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Ornstein-Uhlenbeck semigroup and fourier transform
acting on positive finite measures

on the schwartz space

By

RYOJI FUKUDA

1. Introduction

L et (s23* , ft) be the W hite noise space, that is, 0 *  is  the space of Schwartz
distributions on R, 0  is  the  space of its testing functions (.0 Œ L2 (R, d u ) c
sr )  and f.t is  a Gaussian measure on .0*  defined by

1 2

f r
e 'V 1 -1 (e ,

  )

11(dx) = e 21 f Re )

w here ( . ,  . )  is  the canonical bilinear from on s i  0.0 * . W e consider the follow-
ing semigroup on L2 (AL).

T F  (x) = (e- t A  x All — e- 2 t A  y) ,u(dy) ,

2

where A =1+ u2
d

  , w hich is a positive definite self adjoint operator on L2
du 2

(R , du) . L et (B, H, rt) be an abstract W iener space. Then {T}  > 0 is a  special
case of a generalized Ornstein - Uhlenbeck semigroup introduced by I. Shigeka-
w a  [ 5 ]  w h e n  ( s r ,  tt) is r e p l a c e d  b y  (B, 1 1 ) , a n d  th e  o r ig in a l
Ornstein - Uhlenbeck semigroup {Tr} r>0 is  the case where A  is replaced by the
identity operator. It is an interesting feature of these semigroups that, roughly
speaking, T F  (x )  (or T rF (x)) is a  smooth function in x fo r any t > 0 and that
F  is approxim ated by 7'tIF  (o r  T IT') (see fo r  example H. Sugita [7] Lemma
2.2). In th is article, we will show that {T'} >o satisfies these properties when
they act on positive finite measures on .0* , and using this semigroup, we shall
g ive inversion formulae o f F ou rie r  transform  of positive  finite m easures on
si *

L et (.0 ) *  b e  the space of Generalized W hite noise functionals, ( s i )  be the
space o f its testing functionals and • ) denote the  canonical bilinear form
o n  (.0) X (si) * . They were defined in  [1 ] o r  [2 ] for example, and we will de-
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fine them in  a  generalized form in Section 2. O n the smoothness of F E  (0 ) ,
Yu.-J. L ee [1] proved that F  is . * _ c o n t i n u o u s

 and , for any x, y  & * , y  (ER)
F (x + u y )  can be extended to an  entire function in  u E C. W e call such a

function . * _ a n a ly t i c
 fu n c t i o n .  F o r  a n y  t > 0, th e  ope ra to r V  can be con-

tinuously extended o n  (.0 )*, but for a  generalized W hite noise functional OE
(A) * , TM is  fa r  from being a  sm ooth function, it is not a  measure on .(3* in
general (Example 4.1). However if E (.(23) * is  a positive finite m easure (if

there  ex ists a  positive finite m easure 1) on s3* su ch  th a t (F , 0 )  = L *F (x)

(dx ) fo r  any F E (d)), w e  w ill show  th a t T'Ll, 0  is  .0* - analytic fo r  any  t > 0
(Theorem 2.2).

Next we extend th e  semigroup {V} (>0 fo r  a  general positive finite mea-
sure  1) on sr  . In Prososition 2.1, we will prove that, for any t>0, there exists
a  continuous function Dt (' , •) : R+ such  that 10( (•, y) II 1 , = 1
for any yE s23 *  and

_e-2(Ay)tt (dy )  =  f(e -
tA  x F 6)) D t (x, Y) g(dY)

for any bounded s3* -continuous function F . Then we define, for a positive fi-
nite measure 1) on .0* and  t>0,

T ( x )  L .D t(x , y )  1)(dy)

as an  Li (p) -function (Definition 2.1). W hen 1)(dx) =F (x) g (dx) (F E Lt  ( f i ) ,

,  VI) will be also denoted by V F.
For any t>0, Tit'  satisfies the following (St - 1) — (S t-3 ) as an operator on

Lp (p) (p>1).

(St - 1) lirtlF114(g) liFIL„(g) for any FE Lp (a)
(St-2) T t

l. i s  a self-adjoint operator on L2 (p).
(St - 3) T F if F . O.
(St-4) V1=1.

