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The initial boundary value problem for
linear symmetric hyperbolic systems
with boundary characteristic
of constant multiplicity

By

Mayumi OHNO, Yasushi SHIZUTA and Taku YANAGISAWA

§0. Introduction

This paper is devoted to the study of the initial boundary value problem
for the first order symmetric hyperbolic systems with characteristic boundary of
constant multiplicity. We shall show the existence and the differentiability of
solutions. Although we study the linear theory in this paper, the main result is
stated in such a way that it can be applied to the proof of the convergence of
iteration scheme in studying the quasi-linear initial boundary value problem.

Let 2 =« R", n> 2, be a bounded open set lying on one side of its smooth
boundary I We shall treat differential operators of the form

L(v) = Ay(v)0, + En: A;(v)0; + B(v),

where 9, = 0/0t, 8; = 0/0x;, and v = "(v,(t, x), v,(t, X),...,v,(¢, X)) is a given smooth
function of the time ¢ and the space variable x = (x,, x,,...,X,). It is assumed
that A;(-), 0 <j<n, and B(-) are real | x | matrices depending smoothly on
their arguments. Therefore A4;(v), 0 <j <n, and B(v) are smoothly varying real
I x | matrices defined for (t, x)e[0, T] x 2. We shall study the mixed initial
boundary value problem

0.1) Lo)u=F in [0, T] x ,
0.2) Mu=0 on [0, T]x T,
(0.3) u(0, x) = f(x) for xef,

where the unknown function u = u(t, x) is a vector-valued function with |
components and where M (x) is an [ x | real matrix depending smoothly on
xel. We assume that M is of constant rank everywhere on [I. The
inhomogeneous term F of the equation and the initial data f are given
vector-valued functions defined on [0, T] x 2 and @, respectively. Let v = (v,,

Communicated by Prof. N. Iwasaki, August 6, 1993



144 Mayumi Ohno, Yasushi Shizuta and Taku Yanagisawa

v3,...,v,) be the outward unit normal to I. Then, A,(v) = Z;=1 v;A;(v) is called
the boundary matrix. If the boundary matrix A4,(v) is invertible everywhere on
I', then the boundary I is said to be non-characteristic. If it is not invertible
but it has a constant rank on I, then the boundary I" is said to be characteristic
of constant multiplicity.

A general theory for the case where the boundary is non-characteristic has
been developed by Friedrichs [6], Lax-Phillips [11], Rauch-Massey III [21], and
others. The case where the boundary is characteristic has been discussed also
by several authors. In particular, the existence of solutions and the well-posedness
in the L2-sense have been proved by Lax-Phillips [11]. In studying the regularity
theory for this case, a difficulty which is termed the loss of derivatives in the
normal directions has been observed by Tsuji [25] and others. A regularity
theory has been given by [14], by assuming that there is an extension of the
outward unit normal vector field to a C°-function defined on a neighborhood of
I" such that the corresponding extension of the boundary matrix A4,(v) has a
constant rank there. However, for many physical problems, this hypothesis fails
to hold. The existence of solutions and the well-posedness in L2-sense were
shown by Rauch [20] under a weaker assumption that the boundary matrix A4,(v)
is of constant rank only on I. (Note that the maximal nonnegativity of the
boundary subspace is assumed always.) He obtained also the regularity of
solutions in the tangential directions.

The results obtained so far do not seem to be sufficient to handle the
quasilinear initial boundary value problem with characteristic boundary. One
reason is that the assumptions on the coefficient matrices are too stringent. When
we concern ourselves with the quasi-linear problem, the entries of these matrices
must lie in the function space in which the solutions are supposed to exist. Even
from the view point of the linear theory, the function space Hi, (£2), in which
only the tangential derivatives are taken account, seems to be somewhat simple.
(For the definition of H{, (£2), see [2].) It has been recognized in the study of
the characteristic initial boundary value problem, that the normal differentiability
of order one results from the tangential differentiability of ordr two. This seems
to be a suitable interpretation of the loss of derivatives in the normal
directions. The function space HY (£2), that we use in this paper, embodies the
above mentioned observation. It is suitable for constructing a linear theory in
the sense that not only the a priori estimates of solutions are obtained in this
norm but the compatibility condition can be given an appropriate meaning in
this function space. However we do not enter into detail here. We note that
the function space Hy(€2) was used in the works of Chen Shuxing [4] and
Yanagisawa-Matsumura [26]. It should be remarked that even in the case of
the characteristic initial boundary value problem there is an important class of
physical problems for which one can get the full regularity ([1], [5], [22], [23])
in the sense that the regularity theory is stated in terms of the usual Sobolev
space H™(2). General criteria for characteristic initial boundary value problems
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having such property have been given by Ohkubo [16] and also by
Kawashima-Yanagisawa-Shizuta [9].

The content of this paper is as follows. In §1, we give the definitions of
H} () and the related function spaces, that will be used in this paper. We state
the main theorem in §2. Some remarks are also given. We shall prove our
main theorem in §3, assuming that any data satisfying the compatibility condition
of certain order can be approximated by smoother data which satisfy the
compatibility condition of higher order and that the uniform estimate for solutions
to the approximate problem (see (3.34)—(3.36)) holds. In §4, the existence of an
approximate sequence of data that was assumed in the preceding section will be
shown. In §5, the approximate problem is reduced to the case of a half
space. This is a preliminary to the next section. In §6, the proof of the uniform
estimate assumed in §3 will be given. In Appendices, we shall prove several
lemmas used in this paper. The main result of this paper was announced in [18].

§1. Function spaces and notations
Let o = («,,...,%,) be a multi-index and let |a| = oy + --- + a,. We write

0

5 = (7 ,...,a,,, ai=axi=_a
x ( 1 ) axi

1<i<n,

o= oy oy

H™(2), m >0, denotes the usual Sobolev space of order m. The norm is

1
If =% 181122
lal<m
Here | - | denotes the L2-norm. We recall that a vector field 41e C*(RQ; C") is
said to be tangential if {A(x), v(x)> =0 for all xeQ.
When Q < R" is a bounded open set with smooth boundary, H}(2), m > 0,
is defined as the set of functions having the following properties:
i) uel*(Q).
ii) Let A4, 4,,..., 4; be tangential vector fields and let 47, 43,..., 4, be non-
tangential vector fields. Then A, A,---A;A; A5 --- A,ue L*(Q), if j+ 2k <m.
H7(2) is normed as follows. We choose as usual an open covering of 7,
diffeomorphisms, and cut off functions, say, O, t;, y;, 1 <i <N. Then u® =
(qu)ot; ' has as its natural domain £, = {x||x| <1, x,>0} with I
corresponding to x; = 0. The tangential vector fields given by 0,, k = 2,...,n, in
local coordinates are linearly independent. One sees that any tangential vector
field can be written in a neighborhood of a point on I" as a linear combination
of x,0,, 0,,...,0, with C®-coefficients. It is assumed that the normal vector field
d, corresponds to — @, in local coordinates. Let Q; be the set {xeQ|dist (x, I')
>48}. Let g, be a cut off function such that y, =0 on a neighborhood of I’
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and let y, = 1 on some ;. We may assume that Y\ x?> =1 on Q. Then the
norm in H(Q) is

N
(1.1) lullze = lxotlm+ X lxillim
i=1
(12) ” Xiu ||72n,* = z ”a;.anali u(i) ||12,2(.93+),
la| +2k<m

where o = (a4,...,a,), |¢| =0, + -+ a,, and

Otan = (x10,)" 0% -+~ Oy
Note that 0%, in (1.2) can be replaced by

o =Xy oy oy oy,

because the corresponding norms are equivalent to each other. We shall use the
same notation for these norms. We notice also that the norms arising from
different choices of 0, 1;, x; are equivalent.
Let us introduce another function space, which is quite analogous to
H}(22). We consider the following property:
iiy Let A,, 4,,...,4; be tangential vector fields and let 4], 4;,..., 4, be non-
tangential vector fields. Then A, A4, - A;A; Ay -+ Ayue L2(Q), if j+2k <
m+ 1 and in addition j + k < m.
The set of functions having the properties i), ii) is denoted by HJ,(£2), where
m> 0. The norm in this space is given by

N
(1.3) lte 7w = Dxottllm + 2 1t llm s
i=1
(14) ” Xiu“pzn,** = Z ” a?ana’; u(i) ||i2(ﬁ+)'
la|+2k<m+1
la| +k<m

We have in general a continuous imbedding H™(22) ¢ H,(22) s HZ(Q).

Let X be a Hilbert space and let I = R be a closed finite interval. Then,
C(I; X) denotes the space of strongly continuous functions on I taking values
in X. Similarly, we denote by C,,(I; X) the space of weakly continuous functions
on I with values in X. C(I; X) is a Banach space under the maximum
norm. The topology of C,(I; X) is the uniform weak convergence topology. Let
{u,} be a sequence in C,(I; X) and let ueC,(I; X). If w(t) converges to u(t)
in the weak topology of X uniformly in tel, we say that the sequence {u,}
converges to u in C,(I; X). We note that for any ueC,(I; X) we have

sup lu()llx < oo.

te.

If otherwise, there is a convergent sequence {t;} such that [u(t)|| - oo ad
i —> 00. This contradicts the resonance theorem. In this sense, C,(I; X) may be
regarded as a closed subspace of L*(I; X).
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Let m > 0. We define X™([0, T]; 2) to be the space of functions such that
dueC([0, T]; H"(R)), 0<j<m.
Here dlu, 0 <j<m, are the derivatives of u in the distribution sense. Let

ue X™([0, T]; 2). We set

llu(e)llz = Z lofu®) -

ji=0

for te[0, T]. The norm in X™([0, T]; Q) is given by

Ulll xm .0y = max .
140w, s = max, [1e(®) 1l

X™([0, T]; Q) is a Banach space under this norm.
Similarly, X ([0, T]; £), m > 0, is defined as the space of functions such that

dlueC([0, T]; Hr (), 0<j<m.
The norm in XJ([0, T]; Q) is

“|“|“x"‘((0 Q) = max (1124 (E) N, 5 »

a7« = Z I07u(®) 7 .-

It is seen that X ([0, T]; Q) is a Banach space under this norm. Let us recall
that we used an open covering of I, difftomorphisms, and cut off functions, that
is, O;, t;, x;» 1 <i <N, in defining the norm in HF(Q). Let u®(t) = (;u(t)) ot *.
Then we have

N
(1.5) u@) iz« = Wxou@®Ua + X Ixte) 7.
i=1
(1.6) 2@ 117, = Zk I DY &5 u(t) 12204 )
y|+2k<m

where y = (j, @), [y| =j + |a|, and
D},, = 0{0%, = 0l(x, 0, 0% - 02"

tan

We note that D}, in (1.6) may be replaced by

= 0J0% = BIxS 0% - 0,

because the corresponding norms in XJ([0, T]; Q) are equivalent to each
other. We shall denote both norms by the same notation.
Let m > 0. We define Y*([0, T]; ) to be the space of functions such that

dlueC,([0, T); H7 (@), O0<j<m.
Let {u,} be a sequence in Y;"([0, T]; Q) and let ue Y.([0, T]; ). We say that
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u, converges to u as k— oo if, for any 0 <j <m, du,(t) converges to dlu(r) as
k— oo in the weak topology of HJ /(€2) uniformly in te[0, T]. This defines
the topology of Y,”([0, T]; 2). We denote by Z3(0, T; ), m > 0, the space of
functions such that

dlueL®(0, T; H}/(2)), 0<j<m
The norm in Z3(0, T; Q) is defined by

— J
10,7 = (0 €58 SUD [ u(t) 5

Then Z}(0, T; 2) is a Banach space under this norm.
We define #™(2; P), m >0, to be the space of functions such that
ue H™(Q),  PueH™,(Q).

Here P = P(x), xeQ, is a smooth extension of P = P(x), xel, that is, the
orthogonal projection onto 4 (x)* which will be described later in condition vi)
of Theorem 2.1. We introduce a norm in #"(2; P) by

et W 3emeiry = 1012 + 1 Pull2 4

H#™(Q; P) endowed with this norm is a Hilbert space. Different choice of P
yields an equivalent norm.
Let W,"(0, T; ), m > 0, be the space of functions such that

OlueL*(0, T; Hy9(R)), 0<j<m

If we define on this space a norm by
T
o, rio) = f Il u(e) 17, « dt,
0

then W."(0, T; ) is a Hilbert space under this norm. It is seen that, if
ue W0, T; ), then we have

dlueC([0, T]; Hr '7i(Q)), 0<j<m-1
We define V,"(0, T; 2), m > 1, to be the space of functions such that
ue W0, T; Q)
and
du(0)eH™ '7i(Q), 0<j<m-1L
By defining a norm on V,"(0, T; Q) by

m-—1

||u||V'"(orm—||“||W'"(0Tm+ Z [ 0Ju(O) |2 - - I
ji=0

V"0, T; £2) is a Hilbert space.
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The above notations for function spaces will be used also for vector-valued
function spaces.

Finally, when X and Y are Banach spaces, we denote by £ (X, Y) the space
of bounded linear operators from X into Y. If X =Y, we write simply Z(X)
instead of £ (X, X).

§2. The existence and differentiability theorem

Before stating our main result, we recall two notions. One is the maximal
nonnegativity of the boundary condition and the other is the compatibility
condition. Ker M(x) is said to be a maximal nonnegative subspace of A4, (v) if
A,»(v(t, x)) is positive semidefinite on Ker M(x) but not on any subspace
containing Ker M(x) as a proper subspace for (¢, x)e[0, T] x I.  When Ker M(x)
is maximal nonnegative, we say also that the boundary condition is maximal
nonnegative. The compatibility condition of order m — 1 is stated as follows.
Given the system (0.1) and the initial data (0.2), we define f,, p > 1, successively
by formally taking derivatives of order up to p — 1 of the system with respect
to the time variable, solving for 0?u and evaluating at t = 0. Thus f, is written
as a sum of the derivatives (with respect to the space variables) of f of order at
most p and the derivatives (with respect to the space and the time variables) of
F of order at most p — 1. A concrete expression for f, will be given in §4. We
set f, = f. Then the compatibility condition of order m — 1 is that

2.1 Mf,=0 on I,0<p<m-— L

We shall write sometimes 4,(L(v); f, F) instead of f, in this paper, since f, is
determined by L(v), f, and F.
The main theorem of this paper is the following

Theorem 2.1. Let m>1 be an integer and let u = max (m, 2[;] + 6>.

Then the initial boundary value problem (0.1), (0.2), (0.3) has a unique solution u
in X3([0, T]; 2), provided that the following conditions are satisfied:

i) Q< R" is a bounded open set with boundary I' of C®-class.

i) M(x) is a real matrix valued function of C®-class defined on I' and
dim Ker M (x) is constant on I.

i) v lies in X4([0, T); Q) and takes values in R'. Furthermore, ;v(0)e
H*»*27i(@Q), 0<i<p.

iv) o(t, x) lies in Ker M(x) for (t, x)e[0, T] x I

v) A;((t, x)),j=0,1,...,n, are real symmetric matrices for (t, x)e[0, T] x Q,if
v lies in C([0, T] x Q) and takes values in R'. In addition, Ay(v(t, x)) is
positive definite for (t, x)e[0, T] x Q, if v satisfies the same assumption.

vi) There exists a subspace N (x) of C', defined for xeI, such that we have
Ker 4,,(0(t, x)) = A (x) for (t, x)e[0, T] x I" if v lies in C([0, T] x Q),
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satisfies iv), and if it takes values in R'. Here A (x) is independent of v.
vii) dim A" (x) is constant on I' and 0 < dim A" (x) < [.
viii) Ker M(x) is a maximal nonnegative subspace of A, ,(v(t, x)) for (t, x)€ [0, T]
x I, if v satisfies the same assumption as in Vi).
ix) FeW/[0, T;Q), 6iF(0)eH" '"{(Q), 0<i<m—1, and fe H"(Q).
x) The data f, F satisfy the compatibility condition of order m — 1 for the initial
boundary value problem (0.1), (0.2), (0.3).

The solution u obeys the estimate

(22) () e < COME_ 1, K ) S Ny + WFO) [l o M0

t
+ C(MZ‘)J eCMI Y F (1), 4T,
0

for te[0, T], where K, , and M}¥,r=p—1,u, are constants such that
No@)ll,-: < K,y and |lvllx;qo, 0 < MY, r=pu—1, u, respectively. C(-) and
C(-, -) are increasing functions of each single variable with positive values.

Moreover, the solution u has an extra regularity in the following sense. Let
P = P(x), xeI, be the orthogonal projection onto N (x)* and let P =P(x), xeQ,
be an arbitrary smooth extension of P. Then Pu lies in X ([0, T]; 2).
Il Pu(t) [, 55 is bounded by the right hand side of (2.2) for te[0, T].

Remark 1. The case where m =1 is covered essentially by the result of
Rauch [20]. The function space used there is H[; (£2). Since only the tangential
derivatives are taken into account in this function space, we have in general a
continuous imbedding H(Q) ¢ H;,(22). However, when m = 1, these function
spaces coincide with each other. Namely, HL(Q) = H,,(£2). We refer the reader

for the case m = 0 to Theorem 9 and for the case m = 1 to Theorem 10 in [20].

