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Relations on Pfaffians: number of generators
Dedicated to Mrs. Nishikawa

By

Mitsuyasu HAsHimoTo

Introduction

Let R  be a commutative ring with unity, and consider a polynomial ring S
=R [xii] ,  w here n is a positive integer. W ith letting xii= — x,1 and x i i= 0,
w e can form  a  generic alternating m atrix ( x i) ) .  T he ideal Pf2i of S  generated
by all 2t-subPfaffians o f  (x i) )  is called the (generic) Pfaffian ideal of order 2t.

The m ain purpose o f th is  article  is to  determ ine th e  num ber of minimal
generators of the re la tion m odule, or the fisrt syzygy m odule of a  P faffian
ideal provided R  is  a  fie ld . In  the  following cases, the relation module of the
Pfaffian ideal is know n to  be generated  by linear re la tio n s  (i.e., elements of
degree t +1 , because 2t-Pfaffians are homogeneous of degree t): the case RD Q
[10, 12] , t = 1, n=2t (triv ia l), n  =2t+1 [5] or n = 2t± 2 [21]. Moreover, Kurano
[16] proved that w hen R  is  a  fie ld  of characteristic p> 0  and if 2p>n —  2t,
then the first syzygy of the Pfaffian ideal Pf2t is genera ted  by  the  linear rela-
tions.

O n the other hand, Kurano showed that when n = 8 and  t =- 2, w e need a
new generator of degree t + 2 o f the  first syzygy when R  is  a field of charac-
teristic tw o [17]. In particular, we see that there is no minimal free resolution
of generic Pfaffian ideals over the ring of integers Z in general.

Our main result is

Theorem 7.8. Let K be a field of characteristic p.
1 If  p * 2, then the first syzygy module of Pf2t as  an  S-module is generated by

linear relations. Or equivalently, we have pt =o for j * t + 1 .
2 If  p=2, then we have

[iog2t]

Tor5 (S /Pf 2 i , K) [To/I (S /Pf2 i , K )] t+1(1) e ,  A  2 (t-1-20F

i =1

as GL (F)-modules so that si i = o unless j = t+2  for some 0 i  [ l o g 2  t].
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3 We have

G t+1

n n

) 2tH-2)
(p 2 )

where /3;-= dimx [Toil (K , S /Pf 2 t ) ] ,  is  the graded Betti number of S/Pf2 t  over
the field K  of characteristic p .  Note that /(3S,;  i s  the  number of elements of de-
gree j  in  a  m inim al set of homogeneous generators o f the  first syzygy of the
Pfaffian ideal Pf2t.

In  particular, the  first syzygy is generated  by the  linear relations when
th e  characteristic  is odd . T h is  should be com pared w ith th e  re su lts  on the
generic determinantal ideals and the case of generic symmetric matrices due to
Kurano [15, 14].

The proof of the theorem heavily depends on K urano's result : F o r any p,
13L=0 unless t + 1 j _ < 2 t  [16].

For the case j 2t, syzygies of Pf2t (at these low er degrees) is closely re-
lated to the homology of the t-Schur complexes of the identity m ap (cf. section
7 ) . To establish this relationship, we need to generalize the plethysm formula
[16, 3] to the complex version (section 2, 3).

T he  t-S chur complex o f  th e  iden tity  m ap  w as stud ied  to  ca lcu la te  the
syzygy of determinantal ideals [23, 7] , and  its homology is known to be iso-
morphic to a cohomology group of certain homogeneous vector bundle over a
grassmannian variety  [23]. For our purpose, we prove a  vanishing theorem on
the homology of t-Schur complexes (section 4) . W e also need to utilize Akin-
Buchsbaum resolution o f  S chu r m odules for skew  p a rtitio n s  o f  length two
(section 5) . The use of A -B  resolution has already appeared in  [23] . The
strange way of appearing new generators of the first syzygy at characteristic
tw o com es from  th e  strangeness o f  th e  homology o f  arithmetic Koszul com-
plexes (Corollary 5.3).

In section 8, w e study the  explicit form of the minimal generators of the
relation module of the Pfaffian ideals.
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1. Prelim inaries

Throughout this article, R  is  a  commutaive r in g  w ith  1. T he sym bol 0
means the tensor product R over R. W e denote the  se t o f non-negative inte-
gers, integers and rational numbers by No, Z and Q, respectively. For a prime
number p ,  we denote the prim e field of characteristic p  by  F .  The symbol Fo
stands for the field of rational numbers Q. For a  set X , the card  inality of X is
denoted by X. F or a  positive  integer n, the n t h  symmetric group is denoted
by S n . F or a  row-sequence (i.e., a  sequence of non-negative integers) a=

, de
,a s )  of degree n (i.e., lai L a i )  =n) , we define

S a  = E S n  a ( j )  <  a (i ±  1) unless i=  E li=ia; for some /I .

Let F  be a  finite free R-module and i  O. We denote by S F  (resp. A  F,
DiF ) the i th symmetric pow er (resp. exterior power, divided power) of F. The
sym m etric  a lgeb ra  (resp. ten so r a lg eb ra , ex te rio r  a lg eb ra , d iv id ed  power
algebra) of F  is denoted by S F  (resp. T F, AF, DF). F o r a  map of finite free
R-modules ço:G - - *F , the  i th sym m etric  pow er (resp. exterior pow er) of ço is
denoted by S i go  (resp. A  go) . The sym m etric (resp. tensor, exterior) algebra
of go is denoted by S ço  (resp. Tço, A (p). For a  finite free R-complex

0
a:0—G—>F—>E—>0

of length at most two, we denote the i t h  symmetric pow er (resp. the symmetric
algebra, the tensor slgebra) of a by Sa  (resp. Sa, Ta) . For these multi-linear
objects, we refer the reader to  [2] a n d  [9].

W e denote by G2
R  (resp. V ) th e  category o f Z2 -graded R-modules (resp.

the  category of chain complexes of Z-graded R-modules). These categories are
symmetric in  th e  sense o f  [20] w ith the  tenso r p roduc t 0  and the  twisiting
morphism T  (see  [9, Chapter I]) . W ith forgetting the  boundary map, any ob-
ject in V is considered as an  object in G .  It is  easy  to  check that the forgetful
functor 6  —> G i is a  faithful exact functor of symmetric categories.

An algebra  (resp. coalgebra) in  V o r G2
R  i s  a  monoid (resp. comonoid) in

the monoidal category V or G , respectively . In other words, an  algebra (resp.
coalgbra) in  G2

R  i s  a  bigraded R-algrbra (resp. colagebra) , a n d  a n  algebra
(resp. coalgebra) in  V is  an  a lgebra  (resp. coalgebra) in  G i whose structure
maps are chain maps.

Tensor products of algebras and coalgebras are  defined in  these categor-
ies using the tw isting T . If A  and B  a re  algebras in 6  o r  G , th e n  A  0  B  is
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again an algebra in (6 or G 2B, respectively, with the structure maps
107'01 m A OmB

M
A  0 8  

•
•  
A  ®B ®A  ®B — A  O A  ® B ® 13 - - - -  A  OB

and

uA „:R "=" R OR — >A 0 B .

Tensor product of two coalgebras are defined similarly.
An algebra-coalegbra is called a bialgebra in V or G i when the multiplica-

tion and  the  un it m aps are coalgebra maps (i.e., comonoid homomorphisms) .
A s the tensor product of two algebras is different from  the  usual one, bialge-
bras in our sense are not bialebras in the usual sense in general.

For a  m ap 9  : G —> F  of finite free R-modules, we consider that G  (resp.
F )  is  o f d eg ree  (1 , 1 )  (re sp . 1 , 0 )  so  th a t A  F, DG, S A 2 F ,  A  ( F  G )  and
D(D 2G )  are com m utative and cocom m utative bialgebras in the category G 2

B ,
and  A  9 and S (A 2 9) are commutative, cocommutative bialgebras in the categ-
ory V (see [9, Chapter I)].

Let B  b e  an R-algebra. The m ultiplication (resp. unit) map B  B  - -> B
(resp. R — > B) is denoted by m B  (resp. uB). If there  is no danger of confusion,
it is simply denoted by m (resp. u).

For an R-coalgebra A, we denote the coproduct (resp. counit) of A by AA

(resp. EA). For k •  0, we define SA

°
 :  A —> A "  inductively; S w = EA, A( 1 )  =  idA,

and

A ( k ) = (A A Oid A .-2)DA ( k - 1 )

for k  2, A map of the from d ( k ) is called an iterated coproduct.
Let AA  b e  a  graded coalgebra, and a= (ai, ,as) a  row-sequ-

ence. Then the composite map

,d(s) projection

A —>A OA 0.•• OA A,„ ®A a , ®.•• 0.4 a

is denoted by A ,̀1 (or simply by AA or LI if there is no danger of confusion).
For aE A i a l, we express as

(1.1) (a)  =E a u) o a (2) oa(s)
(a() (a i) (a0

(a)

(this is a graded version of Sweedler's sigma notation (cf. [24] ) ).
L e t 9  :  G —> F be a m ap of finite tree R-modules, and /1//2 a skew parti-

tion  (see  [2] or [9]). We denote by K,ug G (resp. LA/0F, Lv,iço) the Weyl module
(or coSchur module) of G  (resp. the Schur module of F, the  Schur complex of
9 )  with respect to 2/ ,u. For t h e  t - S c h u r  complex of 9  w ith respect to E ft
is denoted by Lt„u040 (see [7]). For the result, notation and terminology related
to these objects (such as standardness of tableaux, standard basis theorem) ,
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we refer the reader to  [2 ] a n d  [7]. However, we use one different notation. The
complex A t,1„1/,ço i n  [7 ]  is  deno ted  sim ply  by  A  t,,i/g (p i n  th is  paper, and
A f „uf i yo = E t A  t,t,2/tiçO i n  [7 ] w ill never be  used  in  th is  paper. Thus, A  t„uaço
stands for the complex

Âa— 23-1,A yo 0 0A  yo A

w here A t .'" yo is the truncated subcomplex

0—> A T  01),_ f G —> A 1+1F D t_1G —>. • .—> F —> D,G —>

of Arço for r

Let A =  (a ii) b e  an  n X n m atrix over R . W e say  tha t A  is alternating
when a u =  — ai i  and a 1 = 0  for 1 The Pfaffian Pfaff A  of A  is defined
to be zero when n is odd, and is defined by

de!
Pfaff (au) =  (2r.71) - 1 E ( — 1) Graaiaz ... a a(n—DanaeS.

= E ( —  1 ) Gracria2 ' — aa(n-Dan
cree ., al <0 . 3<•••<a(n - 1)

a(2i-1)<a(21) (V 0

when n = 2r is even.
Let 1 and ( a i )  an n X n-alternating m atrix w ith coefficient in R . The

Pfaffian ideal Pf21 (a j) o f  th e  a lternating  m atrix  (au) is the  ideal of R  gener-
ated by all 2t-subPfaffians o f  (a i,) (here by a  2t-subPfaffian we mean the Pfaf-
fian o f  a  submatrix o f th e  fo rm  (Ct a (I)C a l))1 ,1 2t f o r  some sequence 1 (1)

••• <a(2t) rt).

2. Generalized Pfaffian

Throughout this section, cio : G —> F denotes a m ap of finite free R-mod-
ules. W e set m =- rank F  and n = rank  G. W e fix  a  basis X =  ixi, , x m l  of F
and  Y =  tyi, ,  y n l  of G, respectively.

