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Introduction

Let R be a commutative ring with unity, and consider a polynomial ring S
=R [xi] LSi<jsn where n is a positive integer. With letting x;;= —x4; and x;;=0,
we can form a generic alternating matrix (x;;) . The ideal Pfz of S generated
by all 2¢t-subPfaffians of (x;;) is called the (generic) Pfaffian ideal of order 2t.

The main purpose of this article is to determine the number of minimal
generators of the relation module, or the fisrt syzygy module of a Pfaffian
ideal provided R is a field. In the following cases, the relation module of the
Pfaffian ideal is known to be generated by linear relations (i.e., elements of
degree t+1, because 2t-Pfaffians are homogeneous of degree t): the case RO Q
[10, 12], t=1, n=2t(trivial), n=2¢t+1[5] or n=2t4+2[21]. Moreover, Kurano
[16] proved that when R is a field of characteristic p>0 and if 2p>n — 2¢,
then the first syzygy of the Pfaffian ideal Pfz is generated by the linear rela-
tions.

On the other hand, Kurano showed that when n =8 and t=2, we need a
new generator of degree t+2 of the first syzygy when R is a field of charac-
teristic two [17]. In particular, we see that there is no minimal free resolution
of generic Pfaffian ideals over the ring of integers Z in general.

Our main result is

Theorem 7.8. Let K be a field of characteristic p.
1 If p#2, then the first syzygy module of Pfz as an S-module is generated by
linear relations. Or equivalently, we have 88;=0 for j#t+1.
2 If p=2, then we have

[log-1]
2(t+2")

Torg (S/szt, K) = [Torf (S/Pth K)]t+169 @ AN F

i=1

as GL (F) -modules so that 8% ;=0 unless j=t+2" for some 0<i < [log, t].
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3  We have

"<2t+1>_<2t+2> p#2)

[logaf

]
n n n
n<2t+1>_<2t+2>+ ,; <2i+1+2t> p=2),

where B?;=dimg [Tor; (K, S/Pfa)]; is the graded Betti number of S/Pfy over

the field K of characteristic p. Note that 8£, is the number of elements of de-
gree j in a minimal set of homogeneous generators of the first syzygy of the
Pfaffian ideal Pfa.

In particular, the first syzygy is generated by the linear relations when
the characteristic is odd. This should be compared with the results on the
generic determinantal ideals and the case of generic symmetric matrices due to
Kurano [15, 14].

The proof of the theorem heavily depends on Kurano’s result: For any p,
B4;=0 unless t+1<;<2¢ [16].

For the case j <2t, syzygies of Pfa: (at these lower degrees) is closely re-
lated to the homology of the t-Schur complexes of the identity map (cf. section
7). To establish this relationship, we need to generalize the plethysm formula
[16, 3] to the complex version (section 2, 3).

The t-Schur complex of the identity map was studied to calculate the
syzygy of determinantal ideals [23, 7], and its homology is known to be iso-
morphic to a cohomology group of certain homogeneous vector bundle over a
grassmannian variety [23]. For our purpose, we prove a vanishing theorem on
the homology of ¢t-Schur complexes (section 4). We also need to utilize Akin-
Buchsbaum resolution of Schur modules for skew partitions of length two
(section 5) . The use of A-B resolution has already appeared in [23]. The
strange way of appearing new generators of the first syzygy at characteristic
two comes from the strangeness of the homology of arithmetic Koszul com-
plexes (Corollary 5.3).

In section 8, we study the explicit form of the minimal generators of the
relation module of the Pfaffian ideals.
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1. Preliminaries

Throughout this article, R is a commutaive ring with 1. The symbol ®
means the tensor product ® g over R. We denote the set of non-negative inte-
gers, integers and rational numbers by No, Z and Q, respectively. For a prime
number p, we denote the prime field of characteristic p by F,. The symbol Fo
stands for the field of rational numbers Q. For a set X, the cardinality of X is

denoted by # X. For a positive integer #, the n'™ symmetric group is denoted
by &,. For a row-sequence (i.e., a sequence of non-negative integers) a= (a,

def
) of degree n (i.e., |a| (=2ia;) =n), we define

def
G*={0€6,| 0() <o(i+1) unless i= 2! a; for some I} .

Let F be a finite free R-module and i =>0. We denote by S;F (resp. A’ F,
D/F) the i" symmetric power (resp. exterior power, divided power) of F. The
symmetric algebra (resp. tensor algebra, exterior algebra, divided power
algebra) of F is denoted by SF (resp. TF, AF, DF). For a map of finite free
R-modules ¢:G—F, the i*" symmetric power (resp. exterior power) of ¢ is
denoted by S;¢ (resp. Ap). The symmetric (resp. tensor, exterior) algebra
of ¢ is denoted by S¢ (resp. T, A¢). For a finite free R-complex

¢ [
a:0—>G—=F—E—0

of length at most two, we denote the i*" symmetric power (resp. the symmetric
algebra, the tensor slgebra) of a by S;a (resp. Sa, Ta). For these multi-linear
objects, we refer the reader to [2] and [9].

We denote by G% (resp. €) the category of Z?-graded R-modules (resp.
the category of chain complexes of Z-graded R-modules). These categories are
symmetric in the sense of [20] with the tensor product ® and the twisiting
morphism T (see [9, Chapter 1]). With forgetting the boundary map, any ob-
ject in € is considered as an object in G%. It is easy to check that the forgetful
functor € — G% is a faithful exact functor of symmetric categories.

An algebra (resp. coalgebra) in € or G% is a monoid (resp. comonoid) in
the monoidal category € or G%, respectively. In other words, an algebra (resp.
coalgbra) in G% is a bigraded R-algrbra (resp. colagebra), and an algebra

(resp. coalgebra) in € is an algebra (resp. coalgebra) in G% whose structure
maps are chain maps.
Tensor products of algebras and coalgebras are defined in these categor-

ies using the twisting T. If A and B are algebras in € or G}, then A ® B is
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again an algebra in € or G%, respectively, with the structure maps

18T®1 ms®mp

M,y A®BOA®B— A®A®B®B— A®B

and

Uy up

u R=R®R— A®B.

A®B :
Tensor product of two coalgebras are defined similarly.

An algebra-coalegbra is called a bialgebra in € or G% when the multiplica-
tion and the unit maps are coalgebra maps (i.e., comonoid homomorphisms) .
As the tensor product of two algebras is different from the usual one, bialge-
bras in our sense are not bialebras in the usual sense in general.

For a map ¢ : G — F of finite free R-modules, we consider that G (resp.
F) is of degree (1, 1) (resp. 1, 0) so that AF, DG, SA?F, A (F®G) and
D(D,G) are commutative and cocommutative bialgebras in the category G%,
and A ¢ and S (AZ%p) are commutative, cocommutative bialgebras in the categ-
ory € (see [9, Chapter I)].

Let B be an R-algebra. The multiplication (resp. unit) map B ® B — B
(resp. R — B) is denoted by mp (resp. ug). If there is no danger of confusion,
it is simply denoted by m (resp. u).

For an R-coalgebra A, we denote the coproduct (resp. counit) of A by A4
(resp. €4). For k>0, we define 4§ : A — A% inductively; A9 =¢g4, AV =id,,
and

A(k) = (AA ®idAs/.-z) ")A(k_l)

for k=2, A map of the from A® is called an iterated coproduct.
Let A=9® A; be a graded coalgebra, and a= (a;, - ,as) a row-sequ-
ence. Then the composite map

46 projection

A = A= ABA® B4 — A ®A ®-®A

is denoted by A4 (or simply by A4 or A4 if there is no danger of confusion).
For a €A 4|, we express as

(1.1) A =Za‘“ ®q2

(ar) (az)

®: ®ayy)
(a)
(this is a graded version of Sweedler’s sigma notation (cf. [24])).

Let ¢ : G — F be a map of finite tree R-modules, and A/¢ a skew parti-
tion (see [2] or[9]). We denote by Ku/uG (resp. Li/uF, Liu) the Weyl module
(or coSchur module) of G (resp. the Schur module of F, the Schur complex of
@) with respect to A/g. For =0, the t-Schur complex of ¢ with respect to A/u¢
is denoted by L:.¢ (see [7]). For the result, notation and terminology related
to these objects (such as standardness of tableaux, standard basis theorem),
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we refer the reader to [2] and [7]. However, we use one different notation. The
complex Ar12.¢ in [7] is denoted simply by Aau¢p in this paper, and
Atan®@ = 2i Ariau@ in [7] will never be used in this paper. Thus, A;iu@
stands for the complex

A

/\ —#n(p ® /\lz_ﬂz(p ® Als_#sgo ®:--

where A" is the truncated subcomplex
0—A'F®D,_,G —N"*'F®D, , ,G——F®D, ,G— D,G—0
of A7¢ for r=0.

Let A = (a;;) be an #n X n matrix over R. We say that A is alternating
when a;;= —a;; and a; =0 for 1<4i,j <n. The Pfaffian Pfaff A of A is defined
to be zero when #n is odd, and is defined by

def
Pfaff ((lij) = (27.’,!) _lzae@”(_l)(’aal:ﬂ °** Aon-1on

— g cesn
= Z ( 1) dglo2 Aon-1on
0E€G,, 01<03< " <g(n—1)
0(2i—1)<a(2){V4)

when »n=2r is even.

Let t=1 and (a;;) an n X n-alternating matrix with coefficient in R. The
Pfaffian ideal Pfsx (ai;) of the alternating matrix (ai;) is the ideal of R gener-
ated by all 2t-subPfaffians of (a;;) (here by a 2t-subPfaffian we mean the Pfaf-

fian of a submatrix of the form (aa(i)a(j))ISi_jSZf for some sequence 1 <a (1)
< v Za(2t) <)

2. Generalized Pfaffian

Throughout this section, ¢ : G — F denotes a map of finite free R-mod-
ules. We set m =rank F and n=rank G. We fix a basis X= {x1, -~ gml of F
and Y= {yl, ,yn} of G, respectively.