In the case where F ELp (g) (p> 1), E. M. Stein [6] proved that r t
i F  converges

to F g-almost everywhere if the L2 (p) -continuous semigroup {V} (>0 satisfies
the above (St-1) — (St-4).

Let N  be a  fixed natural number, ph( be a  standard  Gaussian measure on
R N and  Â. be a positive definite symmetric matrix. Then there exists -.6( (X , y)
(x, y E RN ) such that

F  (e-tA x+ e -
2 m y) g N(CIY) = f F (Y)175t(x, Y) PN(dY)

fR N 11"

for any bounded continuous function F on R N a n d  t > O. A s an  analogy of V,
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we define for a positive finite measure on R N  and  t>0,

(x) IRP I  (x, y) 13 (dy) ELI (u).

Let d
i

be the Radon Nikodym derivative in the sense of the Lebesgue decom-dgN
position. Then, using the Global Density Theorem proved by H. Sato [4], we

"can show tha t TVI:)- (x) converges t o  
d i )   ,

g N -almost everywhere.
aptN

F o r  a  p o s it iv e  f in ite  m easu re  o n  .0* ,  w e  s h a ll  p ro v e  th e  following
theorem.

Theorem 1.1. Let 1) be a positive finite measure on 0 * . Then

P i
l v (x ),u(dx ) converges to v (dx ) weakly as t O.

d v h.) (x ) converges to (x ) in the measure i  as  t O.

It  is  s t ill  an open problem that Th.) (x ) converges to   (x ) ti- almost every-

where or not.
Next we consider the following Fourier transform.

Definition 1.1. Let dtl+ be the family of all positive finite measures on
A*. We define a Fourier transform g  on X  U (0) *  as follows.

(a) For v E l l + ,

g E l)] (X ) =7 el lx121 e i f : 7 1  ( x 4 ) 1) (dy) ,  X E.O.
(b) For OE (A) *,

[0] ( x ) = (ei cr,•)

When v (dy )=F (y )tt(dy ), [IA is also denoted by g

I t  i s  e a s y  t o  sh o w  th a t  g [i.)] (x ) ( i n  ( a ) )  a n d  g  [0 ] (x ) ( i n  (b ) )  are
.3 - continuous functions in x  for any 1.)E ./Gl+ a n d  g5 E (s23) *. If a positive finite
m easure  i) b e lo n g s  to  (0 )  * ,  ( a )  a n d  (b ) a r e  identical w ith  each other
(Proposition 3.1). Thus g  is well defined on .44+ U  (0 )*. T he above g  is  an
extension of the Fourier transform on L i  (1.t) defined by H. Sato [3]. He gave
an  inversion  form ula  of th is transform  fo r  a n  element o f L i (R) ([3 ]), and
Yu.-J. Lee [1] proved that (0) @,/ - 1 (0) is invariant under this transform.

Let F be a  finite dimensional Fourier transform for a positive finite mea-
sure IT) on R N  defined by

F ED] ( u )  = f  e v--- i(u,v) i) (du ) .R"
Let .1 be the Lebesgue measure on R N . Then F (u) e -

E lu i 2
 is 2-in tegrable  for

any E >O. Therefore we can define

(a)

(b)
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i)-(E) (u) 1 f  6, - A L ( u'v ) F [ij] (v)e " 22 (dv).
(27r) N

Then fj (E) (u) A (du) converges weakly to fj (du), a n d  using the Global Density
Theorem again (H. Sato [4]), we obtain the 2 - almost everywhere convergence

dof 13(e) (u) to a  (u) when E 0.

In our infinite dimensional case, we have the following theorem.

Theorem 1.2. Let 1) be a positive finite measure on s23* , n }  n E N  be the
CONS composed of the eigenvec tors of A and set PNx E inv--0 (en, x) en for any N E
N. Then we have

71v (x) lim f cp,,,x,y)g  [ v ] ( e
- tAy ) (dy)

N — .". '3 *

for any t> 0.

