Ornstein-Uhlenbeck semigroup and fourier transform acting on positive finite measures on the schwartz space

By

RYOJI FUKUDA

1. Introduction

Let (\mathcal{S}^*,μ) be the White noise space, that is, \mathcal{S}^* is the space of Schwartz distributions on **R**, \mathcal{B} is the space of its testing functions $(\mathcal{B} \subset L_2 (\mathbf{R}, du) \subset$ \mathscr{B}^*) and μ is a Gaussian measure on \mathscr{B}^* defined by

$$
\int_{\mathcal{S}^*} e^{\sqrt{-1}(\xi,x)} \mu(dx) = e^{-\frac{1}{2}|\xi|^2} = e^{-\frac{1}{2}\int_{\mathbb{R}^{\xi(u)^2 du}} \xi} \in \mathcal{S}
$$

where $(\cdot,\,\cdot)$ is the canonical bilinear from on $\mathscr{S} \otimes \mathscr{S}^*$. We consider the follow ing semigroup on $L^2(\mu)$.

$$
T_t^A F(x) = \int_{\mathcal{S}^*} F(e^{-tA}x + \sqrt{1 - e^{-2tA}}y) \mu(dy),
$$

where $A = 1 + u^2 - \frac{d^2}{du^2}$, which is a positive definite self adjoint operator on L_2

 (R, du) . Let $(B, H, \tilde{\mu})$ be an abstract Wiener space. Then $\{T_t^A\}_{t>0}$ is a special case of a generalized Ornstein - Uhlenbeck semigroup introduced by I. Shigekawa [5] when (\mathcal{S}^*, μ) is replaced by $(B, \tilde{\mu})$, and the original Ornstein-Uhlenbeck semigroup $\{T_t\}_{t>0}$ is the case where *A* is replaced by the identity operator. It is an interesting feature of these semigroups that, roughly speaking, $T_t^4 F(x)$ (or $T_t F(x)$) is a smooth function in x for any $t > 0$ and that *F* is approximated by $T_t^A F$ (or $T_t F$) (see for example H. Sugita [7] Lemma 2.2). In this article, we will show that $\{T_t^A\}_{t>0}$ satisfies these properties when they act on positive finite measures on \mathcal{S}^* , and using this semigroup, we shall give inversion formulae of Fourier transform of positive finite measures on \mathcal{S}^*

Let $(\mathcal{B})^*$ be the space of Generalized White noise functionals, (\mathcal{B}) be the space of its testing functionals and $\langle \cdot, \cdot \rangle$ denote the canonical bilinear form on $(\mathcal{B}) \times (\mathcal{B})^*$. They were defined in $[1]$ or $[2]$ for example, and we will de-

Communicated by Prof. K. Ueno, October 11,1994

fine them in a generalized form in Section 2. On the smoothness of $F \in (\mathcal{B})$, Yu.-J. Lee [1] proved that *F* is \mathcal{B}^* -continuous and, for any *x*, $y \in \mathcal{B}^*$, $y \in \mathbb{R}$) $F(x+uy)$ can be extended to an entire function in $u \in \mathbb{C}$. We call such a function \mathcal{B}^* -analytic function. For any $t > 0$, the operator T_t^A can be continuously extended on $(\mathcal{A})^*$, but for a generalized White noise functional $\phi \in$ $(\mathcal{A})^*$, $T_t^4\phi$ is far from being a smooth function, it is not a measure on \mathcal{A}^* in general (Example 4.1). However if $\phi \in (\mathcal{A})^*$ is a positive finite measure (if Δ * such that $\langle F, \phi \rangle = \int_{\Delta} F(x) dx$ Δ (*dx*) for any $F \in (\mathcal{A})$), we will show that $T_t^A \phi$ is \mathcal{A}^* -analytic for any $t > 0$ (Theorem 2.2).

Next we extend the semigroup $\{T_t^A\}_{t>0}$ for a general positive finite measure ν on \mathcal{B}^* . In Prososition 2.1, we will prove that, for any $t > 0$, there exists a continuous function $D_t(\cdot, \cdot) : \mathcal{B}^* \times \mathcal{B}^* \longrightarrow \mathbb{R}^+$ such that $||D_t(\cdot, y)||_{L_1(\mu)} = 1$ for any $y \in \mathcal{B}^*$ and

$$
\int_{\mathcal{S}^*} F(e^{-tA}x + \sqrt{1 - e^{-2tA}}y) \mu(dy) = \int_{\mathcal{S}^*} F(y) D_t(x, y) \mu(dy)
$$

for any bounded \mathcal{S}^* -continuous function *F*. Then we define, for a positive finite measure ν on \mathcal{S}^* and $t > 0$,

$$
T_t^A \nu(x) \equiv \int_{\mathcal{S}^*} D_t(x, y) \nu(dy)
$$

as an $L_1(\mu)$ -function (Definition 2.1). When $\nu(dx) = F(x) \mu(dx)$ ($F \in L_p(\mu)$, $p \ge 1$), $T_t^4 \nu$ will be also denoted by $T_t^4 F$.

For any $t > 0$, T_t^A satisfies the following $(St-1) \sim (St-3)$ as an operator on $L_p(\mu)$ ($p>1$).

- $(St-1)$ $\|T_t^A F\|_{L_p(\mu)} \le \|F\|_{L_p(\mu)}$ for any $F \in L_p(\mu)$.
- $(St-2)$ l^4 is a self-adjoint operator on $L^2(\mu)$.
- (St 3) $T_t^4 F \ge 0$ if $F \ge 0$.
- (St-4) $T_{t}^{A}1=1$.

In the case where $F \in L_p(\mu)$ $(p > 1)$, E. M. Stein [6] proved that $T_t^A F$ converges to *F* μ -almost everywhere if the $L_2(\mu)$ -continuous semigroup $\{T_t^A\}_{t>0}$ satisfies the above $(St-1) \sim (St-4)$.

Let *N* be a fixed natural number, μ_N be a standard Gaussian measure on \mathbf{R}^N and \tilde{A} be a positive definite symmetric matrix. Then there exists $D_t\left(x,\,y\right)$ $(x, y \in \mathbf{R}^N)$ such that

$$
\int_{\mathbf{R}^{N}} F\left(e^{-t\widetilde{A}}x + \sqrt{1 - e^{-2t\widetilde{A}}y}\right) \mu_{N}\left(dy\right) = \int_{\mathbf{R}^{N}} F\left(y\right) \widetilde{D}_{t}\left(x, y\right) \mu_{N}\left(dy\right)
$$

for any bounded continuous function F on \mathbf{R}^N and $t > 0$. As an analogy of T_t^A .

we define for a positive finite measure $\tilde{\nu}$ on \mathbf{R}^{N} and $t > 0$,

$$
\widetilde{T}_t^A \widetilde{\nu}(x) \equiv \int_{\mathbf{R}^N} \widetilde{D}_t(x, y) \, \widetilde{\nu}(dy) \in L_1(\mu).
$$

Let $\frac{d\bar{\nu}}{d\mu_N}$ be the Radon Nikodym derivative in the sense of the Lebesgue decomposition. Then, using the Global Density Theorem proved by H. Sato [4], we can show that $\widetilde{T}_t^A \widetilde{\nu}(x)$ converges to $\frac{d\widetilde{\nu}}{d\mu_N}(x)$ μ_N -almost everywhere.

For a positive finite measure on \mathcal{S}^* , we shall prove the following theorem.

Theorem 1.1. Let ν be a positive finite measure on \mathcal{S}^* . Then

(a)
$$
T_t^A \nu(x) \mu(dx)
$$
 converges to $\nu(dx)$ weakly as $t \longrightarrow 0$.