Remark 2. Condition ix) for the set of data f, F seems to be somewhat
stringent. But, by a limit argument, we can obtain a more general condition
for the data f, F leading to solutions in X ([0, T]; £2). In this connection,
we point out that the necessary condition for the existence of the solution in
X7([0, T]; 2) is that

fe#m™(Q;P), f,el™ P(Q;P), 1<p<m,

and the compatibility condition of order m — 1 is satisfied, provided that
Fe W/ (0, T; 2). The proof of this fact and a sufficient condition for the existence
of the solution in X}([0, T]; £2) mentioned above will be given in a forthcoming

paper.

Remark 3. Instead of condition vii), we may assume that dim A4"(x) is
constant on each component of I, although it is not identically zero on I. In
this case, condition ii) may be weakened so that dim Ker M(x) is constant on each
component of I
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§3. Proof of the main theorem

First we shall show the existence of aproximate systems and approximate
initial data for which the compatibility condition of order m is satisfied.

Lemma 3.1. Let f, F, and v be as in Theorem 2.1. Then there exist sequences
{f}, {Fi}, and {v,} having the following properties:

i) f,e H™2%(Q), k> 1, and f, — f in H"(Q).
ii) F,eH™?([0,T] x Q), k=1, and F, > F in W0, T; Q).
Furthermore, 0'F,(0)— 0:F(0) in H™ '"{(Q) for 0 <i<m— 1.
i) v, e X* ([0, T]; Q), k> 1, and v, —v in X4([0, T]; Q),
0'0,(0) = 0iv(0) in H*~{(Q) for 0 <i < pu. In addition,
v, (t, x)eKer M(x) for (t, x)e[0, T]1 x I', k> 1.
iv) For the initial boundary value problem

3.1 L(v)u = F, in [0, T] x @2,
(3.2) Mu=0 on [0, T] x I,
(3.3) u(0, x) = fi(x) for xeQ,

the data f, and F, satisfy the compatibility condition of order m, that is,
(3.4) MA,(L(vy); fi, F) =0 on I,0<p<m

In order to show Lemma 3.1 we need the following Lemmas 3.1A and 3.1B.

Lemma 3.1A. Let f,F, and v be as in Theorem 2.1. Then there exist

sequences {f,} and {F,} satisfying 1), ii) of Lemma 3.1 and, furthermore, the
compatibility condition of order m for the initial boundary value problem

(3.5) L@w)u = F, in [0, T] x @,
(3.6) Mu=0 on [0, T] x I,

(3.7 u(0, x) = f,(x) for xe®,

that is,

(3.8) MA,(L@); fi, F)=0 on I,0<p<m.

Lemma 3.1B. Let ve X5([0, T]; Q) and let div(0)e H**27{(Q), 0<i<s,

where s is an integer such that 2s > [g:l Let furthermore v(t, x)e Ker M(x) for

(t, x)e[0, T] x I Then there exists a sequence {v,} having the following
properties:

i) 0,eX?*2([0,7T];Q), k> 1.

ii) v oo in X3([0, T1; Q).
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iii) 01v,(0) - d'v(0) in H* {(Q) for 0<i<s.
iv) u(t, x)eKer M(x) for (t, x)e[0, T] x I', k> 1.

Assuming for the moment that these lemmas are true, we complete the proof
of Lemma 3.1.

Proof of Lemma 3.1. By Lemma 3.1A, there exist sequences {f,} and {F,}
satisfying i), ii) of Lemma 3.1 and (3.8). By means of these sequences { f;} and
{F,}, we construct a sequence {U,} = X™*2([0, T]; Q) satisfying

(3.9) 0r Uy (0) = 4,(L(v); fi, Fy) in ,0<p<m

Set h,, = 4,(L(v); fi, F.),0<p<m, k>1. Since djv(0)e H***?7/(Q),0<i<p,
fie H"2(Q), k> 1, and since 0'F,(0)eH™"'7(Q), 0<i<m—1, k>1, it is
shown by Lemma C.1 i) and Lemma C.3 in Appendix C that h,, e H™*>~7(Q).
Let h,,e H"*2P(R") be an extension of h,, so that there exists a constant C
such that || ﬁp,kll,,mz_,,m.., <Clh,kllm+2-,- Now we use an argument given in
[12], pp. 31-32. Let L, be a scalar, strictly hyperbolic operator of order m + 1
with constant coefficients. Let us consider the following Cauchy problem,

LoU,=0 in [0, T] x R",

afﬁk(o) = il’p.h in Rn, 0 S p S m,
where the unknown U, is a vector-valued function with | components. The
standard existence theorem shows that there exists a unique solution U, e
X™*2([0, T]; R" of this Cauchy problem satisfying the usual energy estimate.

Then the desired sequence {Uy} < X™**([0, T]; ) is given by setting U, =
Ukl[O,T]x_()- We have

(3.10) (R% 1 xm+ 20, 17:0) < C Z Nhpkllms2—p-

p=0
Let C, be a positive constant such that

(3.11) WUl xm+ 10,1100 < Ci-

We assume in what follows that C, - oo, because in general the left hand side
of (3.11) is not uniformly bounded in k.
By Lemma 3.1B with s = pu, there exists a sequence {v,} such that

VEXHTH0, T]; Q), k=1,

v, — v in X4([0, T]; ),

0iv,(0) > 0iv(0) in H*{(Q), 0<i <y,

v (t, x)e Ker M(x) for (t, x)e[0, T] x I, k> 1.

(3.12)

Lemma A.3 in Appendix A combined with Lemma C.4 in Appendix C guarantees
the existence of the subsequence {v,,} such that
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1
l Aj(vk,) A (U) |||x“([0 ey < =3 C? ,0<j<n,
ki

ll Bv,) — B®)ll xeeq0, 113020 < 2
(3.13) {
I10iA;(vy,) (0) — 3; A;(0) )|, —; < cz’ 0<j<n O0<i<m-—1,

ki

. . 1
16:B(vy,) (0) — : B(©) (0) [l ,—; < c2 0<i<m-1

ki

‘We denote this subsequence {v,,} again by {v,} by abuse of notation. Now let
us consider the initial boundary value problem

(3.14) L(v)u = F;, in [0, T] x 2,
(3.15) Mu=20 on [0, T]x T,
(3.16) u(0, x) = fi(x) for xeQ,
where

Fy = F, + (Ao(vy) — 40(0))0, U + i (Aj(uk) - Aj(v))ajUk + (B(vy) — B(v)) Uy.

i=1

Recalling the definitions of f,, Fy, v, Uy, and condition iii) of Theorem 2.1, we
see by (3.9) and (3.12) that

(3.17) FieX™[0, T]; Q), k> 1, and 0;F,(0)eH" '(Q), 0<i<m, k>1.
By Lemma A.l1, Lemma C.1 i), (3.11), and (3.13), it holds that

(3.18) {F,{ - Fin W, T; Q),

0'F,(0) > 0 F(0)in H" ' "{(Q)ask—>00,0<i<m-—1.
Making use of (3.9), we have
(3.19 4,(L(y); fi, F) = 4,(L(V); fi, Fi) in 2, 0<p<m.
Utilizing (3.19) and (3.8), we obtain
(3.20) MA4,(L(vy); fi. F)=0 on I,0<p<m

y (3.12), (3.17), and (3.20), f,, F, and v, satisfy the assumption of Lemma
3.1A. Hence for any k there exist sequences { f, ;} and {F, } having the following
properties :
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fiu€H™2(Q), k, 1>1

fea— fi in H"(R) as | - 00, k> 1,

Fi e H" ([0, T] x Q), k, 1> 1,

F.,—»F;, in W20, T; Q) as | - oo,

0 F, ,(0) > 0iF,(0) in H" " '7{(Q) as [ » 00, 0<i<m—1, k>1,
MA,(Ly); fi» Fr)=0on I,k 1>1,0<p<m

(3.21)

We choose a suitable | for each k, say I(k), so that {f, 4} and {F, ,,} are
desired sequences. This completes the proof of Lemma 3.1.

The proof of Lemma 3.1A will be given in §4. Now we give a proof of
Lemma 3.1B.

Proof of Lemma 3.1B. We construct a sequence {w,} having the following
properties:

w,eC*([0, T]; H(2)), k> 1,
w,—= v in X ([0, T]; 2) as k — oo,
(3.22) Oiw, (0)eH* 1 (Q), 0<i<s, k>1,
Oiw,(0) = dv(0) in H>"17{(Q) as k- o0, 0 <i<s,
w(t, x)e Ker M(x) for (t, x)e[0, T} x I, k > 1.

To this end, we choose VeX**!((— oo,0]; Q) such that &!V(0) = div(0),
0<i<s, V(t, x)eKer M(x) for (t, x)e(— oo, 0] x I, and set

N v(t, x) in [0, T] x @,
o(t, x) = .
V(t, x) in (— oo, 0] x .
We can construct such a function V, if we use Lemma 3.1C after replacing s
by 2s and setting g; = 0iv(0), 0<i<s, ¢g,=0, s<i<2s—1. We have ie
X3((— o0, T]; 2) and 5e X**'((— o0, 0]; Q).
Let p be in C®(R) and let the support of p be contained in [0, 1]. Assume
that [p(t)dt =1 and that p(t) > 0. Set
w(t, x) = (Pl/k:f’)(t, x)

where py,(t) = kp(kt). Then we find that {w,} is the desired sequence.
It is easy to see that there exists a sequence {w, ,} such that

Wk,lecoo([o’ T]; HP(Q)), p 2 S, k’ l > 19
(3.23) Wi, = w, in CU([0, T]; Hy () as |- 00, g>1, k> 1,
w1 (0) = Diw(0) in H>*'(2) as > o0, 0<i<s k> 1.

Such a sequence can be constructed by using a mollifier in the x variable

mentioned in the proof of Lemma B.3 in Appendix B. We define a sequence
U, by
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(3.24) Uk ,1(8) = wWiei(t) = Ras v a(Pikermy s YWii(t), 0,...,0), te[0, T,
——

2s+ 1times
where P, e is the orthogonal projection onto (Ker M(x))* for xe I and 7y is
the trace operator on I, and where R,,,, denotes the operator from
fioH“s”‘”(l") to Hy***(Q), that was defined in Lemma B.2 i), ii) in Appendix
B. By using (3.23), it is seen that

(3.25)
{yaﬁwk',(t) — y0iw,(t) in H*~Y(I") as [ - oo uniformly on [0, T],i >0, k > 1,
Y0iw, 1(0) > y0iw, (0) in H*(IN) asl > 00,0 <i<s, k> 1.

Furthermore, by Lemma B.2 ii), we have

afR4s+4(P(KerM)l'ka,l(t)’ 07“-’0 )
——

25+ 1times

= a;.R4s+4.s(P(KerM)l‘ywk,l(t)ﬂ 0’”-70 )
N —

[%]—ltimes
= Rysra.s(Persnt 70w, (1), 0,...,0 ) >0 in HL(Q) as | > o0
——
[%]—ltimes

uniformly on [0, T], i >0, k > 1,

because Peranr? Wi (1) = Pieraryr 70iwi(t) = 0 in H~'(I') as |- oo uniformly
on [0, T] for i >0, k> 1. Recall that, by the last property of (3.22), we have
Oiw,(t, x)eKer M(x) for (t, x)e[0, T] x I" and k> 1, i >0. Similarly,

OiRyss a(Pernry YWia(t), 0,...,0 )=
——
2s+ 1times
= 0iRus+ 4,25+ 1 (Pkersryr YWi(t), 0,...,0) 1o
e~
s— ltimes
= R4s+4.2s+1(P(KerM)l‘ya:wk.l(O)’ 0,...,0)—0 in His(g)
——
s— 1times
as oo, 0<i<s k=1,
because Py 0wy 1(0) = Pigeranr70iw, (0) = 0 in H**(I") as [ » o0 for 0 <i <ss,
k> 1. Here we used again the last property of (3.22). These observations in
conjunction with the properties (3.23) yield

v €XETH0, T]; Q), k 1>1,

Uy = w in CU[0, T]; Hy(Q)) as [ >0, g= 1, k> 1,

00y 1(0) > 0iw, (0) in HE(Q) = H¥(Q) as | >0, 0<i<s, k>1,
Ue(t, x)eKer M(x) for (t, x)e(0, T1 x I, k, [ > 1.

(3.26)

We choose a suitable subsequence of I, say I(k), so that v, 4, has the following



156 Mayumi Ohno, Yasushi Shizuta and Taku Yanagisawa
properties:

Vet €XZTA([0, T]: Q), k>1,

Vg = v in X([0, T]; Q) as k - o,

0 04.149(0) = 0iv(0) in H*(Q) as k—> 0, 0 <i<s,
Vo (t, X)eKer M(x) for (¢, x)e[0, T] x I, k> 1.

(3.27)

This is seen by combining (3.26) with (3.22). The proof of Lemma 3.1B is
complete.

Lemma 3.1C. Let g;e H**27{(Q),0<i<s— 1, where s > [%:I is an integer.

Assume that g;(x)eKer M(x) for xel, 0<i<s— 1. Then there exists Ve
Xt (- o0, 0]; Q) such that 6:V(0)=g;,, 0 <i<s — 1, and V(t, x)e Ker M(x) for
(t, x)e(— 00, 0] x I.

Proof. We consider the following initial boundary value problem.

(3.28) 0,U + (A,(g) + el)o,U =G in [0, T] x Q,
(3.29) MU =0 on [0, T] x I,
(3.30) U(0, x) = go(x) for xeQ.

Here v is a smooth vector field on @, which extends the outward unit normal
vector to the boundary I The matrices 4;,j = 1,...,n, and M are those which
appear in the original initial boundary value problem (0.1), (0.2), (0.3). Recall
that A, = Z;=1vjAj, d, = Z;=1vj6j, and that U is the unknown function. We
impose the following condition on G,

{GeXs“([O, T]; ),

(3.31) . .
0,G(0) = gi+1 + A3(90)0,9:, 0 < i <s— 1,

where A%(go) = A,(go) + ¢I. We assume for the moment that such a G
exists. We claim that for ¢ > 0 small,

i) the boundary matrix A4%(g,) is nonsingular on I,

ii) Ker M(x) is a maximal nonnegative subspace of 4 ,,(go(x)) for xer,

iii) the data g,, G satisfy the compatibility condition of s — 1 for the initial

boundary value problem (3.28), (3.29), (3.30).

The properties i), ii) are checked easily. We show the property iii). It is proved
by induction on i that

(3.32) dU(O)=g;, in Q,0<i<s—1

The left hand side of (3.32) denotes 4,(L,, go, G) in the notation introduced in
§2, where L, =0, + (4,(go) + €I)d,. Obviously, (3.32) holds by definition when
i=0. If (3.32) is valid for i = k, then we have

LU (0) = 3G (0) — A%(go)d,0+U(0)
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= g+ + AU90) 0,9k — A%(90)0,9x
=Gk+1-
This proves (3.32) for i =k + 1. It follows that
M3U©O)=Mg,=0 in Q 0<i<s— I

Therefore the compatibility condition of order s — 1 is satisfied for the initial
boundary value problem (3.28), (3.29), (3.30). We use here Theorem A.l in [22]
and conclude the existence of the solution UeX**1([0, T]; 2). It is seen by
(3.32) that

(3.33) dUO)=g, in Q,0<i<s—1
Let y be a smooth function defined on [0, o) with support contained in [0, T]

and let y(¢) =1 for t near 0. Set

1402 x)z{X(t)U(—T, X) for —T<t<O,

for t< —T.

Then V has the desired properties.

Finally we construct the inhomogeneous term G. By definition g;, €
H*17{(Q), 0<i<s—2 Since goe H**%(Q2), we have by Lemma C.3 A%(gy)e
H’*%(Q). We observe that

min{s+2,s+1—i,(s+2)+(s+1—i)—<[%:|+1>}25+1—i.

Then by Lemma C.1 i), it is seen that A%(gy)d,g;e H*™' {(Q), 0<i<s— L
Therefore

9G(0)e H** 1 7i(Q), 0<i<s—2

Using the same method as in the proof of Lemma 3.1, we obtain Ge X***([0, T];
Q) that satisfies the condition (3.31). This completes the proof of Lemma 3.1C.

Remark. Let C,((— oo, 0]; Y) be the space of continuous and bounded
functions defined on (— oo, 0] taking values in a Banach space Y. Then
X*((— o0, 0]; 2) denotes the space of functions such that

Olue Cy((— 0, 01; H*7/(Q)), 0<j<s

The norm is
e lll xs (= oo, 07620 = Sup Ml u(@) |l -
t<0

Similarly, X5((— oo, 0]; Q)) is defined by replacing H* J(Q) by H} /(Q).

To prove the main Theorem, we proceed as follows. Let {f.}, {F.}, and
{v,} be the sequences whose existence is guaranteed by Lemma 3.1. Let
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U,e X™"2([0, T]; Q) satisfy 07 U,(0) = 4,(L(v)); fix, F) in 2,0 <p <m. Such a
sequence {U,} can be found by the same argument as in the first part of the
proof of Lemma 3.1. Let C, be a constant such that || U, |lxm+1o,15.0) < Ck-
Without loss of generality, we may assume that C, - co. We define a smooth
function v on Q as follows. For x in a suitable neighborhood of I, we put
v = v(x'(x)), where x'(x) denotes the point on the boundary I" nearest to x. For
x€Q not belonging to this neighborhood, v(x) may be chosen arbitrarily. Let

L(vy; v, k) = Ao(vy)0, + i (Aj(vk) + %)a]’ + B(vy).
j=1

k

We consider the initial boundary value problem

(3.349) L(v; v, k)u = Fy in [0, T] x 9,
(3.35) Mu=0 on [0, T]x T,
(3.36) u(0, x) = fi(x) for xe®,
where

" 1 u
Fk =Fk+ 6‘3 Z VjajUk.

kK i=1
For this initial boundary value problem we prove the following lemma.

