III ul(0)111.,*
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+ C (M ) (4(t) +1,(*) + Ill li(r) + t)
0

Then we use (6.3) and  get

(6.7) III ut(t)1M., *

< c(m
[ S ]  + 2

) III ui(0) +  c (m :) ( I I ut(T) + l ,
0

f o r  1 < i < N .  Summing up (6.7) from i =  1  to  N  a n d  adding th e  resulting
estimate and (6.5), we obtain

(6.8) III u(t)III., *

<  C O W

[1] + 2 U(0 ) 111m,* C(M:) f
 (

Ill U(T)111m,* E 111(e, t )  m ,OCIT.
0 i = 0

Notice that Ti e c-(vn 1y yi 01) does not depend on o  a n d  that V E C(,Q ),
9 „  e c-(1 i n 0 ) .  We have for 0 < t < T

E Ill 1-11 (6 , t)illm,* =  Ill 11
°
(6, t) +  E Ill H i (E, OIL, *

i = 0 i = 1

Ill ( PO F E Ill Ai(v )(0.00)ulllm,
j= 1

+ g  E ill vi
(

; 90)u + E  E  vi (poa i us
i= 1i =  1

na  U+E MI + E III E   )111„, *
i = 1 j = 1 aX

n " (  a(pi_  r p i• + III Ti E A () -- u) IL * + E III T i E  v.  , u ) Ill„,,*,
j= 1 aXi j= i j OXi

n (  na o i ,  ) a T  —
+ Ill Ti E E A1( ) ' Ti* ' ((piu) Ill., *j=2 1 = 1 aX1 ay i

aT 
+ 1111'1( E ii,A1(3e)) Ti*  ((piu) MI.,, + E (()904)

I = 1 Y 1 4 7  Yi

C  Ill Fe(t) Ill  * III (A JO, ( t )  n E U ( t )  m , E  E Ill a;  uE(t)
1=1j  =  1

Here C is a positive constant independent of E. By using (A.1), (A.2) in Appendix
A, we obtain

Ill (A; (v,)u) (t) c(miT) III u(t)III., * , 1 < j  < n.

Hence,
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(6.9) 11110, 0111 .,*
i= o

C (M ) Ill u(t) III .,*  +  C { MI F J0111., e III U (t) Ill.+ II.
Similarly, we obtain

(6.10) E 111Hi(e,
i=0

u(0111.-,,* +  C {  F - I,* + e M U (t)111.1
< 1) IM u(0) III.- 1 ,*  +  C f III F,(0) MI.-+  C MI Ue (0)

+  C (M : - ) f  III u(t) Ill.- 1,*cit + C f III F (t) III.- 1,* + 8 111 Ur (t)
Jo0

Substituting (6.9) for (6.8) and  using Gronwal 's inequality, we get

u(t)111.,* C(M rn Ill u(0) .,*  e c `m *A»  +  e ([0, ThmeC(M*Pdt

C(1-1111 1 4 )2f  ec(m*, , x1  - T) III Fr (t) III . ,*

This completes the  proof o f the  estimate (3.37). Finally, combining (6.8), (6.9),
(6.10) with (6.3), w e have the estimate

u1 (t) 1Mm +1,(*)
{ C ( M

[S ] + 2
)  III 14 (0

)  IL,* C ( M :  1 )  III 14 (0
)  111m— 1, 0  e C (M * 4 )t

▪ c(4:- 1) {  Ill Fe (0) Ill.- 1, *  +  E MI u,(0) II .1 ec(m*.» + E Ill LIE+ i([0,7112)e C (M ;d t

▪ C (M )  f t e C ( K ) ( tF(T )111m ,*Olt,
0

from which we derive (3.38) immediately.

Now we prove Lemma 6.1.

Proof o f  Lemma 6.1 I n  w hat follow s, w e om it the  ind ices i  a n d  g for
sim plicity. For y such tha Ivi < m, take D: of (6.1), and take the C  inner product
of the resulting equation with Du. T h e n  w e  in te g ra te  it  o v e r  R  to  o b ta in

2 = 1
1 "

(6.11)
2
— 0,(D:u • A0D:'

i
u)dx + — E i(D:u • A i D:u)dx

Rn+

—  — i(D),:ru • D:u)dx + g R e  I  D:u • a iu dx
2 Fr,

= Re D u  71; dx.

The independent variable is denoted by x in place of y  here, and
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y  =  [D: A 0 ] a ti4E  EDY„„ — D(Bu)

+ D H  +  
1

—Div AD u  +
* 2

Div I  at A0  +  E

Y ' = — 1 , 01 2 an).

j ( i )  is d e f i n e d  t o  b e  t h e  i - t h  te rm  in  th e  e x p re ss io n  o f  J .  N o t e  that
av) = a n a l  ±  oti-  1 (311- 1 )8 , Obviously D*Y = x 1 D 1 a n d  x 1 0

in R .  H e n c e

(6.12) Re D.vti • azi p'a l u dx = Re x 1 E0 '.0,u • a l  D,,,Y al  u dx > O.
R"+R n +

Since supp u is  compact, the integration by parts yields

(6.13)
1
— E ai (Du • A J D: u)dx — — ei(D*Y u • D'o)dx
2 = 1 R " ,_ 2 11+

=  —

1  

f u • ( — A 1 +  e)Du)l x i =0 dx' ,
2  R .- *

where x' = (x 2 , ..., x„). W e  notice th a t D u  lies in K er M  because M is constant
on  the  boundary. It follows from Lemma 3.2 ii) that

(6.14)( D u  •  ( —  A 1 + u)lx,_ dx' O.
.f12"

Using (6.12), (6.13), (6.14), we deduce from (6.11) that

—
1  

f  a (D:u • 24,130
*.'u)dx

2  Ir.

<  Re D:u • dx DY
* 11 • 11 411.

