Ornstein-Uhlenbeck semigroup and fourier transform acting on positive finite measures on the schwartz space

By

Ryoji Fukuda

1. Introduction

Let (\mathscr{S}^*, μ) be the White noise space, that is, \mathscr{S}^* is the space of Schwartz distributions on **R**, \mathscr{S} is the space of its testing functions $(\mathscr{S} \subset L_2(\mathbf{R}, du) \subset \mathscr{S}^*)$ and μ is a Gaussian measure on \mathscr{S}^* defined by

$$\int_{\mathscr{S}^{*}} e^{\sqrt{-1}\,(\xi,x)} \mu(dx) = e^{-\frac{1}{2}|\xi|^{2}} = e^{-\frac{1}{2}\int_{\mathbf{R}}\xi(u)^{2}du}, \ \xi \in \mathscr{S},$$

where (\cdot, \cdot) is the canonical bilinear from on $\mathscr{S} \otimes \mathscr{S}^*$. We consider the following semigroup on $L^2(\mu)$.

$$T_{t}^{A}F(x) = \int_{\mathscr{B}^{*}} F(e^{-tA}x + \sqrt{1 - e^{-2tA}}y) \mu(dy),$$

where $A = 1 + u^2 - \frac{d^2}{du^2}$, which is a positive definite self adjoint operator on L_2

(**R**, du). Let $(B, H, \tilde{\mu})$ be an abstract Wiener space. Then $\{T_t^A\}_{t>0}$ is a special case of a generalized Ornstein-Uhlenbeck semigroup introduced by I. Shigekawa [5] when (\mathscr{B}^*, μ) is replaced by $(B, \tilde{\mu})$, and the original Ornstein-Uhlenbeck semigroup $\{T_t\}_{t>0}$ is the case where A is replaced by the identity operator. It is an interesting feature of these semigroups that, roughly speaking, $T_t^A F(x)$ (or $T_t F(x)$) is a smooth function in x for any t>0 and that F is approximated by $T_t^A F(x)$ (or $T_t F(x)$) (see for example H. Sugita [7] Lemma 2.2). In this article, we will show that $\{T_t^A\}_{t>0}$ satisfies these properties when they act on positive finite measures on \mathscr{B}^* , and using this semigroup, we shall give inversion formulae of Fourier transform of positive finite measures on \mathscr{B}^* .

Let $(\mathscr{S})^*$ be the space of Generalized White noise functionals, (\mathscr{S}) be the space of its testing functionals and $\langle \cdot, \cdot \rangle$ denote the canonical bilinear form on $(\mathscr{S}) \times (\mathscr{S})^*$. They were defined in [1] or [2] for example, and we will de-

Communicated by Prof. K. Ueno, October 11, 1994

fine them in a generalized form in Section 2. On the smoothness of $F \in (\mathscr{B})$, Yu.-J. Lee [1] proved that F is \mathscr{B}^* -continuous and, for any $x, y \in \mathscr{B}^*, y \in \mathbb{R}$) $\mapsto F(x+uy)$ can be extended to an entire function in $u \in \mathbb{C}$. We call such a function \mathscr{B}^* -analytic function. For any t > 0, the operator T_t^A can be continuously extended on $(\mathscr{B})^*$, but for a generalized White noise functional $\phi \in$ $(\mathscr{B})^*, T_t^A \phi$ is far from being a smooth function, it is not a measure on \mathscr{B}^* in general (Example 4.1). However if $\phi \in (\mathscr{B})^*$ is a positive finite measure (if there exists a positive finite measure ν on \mathscr{B}^* such that $\langle F, \phi \rangle = \int_{\mathscr{B}^*} F(x) \nu$ (dx) for any $F \in (\mathscr{B})$), we will show that $T_t^A \phi$ is \mathscr{B}^* -analytic for any t > 0(Theorem 2.2).

Next we extend the semigroup $\{T_t^A\}_{t>0}$ for a general positive finite measure ν on \mathscr{S}^* . In Prososition 2.1, we will prove that, for any t>0, there exists a continuous function $D_t(\cdot, \cdot) : \mathscr{S}^* \times \mathscr{S}^* \longrightarrow \mathbf{R}^+$ such that $\|D_t(\cdot, y)\|_{L_1(\mu)} = 1$ for any $y \in \mathscr{S}^*$ and

$$\int_{\mathcal{S}^*} F(e^{-tA}x + \sqrt{1 - e^{-2tA}}y) \,\mu(dy) = \int_{\mathcal{S}^*} F(y) \, D_t(x, y) \,\mu(dy)$$

for any bounded \mathscr{S}^* -continuous function F. Then we define, for a positive finite measure ν on \mathscr{S}^* and t > 0,

$$T_t^A \nu(x) \equiv \int_{\mathcal{S}^*} D_t(x, y) \nu(dy)$$

as an $L_1(\mu)$ -function (Definition 2.1). When $\nu(dx) = F(x) \mu(dx)$ ($F \in L_p(\mu)$, $p \ge 1$), $T_t^A \nu$ will be also denoted by $T_t^A F$.

For any t > 0, T_t^A satisfies the following $(St-1) \sim (St-3)$ as an operator on $L_p(\mu)$ (p>1).

- (St-1) $||T_{t}^{A}F||_{L_{p}(\mu)} \leq ||F||_{L_{p}(\mu)} \text{ for any } F \in L_{p}(\mu).$
- (St-2) T_t^A is a self-adjoint operator on $L^2(\mu)$.
- $(St-3) T_t^A F \ge 0 \text{ if } F \ge 0.$

In the case where $F \in L_p(\mu)$ (p > 1), E. M. Stein [6] proved that $T_t^A F$ converges to $F \mu$ -almost everywhere if the $L_2(\mu)$ -continuous semigroup $\{T_t^A\}_{t>0}$ satisfies the above $(St-1) \sim (St-4)$.