In  w hat follow s, w e require that any algebra (resp. coalgebra) A =  i d

A i ;  in  GI satisfies the following conditions:

(2.1) A i ;  is  a  finite free R-module for a n y  (i, j )  E Z2 .
(2 . 2) A  is positively graded (i.e., A Li = 0 u n le ss  (i, j )  E NV , or A  is nega-

tively graded (i.e., A O unless ( — i, — j )  E M ).
(2.3) u : R A 0 ,0 (resp. s  : A0,0— R) i s  an isomorphism.

Any bialgebra in G i is required to satisfy u 0 E= id and E 0  14=  id. A tensor
product of two positively (resp. negatively graded) (co-, bi-) algebras in GI is
again a positively graded (resp. negatively graded) (co-, bi-) algebra in G .

Let M  be an object of Gi (resp. W). Assume that M  is finite free as an R-
module, and that M is positively graded o r  negatively graded. Assume moreov-
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e r that M(0,0)= 0. Then, TM is  an  algebra in  G I (resp. W). Moreover, TM is  a
bialgebra in G I (resp. W) with letting E ( M )  =0 and d (m) =m 01+1 Om for m
EM (see [8, Proposition 4.6]).

Let A =- ED i dA i d  be  a  coa lgebra  in  G i and h  : A — > M a morphism in  Gi
with M being a  finite free R-module. Assume that Mi d = 0 un less  ( i , j )  E 1%1F)

10, 0 , or M id=0 unless ( — i ,  — j )  E N 8\ 10 , OF so that the tensor algebra TM
is a coalgebra in G 2R  in our sense. W e say that A  is cogen era ted  by h  (or by M)
when the coalgebra m ap h : A —* TM is injective, where

h.- p r o j e c t i o n

A — T M

is given by
d h®'

A —> A '  — 0  M ®l

(this defines a  m ap h Hom (A, ri,,Ari), and it is easy to  check that the im-
age o f  h  is contained in  TM) . If B  is  an  algebra in  GI generated by a subob-
ject N E  G i as an R-algebra, N is finite free as an R-module, and if N(o,o), then
the graded dual 131 o f  B  is cogenerated by N* . F o r example, DG and A F  a re
cogenerated by G and F , respectively. The symmetric (co) -algebra SE of a  fi-
nite free R-module E is cogenerated by E when R is Z-flat, but not in general.

Let A  and B  be coalgebras in  G i cogenerated by fin ite  free quotients M
and N, respectively. Then, A OB is cogenerated by MOREDR ON. In particular,
if R is Z-flat, and if a is  a  finite free R-complex of length at most two (with an
appropriate degree), then Sa is cogenerated by (the underlying module of) a.
For example, SA 2 (p is cogenerated by A 2 go when R is Z - flat.

de!
For a  subset S of Z 2 and M =  ei,;M iJE G i, we set Ms= ED (i,»Es Mid. If S is

finite a n d  ± S c l■ g \ j  (0,0)1, then TMs  is  a bialgebra in

Lemma 2.4. Let A = AL; and B=  e i ,; Bi,.; be coa lgebras in  G i and
: A —> B a morphism in G .  Let So  be a finite subset of No, and s  a positive inte-

ger. We set S= isF X So and N = Bs. If B is cogen era ted  by N, then the following
are equivalent:
1. y5 is a homomorphism of R-coalgebras.
2. For each k :0 , the diagram

Ak•S Bk•S

(2.5) ■& I dB

N ® k

is commutative, where 0®° =idR.
Moreover, if  these conditions are satisfied, then 475 is uniquely determined by çbs : A s

ook
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—■ Bs= N . If  both A  and B are coalgebras in  C, and if

çb : As,* —) Bs ,* =  N

is a chain map, then ç5 is a chain map.

Proof. 1 2 is obvious. We show 2 1. With letting k = 0 in  (2.5) , we
have that 0 preserves the  counit (remember our convention /1( 0 ) =s). We show
that 0 preserves coproduct. Namely, we show  (q5 00) 0  AA= °  95. For (i,i)

No • S=  (kS , lk 0 ,  j 'E S o L  we have Bi ,;=0, because B — > (TN) i,; = 0  is
injective. Hence, it suffices to show that the rectangle (a) in the diagram

  

A  
(k+os

0 1

Bck+os

 

 A kS OA k'S  A r  ®A r '

(a) 0 0 0 1 (b) oek eo ok'

dB A B ØA B
 B kS ®B k's  N®k O N '

  

is commutative for k, O. But we h av e  (b) and the whole rectangle ((a) -I-
(b)) is commutative by 2. The map

d B  AB : Bks Bk ,
s

- - - 4 N ® k  ON ® ' '

in the diagram is injective, since N cegenerates B . Hence, (a )  is also commuta-
tive. So 1 and 2 are equivalent.

Now, we show the uniqueness of 0. We set h  : B —> N to be the projection.
Then, it is easy to see that h r çb=  Os . Since h  is injective, 0 is uniquely de-
termined by Os.

We show the last assertion. Since A  is decomposed into a direct sum A =
as an R-complex, it suffices to show that 0i= 01, is a  chain map for

all i C Z. If i is negative or if us not divisible by s, then q5i = 0 is a  chain map.
Consider the case i = k s for some O .  Then, the diagram

Oks
B k S ,*

AB

N O kn 0k

is commutaive. The map Or c,  A A  : A ks,*- 4  N °k  is a  chain map, and d B  B kS,*
N ® k  is an injective chain map. Hence, Oks : A ks,* B  ks,* is a  chain map.

Definition 2.7. Let k 1. We defineF ) : A 2 k F k  S k A 2F  by

(fi Af2k) = Pfaff ( A fi) s2k)A • • • 

for , f2k EF (it is easy to see that this map is well-defined) . We define
Trg (F) : R  —> R to be idR. We define r i  (F ) : A 'F—*S A 2F to be the zero map
when ]  is odd or negative. We define Irs : A F —> SA 2F  by r s1A,,,-=7r1(F).

 

A ks,*

   

(2. 6)
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Lemma 2.8. The m aps 711 (F): A F  --> S A 2F and r s  (F):AF —> S A 2F
are uniquely characterized by the following conditions:

1 TCS(F) I = S(F)•
2 F o r  each j E  Z ,  rc'l is  a universal natural transformation (see e.g., [9, Defini-

tion 1.3 .10] ) f rom  A i(?) to  SA 2 (?).
3 The m ap TES  (F) is  a homomorphism of coalge bras in  G .
4 R --> R and Iris: A 2F F are identity.

Proof. First, w e check that ir, a n d  n's  defined above satisfy these condi-
tions. The conditions 1, 2 and 4 are trivial from the definition.

To show 3, we may assume that R =Z , by virtue of 2. In th is case, S A 2F
is  cogenerated by  A  2 F .  By Lemma 2.4 and 4, it su ffices to  show  that two
maps

rg; (F) isAT
A 2-7F — >  A 2F ( A 2F)

and LI A F  :  A ziF —> (A 2F) €)] ag ree  for To verify this, we m ay assume that
R = Q, extending the  base  ring . W e m ay assume dimQ  F  21, otherwise both
maps are zero. In th is case, A 2, F  is  an  irreducible polynomial representation
of GL (F) . So it suffices to show the image of x1 A  ••• A  x 2 ; agree, where

is  a  basis of F (n= dim Q  F ) . But a straightforward computation will show
that the both images agree with

2-i • E  ( - 1 )  a  (X  g lA X  02 ) 0  • • • 
0

 (X6(2j— D
A

X0
-
(2j)) •

Hence, n- s  is  a  coalgebra homomorphism.
Now we prove th e  uniqueness. First, consider the  ground ring  Z. Then,

SA 2 F  is  cogenerated b y  A 2 F . By Lemma 2.4, rc s  (F) is uniquely determined
by irk. Hence, so is n.7 (F) for any j .  By 2, they are unique for any ground ring
R.

Let and consider the image of LIDG : D2kG (D2G)®k . It is contained
e,

in  the invariant submodule ((D2 G) ) under the action of the e h  symmetric
group S k o n  (D2G) 

0 k

 via the twising, since DG is  cocommutative. B y  [9, Lem-
Ok

m a 3.18] , ((D2G) 0 k ) ' agrees w ith  the im age of dp u„ G) : DkD2 G —> (Dz G )  .
H ence, there exists a  un ique  m ap rgk (G) : D2kG —* D kD2G such  tha t AD ( D ,G )

irgk (G) = A D G . It is  c lear tha t Its  is  a  universal natural transformation of uni-
versally free functors on G.

Definiton 2.9 W e define i r e  =  idR. W e define r f  (G ) to  be  the zero
map from Di G to D (D2G) when j  is odd o r  negative. We define nD (G): DG —*

D (D2 G ) by TED  ( G )  G 71)  (G ) .
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By definition, rrf is universal for all je  Z. A s we have

(2:1) (2 ) \ = /  ( 2 ) (D)A D G  , )
(2,) 1 0 '1 ) (1') Ç3)1 )

we have rg 6,12») = (342 ) ) (i ) . Henece, re; agrees w ith yo;  [3 ] for It is clear
tha t 7T12  is the  identity by definition. By Lemma 2.4, IrD  i s  a  homomorphism of
coalgebras.

Let 0 : G' —■ F' be a  map of finite free R-modules. W e consider G ' and F '
are  o f degree  (1,1) a n d  (1,0) , respectively. I n  [9, Chapter, III] , a  coalgebra
homomorphism

0):Ayo®Ayb—>S(ço00)

is defined. The map O is uniquely determind by the property:
(2 .1 0 ) The map 0(ç), (I)) depends only on F, G, F ' and G ' and is  a  universal

na tu ra l transform ation of universally free  functors on F, G, F ' and
G', I t  is  a  homomorphism of coalgebras in  V, a n d  01 A , cp. A ,0 :0 ®çb — >
yo (I) is the identity.

W e denote  01,,Ç,Ø A ,0  b y  O; for 0. W ith  le tting  G = 0 and  F' = 0, we
obtain a  universal natural transformation OA  (F, G') : A F  D G '—  A  (F 0G')
(see [9] ).

Definition 2.11. We define the generalized Pfaffian map 7r= 7r (yo): A yo
- - 0 S(A 2 yo) to be the composite map

od
A 9=A FO D G A F  AF ODG ODG

r s o o n

- s ( A 2 F )  0 A  (F 0G) OD (D2 G) =S ( A 2 0)

The restriction of  i t  t o  A i yo is denoted by 7r) o r 7r j (cp) for 1 Z.

The map 7T (yo) depends only on F and G.

Lemma 2.12. T he map 7C (9) : A' ço —*S A 2 p an d  rc (9): A yo — >S A 2 yo
are uniquely characterized by the following properties:
1. (ço) m p = (40 ) •
2. 7.1- (g9) depends only on F and G, and is universal on F and G.
3. 7C (g0) i s  a  homomorphism of coalgebras in  W.
4. 7r2:A 2 yo — >A 2 ço is the identity.

In particular, we have it- J=0 for j  odd or negative. The map ro: R R is the
identity . For k the diagram

A 2k( i )7 r 2 k SkA2yo

(2.13)
A ( A29)°'

commutes.
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Proof. The uniqueness is proved similarly to Lemma 2.8 . The conditions
A

1, 2 and 4 are  easy. Since 
A F '  

J
A G '  

7 S ,  (/) and 7 D  a r e  coalgebra maps in
7  is also a coalgebra map in G .  So the last three sentences in the lemma follow.