(b)
$$
T_t^A \nu(x)
$$
 converges to $\frac{d\nu}{d\mu}(x)$ in the measure μ as $t \longrightarrow 0$.

It is still an open problem that $T_t^A \nu(x)$ converges to $\frac{d\nu}{d\mu}(x)$ μ -almost everywhere or not.

Next we consider the following Fourier transform.

Definition 1.1. *Let dtl⁺ be the family of all positive finite measures on* \mathcal{B}^* . We define a Fourier transform \mathcal{F} on $\mathcal{M}_+ \cup (\mathcal{B})^*$ as follows.

 (a) *For* $\nu \in M_+$,

$$
\mathscr{F}[\nu](x) \equiv e^{\frac{1}{2}|x|^2} \int_{\mathcal{S}^*} e^{\sqrt{-1} \langle x, y \rangle} \nu(dy), \quad x \in \mathcal{S}.
$$

(b) *For* $\Phi \in (\mathcal{S})^*$.

$$
\mathscr{F}[\boldsymbol{\Phi}](\mathbf{x}) \equiv e^{\frac{1}{2}|x|^2} \langle e^{\sqrt{-1} (x, \cdot)}, \boldsymbol{\Phi} \rangle.
$$

When $\nu(dy) = F(\nu) \mu(dy)$, $\mathcal{F}[\nu]$ *is also denoted by* $\mathcal{F}[F]$.

It is easy to show that $\mathscr{F}[\nu](x)$ (in (a)) and $\mathscr{F}[\phi](x)$ (in (b)) are \mathcal{S} -continuous functions in *x* for any $\nu \in \mathcal{M}_+$ and $\phi \in (\mathcal{S})^*$. If a positive finite measure ν belongs to $(\mathcal{A})^*$, (a) and (b) are identical with each other (Proposition 3.1). Thus $\mathcal F$ is well defined on $M_+ \cup (\mathcal{A})^*$. The above $\mathcal F$ is an extension of the Fourier transform on L_1 (μ) defined by H. Sato [3]. He gave an inversion formula of this transform for an element of $L_1(\mu)$ ([3]), and Yu.-J. Lee [1] proved that $(\mathcal{A})\oplus\sqrt{-1}$ (\mathcal{A}) is invariant under this transform.

Let **F** be a finite dimensional Fourier transform for a positive finite measure $\tilde{\nu}$ on \mathbf{R}^N defined by

$$
\mathbf{F}\left[\tilde{\nu}\right](u) = \int_{\mathbf{R}^N} e^{\sqrt{-1}\,\langle u,v\rangle} \nu\left(du\right).
$$

Let λ be the Lebesgue measure on \mathbf{R}^N . Then $\mathbf{F}[\tilde{\nu}](u)e^{-\varepsilon|u|^2}$ is λ -integrable for any $\epsilon > 0$. Therefore we can define

390 *Ryoji Fukuda*

$$
\tilde{\nu}^{(\varepsilon)}(u) \equiv \frac{1}{(2\pi)^N} \int_{\mathbf{R}^N} e^{-\sqrt{-1}(u,v)} \mathbf{F}[\tilde{\nu}](v) e^{-\varepsilon |u|^2} \lambda(dv).
$$

Then $\tilde{\nu}^{(\varepsilon)}(u) \lambda (du)$ converges weakly to $\tilde{\nu}(du)$, and using the Global Density Theorem again (H. Sato [4]), we obtain the λ -almost everywhere convergence of $\tilde{\nu}^{(\varepsilon)}(u)$ to $\frac{d\tilde{\nu}}{d\lambda}(u)$ when $\varepsilon \longrightarrow 0$.

In our infinite dimensional case, we have the following theorem.

Theorem 1.2. Let ν be a positive finite measure on \mathcal{S}^* , $\{e_n\}_{n\in\mathbb{N}}$ be the CONS composed of the eigenvectors of A and set $P_N x \equiv \sum_{n=0}^N (e_n, x) e_n$ for any $N \in$ N. *Then we have*

$$
T_t^A \nu(x) = L_1 - \lim_{N \to \infty} \int_{\mathcal{S}^*} e^{-\sqrt{-1} (P_N x, y)} \mathcal{F}[\nu] \left(e^{-tA} y \right) \mu(dy)
$$

for any $t > 0$.

Summing up Theorems 1.1 and 1.2, we have obtained inversion formulae of the Fourier transform ${\mathcal F}$ for a positive finite measure on ${\mathcal S}^*.$

Recall that $(\mathcal{A}) \oplus \sqrt{-1} (\mathcal{A})$ is invariantunder \mathcal{F} . However $(\mathcal{A})^* \oplus \sqrt{-1}$ $(\mathcal{B})^*$ can not be invariant under this transform. We will give an example of \in ($\mathcal{B})$ * which satisfies that $\mathcal{F}\left[\varPhi\right]$ is a nonnegative $\mathcal{B}^{*}-$ continuous functior but $\mathscr{F}[\Phi]$ does not belong to $(\mathscr{A})^*$ (Example 4.1).

2. Smoothness of $T_t^A \nu$

In order to simplify the arguments, we generalize the spaces $\mathcal{S} \subset L_2(\mathbf{R}) \subset$ \mathcal{B}^* and $(\mathcal{B}) \oplus L_2(\mu) \subset (\mathcal{B})^*$. Let $H = (H, |\cdot|)$ be a real separable Hilbert space and $\{e_n\}_{n\in\mathbb{N}}$ be a CONS of *H*. Define a symmetric positvie definite operator A on *H* as follows.

$$
Ax \equiv \sum_{n=0}^{\infty} \lambda_n (e_n, x) e_n
$$

where (\cdot, \cdot) is the inner product of *H* and $\{\lambda_n\}_{n\in\mathbb{N}}$ is a sequence of positive numbers satisfying

$$
\sum_{n=0}^{\infty} \frac{1}{\lambda_n^2} < \infty \quad \text{and} \quad \inf_{n \geq 0} \lambda_n > 1.
$$

Let $\mathscr P$ be the linear span of $\{e_n\}_{n\in\mathbb N}$ and consider the norms $\{\|\cdot\|_p\}_{p\in\mathbb Z}$ defined by

$$
|x|_p = |A^p x| \quad (x \in \mathcal{P}).
$$

Define

$$
\mathcal{S}_p \equiv \bar{\mathcal{P}}^{\|\cdot\|_p} \quad (p \in \mathbf{Z})\,,
$$

Ornstein 391 *- Uhlenbeck semigroup*

$$
\mathcal{S} \equiv \cap_{p \in \mathbb{Z}} \mathcal{S}_p, \quad \mathcal{S}^* \equiv \cup_{p \in \mathbb{Z}} \mathcal{S}_p
$$

and let μ be a Gaussian measure on \mathcal{B}^* defined by

$$
\int_{\mathcal{A}^*} e^{\sqrt{-1}(\xi,x)} \mu(dx) = e^{-\frac{1}{2}|\xi|^2}, \quad \zeta \in \mathcal{A}.
$$

Let N_0^{∞} be the family of all sequences of non-negative integers $\alpha = {\alpha_i}_{i \in \mathbb{N}}$ such that $\alpha_j = 0$ except for finite *j*'s. We prepare the following notations for a multi index $\alpha = {\alpha_i}_{i \in \mathbb{N}} \in \mathbb{N}_0^{\infty}$.

$$
|\alpha|\equiv\sum_j\alpha_j,\quad \alpha!\equiv\prod_j\alpha_j!.
$$

For any $n \in \mathbb{N}$, let $h_n(u)$ be a Hermitian polynomial defined by

$$
h_n(u) = (-1)_n \left(\frac{d^n}{du^n}e^{-\frac{1}{2}u^2}\right) e^{\frac{1}{2}u^2},
$$

and define

$$
\mathbf{h}_{\alpha}(x) \equiv \frac{1}{\sqrt{\alpha!}} \prod_{j} h_{\alpha_{j}} (\langle e_{j}, x \rangle)
$$

for any $\alpha \in \mathbb{N}_0^{\infty}$. Then $\{h_a\}_{\alpha \in \mathbb{N}_0^{\infty}}$ is a CONS of $L_2(\mu)$.