Summing up Theorems 1.1 and  1.2, w e have obtained inversion formulae of
the Fourier transform g  for a positive finite measure on s3* .

R ecall that ( 4  ,/- 1 (s3 )  is  invariantunder g. However (.0) * E131 ,/- 1
(.0) *  can not be invariant under this transform. We will give an example of
E *  w hich satisfies that g  [0 ] i s  a  nonnegative . *_c o n tin u o u s  function
but .7 [0] does not belong to (.(3) *  (Example 4.1).

2. Smoothness of VI)

In order to simplify the arguments, we generalize the spaces si c L2 (R) c
se  a n d  (.0) ED L 2  (g) C  (S 3 )  * .  Let H  =  (H ,  •  I) b e  a  real separable  Hilbert
space and  len 1n EN be a CONS of H. Define a  symmetric positvie definite oper-
ator A on H as follows.

CO

Ax.=. Â n (e n ,  x) en
n=0

w here  (•, • ) is  the  inner product of H and  {2},EN is  a  sequence of positive
numbers satisfying

co

— < CO
)2

n=0 A n
a n d  in a i >1.

7,1 0

Let be the linear span o f lenLEN and consider the norms {I • Iplpez defined
by

IX1p I A PXI EY)

-Op (p Z ),

Define
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J  =  n p E Z S ip , U pEZ.(26

and let g be a Gaussian measure on sr  d e f in e d  b y

f ) 1(dx )=e - 1-1e12 ,
a*

Let Nô" be the family of all sequences of non - negative integers a= ( a i )E N  such
that cri = 0 except for finite j '  s. W e prepare the following notations for a multi
index a= tai l ,ENcN".

-=Ecri, a! ----Hai !.

For any n E N , let h ( u )  be a  Hermitian polynomial defined by

hn(u)= ( - 1) n( d n

dun
and define

(x)
1

Hha,( (e , x ) )
,

for any aE N 17. Then thahrEN; is  a CONS of L2(P)•
We consider the operator A on L2 (g) defined by

A F  E (I1A?)Kha,F) ha
a e n

w here ( • ,  • )  is the inner product of L2 (1 ). L et (3))  be the linear span of {ha}
crEw. Then A F is well defined for any F E  (y ). Define

IFlip IIAPFL2 (u) E Z) ,
(OP) (ff)) 11.11,,( j ) n p (33p) , U p (s23p),

d 2  

When H=L 2 (R , d u ) and A =1+ u2
2 ' 

(s3) *  is identical w ith the space of
du

generalized W hite noise functional defined in, for example, [1 ]  o r  [2 ]. On the
spaces .0  a n d  (s3), we consider the projective limit topology, and the inductive
limit topology on the spaces s23* a n d  ( )*.

Before giving the  definition of V t
1 for a  positive  finite measure on se , we

prepare the following proposition.

Proposition 2.1. Fix t >0 . Then for an y  F E  (y ) , w e have

A*
F (e - m x + 11 —  e- 2 " y) g (dy ) = f  F (y) D y) tt(dy),

where

Dt (x, y) = ( I i   1    )e  
.1 —e - 2 "J

11..v c "  Y)

(1)
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which satisfies 'Or(' , y)11L,(,4) = 1  for any y C s23*.

Proof. It is sufficient to prove the equality for F defined by

F (x) —=11 fs ((es, x))

where f i = 1 except for finite j's. Fix xE.0* and se t  u m  (es , x), then

(e-fAx-1- I 1._ e -2tA y ) ( d y )

—H (e- t " u  i+  — e- 2 " 1vi)e 4 ';1   f -
vi l

= H
{ 
 1 1 (   , „    1 

L i ;  vtoe 2 \ Y 1d i e }V _ e -2t,l,

, - " "   )2 ,   e-" ,u1
- t2n. 

r
(w)e 2

 ( V1 —e - 2 . ,  !  2 \  0  I „-712, 
1 _  e -2 t2 ) e

d w
J

=f F (y) (r i 1
  ) ' I '̀̀A  12 +( ' -"e (dy) .2 V 1  e - "" ‘

2  V1 — Y)
J23* e-2a,

For an arbitrary a e (0 , 1)

1 
V2ii-  — a2)

1 
127 (1 — a2)

f
Oa t,,2 ,2

e  2 (1—a') 2 ( 1  a ')

J e 2(1—e)du=1.