It remains to prove that 7r is a chain map. Let rankR F  and rankR G be m
and n, respectively, By 2, we may assume that

R=Z[x ull 1 ,

and that ço is given by matrix ( x ) .  So S (A 2 (p ) is cogenerated by A 2 yo. Now
set s= 2, So=0,1,2  ,  and apply Lemma 2.4. Since 7r2= id is a  chain map, 7r is
a chain map.

Lemma 2.14. Let 1? . 0. Then, the diagram
Trk

A 2 k  çl9 S k ( A 2  (P)

(2.15) AAço S ( A )
0k

Akyo0Aktp S k ((,00(p)

is commutative.

Proof. Note that the  maps

S ( A )

(2.16) A cp —> S (A V   S((pOço)

and

A  ço

(2.17) A go — >  Acp®A(p — >  S(Ço (p)

a re  coalgebra homomorphisms in  W. To prove that these two maps agree, we
may assume that R = Q and that yo is the zero map. So it suffcies to show that
these maps agree on degree (2, * ) component by Lemma 2.4. It is easy to see
that degree (2 , * )  component o f  (2 .16) a n d  (2.17) a re  d: A 2 ÇO ç O  O  çO.

Hence two maps (2 .16) a n d  (2 .17) agree. Now we take th e  degree (2k, *)
component o f  (2 .16) a n d  (2.17). Since 0 is zero  on  A i ço O  A iço for j j ,

 we
obtain the commutativity o f  (2.15).

Lemma 2.18. Let a be a f inite free R-complex of length at most two, and
j - 0. Then, the composite map

tn.

S i+ ja S ia®S ia S,+ a

i +j
agrees w ith ( )id.

Proof. We set a = 0 —> U W  0. We may assume that R = Q. In
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th is case, Sa=  S W  A V ODU is embedded in  Ta by ida  a s  a  bialgebra in G2
R ,

and S i + J oe is identified with the invariance (T i+ J a) under th e  a c t io n  o f  i+ . ;

via the tw isting. B y [8, Proposition 4.8] , the composite m ap T i+ 3  a  —> T a  0

T a  —> T i i j a  agrees w ith the action of E a E s ,,a - 1 . This action agrees with the
i - 1- j e,multiplication by  ( )  o n  (T i _o ce)

3. Generalized Plethysm formula

Using the generalized Pfaffian map defined in the last section, we can gen-
eralize the  Plethysm formula of S A 2 F  [16,3] and DD2G [3 ] to  the version of
complexes.

Definition 3.1. F o r  a  sequence of non-negative intergers A = (21, 22,
, we define ii•A : AAT —> S (A 2 T ) to be the composite map

r e . • •  077

A 2 ço= A 2 v0.-0/VLgo >S(A2(p) 0.••0S(A 2 9) — >S(A 2 T).

By definition, 71-2 = 0 unless A= (Ai, . .•  , 2 1 )  is even (i.e., A, is even for any
i). When A is even, then the image of n•A is contained in SI21/2A 2 (p.

Lemma 3.2. For i, 0, the composite map

r( 2 1 ,2 j)

A 2 ( i + i ) cp A 2 i 9 0 A 2 i ÇO Si±j A 2 (p

agrees with ( )72(i+)).

Proof. Since ir is  a graded coalgebra homomorphism, we have

E(ira) a  •  (ira)7 z "  T O  • ( a ) )
(ira)( a )

in Si A 2 c,o OSJA 2 T for a E  A 2 ( i + i ) yo. On the other hand, we have

E(ira) iE) • (7a) (2
2

.)/) = (ira)
(Ira)

by Lemma 2.18, and the assertion follows.

We denote the composite map

OS m
A 90  A yo S ( 9 0 9 ) S A 2 yo

by O. The restriction of  Oon A  'T O  A l (do is denoted by Oi fo r  /
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L em m a  3.3. For i, j and k w ith  i ± j =2k , the composite map

72k
A rgo A , ( i )A 2 k  >Sk A 2 go

a grees  w ith  the composite map

A0A
A i9 0 A ) 9 E A t-

1 9  A 1 9 0  A l 9  Ai - 1 9

O S i 5  min
i —Lcven

Er,-,00t O r , /

 E s„_1),2A290s1A2(pos„012A29—› Sk A 2 go

Or equivaletly, w e have

7r2k (a A b) = E EEn-,_,(aillo) • 0/ (a? O K )  • 11(b 1>)
OS/ • min ( i .  j )  ( e l )  (6)

i —Leven

fo r  aE A i go and  b c  Aigo.

Proof. W e may assume tha t R = Q and th a t 9  is  the zero m ap. Consider
the two maps

77

(13 A 9  A ç o  — >  A 9  —>S A 2 9

and
Od 7 0 0 ,87T

CI3 2: AÇ O  AÇ O - > A A ço A c p  A cp

S (A 2 9) OS(A 2 9) OS ( A 2 9) —> S ( A ) .

W e show th a t  ci) i = 43  2 .  Because both of them are  coalgebra maps, it suf-
fices to show th a t  c13 1 ag rees w ith  4) 2 o n  degree two component, to verify this
(note tha t S A 2 (p is cogenerted by its degree 2 component). But it is easy  to
check that the restrictions of (13, (i i, 2 ) on go g o ,  A 2 9  R and R  A 2 (,o are
the  m ultip lica tion  o f A  go , respectivey. S o  w e  h a v e  (13 =  (1 3  2 .  T aking  an
appropriate homogeneous component, we have the assertion of the lemma.

Let We donote the composite map

JOA
A i go 0 A' go — >  Al - I  go A l go 0 A V  A i - 1 9

re0 O ir
>  S A 2 9 OSA2(,o0SA29—>SA29

by By Lemma 3.3, we have
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(3.4) E PU.
Smin ( i , j )

i — I:even

We also consider the maps

 S A 2  (10

and
» F i)

Wid: A i ço 0 A i cp A '  0 A 'ço S (i+j)/2A 2cp .

Lemma 3.5. Let i, j and s  be non-negative integers with s min ( i , j ) .
Then the following holds.
1. If is odd or i ± s  is odd, then p = V i = nfj  =O.

/ 2)
2. If i +1 and is are even, then we have E =

0 5 1 5 ,  (s — 1) /2
s-Leven

i
3. If i ± j  and i +- s are even, then we have

o i s s  ( s — l ) / 2

) 
p i

' i

= 0,J.E
s_,:eves

4. If i +j  is even, then we have

E R  • V ,i= E  R • Pf,) = R  '
05/Ss 05/5s 0515s

i-H:even +Leven H-Leven

in  HomR (A (i,Mio, S(i+1)/2A 2 40)•

Proof. 1 is obvious. W e show 2. For a e  A i cp and bE A i go, we have

V,) (a b) = Eri+s (a A b )b )  • Tri-s (1)W-5))
(b)

Z E (a iiln ) • e (aM  0 b J ? )  • 7rs—i(b )  )  •  Tri—s(q—.0)
I ( a )  (b)

(( i— l) /2
by Lemma 3 .3 .  O n the  o ther hand, th is  eq u a ls  to  E /  (s _ 0 2 )P f i (a O b )  by

Lemma 3 .2 , and 2 is proved. 3 is proved similarly.
We show

E R • E R • pf j

05/.5
i - 1- 1:even H-1:even

W e may assume that i + s  is even. The direction c  is obvious by 2. Since we
have
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PL=V., — (  E
05/5s

the other direction is shown by induction on s. Similarly, we can peove

E R • n ,  E R • IA,»

05/5s 05/5s
i +Leven i+Leven

using 3, and this completes the proof of 4.

Definition 3.6. Let r O. For a partition A of degree r, we define

d e !  E( r )  =
1,4=,

.

IM 7r2#

and
de!

M.R (Tr) =  L

p>,1.1p1=,

Lemma 3.7. M (1 r) ( r ) = S r A 2 (p.
Proof. Induction on r. If r  1 , then the assertion is  clear. Since S A 2 9 =

S A2F  A (FOG) ODD2G, and the R-algebras SA 2 F  and  A  (FO G ) are gener-
ated by their degree two components, we may assume tha t ço = (G-- q )) so that
.5,7\ 2 9 =./3,-D2G by induction assumption. But th is  case is done in  [3 , Proposi-
tion 1.4].

Lemma 3.8. Let Then we have

rankR (SrA 2 9) = nrankRL2,19.

where the sum is taken ever all partitions A of degree r.

Proof. Clearly, we m ay assume that R = Q and that cp  is a zero m ap. It
suffces to show that

SrA2cp"=" EB2L2,19

as polynomial functors on F  and G. Thus, we may assume tha t the ranks of F
and G are sufficiently large.

A s is well-known, the following Plethysm Formula holds (e.g., [161).

(3.9) SrA2(FEBIG)- ED,4 L2A(F (I) G )

The left hand side is isomorphic to

ED s ,A 2 F o s , (F 0 G ) e s k A 2 G
i+d+k=r

e SiA 2F  ( 0 )  igHi K F OK ,G) (ED iri=k L2,G)
i+d+k=r



such that the diagram
A 22(,0 M2 (7r)

Ti
 M2 (7) /if) ( r )

71-22

d2A I
Lug)
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by the Plethysm Formula again. So the formal character of the left fand side is

(3.10) E E E (h - e 2) (x) s (x) s 
(y

)
s
 ( Y )

i+i-f  -k =r Itti=l 17-1=k

where the set of variables x= (x1, x2, •--) (resp. y = (Y1, Y2, .-.)) corresponds to
the entries of the diagonal m atrices in GL ( F )  (resp. GL (G )) . The symmetric
functions h i , e i a n d  s2 denotes the i th complete, i t h  elem entary, and  the  Schur
function, respectively. T h e  0  sy m b o l i n  (3.10) denotes th e  plethysm (see
[19,1.8] ) . T he  form al character i n  (3.10) belongs to th e  r in g  A  =A x  A y ,
where Ax  (resp. Ay )  i s  the ring of symmetric function on x  (resp. y). Appling
the involution w=1®0) o n  (3.10), we obtain

EE E (h i , e2 )(x)s, (x) s(1y) S2r(y) ,
i+j-Fic=r Irl=k

which equals to the formal character of

Es iA ' ( F O G )  ODkD2 G=S r A 2 cp
pi-lc=-- r

by the  plethysm formula: Dk D2 G  E lr l= k  K 2 rG  (see e.g., [14]) , where wy : A,
Ay  is  the ring automorphism given by wy (e, (y) ) =  h (y) (see [19]).

Now consider the right hand side o f  (3.9). Its character is

EsEi (x, y) = E  E s, (x) S D /  (y) .

Applying co on this, we obtain

E su (X) S 2A / (y) =  E Es  (x) s22/,,(y)
ticA  p c 2 2

which is the formal character o f ED,IL22S0 .
This shows that SrA2go.---- EBAL2Â(P.

Theorem 3.11 (Generalized plethsm formula).
partition of degree r . Then, there exists a unique isomorphism

TA : L 2,1(,0 (7r) /./1.4-,3 (7r)

Let r 0 and A  be a

is commutative. So S r A 2 ço is isomorphic to lA l=r L 22 ça up  to filtration.