Let N be a fixed natural number, μ_N be a standard Gaussian measure on \mathbf{R}^N and \widetilde{A} be a positive definite symmetric matrix. Then there exists $\widetilde{D}_t(x, y)$ (x, $y \in \mathbf{R}^N$) such that

$$\int_{\mathbf{R}^{N}} F\left(e^{-t\widetilde{A}}x + \sqrt{1 - e^{-2t\widetilde{A}}}y\right) \mu_{N}\left(dy\right) = \int_{\mathbf{R}^{N}} F\left(y\right) \widetilde{D}_{t}\left(x, y\right) \mu_{N}\left(dy\right)$$

for any bounded continuous function F on \mathbf{R}^N and $t \ge 0$. As an analogy of T_t^A ,

we define for a positive finite measure $\tilde{\nu}$ on \mathbf{R}^{N} and t > 0,

$$\widetilde{T}_t^A \widetilde{\nu}(x) \equiv \int_{\mathbf{R}^s} \widetilde{D}_t(x, y) \, \widetilde{\nu}(dy) \in L_1(\mu).$$

Let $\frac{d\tilde{\nu}}{d\mu_N}$ be the Radon Nikodym derivative in the sense of the Lebesgue decomposition. Then, using the Global Density Theorem proved by H. Sato [4], we can show that $\tilde{T}_t^A \tilde{\nu}(x)$ converges to $\frac{d\tilde{\nu}}{d\mu_N}(x) \mu_N$ -almost everywhere.

For a positive finite measure on \mathscr{S}^* , we shall prove the following theorem.

Theorem 1.1. Let ν be a positive finite measure on \mathscr{S}^* . Then

(a)
$$T_t^A \nu(x) \mu(dx)$$
 converges to $\nu(dx)$ weakly as $t \longrightarrow 0$.

(b)
$$T^A_t \nu(x)$$
 converges to $\frac{d\nu}{d\mu}(x)$ in the measure μ as $t \longrightarrow 0$.

It is still an open problem that $T_t^A \nu(x)$ converges to $\frac{d\nu}{d\mu}(x)$ μ -almost everywhere or not.

Next we consider the following Fourier transform.

Definition 1.1. Let \mathcal{M}_+ be the family of all positive finite measures on \mathcal{S}^* . We define a Fourier transform \mathcal{F} on $\mathcal{M}_+ \cup (\mathcal{S})^*$ as follows.

(a) For $\nu \in \mathcal{M}_+$,

$$\mathscr{F}[\nu](x) \equiv e^{\frac{1}{2}|x|^2} \int_{\mathscr{S}^*} e^{\sqrt{-1}(x,y)} \nu(dy), \quad x \in \mathscr{S}.$$

(b) For $\boldsymbol{\Phi} \in (\mathcal{A})^*$,

$$\mathscr{F}[\Phi](\mathbf{x}) \equiv e^{\frac{1}{2}|\mathbf{x}|^2} \langle e^{\sqrt{-1}(\mathbf{x},\cdot)}, \Phi \rangle.$$

When $\nu(dy) = F(y) \mu(dy)$, $\mathcal{F}[\nu]$ is also denoted by $\mathcal{F}[F]$.

It is easy to show that $\mathscr{F}[\nu](x)$ (in (a)) and $\mathscr{F}[\phi](x)$ (in (b)) are \mathscr{B} -continuous functions in x for any $\nu \in \mathscr{M}_+$ and $\phi \in (\mathscr{B})^*$. If a positive finite measure ν belongs to $(\mathscr{B})^*$, (a) and (b) are identical with each other (Proposition 3.1). Thus \mathscr{F} is well defined on $\mathscr{M}_+ \cup (\mathscr{B})^*$. The above \mathscr{F} is an extension of the Fourier transform on $L_1(\mu)$ defined by H. Sato [3]. He gave an inversion formula of this transform for an element of $L_1(\mu)$ ([3]), and Yu.-J. Lee [1] proved that $(\mathscr{B}) \oplus \sqrt{-1}(\mathscr{B})$ is invariant under this transform.

Let F be a finite dimensional Fourier transform for a positive finite measure $\tilde{\nu}$ on $R^{\scriptscriptstyle N}$ defined by

$$\mathbf{F}\left[\tilde{\nu}\right](u) = \int_{\mathbf{R}^{d}} e^{\sqrt{-1}(u,v)} \nu(du).$$

Let λ be the Lebesgue measure on \mathbf{R}^N . Then $\mathbf{F}[\tilde{\nu}](u)e^{-\varepsilon|u|^2}$ is λ -integrable for any $\varepsilon > 0$. Therefore we can define

Ryoji Fukuda

$$\tilde{\nu}^{(\varepsilon)}(u) \equiv \frac{1}{(2\pi)^{N}} \int_{\mathbf{R}^{N}} e^{-\sqrt{-1}(u,v)} \mathbf{F}\left[\tilde{\nu}\right](v) e^{-\varepsilon |u|^{2}} \lambda(dv).$$

Then $\tilde{\nu}^{(\varepsilon)}(u) \lambda(du)$ converges weakly to $\tilde{\nu}(du)$, and using the Global Density Theorem again (H. Sato [4]), we obtain the λ -almost everywhere convergence of $\tilde{\nu}^{(\varepsilon)}(u)$ to $\frac{d\tilde{\nu}}{d\lambda}(u)$ when $\varepsilon \longrightarrow 0$.

In our infinite dimensional case, we have the following theorem.

Theorem 1.2. Let ν be a positive finite measure on \mathscr{S}^* , $\{e_n\}_{n\in\mathbb{N}}$ be the CONS composed of the eigenvectors of A and set $P_N x \equiv \sum_{n=0}^{N} (e_n, x) e_n$ for any $N \in \mathbb{N}$. Then we have

$$T_{t}^{A}\nu(x) = L_{1} - \lim_{N \to \infty} \int_{\mathscr{A}^{*}} e^{-\sqrt{-1}(P_{N}x,y)} \mathscr{F}[\nu](e^{-tA}y)\mu(dy)$$

for any t > 0.

Summing up Theorems 1.1 and 1.2, we have obtained inversion formulae of the Fourier transform \mathcal{F} for a positive finite measure on \mathcal{S}^* .

Recall that $(\mathscr{S}) \oplus \sqrt{-1} (\mathscr{S})$ is invariant under \mathscr{F} . However $(\mathscr{S})^* \oplus \sqrt{-1} (\mathscr{S})^*$ can not be invariant under this transform. We will give an example of $\varPhi \in (\mathscr{S})^*$ which satisfies that $\mathscr{F}[\varPhi]$ is a nonnegative \mathscr{S}^* -continuous function but $\mathscr{F}[\varPhi]$ does not belong to $(\mathscr{S})^*$ (Example 4.1).