Rn
+

Summing these inequalities over all y  w ith  y  <  m, a n d  taking account of the
fact that A , is positive definite, we obtain

(6.15) MI u(t) C(Mrn Ji ) u(0 )111.,ta n  ± f t E Jym dr}.
0 )'1 ",L ai  +  2  

W e note  tha t, i f  III 1,111x 0  + 2 ([0 , T ] , D ) A l

[

s] + 2 , there exists a positive constant c

depending only o n  M

[ s ]  + 2  
s u c h  th a t  c - 1  < A o  < c. T h is  is  sh o w n  b y  an

argument analogous to the one employed in  the  proof of Lemma 5.2.
W e estimate the integrand of the second term  o n  th e  righ t hand  side  of
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(6.15) in the following. By using (A.7) and (A.2) in  Appendix A, we have

(6.16) E  11./1 )11 = E EDY,„ Adam11
1,1,.

< c(m:)111u(olt.,*.
Also by using (A.7) and (A.2), we see that

11•12)11 E A da +  E  E
J=2 IA,

E A Jai u  + C(M:)111 14 111., *  •

The firs t te rm  on  the r igh t hand  side  of the last inequality  is estim ated as
follow s. W e observe tha t D:AVL, = 0 = 0 and D: lx, =0 = 0. Then by using
(A.8), (A.9), and (A.2), we get

(6.17) E

E o[DY*, u ,  +  [IY„ A li l l ]a 0,111

+ II ED:, Aitlai 141 II + CDY„, At: 11011411D

c(m,T) Mu i +  c ( N 1 )  Ill u •

Hence

(6.18) E II j;,2 )11 c(m,T) Ill u/111„,+1,(*) + c(m,T) II u111..*•
iyi,m

Similarly we apply (A.1) and (A.2) to obtain

(6.19) E =  E  11/30011 c III Bu III m,tan
IY115-rn

< C (M )  11114 m,* •

It is easy to see that

(6.20) E  Itt;,4 )11 =  E  11DY*H11 Cl
 

h1 III m ,tan

Utilizing (A.1) and (A.2), we have

(6.21) E  11./5 )11 =  E  1lDiv IDu11

c(m:-1)111u111.,*•
In view of the fact that Ai l i  lx, =0 = 0 and A " I 1 0 =- 0, we use (A.8), (A.9), and
(A.2) to obtain
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(6.22) .1 ) 6 ) =  E M A 1 1 lull
lyl

< c  E dAiD:atuli

E +
Iv15_m- 1 I , 1=1
±  A r D

3
1Ui u l l  ID •

<  Q M : E n +  2 )  MI Ut i,(*) C(1144;En + 2 )  MI

Summing up (6.16), (6.18)—(6.22), we conclude that

(6.23) E . c(m:)(Hull1 + 111/4/111.+1,( *) ) +c111 H111.,ta n.
lyl

Substituting (6.23) for (6.15) yields (6.2).
W e prove (6.3). W e see by (6.1) that u, satisfies

(6.24) — = —  A 1
0

1—  u11  —  A Y ' „u i l

— ( A ' + A ô u 11 ) — B "  u l  — 13111 1411 d-
j =  2

in  [0 , T ]  x R .

For y, k  su ch  th a t y  +  2(k —  1) m  —  1 ,  k  >  1, take D: al -  - 1 of (6.24). Then we
have

(A1,1 — el)D: ak
l u i  = K

where

K y , k  = _ nk -1 A ' ] 11 u, — D 8k  - 1 (A I a l ul l ) — D 3  1(A'0 '3 1 u,)

— D:01 -  1  (AV a i tt f f ) —  E akc (A51 a J ul  + a p H )
j= 2

7
n k - 1 / 1 3 / / . ,  , B ///.. , nk -1 I I  = ,(0

- " * ui 'I/ 1 - l ' e u )  -r• .1 — ''y,k •
i = 1

W e define K yu,),  t o  b e  th e  i- th  te rm  of the expression of K
y , k  •  

Since A Y  is
invertible, (AY — exists for y  sm all enough. To see this, we write

(A y  E ly  1  = e(A111)- 1)- 1 (A y )  1

Then, by (5.8), sup 1(24 1, 1 ) - 1 C ( M ). Hence, if y (2 C(M ) )_  1 , we
[f] +  2 [ S ]  +  2

have

sup (A'' — 81) - 2 C ( M
[ 1 ]  +  2

).