Proof. To see that TA is certainly induced, it suffices to show that the im-
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age of the composite map

722

A l l — >  A 22(p M 2 (7 )

is containd in M2 (TC) by the standard basis theorem  [2, Theorem V. 1.10].To
prove this, we m ay assume that A = (21, 22) is  of length two, and we set it =
(2.11±t, 222 —  t) . But th is case is clear from 4 of Lemma 3.5. So r,, is induced.

By definition of M2 (70 and M A (z ), Ti i s  cleary surjective. The injectivity
follows from Lemma 3.7 and Lemma 3.8.

Corollary 3.12 ([16, Proposition 3.5], [3, Therorem 2.7]). Let
0. For a partition 2 of r, we set

de!
M2 (TT S ) =- E h u n t

- 2,11/1=r

and

def
M. (T C S )  =  E h u n t.

u>2,1a1=r

Then, we have M2 (ES) /It ./12(ir5 ) '=" L22F. In particular, 012 (Tr S ) I 121=r is  a filtration

of S r ( A 2 F )  whose associated graded object is ED 12 Hr L22F.

Proof. Set G=0 in the theorem so that ço =0 —> F and It =
 7 S .  The asser-

tions follow immediately.

Corollary 3.13 ([3, Therorem 1.9]). Let 0. For a partition A  of r,
we set

d e f  E im,rt

and

2 ( E D) 
def E Imir .

u> ,1,1/.21= ,

Then, we have M2 (r'2 )  4 4 •2 _ D \) K22G. In particular, iM 2 (r D )1 121=r is  a f iltra-
tion of Dr(D2G) whose associated graded object is S 121=r K22G.

Proof. Set F = 0  and apply the theorem.
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4 .  A vanishing theorem

In  th is  section, w e p rove  a  vanishing therorem o n  homology o f  t-Schur
complex o f the  identity m ap. For definition and basics on  t-Schur complexes,
w e refer the  read e r to  [7, section 2 ] .  In th is  section, we consider the  identity
map idF o f finite free R-module given by idF = i ,  where X '=  1 r >
••- > n ' l  and X =  11<••• < n} are ordered bases of F ' and F , respectively. We
use notation and resu lts  from  [7, section 2 ]  freely. However, we use one dif-
ferent notation h e re  (as mentioned in section 1 ). Let 9: G —+F be a  map of fi-
nite free R-modules. B y A t, i/g 9  we mean the tensor product

A 0  A ço i2  - /-1 2 0 A23-pv

which was denoted by A1,1,,up çD i n  [7 ] . W e never u se  E,c,At,,3/ iiço which was
denoted by At,a,p(p in  [7].

Definition 4.1. Let s, 1, r  and t  be non-negative integers, and 2/,u
a relative row-sequence. Then we define

d-Lf(2/ ,u) S E ( 2 / 1 1 ) 1 v (5,1) .3'1

where

(2 / tt) d l f  IS E  ROW.uu (X, X ' )  I VN (s, 11,0 ) = .3 , L i  (5) (Si') =0 /)

a s  in  [7] . W e denote the  R-span o f  i i 't 1 ''''( 2 / t t )  by (2///) , w hich is a
submodule o f A twaidF.

It is easy  to  check th a t X̀t'  '„  (2 4 t )  is  a  subcomplex o f  A t,,umidF. W e set
de!

(2/1.t) s'l (A /ti)) . It is easy to verify that Xsi'' ''(2 /,u) is  a free
subcomplex of L,ut, idF with the basis

de!
Bst

." . r  (2/ tt) =S tv g (x,v) n B( A / si).
Assume th a t LA-1> 21+2 and  /11+1> fo r  th e  skew  partition 2/ 1.t. The

map y = (2/11) — El+1) / t i )  [ 1 ]  (see [7 , p .4 6 9 ] for the
definition) maps  X '( 2 / t i )  onto X r 1-1 T ( (2 — 61+1)/P) [— 1] surjectively.

So we have an exact sequence

0 (2/ ,ti) - - Xst.'''T (2/ fi) — >v(  ( 2 —  s i + i )/ 11)[ - 1] —  0.

When 214.1=21+2 or 21+1=1114-1, then we have
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In particular, we have

/ti) = Xst " 11) ''''(.1/ft)

when / (24t). We denote X't.' ( À / P ) • ' ' ' '  ( 2/ p) by Xst
0 0 5 '.1 '(2/,a) .

For a  skew partition 2 / t i ,  w e  set

def
Fs ( 2 /  =  IT p a r t it io n  p c  rc2, r/p: a vertical s-strip1,

and

def
E'''''(.1/11) = 17'E FS (2/ ft) E(ri— .

For y, Es (2/g) , we say that when
1 rEFP' (2/,u) and r'E./Y r (2/tt) or
2 The condition 1 does no t hold, and y ' (w ith  respect to  th e  lexicog-

raphic order).
T he  relation_, ,,,‘ is  a  to ta l o rder, and  is  compatible w ith  the dom inant order
>- (we asy that A >- 1./ when E l

l =12) .- E;=i,u, for any 1). Hence, when we set

(r) =E r ' s,,,,ImEy , we have

= (To) ,

where To is the smallest element of FP' (24) , and

Ey:A R  A t —+m,,1/T' idF, (2 / 1 )

is a s  in  [7, p.470].
Just a s  [7, Proposition 2.24], we can prove:

Lamma 4.2. (2/ p) adm its a f iltration r2r, whose associ-
ated graded object is

EDL r iu R  L p , — n - Ft,,i/ridF,,

To

where F 1 is  the R-span of the basis elem ents 12, , n1.

Lemma 4.3. Let A/ ti be a  skew-partition with 1= 1 (2/ ,a) 2. A ssume
that A I —  pei =1, and s' = TA,. Then, for any s, 0, the inclusion map

xst .1-1,s'.s+s'-1+1 (2/ 1 ) Xst,l— 1 (À/g )

is a  quasi-isomorphism.

Proof. W e may assume that ti t = 0 and tha t 21 - 1 .  Consider the quotient
complex Y=.Y. 1- 1  (2/ ,u) (2/ p). It suffices to show th a t Y is  ex-
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act. C learly, Y has B y = B st,1-1 () / 14 \ B st.1-1,.,',5+3.-1+1 („1 ,  ■,u ) a s  its  basis. For a
tableau S E R ( '  (A /si), we have

SeBy <=> S (i,l) = 1 for i </ and S (i, 1) E

T hus, Y is isom orphic to the  complex L, 0  idR .V;,:-Vit°,' ',,s+s-1 (2 /

exact (because L idR is homotopically trivial), where

r= , tt,'+1+1 1, •••, 1).

This completes the proof of lemma.

For a  skew partition  A / ,a and we set

def
a (24t, -=1 (2/ p) + 2 1 - t  - 2 .

Therorem 4.4. Let 2 /g  be a skew partition, j, s, 1, with l <1 (2/,a).

If  i_ a (.0 1 ,t), then Hi ( V  ( 2 4 t ) )  =0O. In particular, we have Hi (L tp u id F )  =0 .

Proof. W e m ay assume that 1 b y  [7, Lemma 2.2.13], 21 - t , and
1(.1/ g) 2 .  W e proceed  by  double induction on rank  F  a n d  12///1. We may
assume that A / ri is  connec ted  by  [7, Lemma 3 .3 .2 ]  a n d  its proof. W e m ay
also assume that 1 by  induction assumption on rank F. W e proceed by re-
verse induction on 1. B y  [7, Lemma 2.2.3 (1)1, we may assume th a t  (2 - 61+1)
/t i s  a  skew-partition. Since  A / ti is connected, w e have  1 ((2 E 1 4 -1 )  tt) "
1(2/ /2) - 1. Since 1 (A/ si) 2, th is shows that a ((A - 61+1)///, t) (2/g, t) - 1.

First, consider the case /=1 (2/ g) - 1. We have an exact sequence

(4.5) 0 Xr° ( A / ) - x "  (2/11) - *X l - "((.1 -  s i + i ) /g )[ - 1] -> 0.

Case 1 A 1 1 - a 1.4-1 2. I n  th is  case, th e re  is  no  r E T s (À/ 14 such that  l(2/1 - )
<1 (/1/ g). W e have

xr (2 / tt)
rer,(À/p)

up to filtra tion [7, Lemma 2.2.12 1. By induction assumption, we have

Hi(Lt- r -F,,,,iir id F ,)  =0  ( i  a (2/r, t - ri+ tti) = a  (A/ u, 0)

for any TE T S ( /
1/ /2) . Hence, we have H, (X .r (.1/ ,u)) = 0 for (2/p,t). On the

other hand, since / ((Â - 61+1)/ft) = 1 + 1  s o  th a t  a (2/ g, t) =a  ((A E1+1) g, t) ,
we have I/1_1 ((A - s1+1) f i n  = 0 for i (2 /g , t)  b y  induction assump-
tion. Hence we have Hi( 2 /  g ) )  = 0  for i (2 /g , t )  by the exact sequence
(4.5).
Case 2 21+1 - tt1-F1 In th is  case, we have 21-1-1 - ,a1+1=1, since 1(2/ g) =1+

which is



514 Mitsuyasu Hashimoto

1. By Lemma 4.3, it suffices to show that H /1.0 = 0 for i (2/
, where a =s +s ' - 1. We have an exact sequence

0 _ x ' "  /14 ``' (2/ 11) — >Xst' ' ' ' '  ( ( 2  — + ) 11)E - 1] — > 0

For each TER'''. (2/1) , we have /(y /tt) _<1, since s—a=1—s'. This implies
that I (2 / r) =1+1 so that a (2/ r, t — ri + t t i )  =a (2/ it, , and Hi (2/ t1))
= 0 for i a(2 / 4t.t, t)  by Lemma 4.2.

By the same argument, we have

11, - 1(Xst -
L ' " (  (2 —  s i+ 1 )  / ) )  = 0

for any i a (A/ a, t) = a ( (A — Ei+i) / 11,6 +1. Thus, we have

H i( 2 / 1 . 1 ) )  = 0

for i a (2/ tt, ,  and we have completed this case.
N ow  consider th e  c a se  1 ,u) — 2 . U sing  th e  lo n g  ex ac t sequence

obtained by the short exact sequence

0 xst .1 4 - 1 (2/) — x "  (/1/ p) —>x st
- li (( .1 —  E1+1) E—  1 ] —> 0,

the assertion follows immediately by induction assumption.

5. An application of Akin-Buchsbaum resolution

In th is section, we calculate the homology H, (L, ,v„idF) of the t-Schur com-
plex of the identity map for the case 1(.1/ f.t) =2 and t = 21 — tti. F o r this, the
arithm etic K oszul com plex a n d  th e  reso lu tion  o f  S c h u r  m odu le  (fo r the
two-rowed case) due to Akin-Bucshsbaum [1] play important role.