2. Smoothness of $T_t^A \nu$

In order to simplify the arguments, we generalize the spaces $\mathscr{L}_2(\mathbf{R}) \subset \mathscr{S}^*$ and $(\mathscr{S}) \oplus L_2(\mu) \subset (\mathscr{S})^*$. Let $H = (H, |\cdot|)$ be a real separable Hilbert space and $\{e_n\}_{n \in \mathbb{N}}$ be a CONS of H. Define a symmetric positive definite operator A on H as follows.

$$Ax \equiv \sum_{n=0}^{\infty} \lambda_n (e_n, x) e_n$$

where (\cdot, \cdot) is the inner product of H and $\{\lambda_n\}_{n \in \mathbb{N}}$ is a sequence of positive numbers satisfying

$$\sum_{n=0}^{\infty} \frac{1}{\lambda_n^2} < \infty \quad \text{and} \quad \inf_{n \ge 0} \lambda_n > 1.$$

Let \mathscr{P} be the linear span of $\{e_n\}_{n\in\mathbb{N}}$ and consider the norms $\{|\cdot|_p\}_{p\in\mathbb{Z}}$ defined by

$$|x|_p \equiv |A^p x| \quad (x \in \mathcal{P}).$$

Define

$$\mathcal{S}_{p} \equiv \overline{\mathcal{P}}^{|\cdot|_{p}} \quad (p \in \mathbf{Z}),$$

Ornstein-Uhlenbeck semigroup

$$\mathscr{S} \equiv \bigcap_{p \in \mathbf{Z}} \mathscr{S}_p, \quad \mathscr{S}^* \equiv \bigcup_{p \in \mathbf{Z}} \mathscr{S}_p$$

and let μ be a Gaussian measure on \mathscr{S}^* defined by

$$\int_{\mathscr{A}^*} e^{\sqrt{-1}\,(\xi,x)} \mu(dx) = e^{-\frac{1}{2}|\xi|^2}, \quad \zeta \in \mathscr{A}.$$

Let \mathbf{N}_0^{∞} be the family of all sequences of non-negative integers $\alpha = \{\alpha_j\}_{j \in \mathbb{N}}$ such that $\alpha_j = 0$ except for finite *j*'s. We prepare the following notations for a multi index $\alpha = \{\alpha_j\}_{j \in \mathbb{N}} \in \mathbf{N}_0^{\infty}$.

$$|\alpha| \equiv \sum_{j} \alpha_{j}, \quad \alpha! \equiv \prod_{j} \alpha_{j}!.$$

For any $n \in \mathbf{N}$, let $h_n(u)$ be a Hermitian polynomial defined by

$$h_n(u) = (-1)_n \Big(\frac{d^n}{du^n} e^{-\frac{1}{2}u^2} \Big) e^{\frac{1}{2}u^2},$$

and define

$$\mathbf{h}_{\alpha}(x) \equiv \frac{1}{\sqrt{\alpha!}} \prod_{j} h_{\alpha_{j}}((e_{j}, x))$$

for any $\alpha \in \mathbb{N}_0^{\infty}$. Then $\{\mathbf{h}_a\}_{\alpha \in \mathbb{N}_0^{\infty}}$ is a CONS of $L_2(\mu)$.

We consider the operator **A** on $L_2(\mu)$ defined by

$$\mathbf{A}F \equiv \sum_{\boldsymbol{\alpha} \in \mathbf{N}_{0}^{\alpha}} (\prod_{j} \lambda_{j}^{\alpha_{j}}) \langle \mathbf{h}_{\boldsymbol{\alpha}}, F \rangle \mathbf{h}_{\boldsymbol{\alpha}}$$

where $\langle \cdot, \cdot \rangle$ is the inner product of $L_2(\mu)$. Let (\mathcal{P}) be the linear span of $\{\mathbf{h}_{\alpha}\}_{\alpha \in \mathbb{N}_0^n}$. Then $\mathbf{A}F$ is well defined for any $F \in (\mathcal{P})$. Define

$$\begin{aligned} \|F\|_{p} &\equiv \|\mathbf{A}^{p}F\|_{L_{2}(\mu)} \quad (p \in \mathbf{Z}), \\ (\mathcal{B}_{p}) &\equiv (\bar{\mathcal{P}})^{\|\cdot\|_{p}}, \quad (\mathcal{B}) \equiv \bigcap_{p} (\mathcal{B}_{p}), \quad (\mathcal{B})^{*} \equiv \bigcup_{p} (\mathcal{B}_{p}). \end{aligned}$$

When $H = L_2(\mathbf{R}, du)$ and $A = 1 + u^2 - \frac{d^2}{du^2}$, (*A*)* is identical with the space of

generalized White noise functional defined in, for example, [1] or [2]. On the spaces \mathscr{S} and (\mathscr{S}) , we consider the projective limit topology, and the inductive limit topology on the spaces \mathscr{S}^* and $(\mathscr{S})^*$.

Before giving the definition of T_t^A for a positive finite measure on \mathscr{S}^* , we prepare the following proposition.

Proposition 2.1. Fix t > 0. Then for any $F \in (\mathcal{P})$, we have

$$\int_{\mathscr{S}^{*}} F(e^{-tA}x + \sqrt{1 - e^{-2tA}}y) \,\mu(dy) = \int_{\mathscr{S}^{*}} F(y) D_{t}(x, y) \,\mu(dy), \qquad (1)$$

where

$$D_t(x, y) = \left(\prod_{j \neq 1} \frac{1}{\sqrt{1 - e^{-2t\lambda_j}}}\right) e^{-\frac{1}{2} \left|\frac{e^{-t\lambda}}{\sqrt{1 - e^{-2t\lambda}}}\right|^2 - \frac{1}{2} \left|\frac{e^{-t\lambda}}{\sqrt{1 - e^{-2t\lambda}}}\right|^2 + \left(\frac{e^{-t\lambda}}{1 - e^{-2t\lambda}}, y\right)},$$

which satisfies $||D_t(\cdot, y)||_{L_1(\mu)} = 1$ for any $y \in \mathscr{S}^*$.