Lemma 3.2. Let k be a sufficiently large integer. Then we have

i) The boundary I' is non-characteristic for the system (3.34).

il) The boundary subspace, that is, Ker M(x) is still maximal nonnegative on
[0, T] x I" for the system (3.34).

iii) For the initial boundary value problem (3.34), (3.35), (3.36), the data f,
and F; satisfy the compatibility condition of order m.

Proof. The statement i) is shown by straightforward calculations. The proof
of ii) proceeds along the line of [22], pp. 67-68. The statement iii) readily follows
from the definition of U, and Lemma 3.1 iv).

These observations lead us to the following result.

Proposition 3.3. Let m > 1 be an integer. Then the initial boundary value
problem (3.34), (3.35), (3.36) has a unique solution u* in X™*'([0, T]; Q), which
obeys the estimate

(3.37) Il () .5 < C( ) 1144(0) [, €M

Mrsyea

+ — U llxm- vgo, 11y MH!
Ci

t

+ C(M,T)j eCMDCI || (1) || m, 4 d1,
0
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for te[0, T], where M_, s and M} are constants independent of k such that
o x5+ 2 g0, 17 2) < M[2:|+2 and || v llxsqo,11:0) < My for k > 1, respectively, and
where C(-) is an increasing function of its argument with positive values.

Moreover, Pu* lies in XTI, ([0, T]; Q), where P is the smooth matrix valued
function on Q defined in Theorem 2.1. The following estimate holds for te[0, T].
(338) I PU Ol

< CME ) {11 O) g+ 11 Fi(O) - 1,4} 5"

( u 1)
Ci

t
+ 1 U lll xm + l([o.n;mecwml + C(My) J M E, (1) ||, ydT.
0

Proof. The existence of the solution uw*e X™*!([0, T]; 2) is shown by
applying Theorem A.1 in [22], which is the existence theorem for the initial
boundary value problems with non-characteristic boundary. (See also [3].) Note
that we need Lemma 3.2 to apply the theorem to our situation. The estimates
(3.37), (3.38) will be proved later in §6.

The existence of solutions stated in Theorem 2.1 is proved in several steps.
We prepare for this purpose the following propositions and lemmas. We observe
from (3.37) and the definitions of f,, F,, and U, that [|u*|xmo,7),0) is bounded
by a constant independent of k, that is,

S%P f u* |||x;"([o,r1;m < ©.

Therefore, {u*} is contained in a ball in ZJ(0, T; ©2) centered at the origin. Then,
by a weak* compactness argument, we can choose a subsequence {u*} such that,
for any 0 <j < m, {8/u*} converges in the weak* topology of L*(0, T; Hy /(Q))
as i—oo0. Let u be the limit of {u*}. Then the limit of {d/u*} is diu for
1 <j<m. This is seen by the fact that the limit of {é/u*i} in the distribution
sense equals d/u. We denote this subsequence still by {u*} in the following.

Lemma 34. Let m>1. Let {u*(t)} be the subsequence described above.
Then {u*(t)} converges as k— oo in the weak topology of HZT(Q) for any
te[0, T]. The limit u(t) coincides with the limit of {u*(t)} in the weak* topology
of L*®(0, T; H{(2)) for a.e. te[0, T].

Proof. Let ¢ >0 and let ¢ of L2(2). We fix te[0, T/2] and choose § > 0
small enough. By the assumption {t*} converges as k — oo in the weak* topology
of L*(0, co; HF(R)). Since (1/0) . +59€L'(0, 0c0; L*(2)), we have

t+46 t+4
(3.39) léj (¢, u*(s))ds — %J (¢, u'(s))ds| < ¢ for k,I> N,

where N is an integer depending on ¢, J, t, and ¢. The left hand side of (3.39)
is rewritten as
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t+0 t+o

(@, uk(s) — u*(t))ds — %J (¢, u'(s) — u'())ds)|.

t

(6. 15(1) — (. w'(0) + H

1

Since

wk(s) — uk(t) = J‘s 9 u*(1)dr,

. 01

we have

luk(s) — u (Ol < M(s — 1),
where

M= Sl:p i u’ |||x:"(lo.T];m~

Similarly,

lu'(s) — ')l < M(s —t).

Hence, we see that
. . ) 0
(¢, u(t)) — (&, u (1))l —EMII¢II - 5M|I¢II <e for k,I=N.

Let us choose & such that M| ¢ || <e Then we have
(), u*(1)) — (¢, w' (1)) < 2¢  for k,I=N,

where N is an integer depending on ¢, t, and ¢. Replacing y;, 445 bY Xp-s.> WE
repeat the same argument as above for te[T/2, T]. Thus we see that {u*(r)}
converges weakly in L?(2) for any te[0, T]. On the other hand, we have a
uniform estimate for u*(t), that is,

sup | () v < M.
It follows from these observations that {u*(t)} converges weakly in H3(Q) for

every te[0, T]. The last assertion in the lemma is easily seen by the uniqueness
of the limit. This completes the proof of Lemma 3.4.

Proposition 3.5. Let m> 1. Then the limit u of the subsequence {u*} which
lies in Z3(0, T; Q) satisfies (0.1), (0.2), (0.3).

Proof. Let

M= st:p Il u* |||x:"([0.T1;m«

We recall that each of the u*’s satisfies (3.34). Then we obtain for any
$eCy((0, T) x Q)
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(3.40) CA)Bt, ¢> + 3 (A (0)d i, &Y
j=1

n

+ c? Z (v;0ut, @) + (Bvu*, ¢

_<Fka¢>+—z<v Uk’¢>

le

where

T
S, g>=J ff'g_dth-
0 Ja

Integrating the above by parts, we have

(3.41) — (Aot 0,¢> — (8,45 (v))u*, >
- Z CAjv)u*, 99> — Z (0;4,w)u", ¢>

_C— Z <“’61 v;0)> + (B(v)u Sy )Y
kJj=1

1 n
=<(F, ¢> + - Z v;0;Uy, ).
Ci i=1

The convergence of the first term on the left hand side of (3.41) is seen as follows.
We have

(3.42) |<A0(Uk)“k — Ao(v)u, 0,0
< [K(Ao(v) — Ao()u*, 3,0)| + [< Ao (v) (u* — u), ,4)|.
The first term on the right hand side of (3.42) is bounded by
C Il Ao(®) — Ao(0) 128120,y 5P max 1w4(0)] max, 10,61,
which in turn is estimated by

CKM || v — vl x2881+ 20,17, 02 omax, l0,0(t)

by using Lemma A.3. Here K is a constant depending on Sl:p 1o Il 28+ 2 g0, 71,02y -

This shows that the first term on the right hand side of (3.42) becomes smaller
than arbitrarily given ¢ > 0 for sufficiently large k. The second term on the right
hand side of (3.42) is rewritten as
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(3.43)

f (U (1) — u(t), Ao(v(1))*0,p(1))dt|.

o

It is easily seen that Ay (v(t))*0,¢ € C([0, T]; L*(2)). Hence

orgrasxr [ Ao(v(£))* 0,0 (t) || < 0.

We have also
sup max | k()| + sup Ju(®)| <2M.
k O0=t=T o<t<T
On the other hand, u*(t) converges to u(t) weakly in L2(Q2) for each te[0, T]

by Lemma 3.4. Therefore, by Lebesgue’s dominated convergence theorem, the
second term on the right hand side of (3.42) converges to 0 as k —» co. Next, since

C— Y 1<, 0,v,) >|<— z [max [1,(v,6(0)]

we have

(3.44) Z (v;05uk, ¢> =0
Ckl 1

as k — oco. By the definition of C,, we have also
1 n
Ck ji=1

as k —» oo. Since the other terms on the left hand side of (3.41) are treated more
or less in a similar way, we omit the details. We have finally

(3.46) Ao, 3 — (@, Ao(0)), b
=S (A 38> — 3 <0400 > + (B, b
j=1 j=1

=(F, ¢).
Integrating (3.46) by parts, we have

(3.47) (Ao (0)0u + Z A;(v)3;u + B(w)u — F, ¢> = 0.

Since ¢ is arbitrary, we obtain (0.1). We show that u satisfies the boundary
condition (0.2). Let us assume for the moment that m > 2. Since ueC,([0, T];
H3(82)) by Proposition 3.9, we have

sup flu(®)]; < oo.

0<t<T

Note that H}(2) s H'(Q) if m>2. We have also
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k
u m
sup max |} < o0

by Proposition 3.3. Then, combining the interpolation theorem for the Sobolev
spaces and Lemma 3.6, we conclude that

sup_[u“(t) = u(®)ll;-.—0

0<t<T

1o,

as k—oo for >0 small. Hence u*(t)|r—u(t)l, in H2 (I') for 0<e<}
uniformly in ¢. This implies that Mu(t)=0 on I" for te[0, T]. Now we
consider the case where m = 1. Since H,,(Q) = H'(Q), we have

D,k
= <
M s?(p Jmax | Pu“(t)||, < o0

by Proposition 3.3. We fix t arbitrarily and note that the imbedding
H'(Q) s H!' %) is compact for 0 <& < 1. Therefore there is a subsequence of
{Pu¥(t)} which converges in H!“*(2). But by Lemma 3.4 the sequence {Pu*(1)}
converges weakly in L2(Q) to Pu(r). It follows that the sequence {Pu*(r)}
converges in H' ¥(Q) to Pu(t) without choosing a subsequence. Let M be a
smooth extension of M. Then

MPu*(t) > MPu(t) in H'7%Q),
for te[0, T], if 0 <e< 1. Hence

~ ~ -~ 1,
MPu(t)| - MPu(t)l, in HZ ('),

for te[0, T], if 0 <& <1, that is,

Mu*(t)|-— Mu(t)|  in H%“(r).

Notice that MP =M on I'. Since Mu*(t)=0 on I for k> 1 and t€[0, T], we
see that Mu(t) =0 on I' for te[0, T]. Thus u satisfies the boundary condition
(0.2).

Finally we check the initial condition (0.3). By our assumption, u*(0) = f
converges to f in H™(€2). On the other hand, u*(0) converges to u(0) weakly in
L*(2) by Lemma 3.4. Then we have u(0)=jf by the uniqueness of the
limit. Hence u satisfies the initial condition (0.3). Notice that actually
ueC([0, T]; L*(2)), which follows from the fact that dueC,([0, T]; L*(2)).
This completes the proof of Proposition 3.5.

Lemma 3.6. Let m>2. Let u*eX™ ([0, T]; Q) be the solution of the
initial boundary value problem (3.34), (3.35), (3.36) obtained in Proposition 3.3.
Then the whole sequence {u*} is a Cauchy sequence in C([0, T]; L*(£2)).

Proof. Since each of the u¥’s satisfies (3.34), we have

(3.48) L(v,; v, k)u* — L(v;; v, Du' = F; — F}.
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We rewrite this equation as

(3.49) Ao(v)o Wb + Y Aj(v)0,wW!
j=1
¢ Kl k.1
+— Y v;o;wht + Blo)wh
Ci /=1
= Jk,l'
Here
whl = % — o,
J1 = —(Aovy) — Ao(vz))az“l - Z (Aj(vk) - Aj(vl))aj“’

j=1
T T W '
~\ a2~ ) L viow' = (Bl — Be)u' + (Fe— F)
k 1 j=1
1 &

1 Jj=1

For simplicity, we write in what follows v, w, and J instead of v,, w*!, and J, ,
respectively. We take the inner product of (3.49) with w and integrate it over
Q. Then we estimate each term by a standard method. The nonnegativity of
the boundary condition for (3.49) is used when we deal with the integrals on the
boundary. Since A, is positive definite, we obtain finally

(3.50) w@)ll < CllwO)| + CM(vk)f Iw(z)lldr + Cf 1T (@)l dz.
0

0o

where
M) = max (1 +[Div A@O) Iy, , + 1BOD, ).

Div 4 = 3,4, + Y, 0,4,

Jj=1

Since v, — v in X4([0, T]; ) with u = max (m, 2[%] + 6), M(v,) is uniformly

bounded in k, say, by M. Then, by Gronwall’s inequality, we get

(3.51) Iw()ll < C(ll w(0) [ eMT + JT @) drec"")-

0

It is easy to see that

Iw(©) = llu*©) — ¥' )| = |l fi = fill-

J =J,, is estimated as follows.
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T
j [ Je (Dl dt < CKT v, — v;]l x2131+ 210, 17,2 l u' Il x2¢0, 11;02)
0

1 1
+CT| — + — |llu .
<C,% Ctz> f |||x3([0,T],n)

T
+ J | Fi () — Fy(7)] dt + CT(—l— + i)

0 Ck Cl
Here K is a constant depending on || vy |lx231+2¢0,1;0) and |l v lllx2881+ 20, 19,0)-
Since v, —» v in X4([0, T]; 2) as we noted above, we see that K is uniformly
bounded in k, . On the other hand, ||u'lx2q0,1),0) is uniformly bounded in I
Then, by the properties of f,, v, and F, stated in Lemma 3.1, we conclude from
(3.51) that || u*(t) — u'(t)]| = O uniformly in t as k, [ » co. Therefore the sequence
u* is a Cauchy sequence in C°([0, T]; L*(2)). The proof of Lemma 3.6 is
complete.

Lemma 3.7. Let X and Y be Hilbert spaces such that X g Y. Assume that
X is dense in Y. Let I=[a, b] and let the sequence {u} in C,(I;X), k=>1,
have the following properties: v
i) The supremum norm of u, in C,(I;X) is bounded by a constant not
depending on k, that is,

M =sup sup |u(t)llx < + 0.
k 0<t<T
ii) There is a ueC,(I;Y) such that the sequence {u,(t)} converges to u(t)
as k— oo in the weak topology of Y uniformly in te[0, T].

Then the limit u lies in C,(I; X).

Proof. Let tel. Since {u(t)} is weakly sequentially compact, there is a
subsequence {u(t)} such that u, () converges as j— oo weakly in X. This
implies that there is at least one accumulation point of {u,(t)} in X endowed
with the weak topology. On the other hand, by condition ii), there exists at
most one accumulation point of {u,(t)} in the weak topology of X. Hence the
whole sequence {u(t)} converges weakly to some limit in X for any te[0, T].
This limit must coincide with u(t) stated in condition ii). Next we show that
{u(t)} converges to u in the weak topology of X uniformly in t. Let X* and Y*
be the adjoint spaces of X and Y, respectively. We have Y* g X* and
furthermore Y* is dense in X*. Let feT*. Then (u/(t),f) is a continuous
function of ¢ by condition i). It follows from condition ii) that (u,(t), ) — (u(t), f)
as k — oo uniformly in tel. Hence (u(t), f) is a continuous function of . Now
let ge X*. We have

(3.52) (i (2), g) — (u(1), )l
< |w(®), g = DI + (0, f) = @@), NI + @@, f—9g)l.
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Then the first term on the right hand side of (3.52) is bounded by

sup sup [l (®)lxllg — flx < Mg,
k 0<t<T

if we choose fe Y* such that ||g — f|x» <& The middle term of the right hand

side of (3.52) becomes smaller than ¢ by taking k sufficiently large for fixed

f. The last term of the right hand side of (3.52) is estimated by

sup [lu(®)llx [ f — gllx- < Me,

0<t<T

since |u(t)]x < kl_i% llu(t)|x < M. This completes the proof of Lemma 3.7.

Lemma 38. Let X and Y be Hilbert spaces and let I=[a, b]. Let
T(tye L(X, Y) for tel and let T(t) be a continuous function of t in the norm of
L (X,Y). We define Tf for feC,(I; X) by

(T)(t) = T() f(t), tel

Then we have TfeC,(I;Y). The mapping f+— Tf is a continuous linear operator
from C,(I; X) into C,(I;Y).

Proof. We denote by X* and Y* the adjoint spaces of X and 7Y,
respectively. Since T(t)e Z(X, Y), we have T(t)*e L(Y*, X*). T(t)*, tel, is a
continuous function of ¢ in the norm of Z(Y*, X*). Let ¢eY*(t). Then

(T f @), §) = (S (), T(t)* ).

The right hand side is a continuous function of t. The last assertion of the
lemma is easily seen. This completes the proof of Lemma 3.8.

Proposition 3.9. The initial boundary value problem (0.1), (0.2), (0.3) has a
unique solution u in Y;'([0, T]; 2).

Proof. We recall that {u*} is a subsequence of the solution of (3.34), (3.35),
(3.36) such that, for any 0 <j <m, {0/u*} converges in the weak* topology of
L0, T; H" ¥(2)). Let u be the limit of {u*} as k> co. Then we have dju* —»
dlu as k> oo for 1 <j<m. We shall show that djueC, ([0, T]; HT #(Q))) for
0 <j<m. First we consider the case where j = 0. Since u*e C([0, T]; H}()),
k> 1, we have a fortiori u*eC, ([0, T]; H}(Q)), k > 1. Moreover,

k
Sup max |[U(t)l, < 0.