In what follows, we require that any algebra (resp. coalgebra) A =& ;
A;; in G} satisfies the following conditions:

(2.1) Ay is a finite free R-module for any (i, j) €Z2

2.2)  4Ais positively graded (i.e, A;;=0 unless (i,7) EN3), or A is nega-
tively graded (ie., A;;=0 unless (—1i,—j) EN3).

(2.3)  u:R— Aoy (resp. &: Ag¢—R) is an isomorphism.

Any bialgebra in G% is required to satisfy u © é=id and € © u=id. A tensor
product of two positively (resp. negatively graded) (co-, bi-) algebras in G% is
again a positively graded (resp. negatively graded) (co-, bi-) algebra in G3.

Let M be an object of G% (resp. ). Assume that M is finite free as an R-
module, and that M is positively graded or negatively graded. Assume moreov-
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er that M0 =0. Then, TM is an algebra in G% (resp. €). Moreover, TM is a
bialgebra in G% (resp. €) with letting e(m) =0 and 4 (m) =m ®1+1®m for m
€M (see [8, Proposition 4.6]).

Let A= & ;;A;; be a coalgebra in G% and h : A— M a morphism in G%
with M being a finite free R-module. Assume that M;;=0 unless (i,7) €ENZ\
{0, O}, or M;;=0 unless (—i, —j) €ENZ\ {0, 0} so that the tensor algebra TM
is a coalgebra in G% in our sense. We say that A is cogenerated by h (or by M)
when the coalgebra map h: A — TM is injective, where

h projection

A—TM

®i

M

is given by
i n®
A—> A —— M¥

(this defines a map h €Hom (A, Ij=0M®), and it is easy to check that the im-
age of n is contained in TM). If B is an algebra in G% generated by a subob-
ject NEG% as an R-algebra, N is finite free as an R-module, and if N, then
the graded dual B' of B is cogenerated by N*. For example, DG and AF are
cogenerated by G and F, respectively. The symmetric (co) -algebra SE of a fi-
nite free R-module E is cogenerated by E when R is Z-flat, but not in general.

Let A and B be coalgebras in G% cogenerated by finite free quotients M
and N, respectively. Then, A ®B is cogenerated by M ®R®R ®N. In particular,
if R is Z-flat, and if a is a finite free R-complex of length at most two (with an
appropriate degree), then Sa is cogenerated by (the underlying module of) a.
For example, SA2¢ is cogenerated by A%p when R is Z-flat.

def
For a subset S of Z% and M= & ;;M;;EG%, we set Ms= ® ;jjes M;;. If Sis
finite and £SCNZN\ {(0,0)}, then TMs is a bialgebra in G%.

Lemma 2.4. Let A=®;; A;jand B=®;; B;; be coalgebras in G% and
¢ : A — B a morphism in Gk. Let Sy be a finite subset of No, and s a positive inte-
ger. We set S= |s| X So and N=Bs. If B is cogenerated by N, then the following
are equivalent:

1. @ 1is a homomorphism of R-coalgebras.
2. For each k=0, the diagram

¢
Ags — Bi.s
(2.5) A | 4
¢®k
A?k - N@k

is commutative, where ¢®°=idg.
Moreover, if these conditions are satisfied, then @ is uniquely determined by @s : As
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— Bs= N. If both A and B are coalgebras in C, and if
Ps:Asx — Bsx = N

is a chain map, then @ is a chain map.

Proof. 1=2 is obvious. We show 2=1. With letting #=0 in (2.5), we
have that ¢ preserves the counit (remember our convention 4‘”=¢). We show
that ¢ preserves coproduct. Namely, we show (#®¢) © 44=A45 © ¢. For (i, j)
ENo * S= {(ks, ki) |[E=0, j’E Sl , we have B;;=0, because B;;— (TN);;=0 is
injective. Hence, it suffices to show that the rectangle (a) in the diagram

A,q AA ®AA
Aprnys ———— Aw®Ays —— ASF®ASY
6 (a) 486 | (b) | 6% @p™
Ap As®Ag
B(k+k’)s Bys ®Bys N QN

is commutative for k, £'=0. But we have (b) and the whole rectangle ((a) +
(b)) is commutative by 2. The map

As®Ap - Bys ®By——N" N

in the diagram is injective, since N cegenerates B. Hence, (a) is also commuta-
tive. So 1 and 2 are equivalent.

Now, we show the uniqueness of ¢. We set h : B — N to be the projection.
Then, it is easy to see that h “@d= @s. Since h is injective, ¢ is uniquely de-
termined by ¢s.

We show the last assertion. Since A is decomposed into a direct sum A=
® _,Aix as an R-complex, it suffices to show that ¢,~=¢|A"* is a chain map for
all {€Z. If i is negative or if iis not divisible by s, then ¢;=0 is a chain map.
Consider the case 1=ks for some #=0. Then, the diagram

¢k$
Aks,x E— Bis,x
(2.6) Adl o | 45
A ————— N

is commutaive. The map @§* © A4 : Ays,«—N® is a chain map, and 4p : Bisx
— N°®*is an injective chain map. Hence, ¢y : Ags,% — Bis,x iS a chain map.

Definition 2.7. Let k=>1. We define 73, =3y (F) : A?*F — S, A%F by

ﬂgk (fl AN /\ka) = Pfaff ( (fi/\fi) le,jSZk)

for f1, -, fax EF (it is easy to see that this map is well-defined) . We define
73 (F): R — R to be idg. We define 7f (F): A’F—S A?F to be the zero map
when § is odd or negative. We define 7% AF — SAZ?F by =8|, =5 (F).

N'F



502 Mitsuyasu Hashimoto

Lemma 2.8. The maps 73 (F): N'F — SAF and 5 (F):AF — SA%F
are uniquely characterized by the following conditions:
L z5P)|,,==F).
2 For each JEZ, 7§ is a universal natural transformation (see e.g., [9, Defini-
tion 1.3.10]) from A’ (?) to SA%(?).
3 The map 75(F) isa homomorphism of coalgebras in G2.
4 75 R — R and 75: A°F — A?F are identity.

Proof. First, we check that 7§ and 75 defined above satisfy these condi-
tions. The conditions 1, 2 and 4 are trivial from the definition.

To show 3, we may assume that R =7, by virtue of 2. In this case, SA%F
is cogenerated by A2 F. By Lemma 2.4 and 4, it suffices to show that two
maps

73 (F) AsnF

/\ZJ'F Sj/\ZF—__, (/\ZF) ®;

and 4, :AYF — (A%F) ® agree for j=1. To verify this, we may assume that
R=Q, extending the base ring. We may assume dim, F=2j, otherwise both
maps are zero. In this case, A¥ F is an irreducible polynomial representation
of GL (F). So it suffices to show the image of x;A***A x,; agree, where {xj, -
Xl is a basis of F (n=dimQ F). But a straightforward computation will show
that the both images agree with

277 - Z (—1)%(x61 A %02) B+ ® (Xg2j—1) No2py) -

0EG,,;

Hence, 7° is a coalgebra homomorphism.

Now we prove the uniqueness. First, consider the ground ring Z. Then,
SA?F is cogenerated by A% F. By Lemma 2.4, 7% (F) is uniquely determined
by m3. Hence, so is 7j (F) for any j. By 2, they are unique for any ground ring
R.

Let k=1, and consider the image of Apg : DG — (D2G) °*. It is contained
in the invariant submodule ((D;G) ") under the action of the k™ symmetric
group &; on (D,G) ** via the twising, since DG is cocommutative. By [9, Lem-
ma 3.18], ((D,G)™)® agrees with the image of 4,,.0: DiD:G — (D,G) ™.
Hence, there exists a unique map 7% (G): DuG —DiD,G such that 4 . °
75 (G) = Ape. 1t is clear that m%, is a universal natural transformation of uni-
versally free functors on G.

Definiton 2.9 We define 78 = idg. We define 7P (G) to be the zero
map from D; G to D (D:G) when j is odd or negative. We define #” (G): DG—

D (D5G) by 7 (G)|, =7 (G).
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By definition, 7? is universal for all jEZ. As we have

ADS (y2) (}(2) DDZ (y(z> ) @)

(2) (1’

we have 7% () = (»{2) 9. Henece, 7% agrees with ¢; [3] for j=0. It is clear
that 2 is the identity by definition. By Lemma 2.4, 7 is a homomorphism of
coalgebras.

Let ¢ : G' — F’ be a map of finite free R-modules. We consider G” and F’
are of degree (1,1) and (1,0), respectively. In [9, Chapter, III], a coalgebra
homomorphism

0(p, ¢):ANe®NPp— S(p®¢)

is defined. The map @ is uniquely determind by the property:

(2.10) The map 6 (¢, ¢) depends only on F, G, F" and G’ and is a universal
natural transformation of universally free functors on F, G, F’ and
G’, It is a homomorphism of coalgebras in €, and 0|A,¢®N¢:(p Y —
@ ®¢ is the identity.

We denote 0|A,¢®A,¢ by 6; for j=0. Wlth letting G =0 and F' =0, we
obtain a universal natural transformation ¢ (F, G):NF®DG— N (F®G)
(see[9]).

Definition 2.11. We define the generalized Pfaffian map t=m (¢):A¢
— S(A%p) to be the composite map

A®A

Np=NF®DG NF®NF®DG ®DG

s®¢" ®n’

S(A?F) ® A (F®G) ®D (D,G) =S (A%p)

The restriction of 7 to A’¢ is denoted by =; or m; (¢) for jEZ.

The map 7 (¢) depends only on F and G.

Lemma 2.12. The map 7; (@) : N —=SN%@ and w(p):Np =SAN%p
are uniquely charactevized by the following properties:
L (), =mlp).
2. wl(p) depends only on F and G, and is universal on F and G.
3. w(@) is a homomorphism of coalgebras in 6.
4. maN @ — A% is the identity.

In particular, we have ;=0 for j odd or negative. The map mo: R — R is the
identity. For k=1, the diagram

/\qu) Tak Sk/\z(p
(2.13) A\; —
(/\2§0) ®k A

commutes.
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Proof. The uniqueness is proved similarly to Lemma 2.8. The conditions
4,.
7 is also a coalgebra map in G%. So the last three sentences in the lemma follow.