First, w e review  the  arithmetic Koszul complex. Let u and y be nonnega-
tiv e  in te rg e rs , w ith  u  y . T he  complex K  [u;v] is  the  free  complex whose de-
gree s component K[u;v] s is  the free R-module with the free basis

del
B [u;v] s = i[ao, , as]l (0 i < s) , ai=ur .

i=o

The boundary map is given by

ad = E ( - 1 ) , ( a
, +at-H.) ,

Lao , , ai+2, as].
\ a:

Note that the notation is slightly different from that in  [7 ]. T he  basis element
A •  A  si s of K [74;v] s in  [7] corresponds to  our [ii, u— is]

EB [u;v] s.
Next, we review the Akin-Buchsbaum resolution. Let

ti = (21, 22) / 112)

be a  skew partition of length two. We set a= 2 —  r = t t 1 — R2 + 1 , and k= 22—
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W e assume that O. T he  Akin-Buchsbaum resolution C (2/11)(F) is  the
free complex whose degree s component is

Cs (2/ p) (F) =  ED K [r+1;1] 0 A (a,+,+/az-r-oF

for while we set Co (2//1) (F) = AaF. We define

50 (2/ p): Co (2 / p)(F)-31, 2 1 0  F

to  be  the  Schur m ap dy, (F) . Since K [r ± 1;1] 0 "-=R fo r  any  r  and 1, w e have
Ci  (2/ p) E ,..s,(A /p) A , F . T he boundary map 51 (2/11) : C1 (241) - - Co (2/11) i s
defined to be the box map. To define the maps

5.3+1: C5+1 (2 /p) — )Cs (2/1-t)

for it suffices to define the map

K[r+1;1] s  O A F  O A F —> Cs (2 / .

This map is given by, for a  basis elem ent [ao , ,as] of K[r+1;1] s and x Oy E

ca,-Fy-F1,a,-,-0F,

as-H. ( [ao, , as] i O x  0y) = a ([ao, , as],) OX  ®y
— E [al, , 4i)o) AY.

(x)

Theorem 5.1 ([1 p.173]). Let 2 / 11 be a two-rowed skew partition and k=
22— ,t11 0. Then the sequence

5k 5k -1 51

O — >Ck (2/11) 'C k - i ( 2 / 1 1 ) —  — >C0 (2/t1) — >L2 / 0 E—  0

is exact.

The resolution C (2 / ,a ) of L.,u , F  is called the Akin-Buchsbaum resolution.
Now we consider the t-Schur complex L i ,,i/f i idF, where

2/ it — (21, 22) / 112)

is  a  two-rowed skew partiton w ith t = Ai — p i .  W ithout loss of generality, we
may assume that 112=0 . We set r=11 1 +1.

The complex L t ,,i/„idF is  as follows.

0 > A 'F  ® D a F  •  • F 0Di F —> • • •—>L2 ,„ F —>0

S o th e  ith  te rm  L(,1,,À,- 1),0 F  O  D iF  o f Lt,p,didF adm its a  resolution B i =
C ((2 1 ,22 — i) /11) O D ,F . W e define a  chain map T he  map a i ,s  for

is given by

K[r+1;1] A0 ,1,-1-1-F1F  0  AA 0 F 0 D iF
1 (2 )1 e a , -

K [r+1;1 ],10
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where is  the bounday m ap o f  A idF. T he  m ap a i3 O  is  de fined  to  be  the
boundary map o f  A t,vg idF = A " F  AaidF. Then, it is  easy  to  see  tha t (B.,.,
a.,.)  forms an R-double complex. The following proposition is essentially used
in [23].

Proposition 5.2. W ith the notation and the  assumption as  above, we
have

Hz (L t,,u,idF) "="' H (tot (B*,*))""=" A l'u PIF 01/1 - 1 (K [22;22 — r] ).

Proof. Since B1= B1, is  a  resolution of [Lt,v g idF], for any i, the spectral
sequence for B*,* degenerates, and we have

H1 (tot (B*,*)) -=11--1; (H: (B2, )) =  I (La ,A/ F)

Now we take the spectral sequence in  the  other way, to prove the second
isomorphism. By definition, the complex B*,, is isomorphic to

ED K[r+1;1] ,10 A 2'+1+1F

Since A is homotopically trivial unless /=- 2 2
— r, the spectral sequence

of th is direction also degenerates, and we have

H, ( to t  (B ,) ) (H7, (B?,..)) =1/1-1 (lc [22;22 — d )  0  A 1" , IF.

Corollary 5.3. Let R = K  be a field of characteristic p, and A  a partition.
For any t we have

H1 (L(„lidF) =
{ If(2,1-i)F

A 1Â IF
(A= (H - 1))
(2= (t,q) for some q =pi (i 0) )

0 (otherwise)

where we regard 1=p ° for any p.O .

Proof. Assume that Hi (Lt„zidF)*O. By Theorem 4.4, we have 1(2) +2 1 —t
— 2 <1. C learly, we h a v e  2 1  t. In  particular, w e have 1(2)  2 .  If 1(2) = 1,
then it is easy to see that 2= (t+1) and that the lemma is true this case.

So we consider the case 1(2)=2. In this case, we have 21=-t. By the prop-
osition, we have

(Lt,AidF) = A IÂ IF  0 1 / 0 (K [22;/12 —  )  •

Since th e  b ase  r in g  R = K i s  a  f ie ld  an d  K [22;21 —  1] o is one-dimensional,
Ho(K[22;22 - 1 ] ) * 0  if and only if the boundary map

K [22;22 - 1]1—  'I( [22;22—  1] o

(22
is zero. This condition holds if and only if the binoimal coefficient is zero
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(in K ) for 0 < i <2 2 . T his is  true  if and only if /12 is  a power of p. This shows
that the Corollary is true for the case I GO =2.

Explicit form  o f  th e  basis of H1 (Lt,2idF) w ill be determ ined in  th e  next
section.

6. Explicit calculation

By Theorem  4.4, w e have Hi (Li,,un idF) = 0  for i (2/ it i,  t ).  In this sec-
tion, we calculate the homology for i = a  (Â/p, t) +1. As in section 4, idF: r —+F
has a fixed ordered basis 11 <—• <n <n '<• • •<1 1  with idF (f') =i.

Obviously, th e  complex Lt,p a idF  is a  complex of polynomial represeenta-
tions of GL(F), while the subcomplex (E li) is  G L (F i ) -equivariant, but not
necessarily GL(F)-equivariant, where F1 is the R-span of 2, , n.

For a polynomal represetation M  of GL(F) and a=  (ai, ,  an ) E N ,  the
weight a component Ma  of M  is defined to be

e MI 5 (a) = a Olt. • -1- ",̂ [ CM,

where tn are the coordinates of the set of diagonal matrices corresponding
to  the  basis 11,— , n , and ô  : M -11/1 R tn] is  the coaction of M  as an

-comodule.
In what follows, we use tableau notation as in [7, section 3].

Lemma 6.1. Let 2/ tt= (21, 22) / ( )  be a connected skew partition with
/11 —=  t  and r =1 2 / Ptl. Then, HI(Lt,pu idF) 0,  is cyclic (possibly zero), and is
generated by

ar

9: (2/ 11) p— > (R OLt. 2/ (p-I-8,) idFl) P

OT

A vg =
( - 1 ) 6  C r ( t + 1 )  •  •  •

E

where w = (1,...,1) (r tim es 1).

Proof. Induction on r. Frist, observe that A v „  is certainly a cycle, which
represents a  homology. We denote the weight (1,...,1) = (1 7 _1) ( o f  the maximal
torus of GL(F1)) by P.

C a s e  1 .  k A2 a1 1 . If 2 2 = 1  moreover, then the  lemma is obvious. So
we may assume that .1 2 . 2 . T here  is  an isomorphism

(2/g) ) ,  —> H1 (Le, 2/0idF) w

arising from the fundamental exact sequence, since (.1 — 62) / itt is disconnected.
On the other hand, since /1/ (ft - Fe 1 )  is disconnected, the projection map

is a quasi-isomorphism. Since A v „  is m apped to ±1 0 , 42/(#+E2) by 9, which is a
generator of the cyclic module (R 14,,u(a+s2)idFi) P , we have that H1 (Lt,2/0idF) w
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is generated by A,uo .
Case 2. 2. There is an exact sequence

( L t - 1 ,1 / ( g - F E 1 ) )  idF1)p— * 111 (x . ' '  (A/ p ) ) . —
,111(1,1, 2/(g+ez)idFi) p.

By induction assumption, p =1 0 A 2/(g+i) and Q=1 ®112/(u+s2) together generate
(Xt'" (A/R)) p  (and hence Hi (X i' (2/g)) w=H 1 (Lt,pgidF) w ). B y  [7 , Lemma

2 .3 .1 ] ,  we have 6 (A (A 2) /c) = ±Q , where 5  is the connected map

H1(X?' 1 ( (2 — 82) / p)) — q -11(X t' (A/ p)) .

This shows that Q = 0  in H i  (Xi' l  (2 /g ) ) , and w e have tah t A vu = P +
 ( _ 1 ) t

 Q
generates 1/1(Lt„ug idF) w•

The following lemma, which is the main purpose of th is section, is proved
similarly.

Lemma 6.2. Let 2/ = (21,22,23) / (iii„u2) be a connected skew partition
w ith Al —  p i= t and 2 3 ± 0 . W e set r = ,1 - tt and r=lrl. Then, the w eight co= (1,
..•  ,1 ) component of 112(Lt„uu idF) is  a cyclic module (Possibly zero) generated by

d e !
a l

Av e
=

E ( - 1 ) 6 6 ( t + 1 )  • • • 0- (t + r 2 - 1)

a(t+T,7>T(IÂ/pD a(t-1-7.2+ 1) •••a(r+ 1)

at
a(t+r2)
cr 

 

Proof. Induction on r-= I A / .  A  straightforward computation will show
th a t a ( 4 , , , i ) 0  in and A A Ic is  c e rta in ly  a cycle. W e se t k i=  22
and k2=22 - 112. We denote the w eight (1,...,1) ( r - 1  t im e s  1 )  for GL (F i ) -mod-
ules by p.

By Theorem 4 .4 , w e have Hi (Lt (À-,z)/pidFi) = 0  w h e n  (2 — s 2 ) / g  is  a  par-
tition, since 1((.1 —  82) 41) = 3. Hence, H2 (I. t,PaidF)co = (X F

 (A IR )
P ))  p  is a homo-

morphic image of H 2 (X 1 ' 2 (2 / p ) )  by the fundamental exact sequence.
Case 1 ki =k2 = 1. Namely, 2/1.2 is  a  sk ew  h o o k . If 2 3 = 1 , then (2/ ft)

is exact. Since (2 — s 0 / g  a n d  (2 - 82)/g are disconnected, the map

y: 1/2 (Xt' 2 (2 / /.1) ) H2 (X li' 2 ((A —
 E3) = H 1(L t – e,)/pidFi)

is  an isomorphism. By Lemma 6 .1 , th is  case is O . K., since y (AA/,) generates
(Lt,(2,3)/midFi) •

Consider the case 2 . In th is  case, H3(L t,,upidF), is  a  homomrphic im-
age of

H2 (.)a' ' '  (2/ 11)) p:±-: H2(Lt P •

By induction assumption, this case is O. K., too.