,-0' du

W e therefore have, for any t>0 and yEs3*,

L,,ID t , y )IP (dx ) = D 1 (x, y) ti(dx) =1

Then we define T it' i) for a positive finite measure )..) on .0*  as follows.

Definition 2.1. For any  t>0 and a positive finite measure 1) on J23* , de-
fine

(x) —= L.D (x, y) 1.)(dY)

Remark. V I)  is determ ined ,a-alm ost everyw here a s  a n  element of
L1 (ii).

In order to  d iscuss the  smoothness of the function x r  ( x )  ,  we define
the norms {11'I1a(p,x)}pEz,K=0, which was defined by Yu. - J. Lee [1] when K=1.

Defintion 2.2. For p EZ and K > 0 we define

liFila(p,x) — sup e  K2 (1'11"±1Y1'- ' ) IF ( x +  — 1 y )I, F E
x ,y e S ,
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and set

s=  ( D ) i i • L w

Remark. (a) In the case where F (x) = (ei, x) n , for example, we define
F (x - - — 1y) = (e 1, x) — 1 (ei, y)) n , and for general F E we define F (x
-K ,I-1 y ) in the same manner.
(b ) A n arbitrary element F  of sti p ,K  is s2Lp-continuous and, for any x, y E .c3* ,
u (E R) E--+F (x  +uy) can be extended to an  entire function in  u E  C . We call
such a  function _p-analytic function.

Yu.-J. Lee [1] proved that

(A) = npsdp,

so  th a t a n y  F E  (s3) is  .0* -analytic. A s an  applica tion  of this property, he
proved that a positive finite measure 1.) on .0*  be longs to  (.0)* (the functional

F  (E  (0 ) )  f  F  ( x )  ( d x )  is continuous) if  an d  only if  there exists  Po E N

such that v(s23c_p0) =0 and

1, „
e21-" - ^q) Wx) sco .L.

Next we shall show tha t T - ( x )  i s  .0 *-analytic in x for any t > 0 if a positive
finite measure 1.) on .0* belongs to ( ) * .

Theorem 2.2. Let v be a positive finite measure on .0*. Assume that v
belongs to (s3) * . Then, for any t> 0 and p e Z ,  there exists K> 0 such that rt

i vE
4 p,K.

Proof. Since 1.) belongs to  (.0) * , by  th e  result of Yu.-J. L ee (Theorem
5.1 in  [1]), there exists PoE N Such that

e 21' - "02)(dx) < 0 0 .L.
Fix arbitrary t > 0  and p c Z , and set

PNX =  (en , X)e n ( N  EN, X E ) ,
n=0

e  -tA
U t  

.1 1  e -2tA

e  -tA
V t — 1 e -2tA'

1 
sh  e -2t2i

Then Ut : 130 and V t : 423 - p os i p °  are continuous operators. There.
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fore there exist K 1, K2>0 such that

- 11Jt (PN(xi+.1 - 1x2))12 -  lUtY1 2 + (Vt (PN(xi+ - 1x2)),

+ 1 (22 1Y12-Po•

Fix y E A *  and set

" i
FN1

iut f p 12 1 1 T 1  12 _L (T r  (n o \ l i n

,N 2 (X )
11

— 2 IU  0 1  I \ V t  \ r/ V 2 X ), Y )
n-on•

1
2 1N 2 x )  I

for any N 1, N 2  EN. Then FN 1 ,N2 E  (3 ) )  and

11FN1,N211a(p,xi ) e t H 4 o.

for any NI, N2 EN. Therefore

lim
1,1_, 1,1,--

Thus we have

sup IFN 1 ,N2 (xi - F,/- 1x2) le-
 2  (I' d

N 2 E N

lim IlIcrFN
1
,N2

- D1(• , Y)11a(P,x0-1) -  O.
N,,

+1,21=0 , O.

where K 1 does not depend on y E J-Po.
For any x 1, x2 E .0_p and yEsl_p o.