On the other hand, u* converges to u in C([0, T]; L?(2)) by Lemma 3.6 and
hence in C,([0, T]; L?*(22)). Combining these observations and applying Lemma
3.7 with X = H?(Q) and Y= L*Q) to {u*}, we conclude that ueC,([0, T];
H7(Q)). Next we prove the general case by the induction on j. Let us recall
that u satisfies (0.1) which is rewritten as
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6,u=Gu+f,
where
G=-Y 4,0, B,
j=1
A;=Ag'A;, 1<j<n B=A;'B, F=A;'F
We set
G‘. = — Z /Zy)aj—é(l), iZ l,
j=1

A9 =34, BO =B
Then, by Leibnitz’s rule, we have

1-2
(3.53) Gu=Gno 'ut+ Y ( )G,_l_i(t)aﬁu + 0, 'F.

i=0
We assume that diueC, ([0, T]; Hy /(Q)) for 0<i<[—1 and want to show
that dlue C,([0, T]; HT'(2)). Since Fe W,"(0, T; 2), we have Fe W0, T; Q)
also. This implies that &/Fe C([0, T]; H7'79(R)),0 <j<m — 1. In particular
d'"'FeC([0, T]; H?"'(Q)). Therefore, the last term on the right hand side of
(3.53) is a member of C,([0, T]; HF '(2)). We note that d;e Z(Hy (),
H™ "2(Q)) for 1 <j <n where 0<i<!—2. Then we have 9,(diu)e C,([0, T];
H7"i7%(Q)). 1t can be shown by using Lemma B.1 iii) that A{~179(t) is an
operator of L(HT ~2(Q2), H77'(Q)) for each tel and that it is a continuous
function of t in the norm of L(HT "%(Q), Hy '(R2)) for 0<i<I|—2 and
1 <j<n The same is true for B¢~'~9(t). Hence by applying Lemma 3.8 we
see that

G, (O)0u=— Y A4"1795,8lu) — BY"17(t)olu
j=1

J

is a member of C,([0, T]; Hy '(Q)) provided that 0 <i<I—2. Thus the
middle term on the right hand side of (3.53) is a member of C,,([0, T]; HF ~'()).
Finally we consider the first term on the right hand side of (3.53). To this end,
we write

G(1) = Ao(t)™'(A,(1)0, + A(t) + B(2)),
where

n n

A1) = .Z v A1), 0,= ) v;0;,

j=1 j=1

A0 = ¥, (40 — v A2,
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and where v = (v,,...,v,) is a smooth extension of the outward unit normal to
I'. Let us look at

Ag N (1)(A() + B(1)d; .

We have 0. 'ueC, ([0, T]; HF '*'(Q)) by the assumption of the induction.
We observe that A(t) is a tangential vector field, although its coefficient matrices
are not in C®(Q). Ay(t)"'A4(r) is an operator of L(HI '*1(Q2), HT !(Q)) for
each tel and continuous in ¢ in the norm of L(H}; '*'(Q), H; '(Q)). This
can be shown by using Lemma B.1 iii). Therefore, by Lemma 3.8, we see
that Aqy(t)”'A(t)d" 'ueC,([0, T]; HF"'(Q2)). The same argument holds for
Ao(t) 'B(t)0! 'u. Finally we treat Ay(t) 'A,(t)d,(8' 'u) that remains. Let
P = P(x), xeQ, be a smooth extension of P = P(x), xel, where P(x) is the
orthogonal projection onto 4"(x)*. Recall that, by Proposition 3.3, Pd'~'u*e
C([0, T]; Hy,'*1(Q)) and that

M = sup max [ P07 u*(t)) - 14 1,55 < 00
K O=t<T :

Since 1 << mand H,,(2) = H'(Q), the imbedding H7,'*' ¢ L*(Q) is compact.
Hence, for each te[0, T], {Pd!~'u*(t)} has a subsequence that converges in L().
This subsequence also converges weakly in HJ.'*!(2) by the uniform estimate
in this space. Actually, by the uniqueness of the limit of {ﬁ@ﬁ“‘u"(t)}, we need
not employ the subsequence. The whole sequence {ﬁ@f"u"(r)} converges weakly

in H7,'*1(Q) for each te[0, T]. The limit P!~ 'u(r) satisfies the estimate

sup | P01 u() 141,00 < M.

0<t<T
Since Pd'~lueC, ([0, T]; HI'*1(Q)), we get Pal"tueC,([0, T]; HT,'*1()).
Then it follows that ,P(@~'u)e C,([0, T]; H™ '(22)). Note that if m>1 we
have d,fe HT '(Q) for any feHJ,(Q). Now Ay(t)"'A,(t) is an operator of
Z(H77'(Q)) for each tel. Moreover, it is a continuous function of ¢ in the
norm of £ (H7~'(2)). Hence we have 4,0,P8! 'ue C,([0, T]; HT ' (Q)), where
we set A,(t) = Ay 1(1)A,(1). Let us write

(3.54) A,()0,(8" 'u) = A,(£)0,(Poi ™ u)
— A,(t)(0,P) @ 'u) + A,()(1 — P)3,(8" 'u)

The second term on the right hand side is a member of C,([0, T]; HF~'*'(2))
by Lemma 3.8. To discuss the last term on the right hand side, we note that
A,(1 — P)d, is a tangential vector field because A (1 — P) vanishes on I. Hence
this term can be dealt with in the same way as we treated A,(z)~ ' A4,(t) (8 1u).
The first term on the right hand side of (3.54) was discussed above. Consequently,
we get 4,0,(0"'u)eC,([0, T]; HT !(2)). Summing up these observations, we
conclude that the first term on the right hand side of (3.53) is a member of
C,([0, T]; H""!(2)). Therefore all the terms on the right hand side of (3.53)
lie in C,([0, T]; H™"'(22)). This implies that d'ue C,([0, T]; H" ().
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We prove the uniqueness of the solution of the initial boundary value problem
(0.1), (0.2), (0.3) in Y;*([0, T]; 2). For simplicity we assume that m=1. If
ue Y, ([0, T]; ), then we have

(0
(1), @) — (uls), ) = J (E u(1), d)) dt
for 0 <s<t< Tand ¢peL*(Q). This implies that u = u(t) is strongly continuous
and in addition weakly differentiable in L2(22) in te[0, T]. Hence the following
equality holds for te[0, T].

%(u, Ao(t)u) = (Qu, Ag(t)u) + (u, (0,Ao(1))w) + (u, Ag(t)(O,u)).
This enables us to obtain the L*(Q2)-estimate of the solution ue Y,}([0, T]; Q)
by the standard energy method. Then, it is clear that if u;, and u, belong to
Y ([0, T]; ) and satisfy (0.1), (0.2), (0.3), they must coincide with each
other. This proves the uniqueness assertion. The proof of Proposition 3.9 is
now complete.

Remark. As a consequence of the above proposition, it turns out that the
whole sequence {u*} converges in the weak* topology of L*(0, T; HI(f)) to u
without passing to a subsequence. Also, the whole sequence {d¢/u*} converges in
the weak* topology of L*(0, T; HF ¥(RQ)) to dlu for 1 <j < m.

Proposition 3.10. The solution u obtained in Proposition 3.9 lies in
X2([0, T]; Q).

Proof. One of the ingredients of our proof is the use of Rauch’s mollifier
introduced in [20]. Except for this point, the argument is analogous to that of
Majda [13], where the Cauchy problem is studied. The detailed proof will be
given in a forthcoming paper [24].

§4. Proof of Lemma 3.1A

We follow the line of the proof of Lemma 3.3 in [21]. However, we must
argue more carefully, for lack of regularity of the coefficient matrices of the
equation. Besides this, the boundary matrix is singular in our case. Therefore
we can employ the proof of Lemma 3.3 in [21] only after suitable
modifications. The f,’s mentioned in §2 are defined inductively by

(4.1
fo =fs

p—1

—1
fo=2 (p ; >G.-(0)fp-1—.-+55’_I(Ao(v)“(Ao(v)_‘F)(O), p=1,in Q

i=0

Here
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Golt) = = T Ao 4,00, ~ Agw)'BO)

M=

Gi(t) = —

i

=[az’ Gi—l(t)]a P> 1.

3i(Ao(v) ™' 4;(0))8; — G(Ao(v) ™" B(v)

1

We observe that f,, p >0, defined by (4.1) can be written as
4.2) fo=B,f+EJF, p>0,in Q.
Here B, and E, are defined respectively by

3) {B"f:f’
B,f= Z Cp; q;iy,...,i) G, (0) - G; (0) f, p=>1,
i1+--+igtq=p
and
EyF =0,
E\F= (AO(U)_IF)(O),
E F
4.4) P o2
=y y C(p; q:iy,....i)G,(0)--- G, (0) x
n=0iy+ - tigtq=p—-1-n
x 01(Ay(v) 1 F)(0) + 07~ 1(Ao(v) "' F)(0), p=>2
with

Clp;q;ig,....0p)

_(p—1><p—2—i1>_”(p—q—(t‘1+---+iq_1)>
S\ iy i, '

The summation on the right hand side of (4.3) is taken over all 1 < g <p and
the g-tuples (iy,...,i,) such that i; +---+i, + ¢ = p. The summation on the right
hand side of (4.4) is analogous to this. In order to get a concrete expression
for the product of the first order differential operators G;,(0),..., G, (0) appearing
in (4.3) and (4.4), we set for i >0

AD = 3(Ap(0) T 4,0)(0), 1<j<n.
AD, | = 3i(Ao(v) " B(1)) (0).

When 0, , appears in the following, it should always be replaced by the identity
operator. Let S(q) be the set of ¢ x q upper triangular matrices ¢ whose entries
are either 0 or 1 and whose rows contain at most one entry which equals 1. Let
1<ji,..j; <n+ 1. We define S(q; ji....,j,) to be the set of oeS(q) such that,
if j, =n+ 1 then each entry of the k-th row is zero, and if j, # n 4+ 1 then the
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k-th row contains one entry which equals 1. Then, we get

G,(0)+ G, (0)f = y (A§10;)(AS20;,) -+ (A2, f

1<jtrerjgsn+1

— Z Z A§“’(a"“'2’Aj.";’) ((3""“‘3)672(2‘3)A3~i3”

1 i j
1<ji,sjg<n+1 0€S(@q;j1,.--rJq)

a(l,9) .., Ao(@— 1,9 4(ighyfe(l,1)  A9o(q.q)
x (05, 07,2 P A52) 05, 5,21,

where a(m, k), 1 <m, k < g, stands for the (m, k)-entry of a.

Let 0eS(q; jy»....J,) and let 1 <i <n. We define ¢;(0) to be the number
of k for which a(k, k) =1 and, in addition, j, =i. We write ¢(0) = (¢,(0),...,
@a(0)). Now let I =(I,...,1,). We set

[P FOY — i 1,2 i
AP giiynigph= Y Y AREP AR
1<j1,...,jg<n+1 aeS(q;j1,...rJq)
o(a)=1

0(1,3) A0(2,3) 403Ny ... (Ac(1.a) ... Ao(a—1.a) 4(iq)
x (ajl ajz Ajz ) (ajl afq»i quq )-

Then, B,f and E,F are written as follows.

(4.5) B,f= ) A Dof, p=0,

li<p

(4.6) EF = pil Y A —1—n,D30(A,(v)" ' F)(0), p=>1.

n=0 |[l|lsp-1—19

Here

Alp, ) = Y Cp; q; iy, iAP; g iy,..nigs ), p>1

iy +--+ig+tq=p

We set A(0, 0) = I for convenience.

Lemma 4.1. Let ve X%([0, T]; Q) and let div(0)e H***?7/(Q), 0<i<y,
where u=max<m, 2[g]+6>. Let v(p, |l))=2u+2—p+max(|l|,1). Then

4.7 A(p, he H'™')(Q), O<|li<p<spu+1.
Proof. We have by Leibniz’s rule

AP = (@i(Ao(0) "1 4,))(0) = (Sl )(55/10(1))_‘)(0)(3§A,~(v))(0),

s+r=i
O<i<p l<j<n+1.

By exploiting div(0)e H?***27{(2), 0 <i < pu, we can use Lemma C.5 and Lemma
C.3 to obtain

4.8) BA,(0) 0 eH™ 275(Q), 0<s<i
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and
4.9) 0 A;(v)(0)e H**277(Q), O<r<iI<j<n+1l
This yields by Lemma C.1 i)
(4.10) APe H*#*27i(Q), O<i<pu l<j<n+ L
It follows that
ajgl(l,k) a?k(,f:l'k)A'(,-l;:()GH2”+2_(ik+a(l'k,+m+o‘(k—l’k))(Q), 2 < k < q.

Applying Lemma C.1 i) repeatedly to each term of A(p; q;i,,....i,; [), we have
finally

-1

A(p, q; il’---’iq; 1)6H2u+2—<i1+'“+iq+2§:22’,‘.,=16('","))(9).

We define p = p(j;,....j,) to be the number of k such that jy=n+ 1 Let
0€S(q; jys....J)- Then we have

q q k—1
Yootk )+ Y Y am k) =q—np.

k=1 u=2 m=1

Since tr ¢ = |¢(0)|, this implies

q k-1
Y Y omk)=q—p—le).

k=2 m=1
Therefore
AP q;iy,.... 0 ye H2#+2- it tia=p=Il)( ),

We observe that if |@(c)| = 0, then a(g, q) = O, that is, each entry of the g-th row of
o is zero. Thus, |@(6)] = 0 implies that p > 1. Consequently, we have 1 < p +
|@(a)|. Hence

p + |l| = max (|I], 1).
We see therefore
A(p; g5 iy, ig)e HA#* 27t tiarammaxlll. D)),
Since i; + -+ + i, + g = p, we obtain
A(p, e H*®ID(@).

The proof of Lemma 4.1 is now complete.

Corollary 4.2. Let v be as in Lemma 4.1. Let B, and E, be the differential
operators defined by (4.5) and (4.6), respectively. Then

4.11) B,e Z(H*(Q), H*"?(Q)), Il<p<pu+1, p<s<2u+3,
4.12) E, e Z(VS(0, T; Q), H7(Q)), I<p<u+1,p<s<22u+3.
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Proof. First we prove (4.11). Let 0<|l|[<p<u+ 1. Then, by Lemma
4.1, A(p, I) is a member of H*?!")(Q). Since p <s <2u+ 3 and |I| < p, we have

] n
min {V(P,lll),s—lll,V(P,|1|)+(S—|1|)-[5]— 1}25‘1’-
Hence, by Lemma C.1 i),

(4.13) IBpflls—p < C 3 AP Dllvip i 10 Is-10 < ClLS Il

[1l<p

for fe H(2), p <s<2u+ 3. This proves (4.11).

Next we show (4.12). Let FeV(0, T; Q) where p <s<2u+ 3. We recall
that A(p—1—n,1) is a member of H'P 1 nN(Q) 0<np<p-—1, 0<|lI<
p—1—n<u+1, by Lemma 4.1. Since p<s<2u+3and [[|[<p—1—1n, we
have

. n
min {V(P—l—n, ), s—1—=n—[ll,v(p—1—n, |l|)+(S—1—n—|ll)—[5]—1}
> S —p.
By using Lemma C.1 i) and Leibniz’s rule, it is seen that

(4.14) IE,Flls-p

p—1
<Y X AP —1-=nD80(A,0) " F)O) -,

n=0 [l|<sp-1—n

p—1
<CYy, Y AP =1 =n,Dlp-1-num

n=0 |l|<sp-—1-n

x [|0%01(Ao() " " F)(O)lly= 1 -y

-1
< cpzo 181(Ao(0) " F)O) -,

<C'Y T 1AW OFFO) s,

n=0 &+i=n

We see that

min {2u+2—€, s—1-¢, (2p+2—§)+(s—l—C)—|:;—]—1} >s—1-n.

Then we use Lemma C.1 i) to obtain

p—1

(4.15) Y X 164, O FO) - -,

n=0 &+L{=n

p—1
SCZ Z ||65A0(U)—1(0)”2u+2—§"afF(O)Hs—l—;

n=0 &+{=n
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p—1
<C ) 101FO)lls-1-,
n=0
< CFlllvso,1;0)-
Hence, it follows from (4.14) and (4.15) that
NE,Flis—p < ClFllyso.1:0)-
This proves (4.12).

Remark. Corollary 4.2 can be proved directly by using the formulae (4.3)
and (4.4). Nevertheless, it is worth while presenting the above proof that is not
the shortest, because it serves as preliminaries to our proof of Lemma 4.4.

Corollary 4.3. Let fe H"(2) and let FeV,"(0, T; Q), where m > 1. Let ve
X4([0, T]; Q) and let div(0)eH* ™' 7/(Q), 0<i<p—1, where yu= max <m 2[%]
+ 6). Then we have

(4.16) IBpfllm-p < CKy— ) 1S llms
(4.17) IEF lm—p < C(Ky— ) [l FO) -1

for 0<p<m. Here K,_, is a constant such that ||v(0)|l,-, < K,_, and C(-)
depends increasingly on its argument.

Proof. Let
k(p, 1) =p—1—p+max(|l], 1).
Then, as a particular consequence of Lemma 4.1, we have
Ap, DeH*»"(Q), O0<|l|<p<m

Replacing v(p, |l]) by x(p, |l|) in the proof of Lemma 4.1 and verifying that the
use of Lemma C.1 i) is still valid, we see that

IA®, Dllxp, iy < C(Ky—y),  O<|ll<p<m.