We consider the operator **A** on $L_2(\mu)$ defined by

$$
\mathbf{A}F \equiv \sum_{\alpha \in \mathbf{N}_0^*} (\prod_{j} \lambda_j^{\alpha_j}) \langle \mathbf{h}_{\alpha}, F \rangle \mathbf{h}_{\alpha}
$$

where $\langle \cdot, \cdot \rangle$ is the inner product of $L_2(\mu)$. Let (\mathscr{P}) be the linear span of $\langle \mathbf{h}_{\alpha} \rangle$ $_{\alpha \in \mathbb{N}_0^*}$. Then **A**F is well defined for any $F \in (\mathcal{P})$. Define

$$
\|F\|_{p} = \|A^{p}F\|_{L_{2}(\mu)} \quad (p \in \mathbf{Z}),
$$

$$
(\mathcal{S}_{p}) \equiv (\bar{\mathcal{P}})^{\|\cdot\|_{p}}, \quad (\mathcal{S}) \equiv \cap_{p} (\mathcal{S}_{p}), \quad (\mathcal{S})^{*} \equiv \cup_{p} (\mathcal{S}_{p}).
$$

When $H = L_2(\mathbf{R}, du)$ and $A = 1 + u^2 - \frac{d^2}{du^2}$, $(\mathcal{S})^*$ is identical with the space of

generalized White noise functional defined in, for example, $\lceil 1 \rceil$ or $\lceil 2 \rceil$. On the spaces \mathcal{A} and (\mathcal{A}) , we consider the projective limit topology, and the inductive limit topology on the spaces \mathcal{A}^* and $(\mathcal{A})^*$.

Before giving the definition of T_t^A for a positive finite measure on \mathcal{A}^* , we prepare the following proposition.

Proposition 2.1. *Fix* $t > 0$ *. Then for any* $F \in (\mathcal{P})$ *, we have*

$$
\int_{\mathcal{S}^*} F(e^{-tA}x + \sqrt{1 - e^{-2tA}}y) \mu(dy) = \int_{\mathcal{S}^*} F(y) D_t(x, y) \mu(dy), \tag{1}
$$

where

$$
D_t(x, y) = \left(\prod_{j} \frac{1}{\sqrt{1 - e^{-2t\lambda_j}}}\right) e^{-\frac{1}{2} \left|\frac{e^{-tA}}{\sqrt{1 - e^{-2tA}}}, \left| \frac{a}{2} - \frac{1}{2} \right| \frac{e^{-tA}}{\sqrt{1 - e^{-2tA}}}\right|^2 + \left(\frac{e^{-tA}}{1 - e^{-2tA}}x, y\right)},
$$

which satisfies $||D_t(\cdot, y)||_{L_1(\mu)} = 1$ *for any* $y \in \mathcal{S}^*$.

Proof. It is sufficient to prove the equality for *F* defined by

$$
F(x) \equiv \prod_j f_j((e_j, x))
$$

where $f_i = 1$ except for finite *j*'s. Fix $x \in \mathcal{S}^*$ and set $u_i \equiv (e_i, x)$, then

$$
\int_{\mathcal{S}^{*}} F(e^{-tA}x + \sqrt{1 - e^{-2tA}} y) \mu(dy)
$$
\n
$$
= \prod_{j} \left\{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_j(e^{-t\lambda_j}u_j + \sqrt{1 - e^{-2t\lambda_j}}v_j) e^{-\frac{1}{2}v_j^2} dv_j \right\}
$$
\n
$$
= \prod_{j} \left\{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_j(w) e^{-\frac{1}{2}(\frac{w}{\sqrt{1 - e^{-2t\lambda_j}}} - \frac{e^{-t\lambda_j}u_j}{\sqrt{1 - e^{-2t\lambda_j}}})^2} \frac{1}{\sqrt{1 - e^{-2t\lambda_j}}} dw \right\}
$$
\n
$$
= \prod_{j} \left\{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_j(w) e^{-\frac{1}{2}(\frac{e^{-t\lambda_j}u_j}{\sqrt{1 - e^{-2t\lambda_j}}})^2 - \frac{1}{2}(\frac{e^{-t\lambda_j}u_j}{\sqrt{1 - e^{-2t\lambda_j}}})^2 + \frac{e^{-t\lambda_j}u_jw}{1 - e^{-2t\lambda_j}} \frac{1}{\sqrt{1 - e^{-2t\lambda_j}}} e^{-\frac{1}{2}w^2} dw \right\}
$$
\n
$$
= \int_{\mathcal{S}^{*}} F(y) \left(\prod_{j} \frac{1}{\sqrt{1 - e^{-2t\lambda_j}}} e^{-\frac{1}{2}|\frac{e^{-t\lambda_j}u_j}{\sqrt{1 - e^{-2t\lambda_j}}} - \frac{1}{2}|\frac{1}{\sqrt{1 - e^{-2t\lambda}}}e^{-\frac{1}{2t\lambda_j}v_j} \right)^2 + (\frac{e^{-t\lambda_j}u_j}{1 - e^{-2t\lambda_j}}v_j) \mu(dy).
$$

For an arbitrary $a \in (0, 1)$,

$$
\frac{1}{\sqrt{2\pi (1-a^2)}} \int_{-\infty}^{\infty} e^{-\frac{a^2 u^2}{2(1-a^2)} - \frac{a^2 v^2}{2(1-a^2)} + \frac{a uv}{1-a^2} e^{-\frac{1}{2}u^2} du}
$$
\n
$$
= \frac{1}{\sqrt{2\pi (1-a^2)}} \int_{-\infty}^{\infty} e^{-\frac{(u-av)^2}{2(1-a^2)}} du = 1.
$$

We therefore have, for any $t > 0$ and $y \in \mathcal{S}^*$,

$$
\int_{a^*} |D_t(x, y)| \mu(dx) = \int_{a^*} D_t(x, y) \mu(dx) = 1
$$

Then we define T_i^A \cup for a positive finite measure ν on \mathcal{B}^* as follows.

Definition 2.1. For any $t > 0$ and a positive finite measure ν on \mathcal{S}^* , de*fine*

$$
T_t^A \nu(x) \equiv \int_{\mathcal{S}^*} D_t(x, y) \nu(dy).
$$

Remark. $T_t^A \nu$ is determined μ -almost everywhere as an element of $L_1(\mu)$.