It remains to prove that 7 is a chain map. Let rankg F and rankg G be m
and n, respectively, By 2, we may assume that

R=Z[x;1<i<m, 1<;<n]

1, 2 and 4 are easy. Since 4 s, ¢A and 72 are coalgebra maps in G%,

AF?

and that ¢ is given by matrix (x;;). So S (AZ2¢p) is cogenerated by AZ2¢. Now
set s=2, So=10,1,2| , and apply Lemma 2.4. Since m,=id is a chain map, 7 is
a chain map.

Lemma 2.14. Let k20. Then, the diagram

Tk
N2 — Sk(AZg)
(2.15) Ang l : l Si(Ang)
Nk ® Nk E — Silp®p)

1s commutative.

Proof. Note that the maps

T S(A/\(p)
(2.16) ANp = S(AN@) ——— S(p®¢p)
and

A/\(p 0
(2.17) ANp—— ANp®ANp—> S(¢®9)

are coalgebra homomorphisms in %. To prove that these two maps agree, we
may assume that R=Q and that ¢ is the zero map. So it suffcies to show that
these maps agree on degree (2, *) component by Lemma 2.4. It is easy to see
that degree (2, *) component of (2.16) and (2.17) are 4: A%p — ¢ ® .
Hence two maps (2.16) and (2.17) agree. Now we take the degree (2k, %)
component of (2.16) and (2.17). Since @ is zero on A ® Ag for i #j, we
obtain the commutativity of (2.15).

Lemma 2.18. Let «a be a finite free R-complex of length at most two, and
i, j =0. Then, the composite map

A m
Sivja — Sia®S;a0 — Sy

R AY
agrees with ( ) )1d.
1

Proof. Weseta=0— U— V — W — 0. We may assume that R=Q. In



Relations on Pfaffians 505

this case, Sa=SW® AV ®DU is embedded in Ta by idq as a bialgebra in G%,
and Si.ja is identified with the invariance (Ti+;@) " under the action of S4;

a4
via the twisting. By [8, Proposition 4.8], the composite map Tis; @ — T;a ®

m
Tiax — Ty agrees with the action of Zoee,,,a‘l. This action agrees with the
o ity s
multiplication by( ) ) on (Tiya) ™.
1

3. Generalized Plethysm formula

Using the generalized Pfaffian map defined in the last section, we can gen-
eralize the Plethysm formula of SA?F [16,3] and DDsG [3] to the version of
complexes.

Definition 3.1. For a sequence of non-negative intergers A= (4;, As,
A1), we define m1 : Az@ — S(AZ%p) to be the composite map

T® - ®r m

A p=N"Q &+ @ Np—————S (A%p) ®- QS (A2p)—S (A2p).

By definition, 7;=0 unless A= (4, - ,4;) is even (i.e., A; is even for any
i). When A is even, then the image of 7; is contained in S;,2/A%¢.

Lemma 3.2. For 1,720, the composite map

A T2iz2) !

/\Z(H-j)(p_, /\Zi(,D@/\Zj(D Si+j/\2§0

i+j
. )7[2(i+j>-

agrees with (
1

Proof. Since 7 is a graded coalgebra homomorphism, we have

Y (ra) - (70) 8= ) 7 ailh) - 7 (a3
(ra) (a)
in SiA%2p ®S;A%p for a € A? ¢ On the other hand, we have
1+j
Y )@+ () @=(""") (ra)
(ra) !

by Lemma 2.18, and the assertion follows.

We denote the composite map

7] Sm
ANp®Np — S(p®p) — SA%p

by 6. The restriction of # on A‘p ® Ay is denoted by 8, for 1=0.
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Lemma 3.3. For i, 120 and k=0 with i+j =2k, the composite map

m T2k

Np®Np AN NV
agrees with the composite map
' ' A®A _
ANip®Npg— N N9 N'p® Nl
0<i<min(ij)
i—lweven
2o ®6,®m;, m

- Sti=n2N2 @ ®SIN20®S;_1y N2 — SiN2g.

Or equivaletly, we have

T (@A) = Z ZZ”; (@) 0,@B ®bE) ;i (b@-1)

0Sl<m|n(tj (a) (b)

i—lLeven
for a€ N'g and bE N .

Proof. We may assume that R=Q and that ¢ is the zero map. Consider
the two maps

m

T
D, ANp®ANp— Np —=SA%p

and

A®4 T®0®m
P ANPONP—NPBONPONPOIN P O—

S(A%) ®S (A%) ®S (AZp) — S(A%).

We show that ®;= ®,. Because both of them are coalgebra maps, it suf-
fices to show that ®; agrees with ®, on degree two component, to verify this
(note that S A% is cogenerted by its degree 2 component). But it is easy to
check that the restrictions of ®;(i=1, 2) on ¢ ®@, A20® R and R ® A%p are
the multiplication of A ¢, respectivey. So we have ® ; = ® , Taking an
appropriate homogeneous component, we have the assertion of the lemma.

Let 1,7,1=0. We donote the composite map
A®A

Nig® N AN @Np®@Np® N

T®OI®T

SA2p®SA2p®S A2 iS/\Zg()

by pi ;. By Lemma 3.3, we have
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(3.4) Tivj - m= Z pf,
0<i<min(,j)

i—leven

We also consider the maps

) ) O ) . T(i41,5-
ELiNp®Nip—— Atp@ANlp Stirir2/N2Q
and
. R o ) . i1, j+0
maN @@ N — NTp@ N Sti+pr2N2Q.

Lemma 3.5. Let i,j and s be non-negative integers with s <min (i,5) .
Then the following holds.
1. Ifit+jisodd or i+s is odd, then pi;=§&;=n3i,;=0.
(i—0/2
(s—1)/2

G=ns2\ , _ .
i i
s—=1/2)""

2. If ity and is are even, then we have Z ( >p§,j=‘§f,,~.
0<I<s

s—l:even

3. Ifi+j and i+s are even, then we have Z (
0<I<s

s—l:even

4. Ifi+tj is even, then we have

Z R-&l;= Z R« pi;j= Z R - ni;

0<I<s 0<I<s 0<I<s
i+leven i+l:even i+leven

in Homg (A i@, Sisia/N2@).
Proof. 1 is obvious. We show 2. For a€ A’ and b€ A'p, we have

£ (@®b) =Zmiss @AbE) + s (b))
®
223 mii(ally) c 0@B b)) « wooy (0E) - wis (b))
I @ &

i—1)/2

|
(s-l)/Z)‘bi’j (a®0b) by

by Lemma 3.3. On the other hand, this equals to Z;(

Lemma 3.2, and 2 is proved. 3 is proved similarly.

We show
Z R &= Z R« pij.

0=I<s 0=<I<s
i+leven i+leven

We may assume that i +s is even. The direction C is obvious by 2. Since we
have
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¢ s (i—1)/2 .
pi.i—Su ( Z ((S_l)/2)>Px.1>-

0<i<s
i+leven

the other direction is shown by induction on s. Similarly, we can peove

Y Reml= ) Reph

0<I<s 0<I<s
i+leven i+leven

using 3, and this completes the proof of 4.

Definition 3.6. Let »=0. For a partition A of degree 7, we define

def
M;(m) = Z Im s,

22, |ul=»
and

. def
M, () = Z Im7a,

u> A, ul=r

Lemma 3.7. M, (1) =S,A%p.

Proof. Induction on 7. If <1, then the assertion is clear. Since SAZ%p=
SA)F® A (F®G) ®DD,G, and the R-algebras SA% F and A (F®G) are gener-
ated by their degree two components, we may assume that ¢ = (G—0) so that
SyA%p=D,D,G by induction assumption. But this case is done in [3, Proposi-
tion 1.4].

Lemma 3.8. Let v=0. Then we have
rankg (Sr/\z(p) = Z;rankRLygo.

where the sum is taken ever all partitions A of degree .

Proof. Clearly, we may assume that R = Q and that ¢ is a zero map. It
suffces to show that

Sr/\Z(pE ®1L2)§0
as polynomial functors on F' and G. Thus, we may assume that the ranks of F

and G are sufficiently large.
As is well-known, the following Plethysm Formula holds (e.g., [16]).

(3.9) SN FOG) =@, L (FOG)
The left hand side is isomorphic to
P siAF®S;(FOG) ®S, A%

i+jitk=r
= @ S,’/\ZF® (€B|u|=i K, F®K,_¢G) ® (®|r|=kL27’G)

i+jtk=7r
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by the Plethysm Formula again. So the formal character of the left fand side is

(3.10) Z Z Z(h{f’ez) () s, (¥) s, () s ()

i+i+k=7r lul=j Irl=k
where the set of variables x = (xy, x5, -) (resp. y= (y1, y2, -)) corresponds to
the entries of the diagonal matrices in GL (F) (resp. GL (G)). The symmetric

functions h;, e; and s; denotes the i*" complete, i'" elementary, and the Schur
function, respectively. The © symbol in (3.10) denotes the plethysm (see
[19,1.8]) . The formal character in (3.10) belongs to the ring A=A, ® A,,
where A, (resp. A,) is the ring of symmetric function on x (resp. y). Appling
the involution @=1®w, on (3.10), we obtain

Z Z Z (hies) (x) s, (x) sz () 527 (),

i+j+k=r lul=j |lrl=k

which equals to the formal character of

Y S{(A™F) ® A/ (FOG) ®D.DG=S, A%
i+j+k=r
by the plethysm formula: DyD:G = 22 1;=x K2:G (see e.g., [14]), where w, : A,
— A, is the ring automorphism given by w, (e; (¥)) =h; (y) (see[19]).
Now consider the right hand side of (3.9). Its character is

Yiswie,3) =), ) sule) sz ).

uc2i
Applying w on this, we obtain

Z Z Su (x) S2a/4 (y) =Z Z S (x) Saa/u (y) ,

which is the formal character of ®;Lz¢.
This shows that S,A2Q = ®,;L,;¢.