R ( - 1Ut(x1 - F- - 1x2)12 - 1 1Utyi 2 + (V1 ) Utx212 ( 1 7
1x1, y),

where (•••) denotes th e  rea l p a r t  o f  ( - ) .  By the  continuity o f  U r a n d  Vt,
there exists K3 >0  such that

--1
2HUtx212 +  (Val, y) K

2 '  (1x112-p±lx21 2-p)

Set max-WI-FL K3 1. Then D r ( ' , Y ) E a i p , K  fo r any y E A *  and

13* 
Opt (., y) ilacp,101)(dy) <00.

Thus r t
i  E

Remark. For p E N  and K > 0, the  fam ily {F  : F  is  .0_p - analytic and
< col is different from g ip ,x  and this family is inseparable with respect

to  li'lla(p,lo•

W e nex t show  th a t th e  function x i - ,  f  D r (x, y) (dy) (x e .00 = H ) is

H- continuous for a general positive finite measure i) on

Proposition 2.3. Letil'Ilx be a norm  on (Y) )  def ined by
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IFFI1Jr —=suplF (x)
xeH

and  X  be the completion o f  (SI) ) w ith respect toll•IIN. Then, for any  t> 0 and any
positive finite measure 1.) on .0* , we have

L* Dr (x, y) I) (dy) E

Naotatian. The function x ( EH) (x, y) v (dy) will be denoted by

r t
i v.

Proof. F ix  t> 0 throughout the  proof. By the form er part of the proof
of previous theorem, D t (x, y ) E  for any y E .0* . Then we have only to prove
that

suplOt (•, y) Om< oe•

Let Ut a n d  Vt be the operators given in the previous theorem. Then we have

12 - tY l2 ± (V tX, Y ) = - 1 1 U
1 

i l "e - 2  X

2 1± -
2

lx12

 

for any x E H  and y  . 0 * .  T his implies that IlDt (•, Y)Ilx for any y E .s.3* and
concludes the proof.

Using the  function T t̀' 2.), the  Li (P) - function Tih..) is approximated a s  fol-
lows.

Proposition 2 .4 . Let I.) be a positive finite measure on .s3 *  and f ix  t>0.
Set PNx= 0(en , x)e n . Then

IimIIT (P Nx) — (x)IL1(1.,) = 0 .

Proof.

'M I (PN •) —  Tit  vIlt,ou) = f  f D t (P x , y) — D1 , Y) I) (clY) k (dx)

f r f r IE t (P NX, y) — D1 (x, y) (dy ) (dx ).

Fix y E123* . Then

supipt (PNx, y) — D (x,

supDt (PNx, y) +D 1 (x, y)
N

-r=supKte
- -21utyi' I le  2 ]    Y ) )  +D (x , y)

0 0

1) +Dt(x ,y )„ - " 1  ( " .  Y )rr 21----, ( '''' ) 2 ± 1-suptcte
j =0

j =0
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K t (e - 1 1 - 1 '' 12+  ( v  Y )1 )  +D (x, y) (2)

w here U t, Vt and K t is defined in  th e  proof o f Theorem 2.2. Since the  right
hand side is p-integrable,

lim  f [Dr (PNx, y) — Dr (x, y)lp(dx) = 0
0 0  '3 *

for any yEs23* • Using the inequality (2), we have

supf Ipt (PNx, y) — D 1 (x, y) lp ((IX)
N

' supf „Dr (PNx, y) p  (d x ) +  L p  t (x, y) g  (Ci X)
N

K +1 .

Thus we have

lim i  f (PNx, y) —Dr(x, Y) lp (d x )  (dy) =0
N -.0 . '3 *  ' 3 *

and this concludes the proof.