E
CE sa

a(n+n)>a(Irl)
a(n+n)+1>1

al
— 1) Ca  (t +1) (t + r2 - 1)

(t +r2+1) • - a ( î - 1)

ut
a(t±r2)
07

de!
B y t i

=

cgt+ I-2)  1
(r —1)aEs-7

act+i) =1
o-(t+r,)>a(r)

al 
( - 1 ) a (t + 2 ) • (t + T 2 - 1

a ( t+ 7 - 2 ± 1 )  
0

o-(t — 1)  at
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Now assume th a t k2 2 .  In  th is  case, 5 (A (,1- cd p )  =  0  in  H2 (,X'2 (241))
where 5 is the connected map

5: H 2 (X 11'2  ( (A — E3) /14) 2 / 11 )) P

B y [7, Lemma 2 .3 .1 ] ,  we have

5 ( A  -0/,) = ± (1 0A2/ (p+e,))
a2

= ± E  (-1 )6 a(t+ 2) •••a(t-I - T2 )
1 a (t T 2 + 2 )  •a (r— 1)c•l=1

et-En+1)>0(I,04)

a(t+ 1)
(t - FT2 ± 1)

Ur

 

Now we consider
Case 2 k 1 =- 1, k2 2. By Theorem 4.4,

o
H 2 (L t 635 / pidFi) P- - - ' 11-2 ( M ' ' '  (A/ si)) p- 4 112(L i,i/g idF) p , — > 0

is  exact. O n the other hand, b y  [7 , Proposition 2 .2 .4 ]  and  Theorem 4 .4 , we
have an exact sequence

H2(1(t,,i/ (p4- 62)idF)  
— *H2 (x '°° (A/si)) p— *1-12 (LI,» (p+s,)idFi)

S in c e  (p (-) 5) (A genertates H 2(1.()/ (p+E)idF p  and  the  im age  o f
H 2(L t)/ (p - ea) idF ,), by the map 1 is generated by

by induction assumption. Since AA,p=B21#  ± 5 (A (2- ,) /p )  and 5 (A Gz- E,)ip) is  zero
in H2 (Lt,,upidF) , 5 (A ) generates H 2(14,» pidF)

Now assume that k 1 2 .  In  th is  case, 5 (A (,1, )/g )  =  0  in  H 2  (X t ' l ( A/U ))
where 5 is the connected map

5: H 2 ( 1 , t,(À – E,)/pidF,) — > H 2 (X ) .'2 (Ep)).

However, we have to  be  ca re fu l. I f  23= 22, th en  th e  m ap  5 does not make
sense, because A — E 2 is not •a partition. In th is  case, w e regaed 5 (A (2– s,)/ p) as
the element

which is zero in H2 (M' 1 (.1///)). A straightforward computation shows that
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(6 . 3) 5 ( A  - c,) / it) =  ±  ( 1  A A/ (p+,a) (— 1) 7  (1 ®A A/(+,)))

in H  ( X ' 2 (2 / ,CL)) . Here 1 in the second term must be replaced by 1' when 73=
1. Observe that the second term  is zero when k 2 _ 2.

Now we consider
Case 3 k i  2 ,  k 2 =  1 . Since A/ (tt +E 2 ) is disconnected, C2/ 1, =  1 0 A,u(p+,)

and 5 (A (A-,t)itt )  together generate H2 (X 1' '.* (2 / /1)) p by induction assumption and
(6.3). On the other hand,

H2 (X1' (2/14) p — >H 2(X t'2 (/1/ p — ) 111(X '?'2 ( (2 —  3 )  /14)=0

is  exact, and X1' 2 (A/R) is quasi-isom orphic to X 1' 1 ( 2 / ,a )  since (A — / t i  is
disconnected. So AA/p =  C,Up± 5 (A (A—e,)/p) generates H2(Lt,2/gidF)0.).

Case 4. lel • 2, k2-- 2. B y  (6 .3 )  , th e  three elem ents CA/11 =
1 0  A P(p+e,),

(A (2-„,)/p) and 5 (A G3-,2)/) together generate H2 (X/' (24) ) p . Using induction
assum ption, it is easy to see that the  map H2 (X i '  (2/11))p— 'H2(Xt' l  (.1//i)) p  is
surjective, as in Case 3. Since ô (A (2--- /p) and 5 (A u-6,)/p) are zero in H  ( X P
(2 /p )) p ,  we have A 2/0 = C p g ±  5 (A u-c,/ fa ) generates H2 (L t,A /idF)

7. The second Betti number

Now we start studying our main object—the Pfaffian ideal.
Let F  be a free R-module of rank n w ith a  fixed basis X =  lx l , , x n } , and

S  =S  (A 2F ) =R [x1 A x ]  the  polynomial ring over R  w i t h  (  )  va riab les. L e t
2

1. The generic Pf af f ian  ideal Pf2t is  Ff2t ((x t A x i ) )  c  S  by definition. Or
equivalently, Pf2t= S  • Imris t (F) . W ith letting each variable x,Ax ;  o f  degree one,
S  is  a  graded R-algebra, and Pf2 t i s  a  homogeneous ideal generated by its de-
gree t-com ponent. It is easy  to  see that th e  degree r-component Pf2f,r of Pf2t
agrees w ith  M (tj'')  ( i t s )  f o r  t ,  where MA ( r S ) is defined  a s  in  Corollary
3 .12 . B y  C oro lla ry  3 .12 , w e  have S /Pf 2 t is R -free , since  S r/Pf 2t,, adm its a
Schur module filtration, where S r=S r( A 2F ) .  By Lemma 3.3, we have the La-
place expansion formula

2r+1
V

7.4(r+ i) (a Afi  A • • A h r + 1 )  = ( - 1 )  i+ 1 (aAfi) r2sr (fi A ........... Af2r+1)
i= 1

for r_ . 1 and f f2 r + 2 E F .  This shows that Pf21-F2cPf21.
It is known that Pf2t is Gorenstein of codimension h = ( n - 2 t  + 2 )  (n -2 t- i-

1 )  /2  (i.e., pd s S /Pf 2 , = grade Pf2t = h  and Ext isi (S/Pf2t, S / P f 2 1 )  .  In  other
words, 5 /Pf 2 t is Gorenstein if and only if so is R , see [10] or [13].

In  [17] , K urano show ed that th e  number of generators o f the  kernel of
the map
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1 ir s

cp: S A v F

 

SOS —  S

 

(the relation moldule of Ph t )  depends on the base field R=K.
In th is section, we will determine the number of generators of Kercp when

R = K is a field.
The graded Betti number of S / P f2 t for the base field K of characteristic p,

dim x [T oil (K, Pf2t)] is denoted by St,./ (this num ber depends only on p,
and  is independent o f the  choice of K  o f characteristic p ,  w here K i s  the S.
module S/S+ = S/P f2 , and E  ] ;  d e n o te s  the degree j-component of a graded S -
module. The Betti num ber Ei pti is denoted by 131,)  . The number of generators
of Ker cp agrees with when R = K is  a field of characteristic p. In the rest of
this section R = K is  a field of characteristic p , unless otherwise specified.

Since the Koszul complex SidAF is a  minimal free resolution of K, we have
an isomorphism of graded S-modules

(K, S/ Pf2t) Hi (Pf2t s Sid A, F)

for We define a chain map p:A 2 idF— 'idA2F by
LI

A 2 idF : 0 - )  D2F F OF A 2 F  — >  0
0 I 1 m 1 1

idA2F: 0 0 A2F A2F 0.

Lemma 7.1. The map

1 Sp : Pf2t OsS A 2 idF Pht OsSidn'T

is a  quasi-isomorphism of GL -equivariant graded S-complexes.

Proof. I t  is  o b v io u s  th a t  1  0  S p  is  a  map of GL(F) -equivariant graded
S - complexes. It suffces to show that this map induces a bijection of the homol-
ogy groups.

There is an R-homomorphism a : A 2F---*F OF such that m 0  a = id , w h e re
m  is the multiplication map m: F A 2F. Using this splitting a , we have a
splitting s :  idA=F— A 2 idF of p  defined by

Since p o s  is  the identity map of idA ,F, we have H* (1 ®Sp)cll *  (10Ss) = 1
on H * (Pf2t sSid/vF) . This shows that H * (1 Sp) is  surjective. Sinece H, (1 0
Sp) preserves S-grading and each homogeneous component of Hi (Pf2t Os A 2 ide)
i s  a  finite dim ensional R-vector space, it is enough to show  th a t th e re  is  an



522 Mitsuyasu Hashimoto

isomorphism of graded R-vector spaces

(7.2) H  (Pf2 t Os A 2 idF)"-1=- H  (Pf2t OS id A 2F)

to show that H *(1 ® S p ) is injective.
As we have a splitting s of p, A 2 idF is decomposed into the direct sum:

A 2 idF=idiyFOidD.F[ - 1].

Hence, we have an isomorphism of graded R-complexes

Pht OsSA 2 idF= (Pht OsSidA , F) A idD,F= (Pht OsSid AT) A i idDF.

Since A i idw• is  homotopically trivial for i >0 , and since A'idD,F=R, we have
established the desired isomorphism (7.2).

Now we want to calculate the  homology group of Pf2t OsS A 2 idF to study
del

the  Betti numbers of S/Pf2 t . Note tha t Y  =Pf2 t OsS A 2 idF i s  a  graded S-sub-
complex of S Os S A 2 idF  = S A 2 idF. The degree j  componemt of Y t is denoted
by Y i j  By Lemma 7.1, we have

(P i ) = [Tor-Ei (S/Pf2t, R)],.

By definition of 7: A idF— >S A 2 idF, We have 7C2r ( A t + r '2 r idF) CY t 'r  fo r t>1.
Hence, for a partiton Â, we have

7 22 ( A t+À,,vidF) cp,121.

Definition 7.3. Let 0 and 1. F or a  partition  Â of degree r, we
define

de! EM t,2  (7r) = 7r20( A ( p,,21tid F)

and

de! EM  t  (Tr) = 7r2tt ( A .
P> 2.1,4=

We have Mt(i'-) z 3Dt. r  so  th a t 1Mt ,a l  is  a filtration of P ' r .

Lemma 7.4. L et R  be an  arbitraty com m utativ e ring, and yo: G— F a
map of finite f ree R-modules. L et 2/p= (21,22) / (kt1,p2) be a  two-rowed skew-parti-
tion, and t ..22 - 1.t1. Then, we have

imn,„ n A 1,0,AP=  E
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where r = A— R, and al= 61 —  s2.

Proof. It is obvious that the right-hand side is contained in the left-hand
side.

W e prove that the left-hand side is contained in the right-hand side. Let X
= Ix i<••• <xml a n d  Y =  tyi >•-• >3411 be ordered bases of F  and G, respective-
ly. We set X=XU Y, and we let X< Y so that X is  a  totally ordered set. Then,
any element a E Im12, C l A t,,i/pcp is expressed as a  = E c s S  (Cs E R )  uniquely,
where the  the  aum is taken over row-standard tableaux mod Y of skew parti-
tion A / it  w ith  valued  in  X .  W e se t N  ( a )  = S  E ROW,uti (X, 17 )  ICs O  .  We

d e f
p ro v e  a  is  c o n ta in e d  i n  t h e  r ig h t-h a n d  s id e  b y  in d u c tio n  o n  h t ( a )  =
ZsEN(,) 2h t( s ) , where h t (S ) is  the number of elements in  Row,u , (X,Y) which is
sm aller than S  in  the  lexicographic order. If any element of N  (a)  is  standard
mod Y, then d ( a )  * 0  unless N  (a) = 0  by the standard basis theorem. Since
Ker dp,=Imov u , this means a= O. So we may assume that there is som e So E
N  (a) w hich  is  no t standard  mod Y. T he  column-standardness is v io lated  in
some column of So, say i t h  co lum n (p i ‹ j  /i2) . Since a E  A t„uu ço, w e have
So (1„u1+1), , So (1, 111+ 0  EX . This show s that X  S (1, j )  > S  (2, j ) .  We
put u = j — ,u1 - 1  and v 22 — j. W hen we define Si E (X ,Y ) b y  S1
(1,1) = S o (1, / - Fitti)  for 1 / ./4,, Si (2, 1) = So (2, l ,u2) for j — /2, S i (2, l)
= So (1, l , u 2  — 1 ) for 3 — ,12 < / -  ri—u—v, and Si (3, l) = S o (2, / + j )  fo r 1

v . Then we have

Ou (Si) =-±So+ (lower terms)

as in  the  proof of Lemma 11.2.15 o f  [2 ], where D u : A („Jr i--„Acp — * A v f i g9 is
the composite map

Augo 0 A T'+ r'- "----”goO Aucp

 

> A ug°0 Ar' - "q) O A r2 - . (p Ar'go
m Om

nçO e A Tv .