In order to discuss the smoothness of the function $x \mapsto T_t^A \nu(x)$, we define the norms $\{\|\cdot\|_{a(p,K)}\}_{p\in\mathbb{Z},K=0}$, which was defined by Yu.-J. Lee [1] when $K=1.$

Defintion 2.2. *For* $p \in \mathbb{Z}$ *and* $K > 0$ *we define*

$$
||F||_{a(p,K)} \equiv \sup_{x,y \in S_{-p}} e^{-\frac{K}{2}(|x|^2,+|y|^2,)} |F(x+\sqrt{-1}y)|, \quad F \in (\mathcal{P}),
$$

and set

$$
{\mathscr A}_{\mathfrak{o},\overline{\mathcal K}}\!\equiv(\bar{\mathscr P})^{\,|\!\cdot\!\mid\!\cdot\!\mid_{\mathfrak{o}\scriptscriptstyle(\mathfrak{o},\mathcal K)}}
$$

Remark. (a) In the case where $F(x) = (e_1, x)^n$, for example, we define $F(x+\sqrt{-1}y) = \{(e_1, x) + \sqrt{-1} (e_1, y) \}^n$, and for general $F \in (\mathcal{Y})$ we define $F(x)$ $+\sqrt{-1}y$ *in the same manner.*

(b) An arbitrary element *F* of $\mathcal{A}_{\rho,K}$ is $\mathcal{S}_{-\rho}$ -continuous and, for any $x, y \in \mathcal{S}^*$, $u \in \mathbb{R}$) $\mapsto F (x+uy)$ can be extended to an entire function in $u \in \mathbb{C}$. We call such a function \mathcal{S}_{-p} -*analytic function.*

Yu.-J. Lee [1] proved that

$$
(\mathcal{S})=\cap_{p}\mathcal{A}_{p1}
$$

so that any $F \in (\mathcal{B})$ is \mathcal{B}^* -analytic. As an application of this property, he proved that a positive finite measure ν on \mathscr{A}^* belongs to (\mathscr{A}) * (the functional F (\in (\mathcal{A})) \mapsto \int_{α} *F* (*x*) ν (*dx*) is continuous) if and only if there exists $p_0 \in \mathbb{N}$ such that $\nu(\mathcal{S}_{-\mathbf{p}_0}^c) = 0$ and

$$
\int_{\mathcal{A}^*}e^{\frac{1}{2}|x|^2\cdot\mathfrak{a}}\nu\left(dx\right) <\infty.
$$

Next we shall show that $T_t^A \nu(x)$ is \mathcal{B}^* -analytic in x for any $t > 0$ if a positive finite measure ν on \mathcal{S}^* belongs to $(\mathcal{S})^*$.

Theorem 2.2. Let ν be a positive finite measure on \mathcal{S}^* . Assume that ν belongs to $(\mathcal{B})^*$. Then, for any $t>0$ and $p\in\mathbf{Z}$, there exists $K>0$ such that $T^*_t\nu\in$ *4p,K.*

Proof. Since ν belongs to $(\mathcal{A})^*$, by the result of Yu.-J. Lee (Theorem 5.1 in [1]), there exists $p_0 \in \mathbb{N}$ Such that

$$
\int_{\mathcal{S}^*} e^{\frac{1}{2}|x|^2\cdot\mathfrak{p}}\nu(dx) < \infty.
$$

Fix arbitrary $t > 0$ and $p \in \mathbb{Z}$, and set

$$
P_{N}x \equiv \sum_{n=0}^{N} (e_{n}, x) e_{n} \quad (N \in \mathbf{N}, x \in \mathcal{S}^{*}),
$$

\n
$$
U_{t} \equiv \frac{e^{-tA}}{\sqrt{1 - e^{-2tA}}},
$$

\n
$$
V_{t} \equiv \frac{e^{-tA}}{1 - e^{-2tA}},
$$

\n
$$
\kappa_{t} \equiv \prod_{j} \frac{1}{\sqrt{1 - e^{-2tA}}},
$$

Then U_t : $\mathcal{S}_{-p} \longrightarrow \mathcal{S}_0$ and V_t : $\mathcal{S}_{-p_0} \longrightarrow \mathcal{S}_{p_0}$ are continuous operators. There-

fore there exist $K_1, K_2>0$ such that

$$
\begin{aligned} & \left| -\frac{1}{2} |U_t \left(P_N \left(x_1 + \sqrt{-1} x_2 \right) \right) |^2 - \frac{1}{2} |U_t y|^2 + \left(V_t \left(P_N \left(x_1 + \sqrt{-1} x_2 \right) \right), y \right) \right| \\ &\leq & \frac{K_1}{2} (|x_1|^2 + |x_2|^2 + 2 \frac{K_2}{2} |y|^2 + 2 \frac{K_1}{2} |y|^2
$$

Fix $y \in \mathcal{S}^*$ and set

$$
F_{N_1,N_2}(x) \equiv \sum_{n=0}^{N_1} \frac{1}{n!} \left\{ -\frac{1}{2} |U_t(P_{N_2}x)|^2 - \frac{1}{2} |U_{t}y|^2 + (V_t(P_{N_2}x), y) \right\}^n
$$

for any $N_1, N_2 \in \mathbb{N}$. Then $F_{N_1,N_2} \in (\mathcal{P})$ and

$$
||F_{N_1,N_2}||_{a(p,K_1)} \leq e^{\frac{K_2}{2}|y|^2_{p_0}}.
$$

for any N_1 , $N_2 \in \mathbb{N}$. Therefore

$$
\lim_{|x_1|_{-p, |x_2|_{-p}\to\infty}} \sup_{N_1, N_2 \in \mathbb{N}} |F_{N_1,N_2}(x_1+\sqrt{-1}x_2)| e^{-\frac{K_1+1}{2}(|x_1|^2+p|x_2|^2)}=0.
$$

Thus we have

$$
\lim_{N_1, N_2 \to \infty} \|\kappa_t F_{N_1, N_2} - D_t(\cdot, y)\|_{a(p, K_1 + 1)} = 0.
$$

where K_1 does not depend on $y \in \mathcal{B}_{-p_0}$.

For any $x_1, x_2 \in \mathcal{S}_{-p}$ and $y \in \mathcal{S}_{-p_0}$.

$$
\Re\left(-\frac{1}{2}|U_t(x_1+\sqrt{-1}x_2)|^2-\frac{1}{2}|U_{t}y|^2+(V_t(x_1+\sqrt{-1}x_2)y)\right)\leq \frac{1}{2}|U_t x_2|^2+(V_t x_1, y),
$$

where \mathcal{R} (…) denotes the real part of (…). By the continuity of U_t and V_t , there exists $K_3 > 0$ such that

$$
\frac{1}{2}|U_{t}x_{2}|^{2}+(V_{t}x_{1}, y) \leq \frac{K_{3}}{2}(|x_{1}|^{2}_{-p}+|x_{2}|^{2}_{-p})+\frac{1}{2}|y|^{2}_{-p_{0}}
$$

Set $K \equiv \max\{K_1+1, K_3\}$. Then $D_t(\cdot, y) \in \mathcal{A}_{p,K}$ for any $y \in \mathcal{B}^*$ and

$$
\int_{\mathcal{S}^*} \lVert D_t(\cdot, y) \rVert_{a(p,K)} \nu(dy) < \infty
$$

 $\int_{t}^{H} \nu \in$

Remark. For $p \in \mathbb{N}$ and $K > 0$, the family $\{F : F \text{ is } \mathcal{S}_{-p}\text{-analytic and}$ $||F||_{a(p,K)} < \infty$ is different from $\mathcal{A}_{p,K}$ and this family is inseparable with respect to $\|\cdot\|_{a(p,K)}$.