We conclude that
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(6.25) E m D Vklu i d 2  c(m
E l l  

) E
+ 2

m i c y , k m .
I vi + 2 ( k - 1 ) ,/ 7 1 - 1 + 2

Iv1 (k - 1) m- 1
k > 1 k > 1

To estim ate th e  righ t hand  side  o f  th e  above inequality, one  proceeds as
follows. Applying (A.8) and (A.2) to  o u r  situation, we get

(6.26)M 1((y1),
11, 1+2(k -

1

m[D),',01-1, A110, /4/ m
Ivi + 2 (k  -1 )5 _ m -1

k > 1

1) Id u Illm,(*) •

W e have also

(6.27) MK M  = E 1 (A ii l ia iu . )m
1,1+2(k

k > 1

• E Ail' D':k air iaiuH
+  [D :0 1 - 1 , A iil]e iuff

Iy1,2(k -  1 )  m  -  1
k> 1

<cop  )2[1] ,4 E mxiD:aki - laofim  + uff
ir1+2(k-1)LS.m-1

k  1

• C ( M  -  1 )  III U 11 m  , *  •

Here we used (A.4) and (A.8), taking account of the fact that A 11 Ix, =o = 0. After
that we employed (A.2). By using (A.1) and (A.2), we obtain

(6.28)M  1 0
y) ),11

ly1+2 (k - 1) . r7? - 1
k> 1

E mD:aki - 1 (AVaiu,)m
iY i + 2 (k -1 ) m - 1

k> 1

i) Matui I,* C(M:- 1) III 14/ m, * .

Similar arguments show that

(6.29) E
iy1+2 (k

k> 1

mD:aki-I(A/oHatur)m
I v i+2 ( k  - 1 ) 5 m - 1

k> 1

< cuu:_ III uff 111m,*,

and that

(6.30) E ii((y !!), II
iyi+2(k -  1 )5 m -  1

1
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E +  A 1/ 1 Jult)il
171+2(k

—
l m- 1 j= 2

k> 1

<  C (M :-1 )1 1 1 1 4

Also it is shown that

(6.31)
Iy1+2(k-1)5_m-1

k> 1

11D 3ll - 1 (13"14,+Bluu11)ll
IA +2(k —1). -1

k>1

< C(M:-1) Ill u Illm-1,*•
We see easily that

(6.32) E K 7  M = E IIDY,,aki - 1 H111
+ 2(k 

—1) m- 1
, k>,1

< C Ill.-Low
Summing up (6.26)—(6.32), we obtain

(6.33)M IlK y k
C (T _

 1) 111 C 111 H I 111m— 1 ,* •
Ivi+2(k —  1)15.m—  1

Substituting (6.33) for (6.25) leads us to

(6.34) Ill Li/ Illm+1,(*) C(M74-1){ III u + Ml Hr

We prove (6.3). We see by (6.1) that ui l satisfies

(6.35) A V  0,u„ + E Aifila i u„ —
J=1

=  (AV E A 7 / a j u 1 + 9 1 u  + B u l i ) + H I,
J=1

in [0, x R .

For y, k  such that I yl + 2 k  m ,  k  1, take D:r al of (6.35), and take the 0 inner
product of it with DV il u „ .  Then integrate the resulting equation over 117, to
obtain

(6.36)
2

0,(IY,railu11 • AgliD u  )  dx

n
— E a.(D *Yaki u l i • A 7HD„Y8ilu11 ) dx
2 i 1 R " _ ,

E ! .

— 0 ,(D.Y allu,, • 1J,,Y Ok
i uf f  )dx

2  RI.
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+ e Re 
SR"_, *  

u i l  • a, D:' dx

=  Re f  D: (lu l l  • I, y , k  dx.
WI_

Here

1
L ,k  — —Div ;1 ° H /YOk u  + a  Al l E DY'aky r 1  II 1 I * 12

—ED: aki  ,  A g  at u , — E [D *

•

Y Ok
i , A7H]a i u11

j= 1

— D ( A r  a i u,) —  E DY,A (A 7 ia j u 1 )

8
— aki (B i l  1 /4/ +  BR  11 14H) +  D .Y ail II H E L(i) k ,

defining L „  t o  b e  the i- th  te rm  of the expression of L y ,k . W e recall that

Div 1 "  stands for at A gll + E 0; 24°H . As in the proof of (6.12), it is seen that
j=  1

(6.37) Re f DY 0'1 tif i  • a D7:81 + l ul l  dx > 0.
*

W e have also

n
(6.38) — E ai (D:aki up • A rD *

7 ak
i u

11
 ) dx

2 j= 1 RI

— 
2 

I
lc

 — a i (D: ailu l l  •  D •  u  11 )  dx

=1 (DY* a i u l i  •  ( —  A l p  +
2  R .- .

> 0,

because ALP =  0 .  M aking use of (6.37) and (6.38), w e obtain from  (6.36)
that

_ (D ,  ak  u  •  Ali 'yak u  ) d xt . * .11- 0 * 1 I2

< Re f
D:ak ,u, • L y , k dx

11",

• 1 D Y
* 114/7  M • M Ly,k M.

_
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Since Ag" i s  positive definite, it follows that

(6.39)f t  u11 (t) ft m,(* ) uff (0 ) IL ( * ) + E 1Ly ,k .
Hi+ 2  ( o IY1+21c m

k.> 1

Here C ( M

[ S ]  + 2

)  is the constant that appears in (6.15). We estimate the integrand

of the second term  o n  th e  right hand side of (6.39) as follows. By using (A.6)
and (A.2), it is seen that

(6.40) E 41,11I = E 11 Div I f f i l .DY.ak
i ui l

ly1+2k5_m ly (+ 2 k m
k > 1 k > 1

E II at AVI D:a ko fi II + E E u i l
ly1 + 2 k m IV1-1-2k rn  j= 1

k > 1 k>1

• COVI 'In MI 14 II 111 r n , (

W e have also by (A.6) and (A.2)