 

It suffices to show that Du (Si) is contained in  the  right-hand side so that
w e can apply the induction assumption on a -T csoDu (S i) . But this is clear by
Lemma 1.3 .9  in  [9 ]  (the special case i 1 =0).

Lemma 7.5. L et R  and go be as in Lemma 7.4, A/ tt a skew partition, and
M  a submodule of  AA/u  ço generated by a poset ideal B  of Row  (X, Y), where X , Y
and X  are as in the proof of Lemma 7.4. Then,

1(2/u)
(7 .6 ) K er d v i/ n m = (( z  im n v r k.,) n m ).

1-1 k> ft,+■

Proof. T he d irec tion  D  is  obv ious by  the  s tandard  b asis  therorem [2,
Theorem v.1.10].
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W e prove the opposite direction c  .  Let a =  Eses c s s (C s  E  R )  be an  ele-
ment in the left-hand side.

A s in  the proof of Lemma 7 .4 , we proceed by induction on ht (a) . As in
the proof of Lemma 7 .4 , we may assume that there is som e SoG N  (a) which is
no t standard  m od Y . W hen th e  colum n-standardness is violated betw een ith
and  the  (i + 1 ) t h  rows, then there exists some T1, , T u < S 0  and al, , au ER
such that

S o — E a iT ; E  E
As B  is a  poset ideal, we have that So — E faiT i is contained in

E imow k a )i n  M.

Since we have a — cs., (So —  E fa ,T ,) is contained in  the right-hand side o f  (7.6)
b y  induction assumption, we have tha t a  is also contained in  th e  right-hand
side.

The following lemma shows that the homology of t-Schur complexes of the
identity map is closely related to the Betti numbers of Pfaffian ideals.

Lemma 7.7 If  1/11 < 2 t ,  then we have

Mt,A —  MA n mo.

In particular, we have a unique isomorphism

Lt+2221CIF Mr,,i/ t,,1

which makes the following diagram commutative.

A td-22,3idF

d 2 )  I
Lt+A r ,22idF

7r22

TtA

 

In particular, if r<2 t, then Y t 'r  is isomorphic to (Elk', Lt+2,,2,1 idF UP to filtration.

Pro o f . Note that

TA: L2,11CIF MA/ MA

maps Lt+,h,2,iidF isomorphically onto

(722 ( A H-,i2,1idF) -= +11.4.2)/A.4.2.

If ./1./ t „1 = fl M,,2, then we define rt,,3 to be the composite map
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(mt,À + m2) /m, -=m,,,/ nm,,À)

and it is easy to prove the rest of the assertions in the lemma.
So it suffices to prove W A = MA n M  t,À . The direction c  is  clear. For the

opposite direction, it suffices to show that Ker d  f l  A/+,12,1idF is mapped to Mt,
by r 2 ,R. By Lemma 7 .5 ,  we have

t+2,22idKer d2A n AH-,z,22idF= (  (Ek>ohn ) n  A F)•

W e m ay assume th a t t 2 1 2 2 1 .  So w e have 22 + ••• + 21(2) by our
assumption 121 .2 t. So it is easy to see that

7r22( ( E i n i E
)  n A,±2,22idF) C M 12.

k>0

for
Hence, we may assume that I (A) = 2 .  By Lemma 7 .4 , K e r  ch n At+2,.2,/idF is

the sum of the images of the maps

E
h :  At+ A,+11,22+11. ( - Ez ) i dF — > A t- I- 2,22idF

for h = 1 ,  ,  22 2 . For each h we have, n..,1,d-h2,12-h = r 0  D ry i s  a  linear combination
of ai,+ h,22,-hf r  O I=1/ fo r  in te rg e rs  1 such that 0 h  and h 1  even by Lemma
3 .5 ,  where 01:A(2,1,+h,22,-oidF — ) A(2,1,-Fh+1.2,1,-h-oidF is the b o x tild e  map. Note that

1=1 ( A /-1-2,-1-h,(22,+h,2A,-oidF) c A t+,3,4-h,(2k+h -1-/.2,z2-h-t)idF•

Since t + 2 1 ± 1/  _ t+ 2 1 +  (h+1)/2 when 1 we have

(  A (-1,1, -1- h h )id F )  C  1141,2

when 1 Hence, we have r)L+h,2,1,-h (A t+2,4-1,,(2,1,+1,2A,-oidF) C  M,2 fo r  h —1, ••• ,
22 2 . This shows that 72) (Ker d2 n

Using the  lemma and the results on the homology of t -S c h u r  complexes so
far we developed, we can prove the following theorem, which is a  refinement of
[16 ,T h eo rem  5 .3 ].

Theorem 7.8. Let K  be a field of characteristic p.
1 If p* 2 , then the f irst syzygy module of Pf2 1 as an S-module is generated by linear

relations. Or equivalently, we have 4 = 0  for j± t ±  1.
2 If p= 2 , then we have

[Loa

Tors (S/Pf2 / , K)'="" [Tor (S/Pf21, K)]1+1 0  ED  A 2(t+2)F
i=1

as GL (F) -modules so that /(3Z,J= 0  unless j= t+ 2' for some 0 [log2t].
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G t +1) 2t +2) (2 + 2 )

n n

(2 t + 1 ) (2 t -F  2 )
(p * 2 )

(p= 2) .
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3 We have

Proof. F irs t  w e  re c a ll K urano 's r e s u lt  [16, Theorem  5.31 w h ic h  sa y s
tha t for any p , we have iSt =  0  unless t + 1 By Lemma 7 .7 , for any r

w e  h a v e  a  sp e c tra l sequence of polynom ial representation o f  GL (F)
associated w ith th e  filtartoion M,, A1 121=r, w ith  El -term s Hi (Li+2,.22idF), and
converges to  [Torl-Fi. (S /Pf2i, K )]

If t - F 2 r 2 t  and p *  2, then H1 (Li+,i, 2,1idF) =0 for any partition .1 of de-
gree r  by C orollary 5 .3  (w hen /1=  (t, a ) (2 ,  2 a  is  n o t  a pow er of p
when p *  2 ) . This shows that a i=  0  when p 2 and j * t ± 1 ,  and 1 is proved.

Consider the case t + 2 . . r _ 2 t  and p=  2. By Corollary 5.3 again, A i = 0
unless j  is  o f the  form t + 2` fo r some 1. Consider the case j = t + 2 ' for
some [log2t] . Then, w e have H1 (Li+2,,2AidF) = 0 unless A -= (t, 2 ') , and
H1(L21, 2,-, 9 idF) A  2H-2iN - F. Hence, to prove the assertion 2, it suffices to show
tha t the El -term  H1 (L21,(21,2 i d F ) F is canonically isomorphic to the
E- -term . We may assume that n 2 (t +20 .

By Theorem 4.4, Ho (Li+p,.2f iidF) = 0  for any u t> A = (t,2 1) (>  is  the lexicog-
raphic order) .  So the  E - -term  in  question i s  a  homomorphic image of the
E 1 - t e r m .  By Theorem 4 .4 , p < 2  and H2 (Li+p,.2p2idF) *0 imply p  is of the form
(t, a,b) (a - I- 6= 2 1, b > 0) .

Assume that E1 X E - .  Then w e can take a minimum num ber b  such that
the map of the spectral sequence

db: H2 (L21, (21,2a,2b) idF) — ) H 1  (L21. ( 2 t , 2 ' ' )  d F )  
= A 21+2, , ,F

i s  n o n -z e ro  (o r  equivalently  surjec tive , s in c e  A 2 '+ 2 '+ F  i s  a n  irreducible
representation) . T his m eans that the  weight c o = (1,-,1) (2121 tim es 1) compo-
n e n t  ( d b ) ,  o f  di, is n o n - z e r o .  O n  th e  o t h e r  h a n d ,  b y  L e m m a  6 . 2,
H2 (L2t, (2t,2”,26) is  g e n e ra te d  b y  A  (2t,2r, 2b). A  straightforward computation
shows that

d1 (A (2t,2,,,2b)) = a (7 -c(l.2„ ,b )A  (2 ,,2„ ,20) = (21,2a,2b) (aA (2t,2a 26) )

equals to

(2t,2” ,2b)

a l a (2t)

o-  (2t+ 1) a (2 1+1)

modulo Mt„z, where E  i s  the  box  map A 2,iidF A izi.2,,,20idF, which is nothing
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7,2, E ( , ) ,

a ( 2 t + 1 )\ 26 0,e(2t,2
db (A (2 t.2a,2b )) =

a (2 H -1 )

a l    a(2t)
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but a diagonalization of the second row of 2/1. By Lemma 3.2, we have

which is zero since 
(2 '+ 1)  

is  an even number. T h is  is  a contradiction, and the
2b

proof of 2 is complete.
W e prove 3 . By 1 and 2 proved above, it suffices to show that

(7.9) —14( 2t -f-1 )  (2 t+ 2)

for any p.
A s S/Pf2 t i s  R-free fo r any commutative ring R by  the  Plethysm formula

[16, Proposition 3 .5 ], it is  esay to see that the alternating sum  Er= 0 (- 1 )  isL;

is independent of p. Since g t - i - i . = 0  unless i = 2, we have that a t + i  is indepen-
dent of p. T o prove (7 .9), we may assume that K  is of characteristic zero. But
this case is done by .16zefiak, Pragacz and Weyman [12].

Let us consider an arb itrary  commutative ring R  as the base ring. A  finite
free  graded S-complex F  is  s a id  to  b e  minimal w hen th e  boundary m ap of
S/S +  F  is  zero, where S + =  (x i,)  S. W hen R  is  a  filed of characteristic p,
then a finite free resolution

F: •••—)F i .-- -> F 1— T o— )S/Pf2 t —*0

of S/Pf2 t i s  minimal if and only if rank Fi =a . A  base change I r  R  F  of a
minimal free resolution F  is still a minimal free resolution.

Corollary 7.10 If 4  2 t —  4, then there is no minimal free resolution
of S/Pf2 t over the base ring Z, the ring of integers.

Proof . By the theorem, /3 ',t+2 depends on the characteristic.

Remark 7.11. W hen 2t n — 2, th e re  is  a m inim al free resolution of
S/Pf2 t [21 ]. W hat about the case 2t=n — 3? This case is  open. Is there any ex-
ample of a Pfaffian ideal which does not have any minimal free resolution over
Z [1/2] ? This question is still open, too.