Then we retrace the proof of Corollary 4.2, replacing again v(p, |l|) by
k(p, |l|). Lemma C.1 i) is also applicable to this case. This should be checked
whenever we use the lemma. Except for this point, the proof is similar to that
of Corollary 4.2. We obtain finally the estimates (4.16) and (4.17).

In what follows, we make use of the surfaces parallel to 7. We mark off
a segment of constant length J, directed inward (resp. outward) to I, along the
normals at every point of I For a sufficiently small §, the locus of the end
points of these segments forms a closed surface, which does not cut itself, and
which lies inside (resp. outside) I" and has a smoothly varying tangent plane. Let
I's denote this surface. For every point x on I" there is a corresponding definite
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point x on [I'5, which lies on the normal to I" at x. Conversely, for every point
x on [ there is a corresponding definite point x on I. The normal to I" at x
is also normal to I'; at x. To every point x in a neighborhood of I we associate
the outward unit normal to I" at the corresponding point x = x(x) on I, which
is the nearest point to x on /. This is equivalent to saying that to every point
x near I" we associate the outward unit normal to I; at this point, where ¢ is
the distance from x to I Thus we obtain an extension of the outward unit
normal originally defined only on I. Explicitly this is given by v(x(x)), but we
continue to denote this extension by the same v. The vector field d, =Y 7_, v;é;
is defined on a neighborhood of I" in R", say G, in this sense.

Lemma 44. Let xeGnQ and let f be a smooth function defined on
GNQ. Then the differential operator B, can be written in the form

(4.18) B,f = (Ay(v(0))~ " A,(v(0)))P % f + Z C,p-i0.f, I<p<u+1,

where C, ,_; is a differential operator of order at most p — i involving only the
differentiation in the direction tangential to the surface which is parallel to I and
on which x lies. Moreover, we have

4.19) C,,- i €ZH(GNR), HP(GnQ)),

I<p<u+1, p<s<22u+3.

pp—i

Proof. We study B, by using a partition of unity and changes of systems
of local coordinates. Let U be a neighborhood of some point on the boundary
I' and let @ be the diffeomorphism from U to B,(0) defined in §5 after the proof
of Lemma 5.2, where B,(0) is the open ball of radius 1 centered at the origin. We
regard B, as an operator acting on the space of smooth functions with supports
contained in U. Since B, is the sum of the terms like constant times
G;,(0)--- G;,(0), we study each G;(0) in the local coordinates. We denote by @,
the transformation of linear differential operators induced by @. Let

n

L(G(0) Z A9D; + B9,

where D; = d/dy;, 1 <j < n. Then

/‘i?) = kil (»oj.kA;ci)|x=‘P(y)v
B = Bm'x:ww
where ¢;, = 0®;/cx, and ¥ =&~ '. It is obvious that
D,(G;,(0) -+ G, (0) = D,(G;,(0)) - Py (G, (0)).

Hence each term of &,(B,) has the form
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M:

const. (Y AD; + Bi)...(Y A%D; + B).
j=1

j=1

It follows that

. p-1 ” o
?,(B,)=(AL)yD; + Y (const. Y A(p, (i, I))D}) Dy
i=0 ['|<p—i
where A(p, (i, I') is analogous to A(p, (i, ) and y' = (y5,...,¥.), I' = (L5,....1).
We set

(4.20) Cppi=P,(const. Y A, (i, I)DY).

|U'|<p—i
Then C, ,-; is a differential operator of order at most p — i having the property
described in the statement of Lemma 4.4. We prove that C, ,_,e Z(H*"(UnQ),
HPUNnR),1<p<u+1,p<s<2u+3 LetfeH '(UnR),1<s<22u+3.
It is clear that f(¥(-))e H*"!(B}(0)) with B](0)= B,(0)nR".. We note that
A(p, (i, I')e H*®»*1'D(B (0)) by Lemma 4.1. Since

@,(C,,-)f(P() =const. Y A(p, (i, 1)Dy S (P (),
[Wsp-i
it can be shown by an argument similar to that given in the proof of Corollary
4.2 that

®,(C, ,-)€L(H T (B] (0), H* "(B{ (0)),

p,p—1t

I<p<u+1, p<s<22u+3

We note that so far the operators C,,_;, 0<i<p—1, are defined only
locally. Let f be a function defined on GNQ. We choose a partition of unity
subordinate to a suitable finite open covering of I. Let fV =y,f, j=1,.. N,
with x; cut off functions. For each fY¥, C, ,_,f" is defined by the argument
as above. We set

N
4.21) Cop-if =3 CppoifV.
j=1
Thus C,,_; is defined as an operator acting on H*"/(Gn ). It can be shown

that the operators C, ,_;, 0 <i < p — 1, are determined uniquely by B,. Hence,
the proof of (4.19) is complete.

We define a new inner product in C' by

4.22) lu, who = (Ao (v(0))u, w) for u, weC'.

Then Ay(v(0))" ' A4,(v(0)) becomes a selfadjoint operator, that is,
(Ao(0(0) ™" A,(w(0)u, who = Cu, Ao(0(0)) "' 4,((©0)w)e  for u,weC'.



Initial boundary value problem 177

We set
L(x) = (Ao(v(0)) ' 4,(v(0)))(x)  for xeGnQ.

Let x be an arbitrary point lying on I. Let C(x) be a closed rectifiable Jordan

curve with positive direction enclosing all the non-zero eigenvalues of L(x).
Define T(x) by

_ 1 1 _
T(x) = —f — (A — L(x))"'dA.
Since x is an arbitrary point on I, we obtain a complex matrix-valued function
T(-) on I For any x, there is a suitable neighborhood of x in R", say U(x),
such that we have

(4.23) T(x) = Lj ! (A — L(x))"'d4 for xeU(x)nQ.
27 Jem A

Notice that the eigenvalues of L(x) depend continuously on x because L(x) is a
continuous function of x. This enables us to choose one and the same path
C(x) for all xeU(x). We may regard T(x) as a matrix-valued function defined
on GnQ. We define T,(x), p>1, by

1 1 _
4.24) T,(x) = —J T (A — L(x))"'di for xeU(x)nQ2.
C(x)

T,(x) is also a complex matrix-valued function on GnQ. Then T,(x) = T(x). We

1
use Lemma C.6 with r=2u+ 1, A(4, x) =4 — L(x), and ¢(1) = - Then it
turns out that %

(4.25) T,(- ye H***2(GnR; B(CY), p=>1.
We set
L,(x) = ((4o(v(0)) ' 4,((0)) (x))’ = L(x)*, p=1.

Then L,(x) = L(x). We have T,(x)L,(x)= L,(x)T,(x)=P(x), p=>1, xeGnQ,
where

P(x) = Lj (A —L(x))"'dA for xeU(X)nQ.
4} C(;)

Actually, P(x) is the sum of eigenprojections corresponding to the eigenvalues of
L(x), which do not belong to the zero-group. Hence P(x) is a projection operator
acting on C'. We call T,(x) the pseudo-inverse of L,(x). We shall show that
L,(-) belongs to a Sobolev space on GNQ. Since A,(v(0))"'eH?****(Q) by
(4.8) and A (v(0))e H***2(22) by (4.9), an application of Lemma C.1 i) yields

L,(-)eH***(Q; B(CY), p=>L
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We extend M(x) to a C®-function defined on © which is denoted by the same
M(x). We may assume without loss of generality that M(x) is a selfadjoint
operator acting on C' equipped with the new inner product introduced above. In
fact, if this is not the case, we may replace M(x) by M™(x)M(x), where
M™®(x) = (Ao(v(0)) "' M* A, (v(0))) (x). Then (M(x)u, w)o = {u, M*(x)w), for
u, weC', that is, M™(x) is the adjoint operator of M(x). Note that M(x)u =0
if and only if M®(x)M(x)u =0. We set
(4.26) 0(x) = LJ‘ (A —M(x))"tda for xeU(X)nQ

27i Jex
where C(x) is, like the one used in (4.23), a path with positive direction enclosing
all the nonzero eigenvalues of M(x) where x lies on I.  Q(x) can also be regarded
as a matrix-valued function defined in GNQ2. We see that Q(x) is the orthogonal
projection onto the direct sum of the eigenspaces of M(x), such that the
corresponding eigenvalues do not belong to the zero-group. Let

1 1 _

4.27) K(x)=——_J‘ —(A=M(x)"tdA for xeU(x)n <.
2ni Je A

Then K(x) is what we call the pseudo-inverse of M(x). We have K(x)M(x) =

M(x)K(x) = Q(x). By using Lemma C.6, we obtain

Q(-)eH***2(Gn; B(CYH).
Combining this with (4.25), we get
T,Q(-)eH***(GnQ; B(C)), p=1

Hence, denoting by T,Q0 the multiplication operator defined by T,Q(-), we
conclude that

4.28) T,0e Z(H*(GNnQ)), 0<s<2u+2

Proof of Lemma 3.1A. Following the line of the proof of Lemma 3.3 in
[21] with suitable modifications, we construct f, and F,. By Lemma B.3 with
r=s=2m+ 3, it is seen that there exists a sequence {F,} in C*"*3([0, T];
H?*™*3(Q)) such that F,—F in V"0, T; 2). We choose a sequence {g,} in
H?™*3(Q) with g, » f in H™( ). Then, we write the desired sequence {f,} as
fi = g — h, where h,e H"*?(2) must be so chosen that h, -0 in H™(2) and

(4.29) MB,h, = M(B,g, + E,F,) on I,0<p<m

The construction of A, is as follows. By Lemma 4.4, the equation (4.29) is written
as

Mh, = Mg,,

430) on [I.
@ M(Ao(v(0))™* 4,((0))P0%h, + MY.P C, ,_ 0 hy

i= p,p—1

= M(B,g, + E,F)), 1<p<m,
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Then it suffices to solve

he = Qg

4.31) on I.

(Ao(v(0)) ™" A,(v(0)))" % by
= Q((Bygi + E,F) = Y12, Cppi@ihy),  1<p<m,

i=p “pp—i

Note that MQ = QM = M, because M is supposed to be a selfadjoint operator
acting on C' with the inner product defined by (4.22). To solve (4.31), it suffices
in turn to solve

hk = ng’

on I

(432) , b1 ;
avhk = TpQ((Bpgk + Eka) - i=0 Cp,p—iavhk)’
l<p<m,

Recall that we set L, = (A,(v(0))”'A4,(v(0)))’ and that T,L,=L,T,=P for
p>1. Here P and Q are orthogonal projections onto (Ker L)* and (Ker M)*,
respectively, for xeI. By the maximal nonnegativity, we have Ker 4, =« Ker M
on I Hence KerLc KerM on I. It follows that (Ker L)* o (Ker M)* on
I This implies that PQ =Q on I. Hence (4.31) follows from (4.32). The
equation (4.32) reduces to

4.33) h, = bp'k on I,0<p<m,
where
bO,k = Qi

p—1
b, = T,Q(B,g« + E,F,) — T,Q Y C,po-ibixs l<p<m
i=0

Let o/,, 0 < p <m, denote the operator defined by

o(f, F)=0Qf,
,(f,F)=T,Q(B,f + E,F), 1<p<m.

Then, by Corollary 4.2 and (4.28), we have
(4.34) A,e Z(H(GNR) x VO, T; GnQR), H"7(GnQ)),

l<p<m p<s<2u+3.
Let #, = o,. Define the operators #,, 1 < p < m, inductively by

p—1
(4.35) B,=s,—T,0 Y C,,-i%B,
i=0

where
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(4.36) B,e LH(GNQ) x V20, T; GnY2), H"7(GnQ)),
I<p<m p<s<2u+3.

It follows from (4.19), (4.28), and (4.34) that the operators #,, 1 <p <m, are
well defined. Setting s =2m + 3 in (4.36), we have

(4.37) box = B,(gi, F)eH™37(GnR), O0<p<m

Let a,, = o,(9 F,) and let a, = o, (f, F). Noting that g, - f in H"(GNQ)
and F,— F in V"0, T; Gn<), and then using (4.34) with s = m, we have

a, —a,= A g —f, Fk—F)-»0 in H" "(GnR),0<p<m-—1.
Let b, = #,(f, F). We have also
b,x—=b, in H"?(GnR) as k-0, 0<p<m—1.

Hence

mep-L
y(ap.k)_’y(ap) in H" " XI) as k— oo, 0<p<m-—1,

and

m—p-1
y(bp) =y, in H" ""X(I') as k—o0, 0<p<m-—1.

Here y denotes the trace operator on I. Since Mf,=0on I, 0<p<m— 1,
and Q = KM, we have y(a,) =0, 0 <p<m— 1. By induction on p, this shows
that y(b,) =0, 0 < p<m— 1. Note that, by (4.35),

bO = ao,
p—-1
b,=a,-T,Q0 3 C,,_:b; I<p<m
i=1
This proves that

m—p—1
(4.38) yb, ) =0 in H" " 2(I') as k—oo,0<p<m— L
Recalling (4.33), we define a sequence {y,} in H*"*3(Q) by
yk = R2m+3,m(y(b0,k)’--"‘y(bm—l,k))'

Here R,,.3., is the operator described in Lemma C.2 ii) with p, g replaced by
2m + 3 amd m, respectivly. Then it follows that

(4.39) =0 in H™) and y(@y) =7y, O<p<s<m-—1.
We write h, = y, + z, where z,e H"*?() must be so chosen that

z, =0 in H™(Q),
(4.40) 0%z, =0o0on I,0<p<m-—1,
vz = by — 0Vyy = b, =w, on I
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Let C, be a constant such that |w,|gmg) < C,. Without loss of generality we
may assume that C, — o0. To solve the set of equations (4.40) for z, we reduce
our problem to the case where 2 = R" . The construction of such a sequence
of functions for this case is given in [21]. We state it here for the sake of
completeness. Let ,(r) = m!'r"¢(Cir), where ¢ e CS(R) with ¢(r) = 1 for r near
0. Then ¥{’(0)=0 for 0<i<m—1 and YMO0)=1. Also, [Yillgmo.« <
const. C; 2. Then the desired sequence {z,} is given by

(4.41) 2z, = Y (x ) wi(x4,..., X,)-

Since Y, e CZ(R) and w,e H"*2(R""'), we have z,e H"*?(R%). In addition,
M zile =0 = (OFYWilx,=0=0, O0<p<m—1,
T2k lx,=0 = (OTYI Wil =0 = Wi

and

Iz Ly < 1Wallameo, o) * Wi llmgn-1) < C'-0 as k — oo.

Thus, (4.40) is proved. We see that

h,eH"*%*(Q), h, >0 in H™Q).
Since

oY h, =b,, on I, 0<p<m,

we find that {h,} is the desired sequence. This completes the proof of Lemma
3.1A.

§5. Reduction to the problem in the half space

In this section, we reduce the initial boundary value problem (3.34), (3.35),
(3.36) to the one in the half space. This is a preliminary for the proof of the
estimate (3.37) which is uniform in k. For simplicity, we write ¢ in place of
1/C(k)*. We write also v, f,, F,, U, instead of v, f;, F,, U, in the following.
Needless to say, ¢ is small enough. Then the problem (3.34), (3.35), (3.36) is
written as

n

(5.1)  Agw)ou+ Y Ajw)oju+ BoJu+e ) vidu=F, +¢ey v;0;U,
2 =

in [0, T] x Q,
(5.2) M(x)u=20 on [0, T] x T,
(5.3) u(0, x) = f,(x) for xeQ.

First, we prove the following lemma.
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Lemma 5.1. Assume that conditions 1)-viil) of Theorem 2.1 hold. Then, for
any xel’, there exists a neighborhood U of x and an | x | unitary matrix valued
function T(x)e C*(UNRQ) having the following properties: Let xeUNI and let

M (x) = Ker M(x). Then, ue M (x) is equwalent to T(x)ue//l Also, ue N (x) is
equivalent to T(x)ueJV Here M and N are subspaces of C' independent of x
such that M > N . .

Proof. Since A"(x) is a smoothly varying subspace by condition vi), we can
choose an orthonormal basis {e;(x)}{-,, 4, of #'(x) which depends smoothly on
x in a neighborhood of x, say, UnI. Letl, =1— dim .#(x). Then, by condition
ii), [, is constant on I. The maximal nonnegativity implies that A4 (x) = .#(x)
on I. Hence 0<1, <l,. .#(x) varies smoothly with x, so we can choose an
orthonormal basis {e;(x)}iL,,,; of A (x)n A (x)* which is also a smooth function
of x on UNT. Finally, let {e,(x)}2, be a smoothly varying orthonormal basis
of #(x)" defined on UnTI. Note that #(x)* = A" (x)*. The collection {e;(x)}!-,
is an orthonormal basis of C' which belongs to C®-class on UnTI. Define T(x) by

T(x) = (e, (x)*,...,e(x)*), xeUnTr.

Then T(x) is a unitary matrix valued C®-function on UnrI. Let v = T(x)u. Let

M ={veClv, = =u, =0} and let N ={veC'|v, ==, =0}. Then,
ueJ{(x) is equivalent to ved. Also, uEJV(x) is equlvalent to veA. We take
an arbitrary C®-extention of {e,(x)}!_,, which we denote again by the same
{ei(x)}i—,. We orthogonalize this basis in the descending order of the suffixes
of e;(x), starting from e¢;(x), by the method of Schmidt. Let us denote the
resulting orthonormal basis by {é,(x)}i—,. Observe that e;(x) = é,(x), xeUnT.
Define T(x) by

T(x) = '(é,(x)*,...,&,(x)*), xeUnQ.