(6.41) E 1142,111 = E AVIDY:ai uu
lyi +2k lyi +2k

C(M,T)Illuff 1,(*) •

By using (A.7) and (A.2), it is shown that

(6.42) E 4 3,111 = E EDY,, a k i, A g 9  tiff II
lyi+ 2k IYI-F2k5mk>1

< C(M )111 1411111m,* -

N oting that 24"l x , =0 =  0  and  using (A.9), (A.7), and (A.2), w e have

(6.43) E 44,1
I vi + 2k

k > 1

• E ED:Ok + E , A° 11 ]  PH
ly1+ 2k j=2

k?.1

< c(m,T) III uff •

It is not hard  to  see  that

(6.44) E /45,111 = E ak,(Ag tut)II
+1,?._211: m iyi+k>zym

• E AgIDY,rall at 14/ II + E II ED„Yaki, Ag u/ II
IY I+ 2 k içm IY1+2k m

1 k > 1

< C(M :) ft utIllm + 1.(*) •
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Here we used (A.6), (A.7), a n d  (A .2 ) . Since A yil x ,=0  = 0 ,  we employ similar
arguments to  the above ones to obtain

(6.45) EM LlI = E E
1 ,1 ,2k ,m  j= 1

1

< E ( 
A y / D ) , :a k la i u.,11 + [ D„Yail, A M a i t i 1 1 )

11, 1- 1- 2k< m
k> 1

+ E E (114 1DY,akia J ul  + IlLEV 11,
ly1+2k,.5.m  j= 2

c ( m,T) ul m 1,(*) •

Also we get

(6.46)
Iy1+2k m

k> 1

= E II D
y. a ki. ( B i t  u iB I I  

u 1 1 ) 1 1

k> 1

(M:) { Ill Lit m,*  + 1M utt

and

(6.47) E IIPy81 II = E II D I,:rH  I I  II
Iy1-1-2k.çm IY1+2k<rn

k> 1 k> 1

< c  H f i  III m,(* )  •

Summing up (6.40)—(6.47), we see that

(6.48) E II L k C { U  n t , * U. I III + 1 , C  H m ,(* )
IYI+2k m

k> 1

Substituting (6.48) and (6.39), we get (6.4). The proof of Lemma 6.1 is complete.

L em m a 6.2  is proved by a  standard  argum ent employed for the Cauchy
problem.

Appendix A

We shall prove here several basic inequalities used in §3 and §6. Let Q
n >  2, b e  an  open  bounded se t w ith boundary 1 ' o f  C '-c la ss . L e t u  =  u(t, x)
and  v  =  v(t, x )  be functions defined o n  [0 , T ] x  Q  taking  v a lu e s  in  C `. We
denote by u •y the standard inner product in  C ' o f  u  a n d  v.
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Lemma A . I .  L et m  >  1 be an  integer and let r =  max (m, 2[ —
n

]  +  3) . If
2

u E X ([0 , T ] ; Q ) and v  e  X ;([0 , T ] ; Q ), then u  •  v  e  X " ([0 , T ] ; 0 ) . Moreover, we
have

(A.1) 111m,* C 111 ( t )  m , *  v ( t )  fo r t E [O, T ],

where C  is a constant independent o f  u  and v. A s a consequence,

• v MI Xr([0, 71;12) C u  X" ([0 ,7112) 111 'L111 IU°, 7]; 2), 

P ro o f .  We  suppose that Q = IV+  an d  that the support of u is contained in
Ix ; Ixi < 1} n . The general case can be reduced to this case by localization
and flattening of the boundary. For t e [0, T ] ,  we have by Leibniz's rule

Imm,* c E E  mD 0 ) •  D v(t)11.
11,1 + 2 1 c r n  p<7

Then, by using Lemma C.1 i), we get

(u  OW C {Kr • Kr2n + K  KV,
with

KT = E E Ilm„— Pa u(t)11[ 3 ] + 1 ,
1,1+2k,rn (p,p).1(,,k)

= E E II1Y:r av(t)M,
IyI + 2 k^m (P,P)61(y,k)

E
k 0+ 21(.ç m  (p,p)e l(y,k,i)

Ul]
KT. =  E  E E

i = 0 + 2k (p,p)el(y,k,i)

Here

l(y, k ) =  {(p, p); p  y, p k ,  l  +  2p 2  ([ +  1 )},
2

k; =  f( t ) , 1 3 ) ; p y ,  p  k ,  2 ( [ ] — IPI + 2p < 2 ([ -2-] — + 1}.

If (p, p)e 1(y, k), then 2 ( [ 
n

]+  1) +  IY I — I +  2k — 2p 2 +  1  +  Y  +
2 2

2k m  and I p + 2p < m < r Hence

KT u(t)IIIm, * , Ic2n MI v(t)111,,,,•

If (p , p )e 11y , k ; 0, then we see also that 2  ([  1 — + I I — I i +  2k — 2p <
2
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2 ( [ ]

— i) +171+ 2k — 2  ([ — i) = y  +  2 k  m and 2(i + 1) + 4)1 + 2p <
2 2

2(1 + 1) + 2 ([ —
n

]—  i) +  1  =  2 [ ] + 3 r .  Hence
2 2

K '3" u (t ) , * K T 111 v (t)111r * •

Therefore, combining these estimates, we have

(u  .1)) C III u(t) Id v(t)

It follows that

.,*sup (4 • r) 111m,* C  sup u(0111
0 < t < T 0 < t • T 0 • • t • T

sup Ill v(t)111r,,k•

Furthermore, for any t, t' c [0, T] and 0 < j  < m,

110-1(u v)(t) — 0•!(u

11I(u • OW  — (u 1))(0111., *

< C 1111 u(t)111m, * 111 v(t) — v(r)111,, * + 111 v(r) Mr,* 111 u(t) — u(r)111m * 1 •

Since u e X ( [0 , T ]; Q) and v  X;([0, T] ; Q), this implies that u • v e ( [0, T ];
Q ) .  This completes the  proof o f Lemma A.1.