3. Convergence of Titi

Let v be a positive finite measure on
 ' K

th e  c a se  where v  (d x ) = F (x )

p (d x ) with F E L p (p )  > 1) , using the theorem of E. M. Stein [6], T ( x )  con-
verges to F  (x ) p-almost everywhere a s  t 0. If the dim ension of H  is fi-
n ite , b y  the  G lobal D ensity  Theorem  (H . Sato [4]), T (x )  converges to
dv
d p

- (x ) g-almost everywhere as 0. In  th is  section, w e shall study more

about the convergence of T i .  (t 0).
First w e consider the case where v  E  ( )* .  The operator r t

i  can be con-
tinuously extended o n  (.0 )  *, and we temporally denote the extension by
O n the other hand V I) is defined as an  element of L1 (p ) for a positive finite
measure v on si* . Next propositions imply that these two extensions are iden-
tical with each other when v belongs to (S.3) *  .

Proposition 3.1. A ssume that a positive finite measure v on .0* belongs
to (.0) * . Then

f s* T t v (x) F (x) p (dx) = (F,

holds for any F ( A )  and t> 0.

Proof. Fix  t > 0 and  F E (A ) throughout the  proof. Since 7V is  a  sym-
metric operator on L2 (p)
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, = KVF , .

In the next proposition, we will show that

f F (x) T u  (x),u (dx) = L .  r F (x) u (dx) (=KTF, u )) .

The above two equalities imply that

1 3 *  
T t

i v(x) F (x) ju(dx) = KF , t u ) ,

and this concludes the proof.

Proposition 3.2. Let v be a positive finite measure on se .
(a) For a bounded continuous function F and t>0,

f r F (x) Titt u (x) (dx) =  L *7VF (x) u (dx) . (3 )

(b) In the case where vE ( s 3 )  * , (3 )  holds for any F E  (A )  and t >0.

Proof (a )  Since Dr(x,y)=Dt(y, x) for any x, y E , using the Fubini
Theorem, we have

L F(x)vu (x) (d  x) = F (x) f D (x, y) v (dy) pt(dx)

= L L  * F (x) D t (x, y) ti(dx) u (dy)

= 1VF (y) v (dy) .

(b )  In  th e  c a s e  w h e re  u  E  (A )  * ,  f o r  a n y  F  E  (y) , T F  (x )  E  (g) ) is
v-integrable. Therefore th e  above proof im plies that (3 )  holds fo r  any F E
(3) ). Then, using the approximation by certain elements o f  (3) ) , w e obtain (3)
for any FE

Lemma 3.3. Let v be a positive finite measure on se. Assume that v be-
longs to (.(3) * . T hen Ph) converges to v as t— > 0 w ith respect to the topology of
(.3) *  (the inductive limit topology of { (0), 1 II E Z)

Proof By proposition 3.1, we may regard Tr
i  a s  its own continuous ex-

tension o n  (A ) * . Therefore th e  following expansion im plies tha t V I) con-
verges to u in  (A) p  as 0 if )..) E ( S ,  p )  (p E Z)

T u (x ) = (ha , 1.))e - ` ;'''a lh a  (x) .
a E  N;'

N ext w e consider th e  general case. Before giving th e  proof o f Theorem
1 . 1, we prepare two propositions.

Proposition 3.4. Let F  be a bounded continuous function on se . Then
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{ 7'F (x)}  t> 0 is uniformly bounded and converges to F (x ) as t 0 for any x E
se

Proof. It is easily  obta ined  by  the original definition o f  Ir t4  (see the
left hand side o f  (1)).

Proposition 3.5. F or F E L p(p ) (p 1 )  ,  V F  con v erg es  to F in L p(p).

Proof. Since F  is approximated by bounded continuous functions, the
proposition is  an immediate consequence of the property (St - 1 )  (in Section 1)
and Proposition 3.4.

Proof o f  Theorem 1.1. By Proposition 3.4, Proposition 3 .2  (a) and the
dominated convergence theorem, the  measure T u i (d x ) converges weakly
to u(dx ). Thus we obtain (a) of Theorem 1.1.

Next we prove (b) of Theorem 1.1. By virtue of the Lebesgue decomposi-
tion  o f  2) w ith  respect to  It and Proposition 3.5, w e have only to  prove that
T h)(x ) converges to 0 in the measure 1.1(t — ,  0) when 2) is singular to ft .