Theorem 3.11 (Generalized plethsm formula). Let v 20 and A be a
partition of degree v. Then, there exists a unique isomorphism

T2 Luag — M, (1) /M, (1)
such that the diagram

22

N2 M, (7T)
doa l " .
Lag M; () /M, (1)

is commutative. So S, A% is isomorphic to ® 3=, Loa up to filtration.

Proof. To see that 7; is certainly induced, it suffices to show that the im-
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age of the composite map

% T2
N

/\u(p M; (71')

is containd in M; (r) by the standard basis theorem [2, Theorem V. 1.10].To
prove this, we may assume that A= (4,, A3) is of length two, and we set =
(22,+t, 2A;—t). But this case is clear from 4 of Lemma 3.5. So 7; is induced.

By definition of M; (1) and M,(x), 7, is cleary surjective. The injectivity
follows from Lemma 3.7 and Lemma 3.8.

Corollary 3.12 ([16, Proposition 3.5], [3, Therorem 2.7]). Let r=
0. For a partition A of v, we set

def
M@= Y Inms,
u>2,lul=r
and

. def
M, (15) = Z Im7s,.

u>2,lul=r

Then, we have Mz (%) /M; (1) = LoiF. In particular, \M; (5)} 2=, is a filtration
of S, (A% F) whose associated graded object is @ 1al=r LaaF.

Proof. Set G=0 in the theorem so that ¢=0 — F and mw=nr°. The asser-
tions follow immediately.

Corollary 3.13 ([3, Therorem 1.9]). Let v=20. For a partition A of 7,
we set

def
M}(ﬂ'D): E Imné’u
w22 lul=r
and
. def
M, (xP) = Z Imm2, .
u>2 lul=r

Then, we have My () /M; (7°) = KuG. In particular, M ()] i<y is a filtra-
tion of D,(D,G) whose associated graded object is ® 3=y K2G.

Proof. Set F=0 and apply the theorem.
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4. A vanishing theorem

In this section, we prove a vanishing therorem on homology of {-Schur
complex of the identity map. For definition and basics on ¢-Schur complexes,
we refer the reader to [7, section 2]. In this section, we consider the identity
map idr :F—F of finite free R-module given by idr (i) =i, where X'= {1'>
«+>n’} and X= {1<:--<u| are ordered bases of F" and F, respectively. We
use notation and results from [7, section 2] freely. However, we use one dif-
ferent notation here (as mentioned in section 1). Let ¢: G —F be a map of fi-
nite free R-modules. By Ay i/x ¢ we mean the tensor product

/\l,l;-,ul(p ®/\12’#2¢® /\la—/lS(p e

which was denoted by Auiau @ in [7]. We never use 2i=0/A 1@ which was
denoted by A in [7].

Definition 4.1. Let s, I, s’ 1" and t be non-negative integers, and A/u
a relative row-sequence. Then we define

~ def ~
BV (A/p) = 1S€ B (A/w) v 1 (S,1) =57}

where

~ def
By (A/p) = IS€Row/u (X, X)) |un (S, 11,11 ) =5, vi(S) 2¢, vi(S,1) =0(Vi<i)}

as in [7]. We denote the R-span of B3 (1/¢) by Xi"*“ (A/p), which is a
submodule of Aya/uidp.

It is easy to check that Xyt (A/1) is a subcomplex of A,auidr. We set
def ~
X3 (A1) =das (X34 (A/u)) . It is easy to verify that X3 (A/y) is a free
subcomplex of L;/, idr with the basis
. def ~ .,
By (A/ ) =Stau (X, X)) N BihY (/).

Assume that A;4+1> A2 and Aj+1> g4 for the skew partition A/g. The
map v = v X3 (A/) — XiV (A — er1) /1) [ — 1] (see [7, p.469] for the
definition) maps Xi**" (A/¢) onto Xi ¥ ((A—g141) /1) [—1] surjectively.

So we have an exact sequence

i v
0 = Xy (/) X U)Xy (A=) ) 1] 0,
When A;+1=A142 or A;41=4+1, then we have

Xi.l.s'.l'(/z/#) =X;.l+l,s'.l'(/l/‘u) .
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In particular, we have
Xi,t.ﬁ.z'(/{/#) :Xi,l(l/u).s’,z’(x/u)

when 121 (2/y). We denote X3' V< (1/u) by X3V (/1) .
For a skew partition A/y, we set

def
Is(A/p) = |r: partition | uCyCA, 7/ a vertical s-strip},

and

W= lyeL(Wp IZ (ri—pa) 257}

i=1

For 7, Y €I(A/n), we say that =7 when

1 €Y (A/u) and Y &€V (A/y) or

2 The condition 1 does not hold, and y= 7 (with respect to the lexicog-
raphic order).

The relation=,., is a total order, and is compatible with the dominant order

> (we asy that A>p when 2i-,4;=> 2i,u; for any i>1). Hence, when we set
M () = 2Zye. /ImEy, we have
Xi™ (A1) =M (o),
where 7o is the smallest element of 13" (4/y), and
Ey Ny RO Ni—y i pary idr, — Xf‘w‘s"l’(/l/ﬂ)
is as in [7, p.470].
Just as [7, Proposition 2.24], we can prove:
Lamma 4.2. X7V (/y) admits a filtration {M3" (r)} 2y, whose associ-
ated graded object is
@ Lr/uR ®Lu.—r.+f,/1/ridf‘.-
270
where Fy is the R-span of the basis elements {2, -, n}.
Lemma 4.3. Let A/u be a skew-partition with 1 =1(A/p) = 2. Assume
that Ai— =1, and "= [ . Then, for any s, t =0, the inclusion map
X.;,I—l.s'..\’+s'—l+l (/1//1)_’ Xi.l—l (2/#)
s a quasi-isomorphism.

Proof. We may assume that ¢;=0 and that 4,=1. Consider the quotient
complex Y=X}"1(A/p) /Xy 10T (1/ ) . Tt suffices to show that Y is ex-
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act. Clearly, Y has By =Bi ™' (A/p) \By'™ " ¥ "1 (1/u) as its basis. For a
tableau SEB;' 1 (A/1), we have

SEBy © S(i,1) =1 for i<l and S, 1) € {1,1}.
Thus, Y is isomorphic to the complex Ly, idg ® Xi¥534™ =" (1/7), which is
exact (because L,/ idg is homotopically trivial), where

r= (#1 o U /ls'+1+]. RXX ﬂl+1) = (,ul,“'. Us, 1, el 1)

This completes the proof of lemma.

For a skew partition A/¢ and t=0, we set

def

Therorem 4.4. Let A/t be a skew partition, i, s, I, t=0 with 1<I(A/u).
Ifi<a(A/wt), then H; (X' (A/1)) =0. In particular, we have H; (Liasidr) =0.

Proof. We may assume that t=>1 by [7, Lemma 2.2.13], A, —u;>t, and
1(3/p) = 2. We proceed by double induction on rank F and |A/¢|. We may
assume that A/g¢ is connected by [7, Lemma 3.3.2] and its proof. We may
also assume that s=1 by induction assumption on rank F. We proceed by re-
verse induction on I. By [7, Lemma 2.2.3(1)], we may assume that (A —¢&;41)
/u is a skew-partition. Since A/ is connected, we have ! ((1 — &41) /pt) =
1(A/p) —1. Since 1 (A/¢) =2, this shows that a ((A—¢e41) /1, t) Za (A/p,t) — 1.

First, consider the case [=1(A/y¢) —1. We have an exact sequence

4.5)  0—x¥" /=X A/ =X ((A—ew) /) [=1] = 0.

Case 1 Ajp1— 41> 2. In this case, there is no 7€ I's (A/¢) such that 1(A/7)
<i(A/y). We have

X‘tq'm(/l/ﬂ)E @ Li—y+paridr

rerls(A/p

up to filtration [7, Lemma 2.2.12]. By induction assumption, we have

Hi(Li-p+waridr) =0 (<Za(A/7, t—1+um) =a(A/p, t))

for any yE€ T (A/u). Hence, we have H; (X§* (A/1)) =0 for i<a (1/ut). On the
other hand, since [ ((A—¢i41) /) =1+1 so that a (A/p, t) =a ((A—&141) /11, t),

we have Hi_y (X3 ((A—¢&41) /1)) =0 for i <a (A/y, t) by induction assump-

tion. Hence we have H; (X§' (A/u)) =0 for i <a (A/y, t) by the exact sequence
(4.5). A
Case 2 Ai+1—i+1=<1. In this case, we have A;+1— 41 =1, since [ (A/p) =1+
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1. By Lemma 4.3, it suffices to show that H; (X3"*“ (A/p)) =0 for i<a (A/, t)
, where a=s+s’—1. We have an exact sequence

0= Xi (A ) =X (A/ ) = X5 = (A= erna) /20) [~ 1] =0

For each €I (A/u), we have I (y/u) <1, since s—a=1—s". This implies
that 1 (1/7) =1+1 so that a (A/7, t— 11+ 1) =a (A/p, t), and H; (X3 (A/p))
=0 for i<a(A/g,t) by Lemma 4.2.

By the same argument, we have

Hioy (X371 ((A—er41) /1)) =0
for any i <a (A/u,t) =a ((A—¢€41) /1, t) +1. Thus, we have
H (0 () =0

for i<a (A/p,t), and we have completed this case.
Now consider the case I <! (1/¢) — 2. Using the long exact sequence
obtained by the short exact sequence

0= x W/ ) =X3 ' (/) =X ((A—em) /) [=1] =0,

the assertion follows immediately by induction assumption.

5. An application of Akin-Buchsbaum resolution

In this section, we calculate the homology H;(L;/..idr) of the t-Schur com-
plex of the identity map for the case [ (A/¢) =2 and t = A, — y;. For this, the
arithmetic Koszul complex and the resolution of Schur module (for the
two-rowed case) due to Akin-Bucshsbaum [1] play important role.

First, we review the arithmetic Koszul complex. Let # and v be nonnega-
tive intergers, with ¥ >v. The complex K [uw] is the free complex whose de-
gree s component K [u;v] s is the free R-module with the free basis

N

def
Bluw]s= {[ao, -, asl| ai=1(0<i<s), as=u—v, 2a;=ul.
i=0

The boundary map is given by

Olaa, - ad =), (=D(

i=0

a:+ai+1)

ai

[a, =, aic1, @aitai, aisz, =, asl.