Lemma A.2. Let r >  n + 2 be an in teger. L et ve X *r([0, T]; Q ) take values
in  R '.  L et A  = A(u) be a sm ooth function o f  ueR 1 w ith v alues in the space of
1 x 1 com plex  m atrices. Then, A(v)EXr* ( [0 , T ]; Q ). Moreover, we have

(A.2) A(0111. -  ,  I I I  ,C,([0,T];f2) < C (N [ 3 ]  4 .+ V  41) 11 I) Ill rw•• ••• - ••• ([0,T]12)1 for t c [0, T],Ill 

w h e r e  N is  a  constant such  that s u p  v(t)11
1 ]  + 1  

<
0 < [t < T NH] +1 lifl+ 1

increasing as  a f unction of  its argument.

P ro o f . We refer the  reader to [17].

Lemma A.3. Let r >  n + 2 be an integer. L et u and v be in X ( [0 ,  T ]; Q )
an d  tak e  the  values in  11̀. L et A  = A(u) be a sm ooth f unction o f  ti e R ' with
values in  the space o f  1 x 1 com plex  m atrices. Then w e have

(A.3) III A (u) — A (OH x:-.([13 ,T];

< C (N 
[ 3 ]  +  1

)111U - V ([0,1];f2) (1 + 111 u rX,'; ([0 , T];.(2) MI y111rX:' ([0 , T];12 >)

where N is  a  constant such that[S]+1
max (  sup II u(t)

+ 1
, sup v(t)11 ) N

0 < t < T 0• T Li] + 1 [S] +

and where 0 . )  depends increasingly on  its argument.

and  0 • ) is
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In what follows we assume for simplicity that Q = Rn+  and  supp u { x  x  <
l}n R .

Lemma A . 4 .  L e t A (. )  b e  as  in  L em m a A.2. I f  y is  in  X [1 ] + 4 ([0, T];
Rn+ )  and u is  in  X 1 ([0 , T ]; Rn+ ) ,  an d  if  A(v(t, x)) = 0 f o r (t, x)e[0, T] x aRn+ ,
then w e have the estimate

(A.4) 11A (v(t))a ,u(t)II < C A(v(t))III „, Ilxiaiu(t)II for te [0, T],21__11+4. *

where C is a positive constant independent o f  u and v.

P ro o f .  In view of the fact that A(v(t, x)) = 0 on [0, T ] x ORn+ , we see that
x,

A (v(t, x)) = f A(v(t, 0, x'))d0.

Hence, by using Lemma C.1 ii), it follows that

A(v1tna1u(t)II

=  fo lA (v (t, 0 , x '))d0O 1u(t)

• sup  le  A(v(t, x))111xiaiu(t)II
xeRI_

• II at A(v(0)11 [3 ] ,

• A(v(t))111 r„, Ixtaiu(t)11.20 - j +4,*
This completes the proof of Lemma A.4.

Lemma A . 5 .  L et m > 1 be an integer and let A (.) be as in Lemma A.2. Let

q be an integer such that 0 < q < m and let r = max (m, 2 [ —

n 

+ 3 + q ) .  Assume
2

that u lie s  in  X ,7- q([0, T]; Rn+ )  and  v lie s  in  Xr* ([0 , T ]; Rn+ ). T hen, f or any
P, p , p ' su c h  th at Ipl +10 + 2 113 + <  m  an d  q -1p1+ 2p, w e  have the
estimate

(A.5) 11 Bo.' (11; A (v(t))Dr:; ar;" u(t)II C A(v10) r, *  III u(t)III m-q,* for t E [0 , T].

In particular, when p' > 1, w e get the estimate

(A.6) 11Di.)0i; A (v(t))D°: a./[ u(t)11 C111 A(v(MIll r,* IIII4 (0 m - q,(*) for t e [0, T],

Where C  is a positive constant independent of  u and v.

P ro o f . By using Lemma C.1 i), we get

11 D°rai; A ( v ( t ) ) D ' 0 ) 1 1
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D:ari A(v(t))II u(t)il [1] +

A(v(t)) + 11 D:' u(t)Il [ s ] _

for (p, p)e 1(q),

for (p, p)e 1(q; i), 0 < i < ,
[ 2

where

n
1(q) = {(p, p); 1 p I + 2 p  2 ([ —2 ] + 1) + q},

.11(q; i)= (p, p); 2 11
2 —  i +  q  1  pi + 2 p  2 -; — i + q+  1 ,

0  <  i <  [ 
n

_
—  2 i •

Let (p, p) e 1 (q). Then, since I p I + I I 1  i +  2 (1) + li -. m by assumption, we have

IPI + 2p _<_ m < r and 2 (  III +  i ) +  Ip'l + 2p' = 2 111 + 1 + m —  CPI + 2p)
2 2

2  ([ n ] + 1) + m — 2 ([ 1 + 1) — q = m — q. Hence,
2 2

II D: 0 1 A (v (0)11 11 D:' OÇ' u(t)11 u214. 1I l l  A  (v (t)) lil, • ,* ill u(t) ll I . - q.* •