Let E > 0 be an  a rb itra ry  positive num ber. Then there exist tw o compact
subsets K1, K2 of .0* such that  ut(K) <E, u(K ) <s and K1 fl K2 = 0. Since the
tw o com pact (closed) subsets K1 a n d  K2 are disjoint, there  ex ists a  bounded
continuous function g (x ) such that

1 x c i f !

g (x) = 0 x EK2

E  [0, 1] for any x E A * .

Since VI) (x) je (d x) converges weakly to u(dx),

lim sup f  7 ' , 1 1) (x) ( d x )
t--.0

lim  supf g(x) T t
l y (x) x)

t-.0 '3*
=

111711  g (x) Ph) (x) ,u(dx)
t - o  .0*

(K ) <  s .

This implies that

({x1r  ( x )  > < E+
if t >0 is small enough. Thus T v  converges to 0 in the measure p.

4 .  Fourier transform

In  th is  section we will give inversion formulae for the Fourier transform
g  w hen they  act on positive finite m easure on  .0*. T he  nex t proposition is
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easily given by the definitions of g  and e-
m .

Proposition 4.1. (a ) g [i.)] is a continuous function on
(b) For any  t>0, [Id (e - m x ) is [t - integrable.

Define the transform g  as follows.

g. [ I ] (x ) = e llx12 f (x,y) ( d y )

Proposition 4.2. L et ).) be a positive f inite m easure on .0*. Then we have

[g [Id (c" • ) (x) = T l . (x)
for any x E

Proof. Fix an arb itrary  t>0 throughout the proof. First we prove that

f e ' -  v =1- +v =1-Y ) g(dz) = Dr (x, y) . (4)

for any X E k 3  and y  .0*. F or any j E N , set xi == (es, x), ys =  (es, y) and  Ts =e - " , .
Then

e 2f -
e2

1,-"zr-v=r( v", y)frt (dz),3*

1= ri y f l e X P  ( (1 T I )  (
 1  (X/ rg i)   )2 ( X i  rg l )  2) d Z j i

1 - 71
j  A / 1 .

12
2 (1 — T1) L

1   ) e x p i=(1-1
1 111—  71

=D t (x, y).

e
-  t  A 2

2
1 2

1
+

„h
e
: :  2

t A  
x12 e -2tA Y „I

e
- tA

x, y)1e-2tA

Thus we have  (4). Therefore

[g [ i ]  (e - tA • )] (x)
=41x1 f e-v=r (d y )  (d z)tr

= (CIA  e+k i' f  4 1' -" (")  Ar7-1-( d  2 )

= L *D t (X, y )  (dy) = rti ( x )

Proof o f  Theorem 1.2. W e have o n ly  to  su m  u p  Proposition 2 .4  and
Proposition 4 .2  to prove the theorem.

Remark. If  I.) belongs to (.0)*, [v] (e - " • ) ]  ( T can  be  con-
tinuously extended to Ti.. T h e n , besides the convergence in the statement of
Theorem 1.2, this also converges to  1) with respect to the topology o f  (.0)*.

Notation. F o r  p  Z  set
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W p )  =  ( J p )  e (J p ) =  ( 0+4/ - 1010, OE (.18
t.) }

and the spaces ( A ) ,  W(s23)* and Ws 711 ( p  EZ, K> 0) are  defined in the same
manner. On ( .& p )  (p Z ) ,  th e  norm Hip is extended as follows.

kb-F.1-1 ollp Doll; .
Yu.-J. L ee [1] proved that, for any F E  (A), g  [F] E  (s23) and g [g [F ]] =
F , and J . Potthoff and  L . S tre it [2 ] proved that g  is  a n  isomorphism from

(s23) * to U
In the following proposition we will show that, for any t >0,

[i.] —) [7.1h)] ( x ) ,  f o r  any xEs23.

So that Proposition 4 .2  implies that g  [ T i . ]  can be extended to a  continuous
function which belongs to L 1 (ii) a n d  .7 [g[T t̀

I v]] =- T. M oreover, w hen 1) be-
longs to (0) *, [VI)] ] =

Proposition 4.3. Fix any t>0. Then

For a positive fin ite m ea su re v on .0 *,
g (e—tAx\ =) [r til) ]  (X ) , x c a

(b) For OE (.0)*
g  [0 ]  (e x) =  [T N ] (x), (x E J .3 ).