Proof. It is sufficient to prove the equality for F defined by

$$F(x) \equiv \prod_{j} f_{j}((e_{j}, x))$$

where $f_j = 1$ except for finite j's. Fix $x \in \mathscr{S}^*$ and set $u_j \equiv (e_j, x)$, then

$$\begin{split} &\int_{\mathscr{S}^*} F\left(e^{-tA}x + \sqrt{1 - e^{-2tA}}y\right)\mu\left(dy\right) \\ &= \prod_{j} \left\{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_j\left(e^{-t\lambda_j}u_j + \sqrt{1 - e^{-2t\lambda_j}}v_j\right)e^{-\frac{1}{2}v_j^2}dv_j \right\} \\ &= \prod_{j} \left\{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_j\left(w\right)e^{-\frac{1}{2}\left(\frac{w}{\sqrt{1 - e^{-2t\lambda_j}}} - \frac{e^{-t\lambda_j}u_j}{\sqrt{1 - e^{-2t\lambda_j}}}\right)^2 \frac{1}{\sqrt{1 - e^{-2t\lambda_j}}}dw \right\} \\ &= \prod_{j} \left\{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_j\left(w\right)e^{-\frac{1}{2}\left(\frac{e^{-t\lambda_j}u_j}{\sqrt{1 - e^{-2t\lambda_j}}}\right)^2 - \frac{1}{2}\left(\frac{e^{-t\lambda_j}u_j}{\sqrt{1 - e^{-2t\lambda_j}}}\right)^2 + \frac{e^{-t\lambda_j}u_j}{\sqrt{1 - e^{-2t\lambda_j}}}dw \right\} \\ &= \int_{\mathscr{S}^*} F\left(y\right) \left(\prod_j \frac{1}{\sqrt{1 - e^{-2t\lambda_j}}}\right)e^{-\frac{1}{2}\left|\frac{e^{-tA}}{\sqrt{1 - e^{-2tA}}}x\right|^2 - \frac{1}{2}\left|\frac{e^{-tA}}{\sqrt{1 - e^{-2tA}}}y\right|^2 + \left(\frac{e^{-tA}}{1 - e^{-2tA}}x\right)\mu\left(dy\right). \end{split}$$

For an arbitrary $a \in (0, 1)$,

$$\frac{1}{\sqrt{2\pi(1-a^2)}} \int_{-\infty}^{\infty} e^{-\frac{a^2u^2}{2(1-a^2)} - \frac{a^2v^2}{2(1-a^2)} + \frac{auv}{1-a^2}} e^{-\frac{1}{2}u^2} du$$

= $\frac{1}{\sqrt{2\pi(1-a^2)}} \int_{-\infty}^{\infty} e^{-\frac{(u-av)^2}{2(1-a^2)}} du = 1.$

We therefore have, for any t > 0 and $y \in \mathscr{S}^*$,

$$\int_{\mathcal{S}^{*}} |D_{t}(x, y)| \mu(dx) = \int_{\mathcal{S}^{*}} D_{t}(x, y) \mu(dx) = 1$$

Then we define $T_i^A \nu$ for a positive finite measure ν on \mathscr{S}^* as follows.

Definition 2.1. For any t > 0 and a positive finite measure ν on \mathscr{S}^* , define

$$T_t^A \nu(x) \equiv \int_{\mathscr{Q}^*} D_t(x, y) \nu(dy).$$

Remark. $T_t^A \nu$ is determined μ -almost everywhere as an element of $L_1(\mu)$.

In order to discuss the smoothness of the function $x \mapsto T_t^A \nu(x)$, we define the norms $\{\|\cdot\|_{a(p,K)}\}_{p \in \mathbb{Z}, K=0}$, which was defined by Yu.-J. Lee [1] when K=1.

Definition 2.2. For $p \in \mathbb{Z}$ and K > 0 we define

$$\|F\|_{a(p,K)} \equiv \sup_{x,y \in S_{-p}} e^{-\frac{K}{2}(|x|^{2}_{-y} + |y|^{2}_{-p})} |F(x + \sqrt{-1}y)|, \quad F \in (\mathcal{P}),$$

and set

$$\mathscr{A}_{\mathfrak{p},K} \equiv (\bar{\mathscr{P}})^{\|\cdot\|_{\mathfrak{o}(\mathfrak{p},K)}}$$

Remark. (a) In the case where $F(x) = (e_1, x)^n$, for example, we define $F(x + \sqrt{-1}y) = \{(e_1, x) + \sqrt{-1} (e_1, y)\}^n$, and for general $F \in (\mathcal{P})$ we define $F(x + \sqrt{-1}y)$ in the same manner.

(b) An arbitrary element F of $\mathscr{A}_{p,K}$ is \mathscr{S}_{-p} -continuous and, for any $x, y \in \mathscr{S}^*$, $u \in \mathbb{R} \mapsto F(x+uy)$ can be extended to an entire function in $u \in \mathbb{C}$. We call such a function \mathscr{S}_{-p} -analytic function.

Yu.-J. Lee [1] proved that

$$(\mathscr{S}) = \bigcap_{p} \mathscr{A}_{p1}$$

so that any $F \in (\mathscr{S})$ is \mathscr{S}^* -analytic. As an application of this property, he proved that a positive finite measure ν on \mathscr{S}^* belongs to $(\mathscr{S})^*$ (the functional $F (\in (\mathscr{S})) \mapsto \int_{\mathscr{S}^*} F(x) \nu(dx)$ is continuous) if and only if there exists $p_0 \in \mathbf{N}$ such that $\nu(\mathscr{S}_{-p_0}) = 0$ and

$$\int_{\mathscr{B}^*} e^{\frac{1}{2}|x|^2 \cdot \mathbf{p}} \nu(dx) < \infty.$$

Next we shall show that $T_t^A \nu(x)$ is \mathscr{S}^* -analytic in x for any t > 0 if a positive finite measure ν on \mathscr{S}^* belongs to $(\mathscr{S})^*$.

Theorem 2.2. Let ν be a positive finite measure on \mathscr{S}^* . Assume that ν belongs to $(\mathscr{S})^*$. Then, for any t > 0 and $p \in \mathbb{Z}$, there exists K > 0 such that $T_i^A \nu \in \mathcal{A}_{p,K}$.