Let (p, p)e1(q; i). Then, by the same reason as before, we have 2(i + 1) + Ip I +
n n n

2p 2(i + 1) + 2 ( [ i i— i)+ q +  1  =  2 [-2 ]+  3  +  q  r  and 2 ( [ ] _ i ) +
n

I P ' +  2p' 2  ( [ —
n

2
 —  i + m — (IPI + 2p) 2

2
i ± r n  2

2
— q = m — q. Therefore we get

II D:a l(v  (0)11 i+ II D:' u(t)II [ s ] _ 111 A (v(0)111, ,* II u(t)111. - q,*

where 0 i < [ 1 .  Combining these inequalities, we get (A .5). Recalling the
2

definition of the norm III Illm,(* ), we obtain (A.6) from this at once. The proof
of Lemma A.5 is complete.

(A.7)

Lemma A .6 . L et m > 1 be an  integer. L et A (  )  be as in  Lemma A.2.

i) L et r = max (m, 2 [ —

n  

+ 4 )  and let ai denote a 2 ,..., an  o r at . I f  y lies
2

in  X ;([0 , T ]; R"± ) and u lies in r : ( [0 ,  T ];  Rn
+ ), then for any y, k such

that II + 2 k  in and t e [0, T], we have the estimate

11[D:ak,, A(v(t))]0u(t) c II A(v(t)) III" III u ( t)  III m, *  •

Similarly, if  y  lie s  in  X ,([0 , T ]; R"+ )  and u lies in  X,71 + 1 ([0, T];
then, f o r  any y, k such that I y + 2 k  m  and te [0 , T ], we have the
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estimate

(A.8) [D:aki A(v(t))] u(t) C A(v(t))111,, * 111u(t)111.+1,( * ).

ii) L e t r = max (m, 2 [—
n  

+ 5 ) .  If  y  i s  in  Xr([0 , T ]; IV+ )  an d  u  i s  in
2

X ( [ 0 ,  T ]; R ) ,  and if  A(v(t, x)) =- 0 on [0, T ] x ORn+  , then, f o r any  y, k

such that Iy +  2 k  m  and te [0 , T ], we hav e the estimate

(A.9) 11[D:011, A(v(t))] u(t) c M mv(t))111,* III u(t)III., * ,

where C is a positive constant independent o f  u and v.

Proof  of  the f irst assertion . By Leibniz's rule,

A(v(t))]e i u(t) C E 111Y5PI A (v (t))D :"O t Oi u(t)11.
P + P '= Y
p +  p ' =k
1 5_p+2p

Noting that IP I + +  2 (3 +  /Y) = IY1 + 2k tn , 1 I l  + 2p, and r > 2 + 4,
2

we apply (A.5) with q = 1 to the right hand side of the above inequality to obtain

, A (v(t))] ap(t) C111 A(v(t))14, *  IM ai u(t)111.-1,*
< c 111A(v(t))111,,*111u(t)111.,* •

This proves (A.7). Similarly, we get

[D:ai, A(v(t))]a1u(t)11 C111 A(v(t))111,,* 111 iu(t)III.- 1,*
< c 111 A(v(t)) IMr,* M u(t)III.+1,(*)

by using again (A.5) with q = 1. Hence, (A.8) is proved.

Proof  of  the second assertion. First w e observe that

IlUY* Ok A (v(t))]O l u(t)II C + 1 -Yi k }

where

LYik =  E u(t)II
pl+pr l y

LYik = E A(v(t))/)" a iu(t)II.
P + P '= - Y
p + p '= k

2_.51p1+2p

It is easy to see that D:A(v(t, x)) = 0 on [0, T ] x 0R",.. We use this with I l =  1
and apply Lemma A.4. Then we obtain
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1111Y A (v(t))111 2 [ 1 ] , _ -±-e1 eltu(t)11

PI+,19 ='=1y

111A(v(t))111 r n i 11114(011 m,*+5,*
ill A (v(t)) III u(t) II!. , * '

n
where e l  = (0, 1, 0, ..., 0). Note that r =  max ( m, 2

2
+ 5 )  and that I p' + e 11 +

2k 1 p' I + 2k + 1 (m — 1) + 1 < m. Since Ipl + IP'l + 2(P + p') in  a n d  2 <

IP I + 2p, we obtain also by using (A.5) with q = 2

LYi k I l l  A (v(t)) Ill r,* III a iu(t)h1.- 2,*

III A (P(t)) II r,* III u(t) III ni, *  •

Therefore,

it (v (0 )] i u(t) h c  h A(v(t))111,, * 111u(t)111m,* -

Thus (A.9) is proved.

Appendix B

We state here some basic properties of H (Q ) and  X (  [0, T]; Q).

Lemma B .1 .  Let m >  1 be an  integer. Then,
i) C '(2 )  is  dense in H (Q ).

ii) C ' ( [0, T] x is dense in .X ([0, T]; Q ).
iii) L et p and g be nonnegative integers and let r = min (p, g, p + g — 2[n/2]

— 3) > O . Then 1-1(Q) • 1-1(2) H ; ( 0 ) .