Proof. (a) Fix xEs23*  and set, for any jEN,

xi =  (ei , x), y i=y ; (y ) y ), yE s23 , ri =e - `22.
Then we have

[T i.] (x)

J
z)f  D 1 (z, y) v(dy)tt (dz)

*

= exp(  riz f li 714 L* (dy)[11 EA 1
2n- (1 —71) f - - \ 1 — 2 (1 —71) 2 (1 — TY)

+ .1-1 zjx; - - 1
2=4)dzi l

— — 1 (1 — ry)xy) 2

= f p (dy ) [n
2
e x p (  ( X5 y j z j

A* j r (1 — 7.2 ) — 2 (1— r y)
+ — 1 — rpx.7)dzi l

= f {ek x 2iev = r r ') v (0 )
A*

= f (' -" " ) v (dy)
A*

_  [ I ) ]  (e — tax )

(a)
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(b) In the above proof we have obtained

[F] (e-  "Ix) = [ T F ]  (x) , x  E S ,
for any F E  L2 (1 ) =  W O , w hich space is dense  in  (.0) * . However, for an  ele-
ment o f  (y ) ,  w e sh a ll g iv e  its  d irec t p roo f to  be  c lea r th e  meaning o f this
equality. Set F= Eaaaha and assume that aa =0 except for f in ite  a 's  ( E 1%4°).
Note that

g  [h a ]  (x) = (A/ — 1) I'  
1

(11 (e x)ai) , T A ha (x ) = t E 'i Aha(x) .a !

Therefore

[ a h  ( • ) ]  (e-t Ax ) = E a c r (V___
1 )

 la'  1   (11( e -tAx )a i )a
a a A/ a! '

= z  a  a (i/ _1) 1.1 e - (e.
a .1a!

= E a  ae -  ̀E "I ' g  [ha]
a

=  7  [E a a e - t E 'À ''I 'ha]
a

— [T F ]

Since Tit(  i s  a  continuous map from (.0) *  t o  (.0)* and g  is  a  continuous map
from  (s3)* to U (J. Potthoff and L . S treit [2]), we have the above equal-
ity for any summation of infinite a a h a 's  which converges in (s3)*.

A t the last of th is  article we give an example of generalized function WE
(J) * satisfying following (a) and  (b).
(a) g [ C  is a nonnegative Je3*-continuous function.
(b) g [T ] does not belong to (J ) * .
These illustrate that (s3)* o r  (423)* can not be invariant under g .

Expamle 4.1. Fix ko EN, pEN 1) , set an = 2 1f : and set

n
(

—

(
1 ) a

 n « e ,k »i/ (2n) ! °

Then O E  (S3 _ p) and

g  [V 0] =g [0] (e -

is a  4P-continuous function. On the other hand,

[Titi 0 ]  (x ) =Z an (ek , x) 2 n
n (2n)! 0

is non - negative for any x  E s3*. A ssum e th at g  [T t
i O] belongs to (A) *, th en  g

[T ] is pt - integrable since it is nonnegative and  1 E (d )  . How ev er g [rt
i O ] is

x ) a l )



402 Ryoji Fukuda

not g - integrable for some t, p and ko. Indeed,

f r g [V  0] (x) g (dx)

( 2 n ) !  
2nn!,,/(2n)!

> z e z (plog2,0
- 2t2 k . - -

1
2- 10g2)

Then, when we fix one of  the three numbers p, ko an d  t, we can chose other two
numbers to make the above value infinity, and this implies that g [Tit

10] does not
belong to (.0) *  in  general.

A ssum e t h a t  T I N )  i s  a  s igned  m easu re  o n  .0 * ,  th e n  g  [0 ] (e -
tAx )  is

f2-integrable fo r  any t >0. By Proposition 4.2 we have

g [Titt 0] (e -
m x )  =  

[ 0 ]  ( e
-

2t A x )

Thus the above example shows that 7VO is not a  measure on .d* for OE (A) *

in general.
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