Then T(x) has the desired properties.

Lemma 5.2. Let veX |:%]”([0, T]; Q) and let v take values in R'. Let
M[%:|+2 be a constant such that ||v||x3+240, 1,00 < M . Assume that

[2]+2

conditions 1), ii), iv)-viil) of Theorem 2.1 hold. Then, for any xe I, there exists a
neighborhood U of x that depends only on M [2]+2 having the following
2

properties: Let |, =1 — dim A '(x). (By condition viii), |, is constant on I'. Note
that, by condition vii), 0 <1, <) Let T(x) be the unitary matrix valued function
defined on a neighborhood of x which was constructed in the proof of the preceding
lemma. Let us write T(x)A,(v)T(x)* in the form of a block matrix, namely, let

/i‘{,l /ilu B
T(x)A,(v) T(x)* = (/i,” A‘”’) on [0, T] x (UnQ).

Here A'' and A"" are I, x 1, and (1—1,) x (I —1,) submatrices, respectively.
Accordingly, A'™ is an 1, x (I — l,) submatrix and A" = (A!")*. Then A!! is
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invertible on [0, T] x (UNR) and satisfies

(5.4) (AD) "' < C(M on [0, T] x (UnQ).

[31+2

Here C(M [2]+2 ) is a constant depending only on M [2]+2° Furthermore, A'" = 0,
2

AT =0, AT =0, on [0, T] x (UNT).

Proof. Let T(x) be the unitary matrix-valued function given in the proof
of Lemma 5.1. Assume that T(x) is defined on a neighborhood U of xel. We
write T(x)A,(v)T(x)* in the form of a block matrix, namely,

A1l Am _
T(x)A,(v) T(x)* = (/i‘v” AM) on [0, T] x (UnQ),

where AZ! = (A!Zy*. Then it follows from condition vi) that 4!f =0, 47! =0,
A" —0 on [0, T] x (UnT). Since rank A, = rank A!' =1, A!' is invertible

on [0, T] x (UnTI). Let K be the set of ve X [%]”'([0, T1]; 2) that takes values
in R' and satisfies condition iv) and the estimate

o158+ 20, 11,0y < M[%]”‘

Note that X[21*2([0, T7; @) 5 ([0, T1; HIZ1" (@) is a continuous imbedd-
ing. On the other hand, the imbedding of the latter space into C([0, T]; C(Q)) =
C([0, T] x Q) is compact. Therefore, K is a precompact set in C([0, T] x Q)
We denote by K the closure of K in this space. Any function belonging to K
takes values in R', satisfies condition iv), and its norm in this space 1s bounded by
[5]+ where C, is the norm of the continuous imbedding X [z1+ ([0 T]; Q)

s C([0, T] x Q). The map (t, x, v)—|det All,(x, v(t, x))| is continuous from
[0, T] x (UNT) x K into R and the value of this map is always positive. Hence
there exists a constant d(M [ﬂ]+2) depending only on M such that

2

[3]+2
inf |det 4,"(x, o(t, )| =AMy, ) >0,

[z
where the infimum is taken over (t, x, v)e[0, T] x (UnT) x K. It follows that

sup (A (x, v(t, X))~ < C,(M ).

neoo T3] 42

Here the supremum is taken over (t, x, v)e[0, T] x (UNnTI) x K, because the
cofactor matrix of A!! can be estimated by a constant depending only on
M, Next, let xeUnQ. Let us write

[2]+2

A (x, v(t, X)) = A (¥ (x), (2, X (x)) + R,
where x'(x) is the point on I" nearest to x. Then

(A (x, v(t, x))) 7!
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= (1 + (A1 (X' (x), v(t, X (x)))) "' R) 1A (x'(x), v(t, X'(x)))) "
The remainder R can be estimated by 6 times a constant depending only on

Mpyy,, I 1x = ¥(9 <6, because x[21* %[0, T1; @) 5 C([0, T1; C'(@)) is a
continuous imbedding. Namely
IR < 5Co My ).

We choose 6 so that

1
0<d< .

20 M )G M)

Then we have
A1l -1
(437 (x, v(t, X)) 7| < 2C1(M[%]+2)
for (t, x, v)e[0, T] x (UnV) x K, where V= {xeQ||x — x'(x)| < 6}. We denote
UnV still by U. This completes the proof of Lemma 5.2.

Let x be an arbitrary fixed point on I.  We may assume that I” is represented
by x, = Y(x') in a neighborhood W of x where x' = (x,,...,x,). We consider a
suitable neighborhood V of the origin in R" and define a transformation
¥Y=%7y=(¥,.. Y, from Vinto W by

{ Yy =y +y)—viE + ), X+ Yy,
Yy =x;+y;—vig(x +y), x' + )y, 2<j<n,

where X = (X, X;,...,X,) = (X1, X), y =1, V2., V) = (V15 ¥), and v(x) =(vy,....v,)
is the outward unit normal to I. Note that (¥ (x'), x') lies on I". It is shown
that the Jacobian J(¥(y)) evaluated at y, = 0 does not vanish. Hence the inverse
transformation of ¥ exists which we denote by @ = &(x) = (D,,...,D,). Let U
be the image of V by ¥. Then @ is a difftomorphism of class C* from U onto
Vand &(UnT')=Vn{y|ly, =0}. Since 2 is represented by x; > y(x) in U, we
have ®(UNR)=Vn{y|y, >0}. For any xeQnU, there exists a unique point
x'(x) on I" which is nearest to x. This is assured by the existence of the inverse
transformation @. The outward unit normal v to I can be extended to a
vector-valued function defined in a neighborhood of I' by setting v(x'(x)) for

0
xeU. Then the vector field ) }_, Vige defined on U corresponds to the vector
X .
0 . J . . .
field — o by the transformation &. Namely, for any differentiable function g,

Y1
we have

" d 0
Z Vjag(x) = - Wg('p()’))-
i=1 j 1

Now we return to the problem (5.1), (5.2), (5.3). The solution u of this problem
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depends on the parameter ¢ although its dependence is not explicitly
written. First we observe that each v, satisfies the boundary condition and hence
we have A'(x) = Ker A, ,,(v,(t, x)) for (t, x)e[0, T] x I and ¢ small enough. This
enables us to use Lemma 5.1 for the problem (5.1), (5.2), (5.3) with arbitrary
e. On the other hand, v, converges to v 1n X *([0, T]; ) by iii) of Lemma
3.1. This implies that the norm of v, in X E ([0 T7]; Q) is uniformly bounded
in &. Therefore, Lemma 5.2 holds with v = v,. In particular, the estimate (5.4)
holds on a neighborhood [0, T] x (UnQ) independent of & with constant
C(M [%]”) which is also independent of . We take an appropriate finite covering

{U}I o of Q such that #nI+# ¢, i=1,...,N, U, = < 2 and each #; has the
above mentioned properties. We choose a partltlon of unity {¢;}!_, subordinate
to this covering such that Z.=o o? =1 and ¢; > 0.

Let w = w(x) be a function defined on %;,nQ. We denote w(¥(y)) defined
on ¥n{yly, >0} by w=w(y). This convention will be used in the following.
For any solution u to the initial boundary value problem (5.1), (5.2), (5.3), let us
put u = u'(t, y) = T:(y)(@;u)(t, y). Here T;(y) is the unitary matrix valued function
constructed in the proof of Lemma 5.1. Recall that ue X™*' ([0, T]; Q) by the
existence theorem of solutions for the non-characteristic initial boundary value
problem. Then, supp 4’ = Vn{y|y, >0} and v'e X"* ([0, T]; Vn{yly, = 0}) is
the solution of the following mixed problem in the half space.

8u n u' out

(5.5) ALy, T,) = + JZ Al(y, s) >, + Bi(y, o )u' — ea—yl =H'

in [0, T] x {yly, >0},
(5.6) MW =0  on [0, T] x {y|y, =0},
(5.7) u(0,y)=f(y) for ye{yly, >0},

where
Ee = ﬁe(t’ y)» V= ‘7(,\’) = (‘71’-'-5‘71.)’
Ab(y. 5) = T0) Ao G) T0)*.
A0, 5) = — TO) S, HAG)T0)*,
=1

. " 0d!
Aj(y, v) = T.(y) Zl Az(55)<5;’>(y)T.-(y)*, 2<j<n,
1= !

B'(y, %) = T,(»)B(®) T;(y)*,

——~—

e au,
H' = Hi(e; F,, 0, 6, @) = TO)@F)(6 ) + eT0) Y <V @ ox, >(t )

.I

09;
i 3x, u) ((297)]

—_—~—

+ Ti(y) Z A;(0y) (Zx. )(t y) + eTi(y) Z (

i=
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noon o0b! oT(y) —
RIUPID) A,(ﬁs)( a—x’)(y)Ti(y)* a‘(y Nioan(c. »)
j=21=1 \ 1 Jj

6T,»(y)(¢’*l_u*)(t’ )¢ 0T(y)

(p;u)(t, y)
oy, 0y,

~T0) 3 RAGITON

and where

i) = TO) @ 1) )-

Since 7,e X**1([0, T1; Vn{y|y, = 0}), ,e H"*(Q), and T,eC=(Vn{y|y, > 0}),
it is seen by using Lemma C.3 that

A5y, 5)e X IO, TT; Vn{yly, 20}), 0<j<n,

Bi(y, 5)e X** ([0, T1; Vn{yly, = 0}),

fieH™ ' (Vn{yly, = 0}).
We have also

Hi(e; F,, U,, 5, ))e X™([0, T1; Vn{yly, > 0}),

because U,e X"*([0, T]; 2) and F,e H™*'([0, T] x 2). Note that M’ is a
constant matrix by virtue of Lemma 5.1 and that the boundary subspace Ker M’
defined by (5.6) is maximal nonnegative on [0, T] x (Vn{y|y, =0}) for
— Ai(y, D) +el. We write 4'(y, 7,) in the form of a block matrix, namely,

A(e) A7)

A (e) A';""(a)> in [0. T x (V0 {yly, > 0}).

AL, B,) = (
where A'(e) and A7 (¢) are I, x [, and (I — I,) x (I — I,) submatrices, respectively.
By Lemma 5.2, A{!(¢) is invertible on [0, T] x (Vn{y|y, > 0}) for any ¢ and
satisfies

(5.8) (AT @)™ < CM [y, )-

In addition, A7) =0, A7 (e) =0, A7) =0 on [0, T] x (Vn{y|y, = 0}).

Finally we observe that, if u is a solution of the initial boundary value
problem (5.1), (5.2), (5.3), then, uy = @ou is the solution of the following Cauchy
problem.

(5.9 Ao(v)o,u® + Y Aj(v)o;u’ + Bo)u® + ¢ Y, v;0;u’® =H°
j=1 j=1
in [0, T] x %,,
(5.10) u°0, x) = f2(x)  for xe%,.
Here

HO = HO(E; Fe’ Uc’ Ue» u) = (pOFe + Z Aj(vz)(aj(po)u +e Z vj(aj(PO)u

j=1 ji=1
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+¢&Y vjood;U,,

i=1

12 =0f..

§6. The Proof of the uniform estimates

In this section, we prove the estimates (3.37), (3.38). The existence of
ue X™ ([0, T]; 2) that satisfies (3.34), (3.35), (3.36) is assumed here. Let
Q =R"%. For an arbitrary smooth function w defined on [0, T] X R", , we set

|” W(t)mm tan Z “ D,y.W(t)”Z,

[yl<m

where D! = 0/x$'07'0% --- 35" and y = (j, «). We write also

lw)lirw= X [D8iw®)]>.

|yl +2k<m
k>1

Then

(@) 17 an + [IWE 7,6 = WO 7, -

Let us write for the moment Ai(y, 3,) = Ai(e), 0 <j <n, B'(y, 3,) = B'(¢), and
Hi(e; F., U,, 3,, i) = Hi(g). We rewrite (5.5) as

A”I(S) Azlﬂ(e) A'”(S) A””(S) “i
(© <A’"’(8) A (e )>a< >+JZ <A“”(8) A"“’(c‘?))a <u§1>

i
y
Bi(e) B W\ [ HiE
+<B“”(e) B (g >< > (f,,):(H;‘,(a))

in [0, T] x R%,.
Here uf="'(u}, uf)eC" x C'™", H'(e) = '(Hi(e), Hi(e))eCh x C'™h with I, =
| —dim A (x). Ai"(¢) and A""(e) are I, x I, and (I —1,) x (I —1,) submatrices,
etc. We prepare two lemmas that play a crucial réle in the proof of the estimate
(3.37). Let ue X™*'([0, T]; Q) satisfy (3.34), (3.35), (3.36). Let ', 0 <i<N, be
the functions defined in terms of u as in the previous section. We recall that
u', 1 <i< N, comes from the boundary patches, while u° corresponds to the patch
that does not intersect with the boundary. Each u' satisfies (5.5), (5.6), (5.7),
where 1 <i < N. On the other hand, u° satisfies (5.9), (5.10).
As we observed earlier, iii) of Lemma 3.1 implies that there exist constants
. . e e
M[%]”, M¥, r=u— 1, u, satisfying
1o Il x5+ 20, 1,029 < M[%]+2’

llv, |||x:([o,n;m <MX, r=p—1pu

for any e.
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The first lemma of this section proves the estimates for u' that are uniform
in e

Lemma 6.1. There exists a positive constant ¢, depending only on M

such that the following estimates hold: For te[0, T] and 0 < ¢ < g, (212
(6.2) 6 ()l m, o < C(M[%]”) 147 (O) 1, can
+ C(M}}) J:(III U (O llm+ 1.0 + N8 @ g + IH & D) lm,1a0) 47,
(6.3) Hur @O M+ 1,000 < COME D) LN O N + WH E O llm— 1,4}
(6.4) I iz (), 4y < C(M[%] o) M),

+ C(M;")f (Nt @l 1,00 + W@ e+ 1 H (€, ) ) dT-
0

Here M} and M}_, are the constants described above. C(-) takes positive values
and is an increasing function of its argument that is independent of e.

The next lemma gives the estimate for u° that is also uniform in .

Lemma 6.2. For te[0, T], we have for any ¢
(0] (1]
(6.5) =), 5 < C(M[%]”) (Il 4” (O) [l m, 4

t

+ C(MI)J (@ s + I1HO (e, )l 1)
0

Here M [2]+2 and M} are the constants described before the preceding lemma and
2

C(-) is similar to the one appearing in the same lemma.

Assuming for a while that the above two lemmas are valid, we prove the
estimates (3.37), (3.38).

Proof of the estimates (3.37), (3.38). From the definition of the norm, we
have

(6.6) M ) lom, e < WU O lmian + 17O W ay + 187 0

for 1 <i < N. The first and the third terms on the right hand side are estimated
by (6.2) and (6.4), respectively. The second term on the right hand side is bounded
as follows.

t
1 (E) Sj et @) e 1,047 + 1167 O) a9 -
0

Combining these estimates we obtain from (6.6)

I () [, < C(M[%] ) 14Ol
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t
+ C(M,’f)j (5@ Wlmt 10 + M@ M, + W H ) [, )T
0

Then we use (6.3) and get
(6.7) M4 )

t

) 1124 0) . + C(M;“)j (N @)l + I H (e, ), 5)d,

0

< CMpa.,

for 1 <i< N. Summing up (6.7) from i=1 to N and adding the resulting

estimate and (6.5), we obtain

(6.8) Il (e) 1l 5

t N
< C(M[%]”) Il 2(0) [llm, 4 + C(M;I‘)J~ (Nt @l + 2 NH e D) [l m,4)dT
0 i=0
Notice that T,e C*(Vn{y|y, > 0}) does not depend on v and that ve C*(Q),
@, D,eC®U;n2). We have for 0<t<T

N
Z IH e, ) llm,e = WH (e )l 5 + Z I H (s € lm,

i=1

< 1 @oFellms + 2 A0 (0;00)t ll m

i=1

Z v (@;@0)tt llm, 4 + € Z 1v;@o0;Uellm,

i=

—~—

i=1

N — " au,
+ Y S NT@F) s + el T Y A vioi == )l
i=1 axj

——~—

(g, v (o,
+IT Y A,.(ve)(—"’— u) o + Il T3 Y (v,iu> .
axl j:l ax

j=1 j

n n 6T~
+|||T,~Z(Z (ve) >a—( i) llm, 5

j=2 \l=1
n oT, ~— T, —~—
+ I T:( Z 7)) T* — (@itt) [l 5 + & Il — (1) IIIm,*}
= 0y, 0y,
S C{NFL(E) lm, + Z (A ) ) () Nl m, 4 + & M) 4 + € Z 10; U(t) s} -

Here C is a positive constant independent of ¢. By using (A.1), (A.2) in Appendix
A, we obtain

(AW )l e < CMI) [[u@)lllmy, 1<j<n

Hence,
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N .

(6.9) > WH e, t)llm
i=0

S CMD Nu@ llm e + CLNFL) s + MU s 1}

Similarly, we obtain
N .