8 .  Generators of the relation

In this section, the base ring R =K is assumed to be a field. In the last section,
w e calculated th e  num ber o f generators I%)  o f the  re la tion  m odule  K er cp of
Pf2 t , where p is the characteristic of K , and ço is as in  the last section. W e fix a
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basis X = lx i , , xn[ of F , and  denote the  element xi,, A ••• A x i k o f  A k F  by
[ii,...,ik ], and ) E S , by For example, the Laplace expan-
sion form la (see section 7 )  is rew rited  as

a
2r+1 y

( 8 .  1) E (— 1) " + i xa a <ii, , 12r+1> — <a, ii,—, i2r+1>
a=1

for r 1 a -2r+1 (see [16, Lemma 3 .3 ] , [1 1 ] ) .
From Lemma 3 .2 , we have

E
 ( a + b
( - 1)(7 0,(1), "• , ia (2 a )>  •  < ia (2 + 1 ), •••  , ia (2 (0 -1 - 0  =

)
\il, , i2(a+b)>

crEG° ° b

for a, 0  and 1<i*—  -1,"',-2(a+b) (see  [16 , Lemma 3 .3 ] )  .  W e call this formula
the second Laplace expansion.

Let 1 ..... We define T (a,b; E S  A v F  by

a a
d e f 2t 2tv v

T (a,b; ii,..., t ) =  E  ( - 1 )a x  0  [bu, .......... , iz i +  E  (  1 ) a xbi. 0  [a,ii, .......... , i2J.
a=1 a=1

It is easy to see that T (a, b; EKergo.

Proposition 8.2. Let K  be a noeth erian  commutative ring which contains
1/2. Then, we have
1 W e have

T od (S /Pf2t, K ) '="K(2,1-)F.

2 The f irst syzygy module K er cp is minimally generated by the set

X-= IT (a, b; i1,—, i2t) la < ii.< •••< i 2t n, 1 a b n

as an S-module.

Proof. W e m ay assume tha t K  is  a  fie ld  of characteristic different from
tw o, because w hether o r  n o t a  Z [1/2] -form M  o f K(2,1=)F is isom orphic to
K(2,1-0F is  de term ined  by  w hether it is  genera ted  by  a  w eigh t (2,1 29 -vector
(see  e .g ., [8 , Theorem  7 . 2 ] ) ,  a n d  th is  is  checked  by  th e  specializations at
fields. As in the proof of Theorem 7 .8 , we have that the only partition A of de-
gree t + 1 such that HI (Lt-FA,,22idF) is not zero is A =  (t + 1 )  by Corollary 5 .3 ,
and w e have Hi (L2t+i,(2t+2)idF) '=- K(2,1-)F. Hence, by Theorem 7.8 , T or5 (.3/Ph1,
K )  is  a  subquotient of K(2,1-) F  whose dimension is equal to  dim icK(2,1.)F. So 1
is proved.

By definition, T (a,b; i , ,  i2 t)  agrees with the image of x a x b[ i 1,...,i2t] by
the f irst Laplace exansian map

d 01 1 0 .

: D 2F  A 2tF F O F  A 2tF F  A 2 ' 1F A vF  0  A 'T.
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By Standard Basis Theorem on W eyl modules [2, Theorem 11,3. 16], the set X
spans Tm q f (note tha t .xt = 242 ) a n d  w e assume tha t 2  is invertible in K) . So
the S-span of X , which we denote SX, is  a  GL (F) -submodule o f  [Ker (p]
K (2 l)F , and SX  contains a non-zero w eight (2,1 20  vector T (1,1; 2,..., 2t ± 1) .
Since the Weyl module K(2,1,9F is generated by its weight (2, 1 20 -component as
a  GL (F ) -module, w e  h a v e  SX = [Ker ço]t-Fi , a n d  it  g e n e ra te s  Ker ço. by
Theorem 7.8.

Corollary 8.3. L et R  be a  noetherian com m utative ring which contains

1/2. L et (I): S K (2,r9F 0  A 2 t F be the unique GL (F) -equivatiant S-linear
map given by

1 0  ([1,...., 2t+ 1] 01)-- 1/2 • T 2t+1).

Then we have
1 The sequence

F: S OK (2,12)F—>S 0 A 2 tF- > S- > S/Pf2t- K)

is exact.
2 L et (ao )  be an n X n-alterating matrix with coefficients in R. We denote by I

the ideal of S generated by (x ii —  au) so that S— 'S/I is identified with the
substitution S R (x i i

1- 0a0 ) .  The following are equivalent.
a) S i l  0 sF  is exact.

(11-2tH-2
b) Pf2t i i )  =R  or grade P f2 1 (a d ) = 2

Proof. 1  is nothing b u t  a  reformulation of the proposition. W e prove 2.
W e may assume that R is complete local so that R is  a  homomorphic image of
a  regular local ring R . W e denote the polynomial ring R OzS z  b y  S  so that S
=R S. W e denote the  kernel of the composite S - 3S—, 571 by J. A s we can—
construct a  finite free resolution o f S / Pfit S  of the from

-

- - +P, P3 _ *S  OK (2,1.)F  S  A 2 t F— > S —> S /Pfl• SO ,

the condition a) is equivalen t to  T oll ( §/Pflt• S, § / J )  =O . This condition is
equ iva len t to  T ort ( S /PA • / J )  =  0  fo r i > 0  b y  Lichtenbaum's theorem
[18 ] . O n  th e  o th e r  hand , s in c e  (P ff t )  •  S  is  p e rfe c t  o f  codimension h  =
/n — 2t+2\2H- 2)

t h i s  condition  is  eq u iv a len t to  d ep th  (P ff t •  §- , § / J )  =  depth
\ 2
(Phi (ai)), by the lemma below.

Lemma 8.4 (depth senitivity). Let R be a noetherian ring, I  a perfect
ideal of R of codimension g, and M a finitely generated R-module such that M*
IM. Then, we have dep th  (I, = g —  max i i (R//, M ) * 0  .
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Proof. This is well-known (see [6, Proposition 2.1]), and follows easily
from the criterion of the exactness of complexes [4].

W hen the characteristic is two, the description of a minimal set of gener-
ators of Ker ço is more complicated. W e consider the following three types of
relations (i.e., elements of Ker ça).

type Ia ( _ 1 ) a x ®  [ a ,  j 1 ,.......... , 2 t ]  (1 a< i1 < "< i2 fn ).
type IIT ( a ,  b; ii,.., j 2 ) (1 ^ a < i1 < " < i2 tn , 1 i i b n),

where T (a, b; i 1 ,--, j21) is as in Proposition 8.2.
type III Let O^a [log2t].  For any  i=  (i(1) .....i(2t+2 2 ))  such  tha t

1 ^ i  (1) < • • • <  (2t+2a+l) < w e  h a v e

( - 1) i  ( (2t+ 1)),  . . .  ,  
(a (2t+2a+lfl) ® ( 2 t ) ]

\iE  2 1 , 2 a+1

by the second Laplace expansion rule. On the other hand, we have an ex-
pansion

i (1) ..... ( 2 t + 2 a + l ) )
A  ) ( ) . . . . . i

(A  (j) E s) obtained by successive use of (first) Laplace expansion. When
we fix such an expansion, then

d e!
W (i) = (- 1 ) K i  (a(2t+1)) ..... j (a (2 t+ 2 ') ) )  ®  [ f l .....a(2t)]

-  ( t± 2 A  
)  e  [i (j) . . . . . i 2 t ) ]

is an element of Ker cc.

Note that these elements are defined over Z, and are relations over any com-
mutative ring.

Proposition 8.5 Let K be a field of characteristic two. Then, K er ço is
minimally generated by the relations of type I - III.

Proof. First note that the homology H 1 (Pf 21 ®sS  A 2 idF), which we calcu-
lated explicitly in the last section, is isom orphic to K ®s Ker cc by the con-
nected morphism

5: H1 (Pf21 ®s S A 2 i d ) * H 0 ( K e r ç c  ®sS A 2id ) = Kercc ®5K

(t+2a\
}j(1 ) , ...,i(2t+2a+l))

t !
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of the long exact sequence coming from the short exact sequence

0 —> Kerço so s  A zid F „  c s  A  2t
P  ® S S  A 2 idF Pf2tOsS A 2 idFO .

First w e consider th e  degree t 1 generators of the relation. By Lemma
7 .7 , there is an exact sequence

O_,A2t+1,(2t+2)i d F /of c A  ;,.1
[-i j 2 t 2 i t tA L 2 t,(2 t ,2 ) id F

which induces a long exact sequence of homology groups

O — >  H 2 (L 2t,(2 t+ 2)idF )
( A 2t+1,2t+2id F )

— > I11([Pf 2t®SS t+1)
A2t+1,2t+2idF) „ 0 .

W ith the map 5, the image of

c : H 1 ( A  2t+1,2t+2* ) ( [Pf2t OsS A 2 idF] t+i)

is mapped to the first Laplace relation Im  V  w here gr is  as in Proposition 8.2.
The set X  in Proposition 8 .2  and the elements of type I together generate the
relations of the f is rt L aplace type (i.e., Im .  B ut it is  easy  to  see  tha t the
elements of type I together with type II also generate Im V  because w e heve
relations

T (a,b; (a,c;b,i2,...,i2t) =0

and

E T (0 . (1) ,o- (2) ;cr (3) (2t + 2) ) = 0
0 . E  s ( 2 ,2 t )

(the second relation is  on ly  for characteristic two) . Since th e  number of ele-
ments of type I, type II and type III of degree t+ 1 agrees w ith  the number
of standard tableaux of shape  (2H - 1, 1), it suffices to show tha t the image by
6- 1 o f  th e  elements o f typ e  III o f degree t 1 generates H1 (L2t,(2t,2)idF)
A 2 ' 2F . But this is obvious by Lemma 6 .1 . Now we have calculated the  linear
relations of Pfaffians as remarked in  [21, Remark 2 .1 ].

Next we calculate the minimal generators of higher degree. Consider the
relation W (i) of type III. As the expansion

(i (1) i (2t +2a + 1
) )  =EA  (i) • (i(j1 ) 2t))

is  ob ta ined  by  the successive use of the L aplace expansion, we can choose
A  ( j )  from S2-1A 2F OF OF such that the image of A (i) by the map

10m

S2.-1A 2F 0 F O F  S2.-1A2F® A 2F  S 2 - A 2F

is A ( i)  and that the image of E ,(i (i21)) OA-  (/_) by the map
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.01
S t A 2F S2.-1 A 2F O F  F - - - S1+2.-1 A 2F  ( F  OF) OES A 2 idF

is  equa ls  to  ± ir (['i (1) , .......... , j  (2t 2a+ 1 )] x, u ) ) so  that it is conta ined  in
7T2(t+2°) A2t+2.--1,2/±2,-,idF\) where I is the index used in the starting of the suc-
cessive Laplace expansion of (i (1) ,...,i (2t-± 2 ' ) ) .

This shows tha t W  (1,2 ,..., 2t+2') is the image of

A (2t,2-- ) T- 7r ( [1,2, .......... , 2t-I-2" ] 0x 1)

by the connected map 6 , where A (21,2 ) i s  as in  Lemma 6.1. By Lemma 6.1, the
one-dimensional vector space

u
)  co

=
 i l l  (( 2 t , 2 )  i d F )

is generated by A (2t,2., )(  [1,2, .......... , 2t-F2a ."] Ox i ). This shows that the ele-
m ent W (1,2,..., 2t + 2 1) generates [S/S + OsKeryo] w , w here co  is  the  weight
(1,1,...,1) ((2t-F2a+ 1) -times 1). Since we know that [Tori(S/Pf2t, K)] t+ 2 °  is iso-
m orphic to th e  exterior pow er A 2t+ 2 — F, W ( i )  i s  a  basis elem ent o f S/S+

Kerço for other weight, in  a  similar way. Thus, the generators of the higher de-
grees are exhausted by the elements of type III.
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