We next show that the function $x \mapsto \int_{\mathbb{R}^2} D_t(x, y) \psi(dy)$ $(x \in \mathcal{S}_0 = H)$ is H-continuous for a general positive finite measure ν on

Proposition 2.3. *Letil'Ilx be a norm on (Y)) defined by*

$$
||F||_{\mathcal{H}} \equiv \sup_{x \in H} |F(x)| e^{-\frac{1}{2}|x|^2}
$$

and X be the completion of (SI)) w ith respect toll•IIN. Then, for any t> 0 *and any positive finite measure 1.) on .0* , we have*

$$
\int_{\mathcal{S}^*} D_t(x, y) \nu(dy) \in \mathcal{H}
$$

Naotation. The function $x \in H$ $\mapsto \int_{A^*}^A D_f(x, y) \nu(dy)$ will be denoted by

 T_t^A ν .

Proof. Fix $t > 0$ throughout the proof. By the former part of the proof of previous theorem, $D_t(x, y) \in \mathcal{K}$ for any $y \in \mathcal{S}^*$. Then we have only to prove that

$$
\sup_{y \in \mathcal{S}^*} \|D_t(\cdot, y)\|_{\mathcal{H}} < \infty.
$$

Let U_t and V_t be the operators given in the previous theorem. Then we have

$$
-\frac{1}{2}|U_{t}x|^{2} - \frac{1}{2}|U_{t}y|^{2} + (V_{t}x, y) = -\frac{1}{2}|U_{t}y - \frac{1}{\sqrt{1 - e^{-2tA}}}x|^{2} + \frac{1}{2}|x|^{2}
$$

for any $x \in H$ and $y \in \mathcal{S}^*$. This implies that $||D_t(\cdot, y)||_{\mathcal{H}} \leq \kappa_t$ for any $y \in \mathcal{S}^*$ and concludes the proof.

Using the function $T_t^A \nu$, the $L_1(\mu)$ -function $T_t^A \nu$ is approximated as follows.

Proposition 2.4. Let ν be a positive finite measure on \mathcal{S}^* and fix $t>0$. *Set* $P_Nx \equiv \sum_{n=0}^N (e_n, x) e_n$. *Then*

$$
\lim_{N\to\infty} \left\|\overline{T_t^A} \, \nu\left(P_N x\right) - T_t^A \, \nu\left(x\right) \right\|_{L_1(\mu)} = 0.
$$

Proof.

$$
\begin{aligned} \|\overline{T_t^A} \, \nu(P_N \cdot) - T_t^A \nu\|_{L_1(\mu)} &= \int_{\mathcal{A}^*} \left| \int_{\mathcal{A}^*} D_t \left(P_N x, \, y \right) - D_t \left(x, \, y \right) \nu \left(dy \right) \right| \mu \left(dx \right) \\ &\leq \int_{\mathcal{A}^*} \int_{\mathcal{A}^*} \left| D_t \left(P_N x, \, y \right) - D_t \left(x, \, y \right) \right| \mu \left(dy \right) \nu \left(dx \right) . \end{aligned}
$$

Fix y∈L^{*}. Then

$$
\sup_{N} |D_{t} (P_{N}x, y) - D_{t}(x, y)|
$$
\n
$$
\leq \sup_{N} D_{t} (P_{N}x, y) + D_{t} (x, y)
$$
\n
$$
= \sup_{N} \kappa_{t} e^{-\frac{1}{2}|U_{V}|^{2}} \Biggl(\prod_{j=0}^{N} e^{-\frac{1}{2} \frac{e^{-2U_{j}}}{1 - e^{-2U_{j}}}(c_{j}, x)^{2} + \frac{e^{-U_{j}}}{1 - e^{-2U_{j}}}(c_{j}, y)} + D_{t} (x, y)
$$
\n
$$
\leq \sup_{N} \kappa_{t} e^{-\frac{1}{2}|U_{V}|^{2}} \Biggl(\prod_{j=0}^{\infty} e^{-\frac{1}{2} \frac{e^{-2U_{j}}}{1 - e^{-2U_{j}}}(c_{j}, x)^{2} + \frac{e^{-U_{j}}}{1 - e^{-2U_{j}}}(c_{j}, y)} \vee 1 \Biggr) + D_{t} (x, y)
$$

396 *Ryoji Fukuda*

$$
\leq \kappa_t \left(e^{-\frac{1}{2} |U_{t^k}|^2 + (V_{t^k}, y)} \vee 1 \right) + D_t(x, y) \tag{2}
$$

where U_t , V_t and κ_t is defined in the proof of Theorem 2.2. Since the right hand side is μ -integrable,

$$
\lim_{N \to \infty} \int_{\mathcal{A}^*} \big| D_t \left(P_N x, y \right) - D_t \left(x, y \right) \big| \mu \left(dx \right) = 0
$$

for any $y \in \mathcal{B}^*$. Using the inequality (2) , we have

$$
\sup_{N} \int_{\mathcal{S}^*} |D_t(P_N x, y) - D_t(x, y)| \mu(dx)
$$

\n
$$
\leq \sup_{N} \int_{\mathcal{S}^*} D_t(P_N x, y) \mu(dx) + \int_{\mathcal{S}^*} D_t(x, y) \mu(dx)
$$

\n
$$
\leq \kappa_t + 1.
$$

Thus we have

$$
\lim_{N \to \infty} \int_{\mathcal{S}^*} \int_{\mathcal{S}^*} |D_t(P_N x, y) - D_t(x, y)| \mu(dx) \nu(dy) = 0
$$

and this concludes the proof.

3. Convergence of *Titi*

Let ν be a positive finite measure on \mathcal{S}^* . In the case where ν (dx) $=$ F (x) $\mu(dx)$ with $F \in L_p(\mu)$ ($p > 1$), using the theorem of E. M. Stein [6], $T_t^4 \nu(x)$ converges to $F(x)$ μ -almost everywhere as $t \rightarrow 0$. If the dimension of *H* is finite, by the Global Density Theorem (H. Sato [4]), $T_t^A \nu(x)$ converges to *dv* $\frac{d\mu}{d\mu}(x)$ μ -almost everywhere as $t \longrightarrow 0$. In this section, we shall study more about the convergence of $T_t^A \nu(t \longrightarrow 0)$.

First we consider the case where $\nu \in (\mathcal{B})^*$. The operator $T_t^{\mathcal{A}}$ can be continuously extended on $(\mathcal{A})^*$, and we temporally denote the extension by \mathcal{T}_t^A . On the other hand $T_t^A \nu$ is defined as an element of $L_1(\mu)$ for a positive finite measure ν on \mathcal{B}^* . Next propositions imply that these two extensions are identical with each other when v belongs to *(S.3) * .*

Proposition 3.1. *A ssume that a positive finite measure v on .0 * belongs to (.0) * . Then*

$$
\int_{\mathcal{A}^*} T_t^A \nu(x) F(x) \mu(dx) = \langle F, T_t^A \nu \rangle
$$

holds for any $F \in (\mathcal{S})$ and $t > 0$.

Proof. Fix $t > 0$ and $F \in (\mathcal{A})$ throughout the proof. Since T_t^A is a symmetric operator on $L_2(\mu)$

$$
\langle F, \mathcal{J}_t^A \nu \rangle = \langle T_t^A F, \nu \rangle.
$$

In the next proposition, we will show that

$$
\int_{\mathscr{A}^*} F(x) T_t^A \nu(x) \mu(dx) = \int_{\mathscr{A}^*} T_t^A F(x) \nu(dx) (= \langle T_t^A F, \nu \rangle).
$$

The above two equalities imply that

$$
\int_{\mathcal{S}^*} T_t^A \nu(x) F(x) \mu(dx) = \langle F, \mathcal{F}_t \nu \rangle,
$$

and this concludes the proof.

Proposition 3.2. Let ν be a positive finite measure on \mathcal{S}^* .