Note that the notation is slightly different from that in [7]. The basis element
gy AN+ Aeis of K[uwls in [7] corresponds to our [iy, i2—11, - ,is—1s—1, # —is)
€Bluwls.

Next, we review the Akin-Buchsbaum resolution. Let

Au= (A1, A2)/ (1, )
be a skew partition of length two. We set a=A— g, r=p1—2+1, and k=42 —
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(1. We assume that £>0. The Akin-Buchsbaum resolution C (1/¢)(F) is the
free complex whose degree s component is

Cs(A/)(F) = @ K[r+11] 1 ® A wrtt.amr—nF

120

for s=>1, while we set Co(A/u) (F) = AoF. We define
00 (A/10): Co(A/ W) (F) =L F

to be the Schur map d, (F). Since K [r+1;1] =R for any r and I, we have
C(A/p) = ®,esgmw N, F. The boundary map 6; (A/p) : Cy (A/p)—Co (/) is
defined to be the box map. To define the maps

Os+1: Cs1 (/I/ﬂ) —Cs (Z/l«()
for s=1, it suffices to define the map
Kr+L] s @ AT HE@ AR — Co (/).

This map is given by, for a basis element [aq, - ,as); of K [r+1;l]s and x ®yE
AN (ay+r+1, C(z_Y_l)F,
0s+1([ao, -~ , as] 1 ®x®y) =0 ([ao, -, as]) ®x ®y

—2lay, -, as)ima ®x B+ rr1—0) OxE) Ay,

(x)
Theorem 5.1 ([1 p.173]). Let A/ be a two-rowed skew partition and k=
A2—120. Then the sequence

Ok Ok-1 0 o
0—Cx (/Vll) —Cy-1 (Z/,u)—’ v —C (2/#)_’[4/” F—0

1S exact.

The resolution C(A/u) of Ly, F is called the Akin-Buchsbaum resolution.
Now we consider the ¢-Schur complex L;;/.idp, where

A/u= (A1, A3) / (a1, pt)

is a two-rowed skew partiton with t = A; — ;. Without loss of generality, we
may assume that p¢,=0. We set r=g,+1.
The complex L;a/4idF is as follows.

0—=A'F®DaF ==L F®D; F —+—L;,, F —0

So the ith term L, -/ F ® D;F of Ly;,idr admits a resolution B; =
C((A1,A2—1) /1) ® D;F. We define a chain map 0;:B;/—B;_;. The map 0;, for
s=1 is given by

Klr+11] s i ® AATIHE @ AR—w= 171 R QD F
191®9"

K [1’"‘1;1] o1 R /\,2,+1+1F ® /\lz—ux—l—iF ®Di—lF,
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where 0% is the bounday map of Aidr. The map 0io is defined to be the
boundary map of A;iuidr= A%F ® A%idr. Then, it is easy to see that (Bsxx,

Ox,%) forms an R-double complex. The following proposition is essentially used
in [23].

Proposition 5.2. With the notation and the assumption as above, we
have

Hi(Ltauidr) = H; (tot (Bs,x)) = AWHF ®H;_; (K [A5,4,—7]).

Proof. Since Bi=Bix is a resolution of [L:.idr]: for any i, the spectral
sequence for By x degenerates, and we have

H;(tot (Bss)) EH; (HF (B:.»)) =H; (L a/,idF) .
Now we take the spectral sequence in the other way, to prove the second
isomorphism. By definition, the complex Bx,s is isomorphic to
D Klr+11] ., ® AWHHE® ARl
i20

Since A*7"'idr is homotopically trivial unless I = A,—7, the spectral sequence
of this direction also degenerates, and we have

H; (tot (Bse,x) ) =HF (Hy(B2x)) =Hi—1 (K [A5A,—7]) ® AWHE,

Corollary 5.3. Let R=K be a field of characteristic p, and A a partition.
For any t=1, we have

KeiF (A=(t+1))
Hy(Lisidr) =1 AYF (A= (t,q) for some g=p'(1>0)),
0 (otherwise)

where we regard 1=p° for any p=0.

Proof. Assume that Hy (Liaidr) #0. By Theorem 4.4, we have [ (1) +A,—¢
—2<1. Clearly, we have A;=>t. In particular, we have [ (1) <2. If [ (1) =1,
then it is easy to see that A= (t+1) and that the lemma is true this case.

So we consider the case [ (1) =2. In this case, we have A, =t. By the prop-
osition, we have

Hy (Liaidr) = AMF ®Ho (K [A24:—1]).

Since the base ring R =K is a field and K [Az4; — 1] ¢ is one-dimensional,
Ho(K [AzA;—1]) #0 if and only if the boundary map

012 K [/Iz;/lz_ 1] —K [/121/12_ 1] 0

A
is zero. This condition holds if and only if the binoimal coefficient ( ?) is zero
i
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(in K) for 0<i<A, This is true if and only if A, is a power of p. This shows
that the Corollary is true for the case [ (1) =2.

Explicit form of the basis of H; (Lisidr) will be determined in the next
section.

6. Explicit calculation

By Theorem 4.4, we have H; (Liuidr) =0 for i <a (A/g, t). In this sec-
tion, we calculate the homology for i=a (2//1, t) +1. As in section 4, idg: F—F
has a fixed ordered basis {1<--<u<n’'<--<1} with idr (i") =i.

Obviously, the complex L:aidr is a complex of polynomial represeenta-
tions of GL(F), while the subcomplex X5 (A/y) is GL(F;) -equivariant, but not
necessarily GL(F) -equivariant, where F; is the R-span of 2, -, n.

For a polynomal represetation M of GL(F) and a= (a4, - , a,) €N3, the
weight a component M, of M is defined to be

laEM|0(a) =a ®5t2} CM,

where t,, t, are the coordinates of the set of diagonal matrices corresponding
to the basis {1, nl, and § : M—M ®R [t,-, t,] is the coaction of M as an
R [ty ts) -comodule.

In what follows, we use tableau notation as in [7, section 3].

Lemma 6.1. Let 2/u= (A1, A2) / (¢t1) be a connected skew partition with
A— =t and r=|A/pl. Then, H; (Lia/u idr) o is cyclic (possibly zero), and is

generated by ol e ot

A= Y, (=1 (t+1)

cEBH,

where w= (1,--1) (r times 1).

Proof. Induction on 7. Frist, observe that A,,, is certainly a cycle, which

represents a homology. We denote the weight (1,-,1) = (177!) (of the maximal
torus of GL(Fy)) by 0.

Case 1. k=A;—pu;=1.If 4,=1 moreover, then the lemma is obvious. So
we may assume that A,=>2. There is an isomorphism

Hy (X1 (/1)) o = Hi(Lt, 2/4idF)

arising from the fundamental exact sequence, since (A —egz)/u is disconnected.
On the other hand, since A/ (¢+e¢;) is disconnected, the projection map

©: X2 (A/1) 7= (R ® Lt a/urey idr, )

is a quasi-isomorphism. Since A/, is mapped to =1 ®A /e by @, which is a
generator of the cyclic module (R ®L;i/u+enidr,) o, we have that Hy (Lia/uidr) o
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is generated by A .
Case 2. k=2. There is an exact sequence

i »
Hy (L1 pseen) idp) o= Hy (X3 (A700) ) w—Hy (Lt 2/utenidry) o

By induction assumption, P=1® A ,(u+en and @=1® A, u+e0 together generate

H, (Xt (A/1)) , (and hence Hy (X} (A/n)) o = H, (L1 /4idF) ) . By [7, Lemma
2.3.1], we have 0(A g-en/) = T Q, where § is the connected map

Hi(XP ((A—e2) /) ) —H (XE= (A/) ).
This shows that Q=0 in H, (X}*(1/¢)), and we have taht Az, =P+ (—1)' Q
generates H; (L;/,4idr) o.
The following lemma, which is the main purpose of this section, is proved
similarly.

Lemma 6.2. Let A/pu= (A1.22,23) / (t1,1t2) be a commected skew partition
with A,—p1=t and A3%0. We set y=A—pand r=|y|. Then, the weight w= (1,
1) component of Hy(Ly2,,idr) is a cyclic module (possibly zero) generated by

def gl eeeeee ot
Al/uz Z (_1)0 0(t+1) o-.o-(t_'_,rz_l) o'(t+r2)
a(t+7'zl)’§§;|/1/u|) U(t+’)’2+]_) ...0-(7,+1) oy

Proof. Induction on v = |2/ﬂ|. A straightforward computation will show
that @ (As,) =0 in Ly,ide, and Aa, is certainly a cycle. We set by = A, — 1y,
and ky=A,— 2. We denote the weight (1,--,1) (r—1 times 1) for GL (Fy) -mod-
ules by p.

By Theorem 4.4, we have H, (L. G-eyuidr,) =0 when (1—¢g;) /p is a par-
tition, since I ((A—e¢;) /p) =3. Hence, Hy (L1 /4idr)w=H; (X} (/1) ), is a homo-
morphic image of H; (X}2(A/u)), by the fundamental exact sequence.

Case 1 ky=Fk,=1. Namely, A/ is a skew hook. If A3=1, then X1* (1/p)
is exact. Since (A—e¢;)/u and (A—ez) /i are disconnected, the map

v: Ho (X1 (A/12)) = H: (X7* ((A—&3) /18) ) = H1 (Lia-eo i d )

is an isomorphism. By Lemma 6.1, this case is O. K., since v (Az/,) generates
Hy (LiG—ey ridry) .