Proof. Since ν belongs to $(\mathscr{S})^*$, by the result of Yu.-J. Lee (Theorem 5.1 in [1]), there exists $p_0 \in \mathbb{N}$ Such that

$$\int_{\mathscr{A}^*} e^{\frac{1}{2}|x|^2} \nu(dx) < \infty.$$

Fix arbitrary $t \ge 0$ and $p \in \mathbb{Z}$, and set

$$P_{Nx} \equiv \sum_{n=0}^{N} (e_{n}, x) e_{n} \quad (N \in \mathbf{N}, x \in \mathscr{S}^{*}),$$
$$U_{t} \equiv \frac{e^{-tA}}{\sqrt{1 - e^{-2tA}}},$$
$$V_{t} \equiv \frac{e^{-tA}}{1 - e^{-2tA}},$$
$$\kappa_{t} \equiv \prod_{j} \frac{1}{\sqrt{1 - e^{-2t\lambda_{j}}}}.$$

Then $U_t: \mathscr{B}_{-p} \longrightarrow \mathscr{B}_0$ and $V_t: \mathscr{B}_{-p_0} \longrightarrow \mathscr{B}_{p_0}$ are continuous operators. There-

fore there exist $K_1, K_2 > 0$ such that

$$\begin{split} & \left| -\frac{1}{2} |U_t \left(P_N \left(x_1 + \sqrt{-1} x_2 \right) \right)|^2 - \frac{1}{2} |U_t y|^2 + \left(V_t \left(P_N \left(x_1 + \sqrt{-1} x_2 \right) \right), y \right) \right. \\ & \leq & \frac{K_1}{2} \left(|x_1|_{-p}^2 + |x_2|_{-p}^2 \right) + \frac{K_2}{2} |y|_{-p_0}^2. \end{split}$$

Fix $y \in \mathscr{S}^*$ and set

$$F_{N_1,N_2}(x) \equiv \sum_{n=0}^{N_1} \frac{1}{n!} \left\{ -\frac{1}{2} |U_t(P_{N_2}x)|^2 - \frac{1}{2} |U_ty|^2 + (V_t(P_{N_2}x), y) \right\}^n$$

for any $N_1, N_2 \in \mathbb{N}$. Then $F_{N_1,N_2} \in (\mathcal{P})$ and

$$||F_{N_1,N_2}||_{a(p,K_1)} \le e^{\frac{K_2}{2}|y|_{-p_0}^2}$$

for any $N_1, N_2 \in \mathbb{N}$. Therefore

$$\lim_{|x_1|_{-p, |x_2|_{-p} \to \infty}} \sup_{N_1, N_2 \in \mathbf{N}} |F_{N_1, N_2}(x_1 + \sqrt{-1}x_2)| e^{-\frac{K_1 + 1}{2}(|x_1|_{-p}^2 + |x_2|_{-p}^2)} = 0.$$

Thus we have

$$\lim_{N_1, N_2 \to \infty} \|\kappa_t F_{N_1, N_2} - D_t(\cdot, y)\|_{a(\phi, K_1 + 1)} = 0.$$

where K_1 does not depend on $y \in \mathscr{B}_{-p_0}$.

For any $x_1, x_2 \in \mathcal{S}_{-p}$ and $y \in \mathcal{S}_{-p_0}$.

$$\mathscr{R}\left(-\frac{1}{2}|U_{t}(x_{1}+\sqrt{-1}x_{2})|^{2}-\frac{1}{2}|U_{t}y|^{2}+(V_{t}(x_{1}+\sqrt{-1}x_{2})y)\right)\leq\frac{1}{2}|U_{t}x_{2}|^{2}+(V_{t}x_{1},y),$$

where $\Re(\cdots)$ denotes the real part of (\cdots) . By the continuity of U_t and V_t , there exists $K_3 > 0$ such that

$$\frac{1}{2}|U_t x_2|^2 + (V_t x_1, y) \le \frac{K_3}{2}(|x_1|_{-p}^2 + |x_2|_{-p}^2) + \frac{1}{2}|y|_{-p_0}^2$$

Set $K \equiv \max\{K_1+1, K_3\}$. Then $D_t(\cdot, y) \in \mathscr{A}_{p,K}$ for any $y \in \mathscr{S}^*$ and

$$\int_{\mathscr{S}^*} \|D_t(\cdot, y)\|_{a(p,K)} \nu(dy) < \infty$$

Thus $T_t^A \nu \in \mathcal{A}_{p,K}$.

Remark. For $p \in \mathbb{N}$ and K > 0, the family $\{F : F \text{ is } \mathscr{B}_{-p}\text{-analytic and } \|F\|_{a(p,K)} < \infty\}$ is different from $\mathscr{A}_{p,K}$ and this family is inseparable with respect to $\|\cdot\|_{a(p,K)}$.

We next show that the function $x \mapsto \int_{\mathscr{Z}^*} D_t(x, y) \nu(dy)$ $(x \in \mathscr{Q}_0 = H)$ is *H*-continuous for a general positive finite measure ν on \mathscr{Q}^* .

Proposition 2.3. Let $\|\cdot\|_{\mathcal{H}}$ be a norm on (\mathcal{P}) defined by

$$\|F\|_{\mathcal{H}} \equiv \sup_{x \in H} |F(x)| e^{-\frac{1}{2}|x|^2}$$

and \mathcal{H} be the completion of (\mathcal{P}) with respect to $\|\cdot\|_{\mathcal{H}}$. Then, for any t > 0 and any positive finite measure ν on \mathcal{S}^* , we have

$$\int_{\mathscr{S}^*} D_t(x, y) \, \nu(dy) \in \mathscr{H}$$

Naotation. The function $x (\in H) \mapsto \int_{\mathscr{S}^*} D_t(x, y) \nu(dy)$ will be denoted by

 $\overline{T_t^A} \nu.$

Proof. Fix t > 0 throughout the proof. By the former part of the proof of previous theorem, $D_t(x, y) \in \mathcal{H}$ for any $y \in \mathcal{S}^*$. Then we have only to prove that

$$\sup_{y\in\mathscr{A}^*} \|D_t(\cdot, y)\|_{\mathscr{H}} < \infty$$

Let U_t and V_t be the operators given in the previous theorem. Then we have

$$-\frac{1}{2}|U_{t}x|^{2}-\frac{1}{2}|U_{t}y|^{2}+(V_{t}x,y)=-\frac{1}{2}|U_{t}y-\frac{1}{\sqrt{1-e^{-2tA}}}x|^{2}+\frac{1}{2}|x|^{2}$$

for any $x \in H$ and $y \in \mathscr{S}^*$. This implies that $||D_t(\cdot, y)||_{\mathscr{H}} \leq \kappa_t$ for any $y \in \mathscr{S}^*$ and concludes the proof.

Using the function $\overline{T_t^A} \nu$, the $L_1(\mu)$ -function $T_t^A \nu$ is approximated as follows.