 (a) *For a bounded continuous function F and* $t > 0$.

$$
\int_{\mathcal{S}^*} F(x) T_t^A \nu(x) \mu(dx) = \int_{\mathcal{S}^*} T_t^A F(x) \nu(dx).
$$
 (3)

(b) In the case where $\nu \in (\mathcal{S})^*$, (3) holds for any $F \in (\mathcal{S})$ and $t > 0$.

Proof. (a) Since $D_t(x, y) = D_t(y, x)$ for any $x, y \in \mathcal{B}^*$, using the Fubini Theorem, we have

$$
\int_{\mathcal{S}^*} F(x) T_t^A \nu(x) \mu(dx) = \int_{\mathcal{S}^*} F(x) \int_{\mathcal{S}^*} D_t(x, y) \nu(dy) \mu(dx)
$$

=
$$
\int_{\mathcal{S}^*} \int_{\mathcal{S}^*} F(x) D_t(x, y) \mu(dx) \nu(dy)
$$

=
$$
\int_{\mathcal{S}^*} T_t^A F(y) \nu(dy).
$$

(b) In the case where $\nu \in (\mathcal{A})^*$, for any $F \in (\mathcal{P})$, $T_t^4 F(x) \in (\mathcal{P})$ is ν -integrable. Therefore the above proof implies that (3) holds for any $F \in$ (\mathscr{P}) . Then, using the approximation by certain elements of (\mathscr{P}) , we obtain (3) for any $F \in (\mathcal{S})$.

Lemma 3.3. Let ν be a positive finite measure on \mathcal{S}^* . Assume that ν belongs to $(\mathcal{S})^*$. Then $T_t^A \nu$ converges to ν as $t \rightarrow 0$ with respect to the topology of $(\mathcal{A})^*$ (the inductive limit topology of $\{(\mathcal{A}), \|\cdot\|_{p} \in \mathbf{z}\}$)

Proof. By proposition 3.1, we may regard T_t^A as its own continuous extension on $(\mathcal{A})^*$. Therefore the following expansion implies that $T_t^A \nu$ converges to ν in $(\mathcal{S})_p$ as $t \longrightarrow 0$ if $\nu \in (\mathcal{S}_p)$ $(p \in \mathbb{Z})$.

$$
T_t^A \nu(x) = \sum_{\alpha \in \mathbb{N}_0^*} \langle \mathbf{h}_{\alpha}, \nu \rangle e^{-t \Sigma_j \lambda_j \alpha_j} \mathbf{h}_{\alpha}(x).
$$

Next we consider the general case. Before giving the proof of Theorem 1.1, we prepare two propositions.

Proposition 3.4. *Let* F *be a bounded continuous function on* \mathcal{S}^* *. Then*

 ${T_t^4F(x)}$ *t*₁ *t*₂₀ *is uniformly bounded and converges to F* (*x*) *as t* \longrightarrow 0 *for any* $x \in$ \mathcal{S}^* .

Proof. It is easily obtained by the original definition of $\{T_t^A\}$ (see the left hand side of (1) .

Proposition 3.5. *For* $F \in L_p(\mu)$ $(p \ge 1)$, $T_t^A F$ converges to F in $L_p(\mu)$.

Proof. Since *F* is approximated by bounded continuous functions, the proposition is an immediate consequence of the property $(\mathrm{St}\text{-}1)$ $($ in Section $1)$ and Proposition 3.4.

Proof of Theorem 1.1. By Proposition 3.4, Proposition 3.2 (a) and the dominated convergence theorem, the measure $T_t^A \nu(x) \mu(dx)$ converges weakly to $\nu(dx)$. Thus we obtain (a) of Theorem 1.1.

Next we prove (b) of Theorem 1.1. By virtue of the Lebesgue decomposition of ν with respect to μ and Proposition 3.5, we have only to prove that *T*^{*h*} μ (*x*) converges to 0 in the measure μ (*t* \longrightarrow 0) when ν is singular to μ

Let $\epsilon > 0$ be an arbitrary positive number. Then there exist two compact subsets K_1 , K_2 of \mathcal{L}^* such that $\mu(K_1^c) < \varepsilon$, $\nu(K_2^c) < \varepsilon$ and $K_1 \cap K_2 = \emptyset$. Since the two compact (closed) subsets K_1 and K_2 are disjoint, there exists a bounded continuous function $g(x)$ such that

$$
g(x) = \begin{cases} 1 & x \in K_1 \\ 0 & x \in K_2 \\ \in [0, 1] & \text{for any } x \in \mathcal{S}^* \end{cases}
$$

.

Since $T_t^A \nu(x) \mu(dx)$ converges weakly to $\nu(dx)$,

$$
\limsup_{t \to 0} \int_{K_1} T_t^A \nu(x) \mu(dx)
$$

\n
$$
\leq \limsup_{t \to 0} \int_{\mathcal{S}^*} g(x) T_t^A \nu(x) \mu(dx)
$$

\n
$$
= \lim_{t \to 0} \int_{\mathcal{S}^*} g(x) T_t^A \nu(x) \mu(dx)
$$

\n
$$
\leq \nu(K_2^c) < \varepsilon.
$$

This implies that

$$
\mu\ (\{x | T_t^A \nu(x) > \sqrt{\varepsilon} \}) < \varepsilon + \sqrt{\varepsilon}
$$

if $t>0$ is small enough. Thus $T_t^4\nu$ converges to 0 in the measure μ .

4. Fourier transform

In this section we will give inversion formulae for the Fourier transform $\mathscr F$ when they act on positive finite measure on \mathscr{L}^* . The next proposition is easily given by the definitions of $\mathscr F$ and e^{-tA} .

Proposition 4.1. (a) $\mathscr{F}[\nu]$ *is a continuous function on* \mathscr{S} . (a) *For any* $t > 0$, $\mathscr{F}[\nu]$ $(e^{-tA}x)$ *is* μ -integrable.

Define the transform $\bar{\mathcal{F}}$ as follows.

$$
\overline{\mathscr{F}}\left[\nu\right](x) \equiv e^{\frac{1}{2}|x|^2} \int_{\mathcal{S}^*} e^{-\sqrt{-1}\,(x,y)} \nu\left(dy\right).
$$

Proposition 4.2. *Let).) be a positive finite measure on .0*. Then we have*

$$
\overline{\mathcal{F}}\left[\mathcal{F}\left[\nu\right](e^{-tA}\,\boldsymbol{\cdot}\right)\right](x)=\overline{T_t^A}\,\nu(x)
$$

for any $x \in \mathcal{S}$.