Consider the case A3=2. In this case, Ha (L+1/4idr) » is a homomrphic im-
age of

H, (X}'m (/1/#) ) o =H, (Lz.x/(uﬂs)idh) o0-

By induction assumption, this case is O. K., too.
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Now assume that k;=> 2. In this case, 0(Au-eis) =0 in Hy (XP2 (A/p)) ,
where 0 is the connected map

0: Hy(XP?((A—e&3) /1)) o= Ho (XP(A/10) ) o
By [7, Lemma 2.3.1], we have
0(AG-eyw) = (1 @A (utey)

g2 +eeee ot+1)
=+ X (-1)° o(t+2) -olt+r) |olttrtl)
gES lo(t+7,+2) ==0(r—1) or

o(l+nfll)=>a(|/1/u|)

Now we consider

Case 2 k;=1, k,=2. By Theorem 4.4,

P}
Hy (L., (A—e5) /uidh) —H; (xre (/Uﬂ) )p_’HZ (Lt.l/uidF) 00
is exact. On the other hand, by [7, Proposition 2.2.4] and Theorem 4.4, we
have an exact sequence
I »
Ha (Ligstenidp) ——Hz (X (/1) ) ——H3 (Li3 (u+eyidp,) /0.

Since (p 2 0) (AG-ensn) genertates Ha(Liy(u+eyidr) , and the image of
Hy(Liy/utenidr,) , by the map I is generated by

des 0-1 ...... ot
BuZ Y (=17 o) oltn—1) [oltr)
yeos o(t+7,+1) -0(y—1) oy
a(n+71.) >a(y)
oln+r)+1>1

by induction assumption. Since Az, =Byt 0 (A G-e)s) and 0 (A a-eys) is zero
in Hy (Liaidr), 6 (A/.) generates Hp (Liaddr) .

Now assume that #,=>2. In this case, 0 (A G-ey) =0 in Hy (X3! (/1)) ,
where 0 is the connected map

0: Ha (Li.g-eyrddr,) —Hz (X}2 (2/10)) .

However, we have to be careful. If A3 = A, then the map J does not make
sense, because A —¢&; is not-a partition. In this case, we regaed 0 (4 G-e)) as
the element

gl eeeees o-(t_l) ot
S S G L R S Wl I = A ,
sEST 0(t+T2+]) """ 0'(7_1) or
o(t+1)=1
o(t+7) >a(r)

which is zero in Hp (X}* (1/4)). A straightforward computation shows that
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6.3) 0Au-ey) = (1®Anuren+ (—1)"(1 @A (utey) )

in Hy(X¥2(A/p)). Here 1 in the second term must be replaced by 1’ when 7;=
1. Observe that the second term is zero when k,=>2.

Now we consider

Case 3 k1 =2, k,= 1. Since A/ (u+e¢5) is disconnected, Cau=1 ® A1/ (u+e)
and 0 (A a-«)/) together generate H, (X' (A/1)), by induction assumption and
(6.3). On the other hand,

Hy (X3 (/1)) o —Hz (X1 (A/12) ) p —H (X3? ((A—e3) /1)) =0

is exact, and X} (A/y) is quasi-isomorphic to X} (A/y) since (A —&,) /u is
disconnected. So Az/u=CauE 6 (A 1-cysn) generates Hy (Liaudr) o.

Case 4. k=2 k> 2. By (6.3), the three elements Ciy =1 ® A (ute),
0(AG-cy/w) and 0 (A a—eysn) together generate Hp (X}> (4/u)),. Using induction
assumption, it is easy to see that the map Hp (X} (/) ),—H, (X} (A/1)) , is
surjective, as in Case 3. Since 0 (Au-ey) and 6 (A G-e)s) are zero in Hp (X3!
(A/10)) o, we have A1y =Ca/y T 0(A 1—eyw) generates Hy (Liaidr) o.

7. The second Betti number

Now we start studying our main object—the Pfaffian ideal.
Let F be a free R-module of rank » with a fixed basis X= {x1, - , x4l , and

n
S=S(A?F) =R [x;Ax;] the polynomial ring over R with <2> variables. Let

t>1. The generic Pfaffian ideal Pfy is Pfy ((x; Ax;)) €S by definition. Or
equivalently, Pfy,=S*Imms, (F). With letting each variable x;Ax; of degree one,
S is a graded R-algebra, and Pfs is a homogeneous ideal generated by its de-
gree t-component. It is easy to see that the degree 7r-component Pfy,, of Pfy
agrees with M1 (nS) for r=t, where M, (r°) is defined as in Corollary
3.12. By Corollary 3.12, we have S/Pfy is R-free, since S,/Pfs,, admits a
Schur module filtration, where S,=S,(A?F). By Lemma 3.3, we have the La-
place expansion formula

2r+1 i
TSran @AfIA S Afgrr) = Z (—1)* anfy) w3, (fi A e “Nfaret)
i=1
for =1 and f1,, far+2€F.  This shows that Pfa+2C Pfor.
It is known that Pfs is Gorenstein of codimension h= (n—2t+2) (n —2t+
1) /2 (ie., pdsS/Pfs = grade Pfoy = h and Ext} (S/Pfy, S) =S/Pfa) . In other
words, S/Pfy is Gorenstein if and only if so is R, see [10] or[13].
In [17], Kurano showed that the number of generators of the kernel of
the map
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1®n° m
Q: SOINYF ————> S®S— S
(the relation moldule of Pf;) depends on the base field R=K.

In this section, we will determine the number of generators of Ker¢ when
R=K is a field.

The graded Betti number of S/Pf; for the base field K of characteristic p,
dimg [Torf (K, S/Pfs)] ; is denoted by B?; (this number depends only on p,
and is independent of the choice of K of characteristic p, where K is the S-
module S/S+=S/Pf,, and [ ]; denotes the degree j-component of a graded S-
module. The Betti number 22;8/; is denoted by 8?. The number of generators
of Ker ¢ agrees with B when R=K is a field of characteristic p. In the rest of
this section R=K is a field of characteristic p, unless otherwise specified.

Since the Koszul complex Sidax is a minimal free resolution of K, we have
an isomorphism of graded S-modules

Tor$ey (K, S/Pfy) =H; (Pfa ®s Sidaw)

for i=0. We define a chain map p:A%idr—idax by
Vi) m

A%4dg 0 DoF FOF —— AN F —0
0] Im 1 B!
idar: 0 —— 0 N2 N F —0.

Lemma 7.1. The map
1®Sp : Pfar ®sSA%idr — Pfar ®sSidacr

is a quasi-isomorphism of GL(F)-equivariant graded S-complexes.

Proof. 1t is obvious that 1 ® Sp is a map of GL(F) -equivariant graded
S-complexes. It suffces to show that this map induces a bijection of the homol-
ogy groups.

There is an R-homomorphism ¢ : A2F—F ®F such that m © ¢=id, where
m is the multiplication map m: F ® F— A®F. Using this splitting o, we have a

splitting s: idax— A2idr of p defined by

idAZF: 0 0 APF NP 0
ol A Lo o [
Alidg: 0 DoF F®F AP 0.

Since pos is the identity map of idawx, we have Hyx (1 ®Sp) “Hyx (1®Ss) =1
on Hy (Pfy ®Sidaw). This shows that Hx (1 ®Sp) is surjective. Sinece H; (1 ®
Sp) preserves S-grading and each homogeneous component of H; (Pfa ®s A%idr)
is a finite dimensional R-vector space, it is enough to show that there is an
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isomorphism of graded R-vector spaces
(7.2) H; (Pfy ®s A%idp) = H; (Pfy ®sid A%F)

to show that H« (1 ®Sp) is injective.
As we have a splitting s of p, A%dr is decomposed into the direct sum:

A%idp=idar ®idpr[—1].
Hence, we have an isomorphism of graded R-complexes

Pfar ®sS A%Ar= (Pfa ®sSidax) ® Aidpr= @ (Pfar ®sSidaw) @ Afidpy.

i20

Since A'idps is homotopically trivial for i>0, and since A°idpr=R, we have
established the desired isomorphism (7.2).

Now we want to calculate the homology group of Pfs ®sS AZidr to study

def
the Betti numbers of S/Pfy. Note that P! =Pf, ®sS A %idr is a graded S-sub-
complex of S ®sS AZidr =S A%dr. The degree j componemt of #' is denoted
by #* By Lemma 7.1, we have

H; (#") = [Toris1 (S/Pfa, R) ] ;.

By definition of m: AidrF—S A%idr, We have ma, (A*7?idp) CP"” for t2>1.
Hence, for a partiton A, we have

o2 (A +2,221dp) TP

Definition 7.3. Let =0 and t=1. For a partition A of degree 7, we
define

def

M, (m) = Z Tou (A1 m2uidr)

u2A)pul=r
and

def

Mt,l (77:) = Z T2u (/\I+u,,2uid1«‘) .

u>Alul=r

We have M,.q=%"", so that {M,,| is a filtration of $"".

Lemma 7.4. Let R be an arbitraty commutative ring, and ¢. G—F a
map of finite free R-modules. Let A/pt= (A1,Az) / (tt1,1t2) be a two-rowed skew-parti-
tion, and t=A,— 1. Then, we have

ImO,, N AL arup= Z Tavu (At r45-a) ,
k> p— 2
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where Tzl_/,l, and 01=¢€&1— €.

Proof. 1t is obvious that the right-hand side is contained in the left-hand
side.

We prove that the left-hand side is contained in the right-hand side. Let X
= 5, <:*<xml and Y= {yp;>+->y,} be ordered bases of F and G, respective-
ly. We set X=XUY, and we let X<Y so that X is a totally ordered set. Then,
any element a € ImSay, N ALvug is expressed as a = 2¢sS (cs € R) uniquely,
where the the aum is taken over row-standard tableaux mod Y of skew parti-
tion /¢ with valued in X. We set N (a) = IS € Rowa, (X,1) les # 0} . We

def
prove a is contained in the right-hand side by induction on ht (a) =

Zsenw 2™ where ht (S) is the number of elements in Row,, (X,Y) which is
smaller than S in the lexicographic order. If any element of N (a) is standard
mod Y, then dz,(a) #0 unless N (@) = @ by the standard basis theorem. Since
Ker d;/,=1m0O;,,, this means a =0. So we may assume that there is some S €
N(a) which is not standard mod Y. The column-standardness is violated in
some column of Sy, say j™ column (1 <j <Az). Since a € A,u¢, we have
So(1,p1+1), -, So(1, g1 +1t) €EX. This shows that X25(1,5) >S(2,5). We
put u=j—p;—1 and v=_2,—j. When we define S;1€Row w/f—-r.» (X,Y) by Si
(l,l) :SO(]., l+ﬂ1) for ISlSu. Sl (2, l) :So (2, l+ﬂ2) for lgls_]'_ﬂz, S] (2, 1)
=So(1, 1+p,—1) for j—12<I<|y|—u—v, and $:(3, 1) =S, (2, 1+j) for 1<1
<wv. Then we have

[.(Sy) = £ S+ (lower terms)

as in the proof of Lemma I1.2.15 of [2], where Tu A (ls—u—vn) @ > A 2w is
the composite map
19401
ANEPR AT 1 @ Alp————— A*Q O AT Q@ A" ® AT
m ®m
AP ® AT,

It suffices to show that [, (S1) is contained in the right-hand side so that

we can apply the induction assumption on aFcs,0, (S1). But this is clear by
Lemma 1.3.9 in [9] (the special case i,=0).