Proposition 2.4. Let ν be a positive finite measure on \mathscr{S}^* and fix t > 0. Set $P_N x \equiv \sum_{n=0}^{N} (e_n, x) e_n$. Then

$$\lim_{N\to\infty} \left\| \overline{T_t^A} \, \nu \left(P_N x \right) - T_t^A \, \nu \left(x \right) \right\|_{L_1(\mu)} = 0.$$

Proof.

$$\begin{aligned} \|\overline{T_{t}^{A}}\nu(P_{N}^{\bullet}) - T_{t}^{A}\nu\|_{L_{1}(\mu)} &= \int_{\mathscr{A}^{\bullet}} \left| \int_{\mathscr{A}^{\bullet}} D_{t}(P_{N}x, y) - D_{t}(x, y)\nu(dy) \right| \mu(dx) \\ &\leq \int_{\mathscr{A}^{\bullet}} \int_{\mathscr{A}^{\bullet}} |D_{t}(P_{N}x, y) - D_{t}(x, y)| \mu(dy)\nu(dx). \end{aligned}$$

Fix $y \in \mathscr{S}^*$. Then

$$\begin{split} \sup_{N} &|D_{t}(P_{N}x, y) - D_{t}(x, y)| \\ \leq \sup_{N} D_{t}(P_{N}x, y) + D_{t}(x, y) \\ = \sup_{N} \kappa_{t} e^{-\frac{1}{2}|U_{y}|^{2}} \left(\prod_{j=0}^{N} e^{-\frac{1}{2}\frac{e^{-2it_{j}}}{1 - e^{-2it_{j}}}(c_{j, x})^{2} + \frac{e^{-it_{j}}}{1 - e^{-2it_{j}}}(c_{j, y})} \right) + D_{t}(x, y) \\ \leq \sup_{N} \kappa_{t} e^{-\frac{1}{2}|U_{y}|^{2}} \left(\prod_{j=0}^{\infty} e^{-\frac{1}{2}\frac{e^{-2it_{j}}}{1 - e^{-2it_{j}}}(c_{j, x})^{2} + \frac{e^{-it_{j}}}{1 - e^{-2it_{j}}}(c_{j, y})} \vee 1 \right) + D_{t}(x, y) \end{split}$$

Ryoji Fukuda

$$\leq \kappa_t \left(e^{-\frac{1}{2} |U_{t^x}|^2 + (V_{t^x, y})} \vee 1 \right) + D_t (x, y)$$
(2)

where U_t , V_t and κ_t is defined in the proof of Theorem 2.2. Since the right hand side is μ -integrable,

$$\lim_{N\to\infty}\int_{\mathscr{A}^*} \left| D_t(P_N x, y) - D_t(x, y) \right| \mu(dx) = 0$$

for any $y \in \mathscr{S}^*$. Using the inequality (2), we have

$$\sup_{N} \int_{\mathscr{B}^{*}} |D_{t}(P_{N}x, y) - D_{t}(x, y)| \mu(dx)$$

$$\leq \sup_{N} \int_{\mathscr{B}^{*}} D_{t}(P_{N}x, y) \mu(dx) + \int_{\mathscr{B}^{*}} D_{t}(x, y) \mu(dx)$$

$$\leq \kappa_{t} + 1.$$

Thus we have

$$\lim_{N\to\infty}\int_{\mathscr{S}^*}\int_{\mathscr{S}^*}\left|D_t\left(P_Nx,\,y\right)-D_t\left(x,\,y\right)\right|\mu\left(dx\right)\nu\left(dy\right)=0$$

and this concludes the proof.

3. Convergence of T_t^A

Let ν be a positive finite measure on \mathscr{S}^* . In the case where $\nu(dx) = F(x)$ $\mu(dx)$ with $F \in L_p(\mu)$ (p > 1), using the theorem of E. M. Stein [6], $T_t^*\nu(x)$ converges to F(x) μ -almost everywhere as $t \longrightarrow 0$. If the dimension of H is finite, by the Global Density Theorem (H. Sato [4]), $T_t^*\nu(x)$ converges to $\frac{d\nu}{d\mu}(x)$ μ -almost everywhere as $t \longrightarrow 0$. In this section, we shall study more about the convergence of $T_t^*\nu(t \longrightarrow 0)$.

First we consider the case where $\nu \in (\mathscr{S})^*$. The operator T_t^A can be continuously extended on $(\mathscr{S})^*$, and we temporally denote the extension by \mathcal{T}_t^A . On the other hand $T_t^A \nu$ is defined as an element of $L_1(\mu)$ for a positive finite measure ν on \mathscr{S}^* . Next propositions imply that these two extensions are identical with each other when ν belongs to $(\mathscr{S})^*$.

Proposition 3.1. Assume that a positive finite measure ν on \mathscr{S}^* belongs to $(\mathscr{S})^*$. Then

$$\int_{\mathscr{S}^*} T^A_t \nu(x) F(x) \mu(dx) = \langle F, T^A_t \nu \rangle$$

holds for any $F \in (\mathcal{S})$ and t > 0.

Proof. Fix t > 0 and $F \in (\mathcal{A})$ throughout the proof. Since T_t^A is a symmetric operator on $L_2(\mu)$

$$\langle F, \mathcal{J}_t^A \nu \rangle = \langle T_t^A F, \nu \rangle.$$

In the next proposition, we will show that

$$\int_{\mathscr{S}^*} F(x) T_t^A \nu(x) \mu(dx) = \int_{\mathscr{S}^*} T_t^A F(x) \nu(dx) \left(= \langle T_t^A F, \nu \rangle \right).$$

The above two equalities imply that

$$\int_{\mathscr{B}^*} T^A_t \nu(x) F(x) \mu(dx) = \langle F, \mathcal{J}_t \nu \rangle,$$

and this concludes the proof.

Proposition 3.2. Let ν be a positive finite measure on \mathscr{S}^* .

(a) For a bounded continuous function F and t > 0,

$$\int_{\mathscr{S}^*} F(x) T^A_t \nu(x) \mu(dx) = \int_{\mathscr{S}^*} T^A_t F(x) \nu(dx).$$
(3)

(b) In the case where $\nu \in (\mathcal{A})^*$, (3) holds for any $F \in (\mathcal{A})$ and t > 0.