Proof. Fix an arbitrary $t > 0$ throughout the proof. First we prove that

$$
e^{\frac{1}{2}|x|^2} \int_{\mathcal{S}^*} e^{\frac{1}{2}|e^{-tA}z|^2 - \sqrt{-1} (x, z) + \sqrt{-1} (e^{-tA}z, y)} \mu(dz) = D_t(x, y).
$$
 (4)

for any $x \in \mathcal{S}$ and $y \in \mathcal{S}^*$. For any $j \in \mathbb{N}$, set $x_j \equiv (e_j, x)$, $y_j \equiv (e_j, y)$ and $\gamma_j \equiv e^{-t\lambda_j}$. Then

$$
e^{\frac{1}{2}|x|^2} \int_{\mathcal{S}^*} e^{\frac{1}{2}|e^{-tA}z|^2 - \sqrt{-1}(x, z) + \sqrt{-1}(e^{-tA}z, y)} \mu(dz)
$$

\n
$$
= \prod_{j} \left\{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2}(1-\gamma_j^2)\left(z_j + \frac{\sqrt{-1}(x_j - \gamma_j y_j)}{1 - \gamma_j^2}\right)^2 - \frac{(x_j - \gamma_j y_j)^2}{2(1 - \gamma_j^2)} + \frac{x_j^2}{2}\right) dz_j \right\}
$$

\n
$$
= \left(\prod_{j} \frac{1}{\sqrt{1 - \gamma_j^2}} \right) \exp\left\{-\frac{1}{2} \left| \frac{e^{-tA}}{\sqrt{1 - e^{-2tA}}} x \right|^2 - \frac{1}{2} \left| \frac{e^{-tA}}{\sqrt{1 - e^{-2tA}}} y \right|^2 + \left(\frac{e^{-tA}}{\sqrt{1 - e^{-2tA}}} x, y \right) \right\}
$$

\n
$$
= D_t(x, y).
$$

Thus we have (4). Therefore

$$
\begin{split} \mathcal{\overline{F}}\left[\mathcal{F}\left[\nu\right](e^{-tA}\cdot)\right](x) \\ &=e^{\frac{1}{2}|x|^2}\int_{\mathcal{S}^*}e^{-\sqrt{-1}\,(x,z)}e^{\frac{1}{2}|e^{-tA}z|^2}\int_{\mathcal{S}^*}e^{-\sqrt{-1}\,(e^{-tA}z,y)}\mu\,(dy)\,\mu\,(dz) \\ &= \int_{\mathcal{S}^*}\nu\,(dy)\,e^{\frac{1}{2}|x|^2}\int_{\mathcal{S}^*}e^{\frac{1}{2}|e^{-tA}z|^2-\sqrt{-1}\,(x,z)+\sqrt{-1}\,(e^{-tA}z,y)}\mu\,(dz) \\ &= \int_{\mathcal{S}^*}D_t\,(x,\,y)\,\nu\,(dy) = \overline{T_t^A}\,\nu\,(x) \end{split}
$$

Proof of Theorem 1.2. We have only to sum up Proposition 2.4 and Proposition 4.2 to prove the theorem.

Remark. If ν belongs to $(\mathcal{A})^*$, $\overline{\mathcal{F}}[\mathcal{F}[\nu](e^{-tA} \cdot)] = \overline{T_t^A} \nu$ can be continuously extended to $T_t^4 \nu$. Then, besides the convergence in the statement of Theorem 1.2, this also converges to ν with respect to the topology of $(\mathcal{A})^*$.

Notation. For $p \in \mathbb{Z}$ set

400 *Ryoji Fukuda*

$$
\mathscr{C}(\mathscr{S}_p) = (\mathscr{S}_p) \oplus \sqrt{-1} (\mathscr{S}_p) = {\phi + \sqrt{-1} \phi | \phi, \, \phi \in (\mathscr{S}_p)},
$$

and the spaces $\mathscr{C}(\mathcal{A})$, $\mathscr{C}(\mathcal{A})^*$ and $\mathscr{C}\mathscr{A}_{p,K}(p\in \mathbb{Z}, K>0)$ are defined in the same manner. On $\mathscr{C}(\mathscr{B}_{p}) \ (\ p \in \mathbb{Z})$, the norm $\lVert \cdot \rVert_{p}$ is extended as follows.

$$
\|\phi + \sqrt{-1} \,\phi\|_{p} \equiv \sqrt{\|\phi\|_{p}^{2} + \|\phi\|_{p}^{2}}.
$$

Yu.-J. Lee [1] proved that, for any $F \in \mathcal{C}(\mathcal{S})$, $\mathcal{F}[F] \in \mathcal{C}(\mathcal{S})$ and $\overline{\mathcal{F}}[\mathcal{F}[F]] =$ *F*, and J. Potthoff and L. Streit [2] proved that $\mathcal F$ is an isomorphism from $\mathscr{C}(\mathcal{A})^*$ to $\cup_p \mathscr{C} \mathscr{A}_{p,1}$.

In the following proposition we will show that, for any $t>0$,

$$
\mathcal{F}[\nu] \ (e^{-tA}x) = \mathcal{F}[T_t^A \nu] \ (x), \text{ for any } x \in \mathcal{S}.
$$

So that Proposition 4.2 implies that $\mathcal{F}[T_t^A \nu]$ can be extended to a continuous $\text{function which belongs to } L_1(\mu) \text{ and } \mathcal{F}[\mathcal{F}[T_t^A \nu]] = T_t^A \nu.$ Moreover, when ν belongs to $(\mathcal{A})^*, \overline{\mathcal{F}}[\mathcal{F}[T_t^A \nu]] = T_t^A \nu$.

Proposition 4.3. *Fix any t>0. Then*

\n- (a) For a positive finite measure
$$
\nu
$$
 on \mathcal{S}^* ,
\n- $\mathcal{F}[\nu](e^{-tA}x) = \mathcal{F}[T_t^A \nu](x), \quad x \in \mathcal{S}$.
\n- (b) For $\Phi \in (\mathcal{S})^*$
\n- $\mathcal{F}[\Phi](e^{-tA}x) = \mathcal{F}[T_t^A \Phi](x), \quad (x \in \mathcal{S})$
\n

Proof. (a) Fix $x \in \mathcal{S}^*$ and set, for any $j \in \mathbb{N}$

$$
x_j \equiv (e_j, x), \quad y_j = y_j(y) \equiv (e_j, y), \quad y \in \mathcal{S}, \quad \gamma_j \equiv e^{-t\lambda_j}.
$$

Then we have

$$
\mathcal{F}[T_{t}^{A} \nu](x)
$$
\n
$$
=e^{\frac{1}{2}|x|^{2}} \int_{\mathcal{S}^{*}} e^{\sqrt{-1}(x,z)} \int_{\mathcal{S}^{*}} D_{t}(z, y) \nu(dy) \mu(dz)
$$
\n
$$
= \int_{\mathcal{S}^{*}} \nu(dy) \left[\prod_{j} \left\{ e^{\frac{x_{j}^{2}}{2}} \frac{1}{2\pi (1 - \gamma_{j}^{2})} \int_{-\infty}^{\infty} \exp\left(\frac{\gamma_{j} z \gamma_{j}}{1 - \gamma_{j}^{2}} - \frac{\gamma_{j}^{2} z_{j}^{2}}{2 (1 - \gamma_{j}^{2})} - \frac{\gamma_{j}^{2} \gamma_{j}^{2}}{2 (1 - \gamma_{j}^{2})} \right) \right] + \sqrt{-1} z_{j} x_{j} - \frac{1}{2} z_{j}^{2} dx_{j} \right]
$$
\n
$$
= \int_{\mathcal{S}^{*}} \nu(dy) \left[\prod_{j} \left\{ e^{\frac{x_{j}^{2}}{2}} \frac{1}{2\pi (1 - \gamma_{j}^{2})} \int_{-\infty}^{\infty} \exp\left(-\frac{x_{j} - \gamma_{j} z_{j} - \sqrt{-1} (1 - \gamma_{j}^{2}) x_{j}^{2}\right)^{2}}{2 (1 - \gamma_{j}^{2})} + \sqrt{-1} \gamma_{j} x_{j} y_{j} - \frac{1}{2} (1 - \gamma_{j}^{2}) x_{j}^{2} dx_{j} \right] \right]
$$
\n
$$
= \int_{\mathcal{S}^{*}} \prod_{j} \{ e^{\frac{1}{2} r^{2} x_{j}^{2}} e^{\sqrt{-1} \gamma_{j} x_{j}} \nu(dy)
$$
\n
$$
= e^{\frac{1}{2} |e^{-i A} x|^{2}} \int_{\mathcal{S}^{*}} e^{\sqrt{-1} (e^{-i A} x_{j})} \nu(dy)
$$
\n
$$
= \mathcal{F}[\nu](e^{-i A} x).
$$