(6.10) Y MHE )14
i=0

< CME_ ) Nu@ llm-r1.5 + CLUIF) 1,5 + el Ue(O) .}
< CME D) 14O llm- 1,4 + CLNFO - 1,4 + 1 U0) [}
+ C(M,’f-l)J (@) -1, 4d7 + CI {IIF@ - 1.5 + €U I} dr.
0 0

Substituting (6.9) for (6.8) and using Gronwall’s inequality, we get

() e < C(M Il 4(0) |||m,*eC(M“)' + el U, xm+ l([o,T];meC(M")t

[31+2
£ ) f OB || F,(0) ], d.

0

This completes the proof of the estimate (3.37). Finally, combining (6.8), (6.9),
(6.10) with (6.3), we have the estimate

2 () Wt 1,50
< {C(M[%]”) 040l 4 + COME_ ) U (O) [l 1, } €50
+ C(M,T—l){ IFO) 1,5 + & I1U.(0) |||m}eC(M:‘)' + el Uelllym+ 1([0,T1;mecwr‘)'

t
+ C(M,T)J eCMVD | F (<) [l  d,
0

from which we derive (3.38) immediately.
Now we prove Lemma 6.1.

Proof of Lemma 6.1 In what follows, we omit the indices i and ¢ for
simplicity. For y such tha |y| < m, take D! of (6.1), and take the C' inner product
of the resulting equation with D?u. Then we integrate it over R" to obtain

1 _ ) -
6.11) _J 6,(D1u-A0DIu)dx+—ZJ 0,(D?u - A,D7u)dx
2 Jun 251 Jey
—gj mww-mma+smf D'u- 2, D7 0 u dx
R R"

=Ref Dlu- J, dx.
-

n
+

The independent variable is denoted by x in place of y here, and
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J,= —[D}, Ap]o,u — Z [D?, A,.]a,.u — DY(Bu)
j=1

J

| I , o
+ D'H +§D1v ADlu+ o, A, D)0 u= Y JO,

i=1
DivAd = 3,4, + Y 9,4,
i=1
Y =0, a; — 1, as,...,0,).
Jy? is defined to be the i-th term in the expression of J,. Note that

0,(x1'07") = (x§'09)0, + oy (x7'~'05'7")8,. Obviously D! = x,D?'d, and x, >0
in R%. Hence

(6.12) Rej Dlu-oa,D?d udx = ReJ xD?'d,u- 0, DY 0,u dx > 0.
R R
Since supp u is compact, the integration by parts yields
1 - —
(6.13) -y f 0/(Dlu- A;Du)dx —EJ 0,(D’u- DYu)dx
2 =1 Jmy 2 Jgy
1

=—j Dlu-(— A, + e)Dlu)|, —odx',
2 Rn—!

where x" = (x,,...,x,). We notice that D’u lies in Ker M because M is constant
on the boundary. It follows from Lemma 3.2 ii) that

(6.14) f (Dlu- (— Ay +€)Dlu)l,, —odx = 0.
Rn-1

Using (6.12), (6.13), (6.14), we deduce from (6.11) that

1 S
—f 0,(DYu- AyDYu)dx
2 R'l

< ReJ Dlu-J,dx < |D|-|J,]|.
R%

Summing these inequalities over all y with |y| <m, and taking account of the
fact that A, is positive definite, we obtain

(6.15) IFee(E) Nl m,an < C(M -, ){”Iu(o)“'m,tan + D A df}-
[31+2

0 lylsm

We note that, if [jolx51+2¢0 1,00 <M there exists a positive constant ¢

[3]+2

depending only on M such that ¢™!' < A, <c. This is shown by an

[2]+2
argument analogous to the one employed in the proof of Lemma 5.2.
We estimate the integrand of the second term on the right hand side of
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(6.15) in the following. By using (A.7) and (A.2) in Appendix A, we have

(6.16) > 1P =Y IIDL, Aoloul

[ylsm [yl<m
< CME) Mu(@) llm, -
Also by using (A.7) and (A.2), we see that
Y WPl < Y DL, Addul + ), Y I[P, A10;ul

[yl<m [yl<sm i=2 lylsm

< Y DL, A0 ull + CME) i, -

lyl<m

The first term on the right hand side of the last inequality is estimated as
follows. We observe that DA |, _o =0 and D"AY"|  _,=0. Then by using
(A.8), (A.9), and (A.2), we get

(6.17) Y. DL, A16,ull

lyl<sm

< Y, (1D, A110,ull + I [D}, A1"10 uy

[yl<m
+ (DL, A¥10,u, |l + | [DY, AT"10,uyl)
< CME) N s 1,00 + COLE) el -

Hence
(6.18) Y WIPN < CME) Nlttg s 1,00 + CMF 1] -
lyl<m

Similarly we apply (A.1) and (A.2) to obtain

(6.19) Y12 = Y IDLBW] < C | Bullmun

[yl<m [ylsm

< CME) 1l .-

It is easy to see that

(6.20) Y I =Y IDIH| < ClIHllmun-
lyl<m |yl <m
Utilizing (A.1) and (A.2), we have
(6.21) Y I = Y IDivADlul
lylsm |yl<m

< C(M:—1) (2 1l -

In view of the fact that A{"|, _, =0 and A{'|, -, =0, we use (A.8), (A.9), and
(A.2) to obtain
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(6.22) X N5 =Y 1Ay, DY o ul

lyl<m [ylsm

<C Y ||A,D%d,ul

lylsm—1

< Y X (147DLoyull + | AT D10, uy

lylsm—1 |n|=1
+ 1 AT D0, u, || + | AT" D0 uy ) -

* *
< C(Mz[%]J(Z) [7g ]| 1, T C(Mz[%]+2) Il u |||m*

Summing up (6.16), (6.18)—(6.22), we conclude that

(6.23) 2 1,1 < CMBD Ul ullm g + Wotg llms1.000) + C I H llman-

|yl<m

Substituting (6.23) for (6.15) yields (6.2).
We prove (6.3). We see by (6.1) that u, satisfies

(6.24) (Alll - 81)61111 = — Aé’a,ul - A(')”a,u" - Allnalu”

(A 05u; + AV Oup) — B 'uy — B'"uy + H,

-

J

in [0, T] x R%,.

For y, k such that |y| + 2(k — 1) <m — 1, k > 1, take D?0%" " of (6.24). Then we
have

(A4 — eI)DZ@’; u =K, ,,
where

K,x=—[D}&\"", A1"10,u; — D134 " (A}"0,uy) — DIO%™ " (AL O,uy)
— D134 (AL dup) — Y D1%T (AN Q,up + AV O up)
ji=2
7 .
— D734 (B'"u; + B'Muy) + D134 'H, = ¥ KO,.

i=1

We define K, to be the i-th term of the expression of K,,. Since A}’ is
invertible, (41! — eI)™! exists for ¢ small enough. To see this, we write

(A1 — )™t = (1 = el 7H Al

-1

Then, by (5.8), sup [(41)) "< CM RN ) I
[5]+2

[ﬂ]+z)‘ Hence, if e <(2C(M
x,t,v 2

we

have

up (A} —el)™! < 2C(M,,
sup |(4y" — el Mpa,,

).

We conclude that
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(6.25) > D70 u |l <2C(M > 1Kyl

a1 .)
Iyl+2(k—1)sm—1 (21427 20 S em-1
k>1 k>1

To estimate the right hand side of the above inequality, one proceeds as
follows. Applying (A.8) and (A.2) to our situation, we get

(6.26) y I KS

ly|+2k—-1)<m-1
k>1

= Z I [DI@'{“I, Ai']aluzll

ly1+2k—1)<sm—-1
k>1

S CME ) 6l -

We have also

(6.27) > K2 = > 1D50 (A" 0,up)|
lyl+2k-1)<m—1 lyl+2(k=1)<m=1
k>1 k>1
< (141" DL a3 "0, uyll + I[DLOY™, 41710, ugl))

[yl +2k—-1)<m-1
k>1

< C(M* ) Z ”xlDzal{_laN‘u I+ C(M:—1)|“ Ug ll 5

2[3]+4 Iyl +20k-1)<m—1
k=1
S CME_ ) lug -

Here we used (A.4) and (A.8), taking account of the fact that A{"|, _, =0. After
that we employed (A.2). By using (A.1) and (A.2), we obtain

(6.28) Y K3

Iyl+2k—-1)<m—1
k=1

= ) 1D} 01! (AG"d,up) |

IyI+2k—1)<m—1
k>1

S CME_ ) 0urlllm- 1,5 < CME_ 1) ug [, -
Similar arguments show that

(6.29) Y K&

Iy|+2(k—-1)<m—-1
k>1

= > I1D%o3™ (A5 ,up) |

ly|+2¢k—1)<m—1
k>1

< CME_ 1) llug llm, x>

and that

(6.30) Y, K

lyl+2k—-1)sm—1
k>1
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= Y Y. D14 (AN 0 up + AL Oup) |l

IyI+2k-1)<m—1 j=2
k>1

< CME_ ) el m, -

Also it is shown that

(6.31) Y Kl

[yl+2(k—-1)<m—1
k>1

= > ID,03 ™ (B" u; + B Mup)|

ly|+2(k—1)<m—1
k>1

< C(M:—l) (et Ml — 1, 4

We see easily that

(6.32) ) 1K = ) ID}o% " Hy

lyl+2(kk—1)<m—1 ly|+2(k—-1)<m—1
. k=21 k>1

< C||H,; |||m—1,(*)'

Summing up (6.26)—(6.32), we obtain

(6.33) ) IKyull < CME_ ) ltlllm, g + CNH - 1,5

lyl+2(k-1)<m-—1
k>1

Substituting (6.33) for (6.25) leads us to
(6.34) Wtr Mot 1,000 < COME D) Ll el + I H gl 1,0}
We prove (6.3). We see by (6.1) that uy satisfies

(6.35)  Af"oup+ Y, Al"0uy —edyuy
=1

J

= —(Ag'ou; + Y, Al 0u; + B"u; + B"uy) + Hy
i=1

in [0, T] x R".

For y, k such that |y| + 2k <m, k > 1, take D! of (6.35), and take the C' inner
product of it with D?¢%u,. Then integrate the resulting equation over R% to
obtain

1 -
(6.36) Ej (D! & uy - ATTDI Sy ) dx
R’
1 —_—
+ 5 Y j 0;(D1 % uy - ATTD? 5 uy )dx
=1 JRY

- %I 8,(D? & uy - DI uy )dx
R}
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+ eRe J D’ uy - a;D? 3% uy dx
R
= ReJ~ D*Kuy - L, dx.
R

Here

L

Y

1 ,
«= 5 Div ATIDY 3 uy + oy ATIDY uy

— (D%, AE" By — Y, (D104, AT")0uy

ji=1

— D1k (A du) — Y D14 (AT B,u;)
j=1

8
— D73 (B"u; + B""uy) + DIk Hy = Y LY,
i=1

defining L{’, to be the i-th term of the expression of L,,. We recall that

Div A"" stands for 3,A%" + Y 3,4%". As in the proof of (6.12), it is seen that
j=1

(6.37) Ref D¢ uy- a0, DT 0% Tuy dx > 0.
R’}

We have also

-
(6.38) 5 Y J 0;(D1 % uy - AT"DI K uy )dx
ji=1 JR"
—EJ 3,(D? uy - D1 uy )dx
.
1
= 5,[ (D1 ug - (— AT" + e)DV 0 uy )y, =0 dx’
Rn-1
>0,

because AY"|, _,=0. Making use of (6.37) and (6.38), we obtain from (6.36)
that

1 -
Ef 0,(D?uy - AF"DI O uy dx
.

< RCJ D' uy - L,, dx
-

< IDug |- I Lyl
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Since AJ" is positive definite, it follows that

t

(6.39) ||lu11(t)|||m,(*)SC(M[%]”){Illun(O)IIIm,(*)+f > ”Ly,k”dr}'

olyl+2k<m

k>1

Here C(M [ﬂ]“) is the constant that appears in (6.15). We estimate the integrand
2

of the second term on the right hand side of (6.39) as follows. By using (A.6)
and (A.2), it is seen that

(6.40) Y ILk= Y IDiv A" D& uyll
{2

k<m Iy
1

n
< Y 104" DI ugll + Y, Y 110;4] "Dl ug|
+2k<m lyl+2k<m j=1
k>1 k>1

< CM) gl ) -

We have also by (A.6) and (A.2)

(6.41) X ILBl = Y o |AT"DY duyl

lyl+2k<m |yl+2k<m
k=1 k=1

2
2

S CM) g llm- 1,00 -

By using (A.7) and (A.2), it is shown that
(6.42) > LSk =Y D13, A5 10,uyl

Vs
|yl +2k<m |yl +2k<m
k k>1

2
>

1
< C(M) llug llm, -
Noting that AT¥|, _, =0 and using (A.9), (A.7), and (A.2), we have
(6.43) Y L

[y|+2k<m
k>1

< Y (IDLdY, AT"10,ugll + Y IILDLOY. AT ™]0uyl)
Ivlz—gklsm ji=2

< CME) lllug llm, -

It is not hard to see that

(6.44) > L= Y IDId(AG o,uy)l
|y|+2k<m lyl+2k<m
k>1 k>1
< |AG' DY du | + Y (I[DId%. AG"I0u,
n {Zem e

< C(M:) {27 1,(%)"
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Here we used (A.6), (A7), and (A.2). Since A{'|,,_o =0, we employ similar
arguments to the above ones to obtain

(6.45) YO = Y Y DA ou)]

k<m [yl+2k<m j=1
1 k>1

< Y (1AT'DId 6 u | + I [DLOY, AT'10,u,l)

+ Y .ZZ (A7 D134 0;u, |l + II[DLE,, AT 10;u, 1))
m j=

< C(M:) ey o+ 1,(%)

Also we get

(6.46) Y L
|yl +2k<m
k>1
= Z Il DI@'{(B’“u, + Bnnu”) |
|yl +2k<m
k>1
SME) (M tty e + Ntag o, g}
and
(6.47) Y L%l =Y IDLéiHyl
lyl+2k<m lyl+2k<m
k>1 k>1
S ClHglllms)-

Summing up (6.40)—(6.47), we see that

(6.48) Y MLyl < COE (Nl + lttg s 1.0} + C I Hog N -

|y|+2k<m
k>1

Substituting (6.48) and (6.39), we get (6.4). The proof of Lemma 6.1 is complete.

Lemma 6.2 is proved by a standard argument employed for the Cauchy
problem.

Appendix A

We shall prove here several basic inequalities used in §3 and §6. Let 2 < R",
n>2, be an open bounded set with boundary I' of C®-class. Let u = u(t, x)
and v =v(t, x) be functions defined on [0, T] x Q taking values in C'. We
denote by u-v the standard inner product in C' of u and v.



Initial boundary value problem 199

Lemma A.l. Let m > 1 be an integer and let r = max <m, 2[%] + 3). If

ue X3([0, T]; Q) and ve X ([0, T]; Q), then u-ve X{([0, T]; Q). Moreover, we
have

(A.1) (- 0) @)l < C M@ llm,s 0@l for tef0, T,

where C is a constant independent of u and v. As a consequence,

llu - vlll xmgo, 2y < C ullxmqo, i) 10l x700. 11:2) -

Proof. We suppose that 2 = R" and that the support of u is contained in
{x;|x| < 1}nR"% . The general case can be reduced to this case by localization
and flattening of the boundary. For te[0, T], we have by Leibniz’s rule

N ) Ollmy <C Y X 1D Pulr) - D23%(r).
|yl +2k<m ﬁil}c’

Then, by using Lemma C.1 i), we get
Il - o) (@) llmo < C{KT- K5 + KT - K},

with
— - “_
Kr= % Y DT O gy,
17| +2k<m (p,p)el(v,k)
Kr= Y Y 1Deatue)ll,
|yl +2k<m (p,p)el(y,k)
(2]
—— - k_
RN RN S e
=0 |y|+2k<m (p,p)el(y,k,i)
(z]
Ko = Z z Z 1 DLO%v(E) ;4 1-
i=0 |yl+2k<m (p,p)el(y,k,i)
Here

I(y. k) = {(p, P;p<y,p=<klpl+2p= 2<[ﬂ + 1)}
I(7, k; Q) = {(p, pi;p<7y,p<k, 2([%]—1‘)3 lp| + 2p$2<[ ]— i>+ 1}.

If (o, pyel(y, k), then 2([%] + 1> Fiyl—lpl+2k—2p< 2([%] + 1) + iyl +

2k <m and |p|+2p<m <r. Hence

NS

KT < u@lllmx  KF<Mo@ll, -

If (p, p)el(y, k; i), then we see also that 2<[%:|—i>+wl—lp|+2k—2ps
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2([%]—i>+|y| +2k—2<|:g]—i>= |yl + 2k <mand 2(i + 1)+ |p| + 2p <
n n
2(i + 1)+2<[5:|—i>+ 1 =2[5:|+3Sr. Hence

K5 < [[u(®) | m, » KZ < o)l -
Therefore, combining these estimates, we have

(1w - )l < C M6(E) 5 M0 4 -
It follows that

sup |||(u-v)|||m,*SCOSUP @) llm s sup_ llo@)l,, -

0<t<T <t<T 0<t<T
Furthermore, for any ¢,t'€[0, T] and 0<j <m,
107 (u - ) (£) — 8] - V) (t')llm- .
< - v) () = (- 0)(¢) [l m, 5
< C{u@ s 0@ = 0@ s + Mo@) I Ta(0) = w(@) 4}
Since ue X} ([0. T]; 2) and ve X[ ([0, T]; ), this implies that u-ve X ([0, T];
Q). This completes the proof of Lemma A.l.