Proof. (a) Since $D_t(x, y) = D_t(y, x)$ for any $x, y \in \mathscr{S}^*$, using the Fubini Theorem, we have

$$\int_{\mathscr{S}^*} F(x) T_t^A \nu(x) \mu(dx) = \int_{\mathscr{S}^*} F(x) \int_{\mathscr{S}^*} D_t(x, y) \nu(dy) \mu(dx)$$
$$= \int_{\mathscr{S}^*} \int_{\mathscr{S}^*} F(x) D_t(x, y) \mu(dx) \nu(dy)$$
$$= \int_{\mathscr{S}^*} T_t^A F(y) \nu(dy).$$

(b) In the case where $\nu \in (\mathcal{S})^*$, for any $F \in (\mathcal{P})$, $T_t^A F(x) \in (\mathcal{P})$ is ν -integrable. Therefore the above proof implies that (3) holds for any $F \in (\mathcal{P})$. Then, using the approximation by certain elements of (\mathcal{P}) , we obtain (3) for any $F \in (\mathcal{S})$.

Lemma 3.3. Let ν be a positive finite measure on \mathscr{S}^* . Assume that ν belongs to $(\mathscr{S})^*$. Then $T_i^A \nu$ converges to ν as $t \to 0$ with respect to the topology of $(\mathscr{S})^*$ (the inductive limit topology of $\{(\mathscr{S}), \|\cdot\|_p \in \mathbf{z}\}$).

Proof. By proposition 3.1, we may regard T_t^A as its own continuous extension on $(\mathscr{S})^*$. Therefore the following expansion implies that $T_t^A \nu$ converges to ν in $(\mathscr{S})_p$ as $t \longrightarrow 0$ if $\nu \in (\mathscr{S}_p)$ $(p \in \mathbb{Z})$.

$$T_{t}^{A}\nu\left(x\right)=\sum_{\alpha\in\mathbf{N}_{0}^{\infty}}\left\langle\mathbf{h}_{\alpha},\ \nu\right\rangle e^{-t\Sigma_{j}\lambda_{j}\alpha_{j}}\mathbf{h}_{\alpha}\left(x\right).$$

Next we consider the general case. Before giving the proof of Theorem 1.1, we prepare two propositions.

Proposition 3.4. Let F be a bounded continuous function on \mathscr{S}^* . Then

 $\{T_{t}^{A}F(x)\}_{t>0}$ is uniformly bounded and converges to F(x) as $t \longrightarrow 0$ for any $x \in \mathscr{S}^{*}$.

Proof. It is easily obtained by the original definition of $\{T_t^A\}$ (see the left hand side of (1)).

Proposition 3.5. For $F \in L_{p}(\mu)$ $(p \ge 1)$, $T_{t}^{A}F$ converges to F in $L_{p}(\mu)$.

Proof. Since F is approximated by bounded continuous functions, the proposition is an immediate consequence of the property (St-1) (in Section 1) and Proposition 3.4.

Proof of Theorem 1.1. By Proposition 3.4, Proposition 3.2 (a) and the dominated convergence theorem, the measure $T_i^A \nu(x) \mu(dx)$ converges weakly to $\nu(dx)$. Thus we obtain (a) of Theorem 1.1.

Next we prove (b) of Theorem 1.1. By virtue of the Lebesgue decomposition of ν with respect to μ and Proposition 3.5, we have only to prove that $T_t^A \nu(x)$ converges to 0 in the measure $\mu(t \longrightarrow 0)$ when ν is singular to μ .

Let $\varepsilon > 0$ be an arbitrary positive number. Then there exist two compact subsets K_1, K_2 of \mathscr{S}^* such that $\mu(K_1^c) < \varepsilon, \nu(K_2^c) < \varepsilon$ and $K_1 \cap K_2 = \emptyset$. Since the two compact (closed) subsets K_1 and K_2 are disjoint, there exists a bounded continuous function g(x) such that

$$g(x) = \begin{cases} 1 & x \in K_1 \\ 0 & x \in K_2 \\ \in [0, 1] & \text{ for any } x \in \mathscr{S}^* \end{cases}$$

Since $T_t^A \nu(x) \mu(dx)$ converges weakly to $\nu(dx)$,

$$\begin{split} &\lim_{t \to 0} \sup \int_{K_1} T_t^A \nu(x) \, \mu(dx) \\ \leq &\lim_{t \to 0} \sup \int_{\mathcal{S}^A} g(x) \, T_t^A \nu(x) \, \mu(dx) \\ = &\lim_{t \to 0} \int_{\mathcal{S}^A} g(x) \, T_t^A \nu(x) \, \mu(dx) \\ \leq & \nu(K_2^c) < \varepsilon. \end{split}$$

This implies that

$$\mu \left(\{ x | T_t^A \nu(x) > \sqrt{\varepsilon} \} \right) < \varepsilon + \sqrt{\varepsilon}$$

if t > 0 is small enough. Thus $T_t^A \nu$ converges to 0 in the measure μ .

4. Fourier transform

In this section we will give inversion formulae for the Fourier transform \mathscr{F} when they act on positive finite measure on \mathscr{S}^* . The next proposition is

easily given by the definitions of \mathcal{F} and e^{-tA} .

Proposition 4.1. (a) $\mathscr{F}[\nu]$ is a continuous function on \mathscr{S} . (b) For any t > 0, $\mathscr{F}[\nu](e^{-tA}x)$ is μ -integrable.

Define the transform $\overline{\mathcal{F}}$ as follows.

$$\overline{\mathscr{F}}[\nu](x) \equiv e^{\frac{1}{2}|x|^2} \int_{\mathscr{S}^*} e^{-\sqrt{-1}(x,y)} \nu(dy).$$

Proposition 4.2. Let ν be a positive finite measure on \mathscr{S}^* . Then we have

$$\overline{\mathscr{F}}[\mathscr{F}[\nu](e^{-tA}\cdot)](x) = \overline{T_t^A}\nu(x)$$

for any $x \in \mathcal{S}$.