Lemma 7.5. Let R and ¢ be as in Lemma 7.4, A/t a skew partition, and
M a submodule of /., @ genevated by a poset ideal B of Row (X, Y), where X, Y
and X are as in the proof of Lemma 7.4. Then,

1(A71)

(7.6) Ker dasu NM= Z (( Z ImDﬁ/—uu"-ka‘) nM)

i=1 k> p=prin

Proof. The direction D is obvious by the standard basis therorem [2,
Theorem V.1.10].
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We prove the opposite direction C. Let a = 2sep ¢sS (cs €ER) be an ele-
ment in the left-hand side.

As in the proof of Lemma 7.4, we proceed by induction on ht(a). As in
the proof of Lemma 7.4, we may assume that there is some S¢€N (a) which is
not standard mod Y. When the column-standardness is violated between ith
and the ((+1)th rows, then there exists some Ty, - , T4 <So and a1, - , axER

such that
s=Yure Y g

j B> i i

As B is a poset ideal, we have that Sy— 22;a,T; is contained in

( Z Imﬂﬁﬁf‘“‘“‘)ﬂM.
k> i i

Since we have a —cs, (So— 2;a;T;) is contained in the right-hand side of (7.6)
by induction assumption, we have that a is also contained in the right-hand
side.

The following lemma shows that the homology of ¢-Schur complexes of the
identity map is closely related to the Betti numbers of Pfaffian ideals.
Lemma 7.7 If |21 <2¢, then we have
Mz,x =M1 N M.
In particular, we have a unique isomorphism
Fia: Livazaide — Mia/ Mo

which makes the following diagram commutative.

22

A+ a,221dF M.
du | l
. Tta y
Li+2,22idF i M, 2/ My, 2

In particular, if r<2t, then P is isomorphic to ®z=, Li+1,21 idr up to filtration.
Proof. Note that
72 Laidr — Mz/M;
maps Li+a,2:i1dr isomorphically onto
(71'21 (/\t+1,.21idF) +1Wx) /M} = (M,,1+M1) /Mz.

If Mt,1=M; N M;,, then we define 7.4 to be the composite map
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Ta . . . .
Liva2aidg—— (M, .+ M) / M3 =My 2/ (MaN My z) =Mia/ My,

and it is easy to prove the rest of the assertions in the lemma.

So it suffices to prove M= M, M,. The direction C is clear. For the
opposite direction, it suffices to show that Ker dzu N A+221idr is mapped to M, ,
by 7. By Lemma 7.5, we have

Ker daa N Arazaidr= 22 ((ZysolmOZ ) N A a2iidF) .

We may assume that ¢t + 4,2 24;. So we have A;= A, + -+ Ay»y by our
assumption |A] <2¢t. So it is easy to see that

o3 ((ZImEE ) N A 4 22:idF) CMH.

k>0

for i=2.
Hence, we may assume that [ (1) =2. By Lemma 7.4, Ker di N Ai+,.2idF is
the sum of the images of the maps

O At atnaa+n @—e)idr — A+ a,221dp

for h=1, -, 242. For each h we have, 9§, +s22,-» =7 Oy is a linear combination

of Ehtnan-n=1 o, for intergers ! such that 0</<h and h—! even by Lemma
3.5, where OpA ea+nza—nidr — A @a+n+i2.-s—nidr is the boxtilde map. Note that

O, (Avtatn@a+rza-nide) C At atneatn+izz—n-nidr.

Since t+A;+h=>t+ A+ (h+1) /2 when [ <h, we have
Ehtnzi—n (At atnea+nza—nidp) C M;,x

when | <h. Hence, we have N4 +nza—n (Ar+a+n@i+nzi-nidp) CM,,; for h=1, -,
225 This shows that mx (Ker d;N A+a.2:idr) C M1

Using the lemma and the results on the homology of t-Schur complexes so

far we developed, we can prove the following theorem, which is a refinement of
[16,Theorem 5.3].

Theorem 7.8. Let K be a field of characteristic p.
1 If pF2, then the first syzygy module of Pfy as an S-module is generated by linear
relations. Or equivalently, we have BE;=0 for j #t+1.
2 If p=2, then we have
[log.t]
Torf (S/Pfa, K) = [Tor§ (S/Pfa, K) 1111 ® @ Azes2F
i=1

as GL (F) -modules so that 53;=0 unless j=t+2' for some 0<i< [logat].
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n<2t+1>_(2t+2> b#2)

Bé’: [logat]
n n n
— + =9).
”<2t+1> (2t+2> ;(2‘“+2t> =2

Proof. First we recall Kurano's result [16, Theorem 5.3] which says
that for any p, we have 84,=0 unless t+1<; <2t. By Lemma 7.7, for any
<2t, we have a spectral sequence of polynomial representation of GL (F)
associated with the filtartoion M, il 1=, with E'-terms H; (Li+1,.2:idr), and
converges to [Torsy, (S/Pfar, K)1,.

If t+2<r<2t and p#2, then H, (Li+2.22idr) =0 for any partition A of de-
gree ¥ by Corollary 5.3 (when A= (t, a) (2<a <t), 2a is not a power of p
when p#2). This shows that 84;=0 when p#2 and j#t+1, and 1 is proved.

Consider the case t+2<+<2t and p=2. By Corollary 5.3 again, 84;=0
unless j is of the form ¢+ 2' for some /=1. Consider the case j =t +2' for
some 1 <1 <[logst]. Then, we have H; (Li+1 22idr) =0 unless A= (¢, 2'), and
Hi(La @ 2+ idr) = AZT2"F Hence, to prove the assertion 2, it suffices to show
that the E'-term H) (La.@2+) idr) = A%*2" F is canonically isomorphic to the
E”-term. We may assume that n=>2(t+2).

By Theorem 4.4, Ho (Li+u2.4dr) =0 for any > A= (t,2") (>is the lexicog-
raphic order) . So the E”-term in question is a homomorphic image of the
E'-term. By Theorem 4.4, <A and Hz(Li+u.24idr) #0 imply g is of the form
(t, a,b) (a+b=2'a=b>0).

Assume that E' Z E*. Then we can take a minimum number b such that
the map of the spectral sequence

dbi Hz (Lzr,(zz,zu,Zb)idp) _’Hl (LZ/.(Z:,Z’“)idF) = /\ZHZ’“F

3  We have

is non-zero (or equivalently surjective, since A#'¥"F is an irreducible
representation) . This means that the weight w= (1,-,1) (2|4] times 1) compo-
nent (ds)o of ds is non-zero. On the other hand, by Lemma 6.2,
Hy (Lo 2.20idr)w is generated by A@az.an. A straightforward computation
shows that

ds (A @aezn) = 0 (T @202 A @2020)) = T 2120200 (DA (202020))

equals to

20 | O Z —-1)°
TT (2t,24,2b) ( ) 0(2t+1) ...... 0.<21+l)

cE 6(21,2”‘)

modulo M,,;, where O is the box map A zidr — A @2.20idr, which is nothing
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but a diagonalization of the second row of 24. By Lemma 3.2, we have

0'1 ...... o (Zt)

9l+1
do (A @zezm) = 22 Z (—1)°
2b o
FEGS@2

2t+1) | 0(20%0)

20+ .. -
which is zero since (2 > is an even number. This is a contradiction, and the
b

proof of 2 is complete.
We prove 3. By 1 and 2 proved above, it suffices to show that

7.9) B£t+l=n<2t+1>_<2t+2>

for any p.
As S/Pfz is R-free for any commutative ring R by the Plethysm formula

[16, Proposition 3.5], it is esay to see that the alternating sum S (—1) 8L,

is independent of p. Since 87,41 =0 unless i =2, we have that 8%, is indepen-
dent of p. To prove (7.9), we may assume that K is of characteristic zero. But
this case is done by Jozefiak, Pragacz and Weyman [12].

Let us consider an arbitrary commutative ring R as the base ring. A finite
free graded S-complex F is said to be minimal when the boundary map of
S/S,+ ®s F is zero, where S;= (z;;) *+ S. When R is a filed of characteristic p,
then a finite free resolution

F. :--—F;—F—FS/Pf;—0

of S/Pfs is minimal if and only if rank F,~=,B,P. A base change R"®; F of a
minimal free resolution F is still a minimal free resolution.

Corollary 7.10 If 4<2t<n—4, then there is no minimal free resolution
of S/Pfa: over the base ring Z, the ring of integers.

Proof. By the theorem, 35,4, depends on the characteristic.

Remark 7.11. When 2t=2n — 2, there is a minimal free resolution of
S/Pfs [21]. What about the case 2¢=n—23? This case is open. Is there any ex-
ample of a Pfaffian ideal which does not have any minimal free resolution over
Z[1/2]? This question is still open, too.