P ro o f . To prove i), we notice that HT(Q) can be regarded a s  a  weighted
Sobolev space. Let us set

0-,c(x) =
(221+121 — m),

Then we have by a  straightforward computation

II = II xi t alt+kal22 .••3;̀ ,"u11 2

121+ 2k  < m
k >0

= E laai1aa22-•-ac;,"111 2 0- (x )d x ,

where S2 = . It should be noted that o-
c,(x) defined above is a  finite sum of

the  powers of the distance from x  to th e  boundary. Then we can apply the
argum ent in  the proof o f  Theorem 7.2 in  [1 0 ]  to our situation with suitable
modifications. This shows the density of C 0 (C2) in H (Q ) .  The proof of (ii) is
quite similar to that of Lemma B .3 . See [17] for the  proof of (iii).

2kXi  .
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Lemma B.2. L et p  > 2  be an  integer.
i) There ex ists also a  bounded linear operator S p  o f  11(Q )

urn -

1 H p -  2 i - 1
( r )  such thatj= o

[E]- 1s p u — 041,-, a v ul,-,..., a,,2 u o ,

f o r any  u  e  C '4 2 ) .  The range o f  Sp  coincides w ith FP -
1 H p - 2 j -  l ( r ) .

i= o
P

There exists also a bounded linear operator R p  o f  11[11 I H p -  2 j -  l ( r ) _ ,-i=o
H ( Q )  such that S ,, • R p  = I.

ii) The bounded linear operator R p  stated  in i)  can be so chosen that, if  w e
P 9

define Rp, f or ev ery  q  with —[ >  —  >  1  by
2 2

h[ 1] _ i ) = Rp (ho ,..., h[ 1]  1 , 0,...,0 ),
[ I ]  — tim es

then we have
r211-

Rp,(h0, h[1]_ 1 )11,* C h i  H q -  2 j -  l ( f )

j=0

f o r  an y  (ho ... h
[ 2 ] - 1

)E11[21 - 1  H P  2 i

j= 0
(F ) .  H e re  C p, i s  a  positive, , q

constant depending on p, q. Namely, f o r such choice of  R p , R,,, defined
abov e ex tends to a  bounded linear operator of  n [1 ]- 1  H q -  2 j- I ( I - )

i= o

P ro o f . The proof of ii) is given in  another publication [19].

Lemma B.3. L e t m  I. T h e n  C r([0 , T ]; Ils(Q )), th at is , th e  space o f  r
times continuously differentiable 'Unctions on  [0, T ]  with values in  H s(Q ), is
dense in 1/5 (0, T ; Q) f o r any  integers r, s  large enough.

P ro o f .  I t  is know n that there is a  sequence of operators IJ k l such that
i) J„e f t)(11r,(0), H ( Q ) ) ,  k  >  1, fo r any integers p , q  su c n  th a t 2 p  q

and J„ converges strongly to I  in  1 4 ( 0 )  a s  k co.
ii) ike Y (HP(S2), H ( Q ) ) ,  k  >  1, fo r  any integers p , q  such  tha t 0  <  p < q

and J,, converges strongly to I  in  HP(Q) as k co .
The existence of such a  sequence of operators is shown, for example, in  [10 ]. L e t
ye kr(0, T ; Q), where m 1 . W e  d e f in e  T ikT ;  Q)) by

( Jk v)(t) =  Jk v(t),O t T.

Let y k =  J o .  T h e n  y k H m (0, T ; Il 5 (52)) fo r any  s  > m .  Here Hm(0, T ; H 5 ( 2))
denotes th e  space o f  func tions such  tha t ait u e L 2 (0, T ; Hs(Q)) fo r 0  < j  < m.
Hence Oit v„(0)e Ils(Q), 0 < j  < m  —  I. It is easily seen that v k converges to  y  as
k co in 1/4m(0, T ; Q).

O n  t h e  o th e r  h a n d , th e r e  is  a  sequence o f  opera to rs {K i } s u c h  th a t

H ( Q )  f o r any  q  such that [  P  >  q  >  1.
2 2
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K i e 2 1(111(0, T ), Cr[0, T ]), j 1, for any  r 1  a n d  K i  converges strongly to /
in  111(0, T ) .  Such a  sequence of operators is constructed by using a variant of
Friedrichs' mollifier with respect to  the  tim e variable t. L e t u s  denote K i  b y
R i  when it is regarded as an  operator acting in the space of functions of t  with
values in a space of functions of x. Let w e Hm(0, T ; Hs(0)), where s > m .  Then
k i w e Cr( [0, T ]; H 8 (0)), j 1, for r m and s >  m and

f w  -> w  i n  Hm(0, T ; H s (0 )) a s  j  co.

Hence

aw(o) i n  H 5 (52) a s  j->  co

fo r  0 i < m  -  1. L e t  y E K(O, T; 0 ) .  W e  re c a ll th a t f k y e T; Hs(5 -2)),
where s > m .  L et yj ,„ = R i yk =  /Z./4y, j, k  1. Then we can choose a  suitable
j  for each k  in  such a  w ay that the resulting subsequence {y ik ,„} converges to  y
in  V :(0 , T ; 0 ). It follows from the properties enjoyed by the operators Jk  and
KJ t h a t  yi ,k e Cr([0, T]; Hs(Q)) fo r any  r  a n d  s large e n o u g h . This completes
the  proof of Lemma B.3.

Appendix C

We shall state basic facts concerning the usual Sobolev spaces in the following
tw o lem m as. The results are well known and  so  the  proofs are  omitted here.

Lemma C.1. Let p and q be nonnegative integers and let 0  c  R " be a bounded
domain.

i) L e t  r = min ( p, q, p + q - -

n

- 1 O. T hen w e h av e  a continuous..
2

imbedding HP(52) • H(Q) q 11'(2).
ii) W e hav e a continuous imbedding H [ 3 ] + 1 + P (52) g CP(5-2).