(b) In the above proof we have obtained

$$
\mathcal{F}[F] (e^{-tA}x) = \mathcal{F}[T_t^A F](x), \quad x \in \mathcal{S},
$$

for any $F \in L_2(\mu) = (\mathcal{S}_0)$, which space is dense in $(\mathcal{S})^*$. However, for an element of (\mathcal{P}) , we shall give its direct proof to be clear the meaning of this equality. Set $F = \sum_{\alpha} a_{\alpha} h_{\alpha}$ and assume that $a_{\alpha} = 0$ except for finite α 's $(\in \mathbb{N}_{0}^{\infty})$. Note that

$$
\mathscr{F}[\mathbf{h}_{\alpha}](x) = (\sqrt{-1})^{|\alpha|} \frac{1}{\sqrt{\alpha!}} (\prod_{j} (e_{j}, x)^{\alpha_{j}}), \quad T_{i}^{A} \mathbf{h}_{\alpha}(x) = e^{-i \sum_{j} \lambda_{j} \alpha_{j}} \mathbf{h}_{\alpha}(x).
$$

Therefore

$$
\mathcal{F}\left[\sum_{\alpha} a_{\alpha} \mathbf{h}_{a}(\cdot)\right] (e^{-tA}x) = \sum_{\alpha} a_{\alpha} (\sqrt{-1})^{|\alpha|} \frac{1}{\sqrt{\alpha!}} \left(\prod_{j} (e_{j}, e^{-tA}x)^{\alpha_{j}}\right)
$$

$$
= \sum_{\alpha} a_{\alpha} (\sqrt{-1})^{|\alpha|} e^{-i\sum_{i} \lambda_{i}\alpha_{i}} \frac{1}{\sqrt{\alpha!}} \left(\prod_{j} (e_{j}, x)^{\alpha_{j}}\right)
$$

$$
= \sum_{\alpha} a_{\alpha} e^{-i\sum_{i} \lambda_{i}\alpha_{i}} \mathcal{F}\left[\mathbf{h}_{\alpha}\right]
$$

$$
= \mathcal{F}\left[\sum_{\alpha} a_{\alpha} e^{-i\sum_{i} \lambda_{i}\alpha_{i}} \mathbf{h}_{\alpha}\right]
$$

$$
= \mathcal{F}\left[T_{1}^{A}F\right]
$$

Since T_t^A is a continuous map from $(\mathcal{A})^*$ to $(\mathcal{A})^*$ and $\mathcal F$ is a continuous map from $(\mathcal{A})^*$ to $\bigcup_{p} \mathcal{CA}_{p,1}$ (J. Potthoff and L. Streit [2]), we have the above equality for any summation of infinite $a_{\alpha}h_{\alpha}$'s which converges in $(\mathcal{A})^*$.

At the last of this article we give an example of generalized function $\Psi \in$ (\mathcal{B})* satisfying following (a) and (b).
(a) $\mathcal{F}[\Psi]$ is a nonnegative \mathcal{B}^* -conting

 $\mathscr{F}[\Psi]$ is a nonnegative \mathscr{S}^* -continuous function.

(b) $\mathscr{F}[\mathscr{V}]$ does not belong to $(\mathscr{A})^*$.

These illustrate that $(\mathcal{A})^*$ or $(\mathcal{A})^*$ can not be invariant under \mathcal{F} .

Expamle 4.1. *Fix* $k_0 \in \mathbb{N}$, $p \in \mathbb{N}$ ($p \ge 1$), set $a_n = \lambda_{k_0}^{pn}$ and set

$$
\Phi = \sum_{n=0}^{\infty} \frac{(-1)^n a_n}{\sqrt{(2n)!}} h_{2n}((e_{k_0}, \cdot))
$$

Then $\Phi \in (\mathcal{S}_{-p})$ and

$$
\mathcal{F}[T_t^A \boldsymbol{\Phi}] = \mathcal{F}[\boldsymbol{\Phi}](e^{-tA}x)
$$

is a \mathcal{A}^* -continuous function. On the other hand,

$$
\mathcal{F}[T_t^A \Phi] (x) = \sum_n a_n \frac{e^{in\lambda_{i_n}}}{\sqrt{(2n)!}} (e_{k_0}, x)^{2n}
$$

is non-negative for any $x \in \mathcal{S}^*$. Assume that $\mathcal{F}[T_t^A\Phi]$ belongs to $(\mathcal{S})^*$, then $\mathcal P$ $[T_t^A\varPhi]$ is μ -integrable since it is nonnegative and $1\in (\mathcal{S})$. However $\mathcal{F}[T_t^A\varPhi]$ is *not g - integrable for some t,* p *and ko. Indeed,*

$$
\int_{\mathcal{S}^*} \mathcal{F} \left[T_t^A \Phi \right] (x) \mu (dx)
$$

=
$$
\sum_n a_n e^{-2\ln \lambda_n} \frac{(2n)!}{2^n n! \sqrt{(2n)!}}
$$

$$
\geq \sum_n e^{n (p \log \lambda_n - 2\lambda \lambda_n - \frac{1}{2} \log 2)}.
$$

Then, when we fix one of the three numbers p, k_0 *and t, we can chose other two numbers to make the above value infinity, and this implies that g [Ti^t ¹0] does not belong to (.0) * in general.*

Assume that $T_t^A \Phi$ is a signed measure on \mathcal{S}^* , then $\mathcal{F} \left[\Phi\right]$ $(e^{-tA}x)$ is μ -integrable for any $t>0$. By Proposition 4.2 we have

$$
\mathscr{F}[T_t^A\boldsymbol{\varPhi}]\left(e^{-tA}x\right)=\mathscr{F}[\boldsymbol{\varPhi}]\left(e^{-2tA}x\right).
$$

Thus the above example shows that $T_t^A\varPhi$ is not a measure on \mathscr{A}^* for $\varPhi \mathsf{\in} (\mathscr{A})^*$ in general.

Acknowledgment. I am grateful to Professor Hiroshi Sato for his helpful suggestions and hearty encouragements. Especially, I thank him for invaluable comments on his own results.

> DEPARTMENT OF BASIC ENGINEERING, FACULTY OF ENGINEERING OITA UNIVERSITY

References

- [1] Yuh-Jia Lee, Analytic Version of Test Functionals, Fourier Transform and A Characterization of Measures in White Noise Calculus, J. Funct. Anal., 100 (1991), 359-380.
- [2] J. Potthoff and L. Streit, A Characterization of Hida Distribution, J. Funct. Anal., 101 (1991), 212-229.
- [3] Hiroshi Sato, Characteristic Functional of Probability Measure Absolutely Continuous with respect to a Gaussian Radon Measure, J. Funct. Anal., 61 (1985), 222-245.
- [4] Hiroshi Sato, Global Density Theorem for a Federer Measure, Tôhoku Math. J., 44 (1992), 581-595.
- [5] Ichiro Shigekawa, Sobolev space over the Wiener space baced on an Ornstein-Uhlenbeck operator, J. Math. Kyoto Univ., 32 (1992), 731-748.
- [6] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood Paley Theory, Princeton Univ. Press, Princeton, 1970.
- [7] H. Sugita, Positive Generalized Wiener Functions and potential theory over abstract Wiener space, Osaka J. Math., 25 (1988), 665-696.