8. Generators of the relation

In this section, the base ring R =K is assumed to be a field. In the last section,

we calculated the number of generators Bf of the relation module Ker ¢ of
Pfz:, where p is the characteristic of K, and ¢ is as in the last section. We fix a
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basis X = lx1, -+ , zs| of F, and denote the element xi; A+ Ax;, of A* F by

lir, i), and 73, ([i1,+-. ix]) €S, by Gy, iz . For example, the Laplace expan-
sion formla (see section 7) is rewrited as

a
+1

2r v
(8.1) 2 (=) g0 a7 Az =4a, e, Gargr)
a=1
for r=0, 1<a,i;,..., 1241 <n (see[16, Lemma 3.3],[11]).
From Lemma 3.2, we have

‘ . . . atb
Z (_1)0<lo(1), ey, 10(2a)> ¢ <1o(2u+1). ety 1u(2(u+b))> =<

cEG™? b

><i1, o T2aan)

for a, b=>0 and 1 <4y, 125 <n (see [16, Lemma 3.3]). We call this formula
the second Laplace expansion.

Let 1<ab iy,..., iz <n. We define T (a,b; iy,...i2:) ES® A¥F by

a a
def v

ef 2t 2t v
T(a,b; yeiz) = 20 (_1)axaia® [b,il. """ ) izt] +2 (_1)axbia® [a,il, “““ ) ize]-
a=1 a=1
It is easy to see that T (a, b; iy,....i2:) EKerg.

Proposition 8.2. Let K be a noetherian commutative ring which contains
1/2. Then, we have
1 We have

Tor3 (S/Pfu, K) =K @i F.
2 The first syzygy module Ker ¢ is minimally genevated by the set
X= 1T (a, b; i1, 120) |a <ir <+++ <igy <, 1<a < b <nf

as an S-module.

Proof. We may assume that K is a field of characteristic different from
two, because whether or not a Z [1/2] -form M of K@i F is isomorphic to

KeiF is determined by whether it is generated by a weight (2,1%) -vector
(see e.g., [8, Theorem 7.2]), and this is checked by the specializations at
fields. As in the proof of Theorem 7.8, we have that the only partition A of de-
gree t+1 such that Hy (Li+z, 22idr) is not zero is A= (t+1) by Corollary 5.3,
and we have H;(Lz+1,a+2idr) = K@= F. Hence, by Theorem 7.8, Tor$ (S/Pfa,
K) is a subquotient of K@i F whose dimension is equal to dimgKeinF. So 1
is proved.

By definition, T (ab; iy,..., i) agrees with the image of x.x, ® [i1,....i2e] by
the first Laplace exansion map

491 1®m

FOF®NYF

a

U D,FOANYF F® A2 A?F @ N*F,
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By Standard Basis Theorem on Weyl modules [2, Theorem II,3. 16], the set X

spans Im ¥ (note that x2=2x? and we assume that 2 is invertible in K). So

the S-span of X, which we denote SX, is a GL (F) -submodule of [Ker ¢] 41 =
K@mF, and SX contains a non-zero weight (2,1%) vector T (1,1; 2...., 2t +1).
Since the Weyl module K @iF is generated by its weight (2, 1?*) -component as
a GL (F) -module, we have SX = [Ker ¢],+1, and it generates Ker ¢ by
Theorem 7.8.

Corollary 8.3. Let R be a noetherian commutative ring which contains

1/2. Let ¢: S ® KeinF —S ® A¥ F be the unique GL (F) -equivatiant S-linear
map given by

1®([1,, 2t+1] ®1)—1/2 - T(1,1;2,, 2t+1).

Then we have
1 The sequence

¢ [
F: S®K 21 F—S ® A¥F—S5—S/Pf,—0

1S exact.

2 Let (a;;) be an n X n-alterating matrix with coefficients in R. We denote by I
the ideal of S generated by (x;;—aij) so that S—S/I is identified with the
substitution S—R (x;;—ay;). The following are equivalent.

a) S/I®F is exact.
n—2t+2
b)  Pfa(ai;) =R or grade Pfy(ayj) =< ) )

Proof. 1 is nothing but a reformulation of the proposition. We prove 2.
We may assume that R is complete local so that R is a_ homomorphic image of
a regular local ring R. We denote the polynomial ring R ®,5Z by S so that S
=R ®;S. We denote the kernel of the composite S—S5—S/I by J. As we can
construct a finite free resolution of S/Pf% S of the from

- ¢ ¢~
0 —-P,——P;—S ®KpmF—S ®N*F—>S—S /PSS — 0,

the condition a) is equivalent to Torf (S/Pf- S, S/J) =0. This condition is
equivalent to Tor{ (S/Pf%-S,S/]) =0 for i> 0 by Lichtenbaum'’s theorem
[18] . On the other hand, since (Pf%) - S is perfect of codimension h =
<n—2t+2>
2
(Pfat(ai;), K) =h by the lemma below.

, this condition is equivalent to depth (Pf% - §,§/]) = depth

Lemma 8.4 (depth senitivity). Let R be a noetherian ring, I a perfect
tdeal of R of codimension g, and M a finitely generated R-module such that M+

IM. Then, we have depth (I, M) =g—max |i| Tor® (R/I, M) #0 1.
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Proof. This is well-known (see [6, Proposition 2.1]), and follows easily
from the criterion of the exactness of complexes [4].

When the characteristic is two, the description of a minimal set of gener-
ators of Ker ¢ is more complicated. We consider the following three types of

relations (i.e., elements of Ker ¢).

a
\%

type 1 2a(—1) %, ® [a, iy, " - 2] (15a<ip <o <ig<n).

type 11 T (a, b; 11,0, iz;) (]. Sa<i1< <i2¢ Sn, 13113[) S%) ,
where T(a, b; 11, i2;) is as in Proposition 8.2.

type III  Let 0<a<[logzt]. For any i= (i (1),...i (2t +2°*')) such that
1< (1) <+ <i (264221 <n, we have

<p< Z (=16 (a(2t41)), - ,i(a(2t+2°))) ® [01,---,0(2t)]>

0’6@ '2a+1
=<t+2 ><i(1),---.i (2t+2+1))
t

by the second Laplace expansion rule. On the other hand, we have an ex-
pansion

2t

(6 (1) 1o 212541)) = YA ) + G 02) i Gor))

(A (j) €S) obtained by successive use of (first) Laplace expansion. When
we fix such an expansion, then

WOZ Y ()% 0@+D), i (0(@2+27)) ®[0l,...0(20)]
= _C+?
t

)ZA @) ®LiG1) . ia)]

is an element of Ker ¢.

Note that these elements are defined over Z, and are relations over any com-
mutative ring.

Proposition 8.5 Let K be a field of characteristic two. Then, Ker ¢ is
minimally generated by the relations of type I-1I1.

Proof. First note that the homology H; (Pfa ®sS A%idr), which we calcu-
lated explicitly in the last section, is isomorphic to K ® s Ker ¢ by the con-
nected morphism

6. Hy (Pfa ®sS A%idr) —Ho (Ker @ ® S A%idp) =Ker @ ®gK
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of the long exact sequence coming from the short exact sequence
0 — Kerg ®sS A%idr— (S ® AYF) ®sSAZidr — Pfa ®sSA%dr — 0.

First we consider the degree t+ 1 generators of the relation. By Lemma

7.7, there is an exact sequence
0 = A#+LDiq, — [Pfy, @S APidp] 141 = Lanerpidr — 0
which induces a long exact sequence of homology groups
0 = Hy(Lat,ceemide) = Hi (A1)
—t>H1 ([Pfa: ®sS A%idp] 141)— Hy (A#*H12+2%d5) —0.
With the map 8, the image of

¢ Hy (A#+02042q ) > | ([Pfy ®sS A2idr] 141)

is mapped to the first Laplace relation Im &, where ¥ is as in Proposition 8.2.
The set X in Proposition 8.2 and the elements of type I together generate the
relations of the fisrt Laplace type (e, Im ¥). But it is easy to see that the
elements of type I together with type II also generate Im ¥ because we heve
relations

T (a,b: cizyiz) FT(b,ciaia.iz) +T (@c:biz,...izr) =0

and

Z T(0(1).0(2):0(3) m0(2t+2)) =0
O'E @(2,2!)

(the second relation is only for characteristic two). Since the number of ele-
ments of type I, type II and type III of degree t+ 1 agrees with the number
of standard tableaux of shape (2t+1,1), it suffices to show that the image by

07! of the elements of type III of degree t+ 1 generates Hi (Laorpidr) =
A¥+2E But this is obvious by Lemma 6.1. Now we have calculated the linear
relations of Pfaffians as remarked in [21, Remark 2.1].

Next we calculate the minimal generators of higher degree. Consider the
relation W (i) of type IIL. As the expansion

G,y i @H2)) =24 G) » GG 1 G2))

is obtained by the successive use of the Laplace expansion, we can choose
A (]_) from Sz—1 A*F®F ®F such that the image of A (7_) by the map

1®m

m
Se—1\*F®F ®F Se 1 A F® AN’F — SuA%F

is A (j) and that the image of 2,G (1) ..., 1 (j20)) ®A (j) by the map
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me®l

SiN’F @S- 1 \*F QF ®F

Si+2- 1N F® (F®F) CSA%dp

!
v

is equals to £x ([ (1), +--- , i (2t+29%Y)] ®x;) so that it is contained in
T+ (ABFTE L2274 0)  where | is the index used in the starting of the suc-

cessive Laplace expansion of (i(1),..i(2t+29+1)).
This shows that W (1,2 ,..., 2¢+2%*1) is the image of

!

v

Aoy Fr([1,2, - , 2t+29%1] ®x,)

by the connected map &, where A @+ is as in Lemma 6.1. By Lemma 6.1, the
one-dimensional vector space

Hl (g)u+2“) w EHl (LZt.(Zf,Z“‘)idp) w

l

v

is generated by A @z Fr([1,2,- -~ , 2t+2%*'] ®x;). This shows that the ele-
ment W (1,2,.., 2t +2°*!) generates [S/S; ®sKer¢] ,, where w is the weight

(1,1,..,1) ((2t+29*!)-times 1). Since we know that [Tor3 (S/Pfa, K)]i+2 is iso-
morphic to the exterior power A***"F, W (i) is a basis element of S/Sy ®
Ker¢ for other weight, in a similar way. Thus, the generators of the higher de-
grees are exhausted by the elements of type III

NAGOYA UNIVERSITY
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