Lemma C.2. L et p  > 1  be an  integer.

i) T here ex ists a  bounded linear operator S p  o f  HP(0) —11,!=.1 1 -1 P l (r)
such that

spu = (ui r ,  v uir , , uir )

f o r any  ueC ° 3 (52). T he range o f  Sp  c o in c id e s  w ith  n : 0
1 H P  j  ( F ) .

p _
T here ex ists also a bounded linear operator R p  o f  111; =- 0

1 H 2(/") -

HP(Q) such that S  p  • R p  = 1.
ii) The bounded linear operator R i, stated in  0  can be so chosen that, i f  we

define R p , q  f o r every q with 1 :5_ q <p by
, ,  0, ..., 0 ),

p — q times
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then w e have
q-1

11R (h hq Cp,q II -1p,q (r )- 1 q
j=0

f o r any  (ho,...,h q _OEFU: 01 HP
2 ( F ) .  Here C  p , is a positive constant

depending o n  p, g. Namely, f o r such choice o f  R  p , R  p , defined above

extends to a bounded linear operator of  r17: 0
12 ( F ) — >  1 1 4 (Q) f o r any

g  such that 1 g < p.

P ro o f .  For the proof of ii), we refer the reader to p. 310 of [21].

Lemma C.3. L e t  r > [ —

n  

+ 1  b e  a n  in teger such  that 0 < m  <r.  Let
2

v e X,m( [0, T]; S2) and let, furthermore, av(0) e llr -
i (Q) f o r 0 _-  i .. m . A ssum e

that v  tak es values in 11̀  and that A  = A (u) is  a  sm ooth function o f  m elt' w ith
v a lu e s  in  th e  sp ac e  o f  1 x  1 com plex  m atrices . T hen , 0';A (v )(0)ell' i (Q),
0 <  i < m . M oreover, we have

(C.1) It aA (v)(0)11,1 C a [n ] )  {1 +  j Eo lie'iv10 111, -

f o r 0 < i <m , where L
[ 1 ]  + 1  

is  a constant such  that Ilv(0)11 E n + , L Esp., and

C ( .)  is  an  increasing function o f  its  argum ent. In  particular, if  v ellr(Q ), then
A (v)ellr(Q) and we have

A (011, C(R E n +  i ) { 1 + Ilv U.}

is a constant such that R 
Es] + 1  

and C ( .)  is sim ilar tow h e r e  R  

Ca "
the above mentioned one.

Lemma C.4. L e t  r > [
2
—

n  

+ 1  b e  a n  in teger such  that 0 < m < r. Let

u, VEX,m ([0 , T]; g2) an d  le t Ou(0), 0 v (0)eH '(.(2) f o r 0 _-_. i m . A ssum e that
u, v take values in 11̀ and that A  = A (.)  is a  smooth function defined on 11̀  with
values in the space o f  1 x  1 complex m atrices. Then w e have

(C.2) IIait A (u)(0 ) — aitA(v)(0)11, -

C(L 31 )  E Ila.:14(0)—aiv(0)11.,r- j

x {1 + Ett 1u(0)j r E 10.iv(0)11,._)r}
j= 0 j= 0

f o r 0 <  i < m, where 
L B - 1 + 1  

is a constant such that
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max ( u(0) II En,  II v(0) II [ s]L [ f l ]

an d  C (.)  depends increasingly on its argument.

Lemma C.5. L e t  r > [ —

n  

+  1  b e  a n  in teger an d  le t  0  < m  < r. L e t
2

A  = A (u) be a smooth function o f  U E RI w ith values in the space of  1 x  1 complex
m atrices . L e t K  c  R ' be  a  compact se t contained in  th e  se t o f  u e ll l such that
A (u) is invertible. If  v  e X  (0, T ] ;  Q ) tak es values in  K  and 0v(0)e 11r - i (0) f or
0 < i < m , then  0A (v )' (0) E H ' I (Q ), 0 < i < m .  M oreover, we have

(C.3) II a itA (v) -  ( 0)11, - i C(10 { 1  +  (  E 110.124(1, ) (0 ) - in
(= o

f o r 0 < i < m , w here C(K ) is a positive constant depending on K .

Lemma C.6. L et r > [ 
n
—  + 1  be an integer and let C  be a closed rectifiable
2

Jordan curve with positive orientation in C .  Let B(C 1) be the space of 1 x 1 complex
m atrices. L et A (A ) be  a  continuous function o f  A  defined o n  C  w ith values in
IF(Q ; B(C1)) and let (p(A ) b e  a  com plex  valued continuous function of  A  on C.

A ssume that A(A , x) 1 ex ists f o r all (A, x) e C  x Q  and that sup I A (A, x) ' I < co.
A.,x

I f  we set

B =f cp(A )A (A ) - 1  d A,

then B  lies in IP(S2; B(0)).

P ro o f . It is show n that A ( 2 ) ' is a  continuous function of A taking values
in  Hr(Q; B (0 )). This is proved by using an argum ent employed in  th e  proof
o f  Lem m a 2.13 i n  [8]  w ith  su ita b le  m odifications. The result then follows
immediately.
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N ote  added in  proof. After the  completion o f this work, we received th e  following preprint:
P. Secchi, Linear symmetric hyperbolic systems with characteristic boundary, Dept. M ath. Univ. of
Pisa (1993).