Lemma A.2. Let r>n+ 2 be an integer. Let ve X ([0, T]; Q) take values
in R'. Let A= A(u) be a smooth function of ueR"' with values in the space of
I x I complex matrices. Then, A(v)e X ([0, T]; 2). Moreover, we have

(A.2) MA@ x;q0.11:02) < C(N[%]H){l + ol o, 11:0) for te[0, T].
where N_, is a constant such that su v(t) |l -, <N_., md C(-) is
[31+1 oDy 17Oy = Npyyy and €0

increasing as a function of its argument.

Proof. We refer the reader to [17].

Lemma A.3. Let r>n+ 2 be an integer. Let u and v be in X ([0, T]; Q)
and take the values in R'. Let A= A(u) be a smooth function of ueR' with
values in the space of | x | complex matrices. Then we have

(A.3) 1 A(w) — AW®) I xz o0, m1;0)
< C(N[g]+ 1) lu— Ul”x:qo.r];m(l + |lu |||;r:([0,r1;m + |||U|||;(I([0.T];m)-
where N_, is a constant such that
[3]+:

max ( sup |u(t)]| , sup
0<i<T [3]+1 o<ier

120y, ) S Npay,,

and where C(-) depends increasingly on its argument.
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In what follows we assume for simplicity that Q = R and supp u < {x||x| <
1}nR" .

Lemma A4. Let A(-) be as in Lemma A2. If v is in x;[%]“([o, T];
R"%) and u is in X'([0, T]; R%), and if A(v(t, x)) =0 for (t, x)e[0, T] x oR",,
then we have the estimate

(A4 [A@®)0,u@)] < CllA@O) lx,0,u()]  for te[0, T],

2[§]+ox

where C is a positive constant independent of u and v.

Proof. 1In view of the fact that A(v(t, x)) = 0 on [0, T] x OR"., we see that

A(v(t, x)) = jm ad,A(v(t, 6, x'))d6.

0

Hence, by using Lemma C.1 ii), it follows that

I A())0,ult)

J T 0, Aw(E, 0, x))d0d, u(t)

0

< sup |0, A(v(t, x))| || x, 0, u(t)|

xeR"
< ”alA(v(t))”[%]+l lIx,0,u()|
< WACO gy, Ixi 801

This completes the proof of Lemma A.4.

Lemma A.S. Ler m > 1 be an integer and let A(-) be as in Lemma A.2. Let
q be an integer such that 0 < q < m and let r = max <m, 2[%] +3+ q>. Assume

that u lies in X3 9[0, T]: R%) and v lies in X, ([0, T]; R%). Then, for any
p,p',p,p" such that |p|+1p'|+2(p+p)<m and q <|p|+ 2p, we have the
estimate

(A5) D23 A0)) DL 35 u(t) | < C Il A@W) g N u(@) Wy  for te[0, T].
In particular, when p' > 1, we get the estimate
(A.6) [ DL} A((0))DL 3% u@®)l < C I AQ@ED I, 4 N4 (@)l m-g,y  for te[0. T],
where C is a positive constant independent of u and v.
Proof. By using Lemma C.1 i), we get
D205 A(v(6)) DY 3F u(®) |
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D205 A(w@)II 1 D% 0% u(®) |l for (p, pel(q).
[2]+1

<
- |n
D508 A lli+ 1 11DF 0F u(t) II[%]_i for (p, pyel(q;i), 0<i< [5]

where

n
I(q)={(p, p); Ipl+2p22<[5]+ 1>+q},
n n .

I(q;i)={(p, p);2<[5]—i>+qS|pl +2ps2<[5]—1)+q+ l}.

n
0 is[—]

2
Let (p, pyeI(q). Then, since |p| + |p'| + 2(p + p') < m by assumption, we have
lpl +2p<m<r and 2<[ﬂ+ 1)+|p'| +2p’=2<[g:|+ 1>+m—(|p| +2p)

(I () R

ID23% A(w(t) |l | DY 0% u(t) II[%]“ < WA@E) Ml 5 1) 1l g,

Let (p, p)el(q;i). Then, by the same reason as before, we have 2(i + 1) + |p| +

2ps2(i+l)+2([%:|—i>+q+1=2|:%:|+3+qu and 2([;]—i>+
p'l +2p < 2<[%]—i>+m—(|p|+2p) < 2([%]—i>+m—2<[;]—i>

—qg=m—q. Therefore we get

D205 A(@) i+ 1 1DZ 05 uOll gy < IHA@O) My, M) - g,
[2]-i

IA

where 0 <i < l:%:l Combining these inequalities, we get (A.5). Recalling the

definition of the norm || - [, ) we obtain (A.6) from this at once. The proof
of Lemma A.5 is complete.
Lemma A.6. Let m>1 be an integer. Let A(-) be as in Lemma A.2.
i) Let r = max (m, 2[2} +4> and let 0; denote 0,,...,0, or 0,. If v lies
2

in X,([0, T]; RY) and u lies in X} ([0, T]; R%), then for any y, k such
that |y| + 2k <m and te[0, T], we have the estimate

(A7) I[DLaY, A®))10;u@)ll < C U A@O) Iy, 1) -

Similarly, if v lies in X,([0, T]; R%) and u lies in X7**([0, T]; R%),
then, for any v, k such that |y| + 2k <m and te[0, T], we have the
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estimate

(A8) ILDLAY, A(w(t))10,u(®)]l < CILA@O) I, Il () s 1,05 -
i) Let r=max<m,2[g]+5>. If visin X"([0,T];R%) and u is in

X3([0, T]; RY), and if A(v(t, x)) = 0 on [0, T] x dR",, then, for any y, k

such that |y| + 2k <m and te[0, T], we have the estimate
(A9) D185, A@®))10,u@)l < C Il A@WWD) g 11Ul

where C is a positive constant independent of u and v.

Proof of the first assertion. By Leibniz’s rule,

ID34Y, A®)1du®)ll < C Y D3y Aw(1) DL 0% ou(m)]).

ptp'=y
Noting that |[p| + |p'| + 2(p + p) = |yl + 2k <m, 1 < |p| + 2p, and rZZ[%] + 4,
we apply (A.5) with g = 1 to the right hand side of the above inequality to obtain
ID3d%, Aw()10;u)ll < C I A@O) 4 1 880 - 1.
< CIHA@E) 5 (@) llm, 5 -
This proves (A.7). Similarly, we get
1LY, A(w(®)10,u@)l < CllA@E)) .4 | 0, (t) 11 4
S CIIAQ@E) M, @) Wmr 1,000
by using again (A.5) with ¢ = 1. Hence, (A.8) is proved.
Proof of the second assertion. First we observe that
ILD%3%, A(£)10,u(@)] < C{LY* + L3*},

where

Ly*= Y D2 A(v(t))D? 350, u(t)],
p+r;=¥
lpl=1
Lyk= Y |ID?3% A(v(t))D? 0% 0, u(t)]].
il .

SR
N

2

IA
AR

Y
k
|+2p

It is easy to see that D2 A(v(t, x)) =0 on [0, T] x dR%. We use this with |p| = 1
and apply Lemma A.4. Then we obtain
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k< Y DA

p+ ’:7 2[%]+4‘*
lpl=1

ID% " du()ll

< WAy, 5, 14O Iy
<A@ e 1140 e

where e, = (0, 1,0,...,0). Note that r = max <m, 2[%] + 5> and that |p" + ;| +

2k<|p|+2k+1<(m—1)+1<m Since |[p|+[p|+2(p+p)<m and 2 <
|p| + 2p, we obtain also by using (A.5) with g = 2
Ly* < LA@O) 5 110w Ml 2, 5
< A@E) My, g M e e -

Therefore,

I[D2d%, A(v(t)]0,u(t) | < C Il A@E) . ()l -
Thus (A.9) is proved.

Appendix B
We state here some basic properties of HY(£2) and XZ([0, T]; Q).

Lemma B.1. Let m > 1 be an integer. Then,

iy C®(Q) is dense in H}(Q).

i) C*([0, T] x Q) is dense in XI([0, T]; Q).

iti) Let p and q be nonnegative integers and let r = min (p, g, p + q — 2[n/2]
—3)>0. Then HY(Q) - HL(R2) 5 H,(2).

Proof. To prove i), we notice that H}(2) can be regarded as a weighted
Sobolev space. Let us set

2k
O'a(X) = Z X1 .
(2ay+|a’l—m)+ <k<ay

Then we have by a straightforward computation

lulZe =Y lx{oyrros - ovul®
|a|-‘|‘-§k05m

=) J 107105 -+ Oy ul*0,(x) dx,
lal<m JQ

where Q = R".. It should be noted that ¢,(x) defined above is a finite sum of

the powers of the distance from x to the boundary. Then we can apply the

argument in the proof of Theorem 7.2 in [10] to our situation with suitable

modifications. This shows the density of C®(2) in H™(22). The proof of (ii) is

quite similar to that of Lemma B.3. See [17] for the proof of (iii).
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Lemma B.2. Let p > 2 be an integer.
i) There exists also a bounded linear operator S, of HL (L)
_,[[[ 1-YH?=2 YTy such that

Pq_
S,u = (ulp dyulpr.... 002
for any ue C*(Q). The range of S, coincides with I—[!;Q”H”_”’I(F).

There exists also a bounded linear operator R, of I_IL%%_‘H P2 Y[y >
HE(2) such that S,- R, = 1.

i) The bounded linear operator R, stated in i) can be so chosen that, if we

p

define R, , for every q with [%] > [%] >1 by

Rp.q(hO’“"h[%]_l)=Rp(ho""’h[%]_l’ 0»...,0 )’
[41-[4] times
then we have
[%]—l
| Rplhonshpay_ g < Cpa L Ihyllua-si-sir
i=o
for any (hg,... [] en[g’]“H"““"‘(F). Here C,, is a positive
constant depending on p, q. Namely, for such choice of Rp, R, , defined
above extends to a bounded linear operator of n[2]‘1 HI" 4" YI)-

H1(R2) for any q such that l:g] > [%] > 1.

Proof. The proof of ii) is given in another publication [19].

Lemma B.3. Let m>1. Then C'([0, T]; H*R)), that is, the space of r
times continuously differentiable functions on [0, T] with values in H*(£2), is
dense in V,"(0, T; Q) for any integers r, s large enough.

Proof. It is known that there is a sequence of operators {J,} such that
i) JieZ(HE(Q), HY(R)), k> 1, for any integers p, q sucn that 0 <p<gq
and J, converges strongly to I in HE(£2) as k — .
i) J,e Z(HP(Q), HI(Q)), k > 1, for any integers p, q such that 0<p<gq
and J, converges strongly to I in H?(Q2) as k — oo.
The existence of such a sequence of operators is shown, for example, in [10]. Let
ve V"0, T; 2), where m > 1. We define ]keff(V*'"(O, T; 2)) by

(Joo)(t) = Jo(t), 0<t<T

Let v, = jkv. Then v,e H™(0, T; H*(Q)) for any s> m. Here H™(0, T; H(R2))
denotes the space of functions such that d/ueL?(0, T; H¥(2)) for 0<j<m.
Hence &/v,(0)e H’(Q), 0 <j<m — 1. It is easily seen that v, converges to v as
k— oo in V™0, T; 2).

On the other hand, there is a sequence of operators {K;} such that
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K;e #(H'0, T), C'[0, T]), j= 1, for any r > [ and K; converges strongly to I
in H'(0, T). Such a sequence of operators is constructed by using a variant of
Friedrichs’ mollifier with respect to the time variable t. Let us denote K; by
K ; When it is regarded as an operator acting in the space of functions of ¢t with
values in a space of functions of x. Let we H™(0, T; H*(R2)), where s > m. Then
K;weC'([0, T]; H*(Q)), j > 1, for r >m and s > m and

Kw—w in H™0, T; H'(Q)) as j— oo.
Hence
OK,w(0) > dw(0) in HYQ) as j— o

for 0<i<m-—1. Let veV,"(0, T; 2). We recall that Jove H™O, T; H¥RQ)),
where s >m. Let v;, = Kjvk = K,Jhu, J, k> 1. Then we can choose a suitable
j for each k in such a way that the resulting subsequence {v; ,} converges to v
in ¥,"(0, T; ). It follows from the properties enjoyed by the operators J, and
K; that v;,eC"([0, T]; H*(®)) for any r and s large enough. This completes
the proof of Lemma B.3.

Appendix C

We shall state basic facts concerning the usual Sobolev spaces in the following
two lemmas. The results are well known and so the proofs are omitted here.

Lemma C.1. Let p and q be nonnegative integers and let 2 — R" be a bounded
domain.

. . n
i) Let r =min (p, q.p+4q— [5] — 1) >0. Then we have a continuous

imbedding H?(Q2)- H'(Q) s H'(Q). _,
il) We have a continuous imbedding H[7]+l+p(9) G CP(Q).

Lemma C.2. Let p>1 be an integer.

_j-1
i) There exists a bounded linear operator S, of HP(2)— j.’;(} H” ()
such that

Su=(ulp, 0,ulp,...., 0 tulp)

_ _j-1
for any ueC>(Q). The range of S, coincides with I—[;’;é HY 2.

_j-1
There exists also a bounded linear operator R, of n;’;; H 72>
H?(82) such that S,-R,=1.
ii) The bounded linear operator R, stated in i) can be so chosen that, if we
define R, , for every q with 1 < q <p by
R, (ho,....h,—)) = R, (hg,...,h,_¢, 0,...,0),
e

p—qtimes
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then we have

q-—1
IRp.qhos ... - )llg < Cp g 2 Ihillga-s-3r)
j=0

for any (hy,...,h,_ 1)el_[ H T 2 (I'). Here C,, is a positive constant
depending on p, q. Namely, for such choice of R,, R, , defined above

_j-1
extends to a bounded linear operator of | |- 3 H'7'72(I'y > HYQ) for any
q such that 1 < q < p.

Proof. For the proof of ii), we refer the reader to p. 310 of [21].

Lemma C.3. Let r2|:§:|+1 be an integer such that 0 <m<r. Let

ve X™([0, T1; Q) and let, furthermore, d;v(0)e H" ~*(Q) for 0<i<m. Assume
that v takes values in R' and that A = A(u) is a smooth function of ueR' with
values in the space of 1x1 complex matrices. Then, & A(v)(0)e H {(Q),
0<i<m. Moreover, we have

(C.1) 16;A@)O),-; < C(L ]+1){1 + () 16/vO),-, 3

j=0
for 0 s i Sr'n, whefe L[%] ” is a ‘constant such that ||v('0) ”[l]-.*l <L [%]+ and
C(-) is an increasing function of its argument. In particular, if ve H'(Q2), then

A@)e H'(2) and we have
4@, < C(R[%]H){l + lloll7},

where R is a constant such that ||v]||

[z]+1

the above mentioned one.

and C(-) is similar to

i1+ = Mg

Lemma Cd4. Let rz[g]-i-l be an integer such that 0 <m<r. Let

u, ve X7([0, T]; Q) and let du(0), div(0)e H "' (R2) for 0 <i<m. Assume that
u, v take values in R' and that A = A(-) is a smooth function defined on R' with
values in the space of | x | complex matrices. Then we have

(C2) 16:A(u)(0) — 8;A@) (), -

< C(Lpyq, ) Z 16u(0) — 0/v(0) I, - ;

[2]+1

X {1+ z 18O, +(z 13500 [, ))

j=

for 0 <i<m, where L is a constant such that

[z2]1+1
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max (|| u(0 v
IOy, 19OV Iy, ) S Ly,

and C(-) depends increasingly on its argument.

Lemma C.5. Let r2[§]+l be an integer and let 0 <m<r. Let

A = A(u) be a smooth function of ueR' with values in the space of | x | complex
matrices. Let K = R' be a compact set contained in the set of ueR' such that
A(u) is invertible. If ve XT(0, T]; Q) takes values in K and 0iv(0)e H"™'(Q) for
0<i<m, then A(v)"'(0)eH " {(22), 0 <i<m. Moreover, we have

(C3) 10;A(®) " O)Il,-; < C(K) {1 + Z 16/ A) O)Il, - ;)'}
for 0 <i<m, where C(K) is a positive constant depending on K.

Lemma C.6. Letr> [%] + 1 be an integer and let C be a closed rectifiable

Jordan curve with positive orientation in C. Let B(C') be the space of | x | complex
matrices. Let A(A) be a continuous function of A defined on C with values in
H'(2; B(CY) and let ¢(1) be a complex valued continuous function of A on C.

Assume that A(A, x)~! exists for all (4, x)e C x Q and that sup |A(4, x)”'| < 0.
A, x

If we set
B = J P(HA(R)™d4,
¢

then B lies in H"(22; B(C").

Proof. It is shown that A(4)”! is a continuous function of A taking values
in H"(2; B(C')). This is proved by using an argument employed in the proof
of Lemma 2.13 in [8] with suitable modifications. The result then follows
immediately.
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Note added in proof. After the completion of this work, we received the following preprint:
P. Secchi, Linear symmetric hyperbolic systems with characteristic boundary, Dept. Math. Univ. of

Pisa (1993).