Proof. Fix an arbitrary t > 0 throughout the proof. First we prove that

$$e^{\frac{1}{2}|x|^{2}} \int_{\mathcal{S}^{*}} e^{\frac{1}{2}|e^{-tA_{z}|^{2}} - \sqrt{-1}(x, z) + \sqrt{-1}(e^{-tA_{z, y}})} \mu(dz) = D_{t}(x, y).$$
(4)

for any $x \in \mathcal{S}$ and $y \in \mathcal{S}^*$. For any $j \in \mathbb{N}$, set $x_j \equiv (e_j, x)$, $y_j \equiv (e_j, y)$ and $\gamma_j \equiv e^{-t\lambda_j}$. Then

$$\begin{split} e^{\frac{1}{2}|x|^{2}} &\int_{\mathcal{A}^{*}} e^{\frac{1}{2}|e^{-tA}z|^{2} - \sqrt{-1}(x, z) + \sqrt{-1}(e^{-tA}z, y)} \mu \left(dz \right) \\ &= \prod_{j} \left\{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2} \left(1 - \gamma_{j}^{2} \right) \left(z_{j} + \frac{\sqrt{-1}\left(x_{j} - \gamma_{j}y_{j} \right)}{1 - \gamma_{j}^{2}} \right)^{2} - \frac{\left(x_{j} - \gamma_{j}y_{j} \right)^{2}}{2 \left(1 - \gamma_{j}^{2} \right)} + \frac{x_{j}^{2}}{2} \right) dz_{j} \right\} \\ &= \left(\prod_{j} \frac{1}{\sqrt{1 - \gamma_{j}^{2}}} \right) \exp\left\{ -\frac{1}{2} \left| \frac{e^{-tA}}{\sqrt{1 - e^{-2tA}}} x \right|^{2} - \frac{1}{2} \left| \frac{e^{-tA}}{\sqrt{1 - e^{-2tA}}} y \right|^{2} + \left(\frac{e^{-tA}}{\sqrt{1 - e^{-2tA}}} x, y \right) \right\} \\ &= D_{t}(x, y) \,. \end{split}$$

Thus we have (4). Therefore

$$\begin{aligned} \bar{\mathcal{F}}[\mathcal{F}[\nu] (e^{-tA} \cdot)](x) \\ &= e^{\frac{1}{2}|x|^2} \int_{\mathscr{S}^*} e^{-\sqrt{-1}(x,z)} e^{\frac{1}{2}|e^{-tA_2|^2}} \int_{\mathscr{S}^*} e^{-\sqrt{-1}(e^{-tA_{z,y}})} \mu(dy) \, \mu(dz) \\ &= \int_{\mathscr{S}^*} \nu(dy) e^{\frac{1}{2}|x|^2} \int_{\mathscr{S}^*} e^{\frac{1}{2}|e^{-tA_2|^2} - \sqrt{-1}(x,z) + \sqrt{-1}(e^{-tA_{z,y}})} \mu(dz) \\ &= \int_{\mathscr{S}^*} D_t(x,y) \, \nu(dy) = \overline{T_t^A} \, \nu(x) \end{aligned}$$

Proof of Theorem 1.2. We have only to sum up Proposition 2.4 and Proposition 4.2 to prove the theorem.

Remark. If ν belongs to $(\mathscr{S})^*$, $\overline{\mathscr{F}}[\mathscr{F}[\nu](e^{-tA}\cdot)](=\overline{T_t^A}\nu)$ can be continuously extended to $T_t^A\nu$. Then, besides the convergence in the statement of Theorem 1.2, this also converges to ν with respect to the topology of $(\mathscr{S})^*$.

Notation. For $p \in \mathbb{Z}$ set

Ryoji Fukuda

$$\mathscr{C}(\mathscr{Q}_p) = (\mathscr{Q}_p) \oplus \sqrt{-1}(\mathscr{Q}_p) = \{\phi + \sqrt{-1}\psi | \phi, \psi \in (\mathscr{Q}_p)\},\$$

and the spaces $\mathscr{C}(\mathscr{B})$, $\mathscr{C}(\mathscr{B})^*$ and $\mathscr{CA}_{p,K}(p \in \mathbb{Z}, K > 0)$ are defined in the same manner. On $\mathscr{C}(\mathscr{B}_p)$ $(p \in \mathbb{Z})$, the norm $\|\cdot\|_p$ is extended as follows.

$$\|\phi + \sqrt{-1} \phi\|_p \equiv \sqrt{\|\phi\|_p^2 + \|\phi\|_p^2}.$$

Yu.-J. Lee [1] proved that, for any $F \in \mathscr{C}(\mathscr{S})$, $\mathscr{F}[F] \in \mathscr{C}(\mathscr{S})$ and $\overline{\mathscr{F}}[\mathscr{F}[F]] = F$, and J. Potthoff and L. Streit [2] proved that \mathscr{F} is an isomorphism from $\mathscr{C}(\mathscr{S})^*$ to $\bigcup_p \mathscr{CA}_{p,1}$.

In the following proposition we will show that, for any t > 0,

$$\mathscr{F}[\nu](e^{-tA}x) = \mathscr{F}[T_t^A\nu](x), \text{ for any } x \in \mathscr{S}.$$

So that Proposition 4.2 implies that $\mathscr{F}[T_t^A \nu]$ can be extended to a continuous function which belongs to $L_1(\mu)$ and $\overline{\mathscr{F}}[\mathscr{F}[T_t^A \nu]] = T_t^A \nu$. Moreover, when ν belongs to $(\mathscr{S})^*$, $\overline{\mathscr{F}}[\mathscr{F}[T_t^A \nu]] = T_t^A \nu$.

Proposition 4.3. Fix any t > 0. Then

(a) For a positive finite measure
$$\nu$$
 on \mathscr{S}^* ,
 $\mathscr{F}[\nu] (e^{-tA}x) = \mathscr{F}[T_i^A\nu](x), \quad x \in \mathscr{S}.$
(b) For $\Phi \in (\mathscr{S})^*$
 $\mathscr{F}[\Phi] (e^{-tA}x) = \mathscr{F}[T_i^A\Phi](x), \quad (x \in \mathscr{S}).$

Proof. (a) Fix $x \in \mathscr{S}^*$ and set, for any $j \in \mathbf{N}$,

$$x_j \equiv (e_j, x), \quad y_j = y_j(y) \equiv (e_j, y), \quad y \in \mathcal{S}, \quad \gamma_j \equiv e^{-t\lambda_j}.$$

Then we have

$$\begin{split} \mathscr{F}[T_{t}^{A}\nu](x) \\ &= e^{\frac{1}{2}|x|^{2}} \int_{\mathscr{S}^{*}} e^{\sqrt{-1}(x,z)} \int_{\mathscr{S}^{*}} D_{t}(z,y) \nu(dy) \mu(dz) \\ &= \int_{\mathscr{S}^{*}} \nu(dy) \left[\prod_{j} \left\{ e^{\frac{x^{2}}{2}} \frac{1}{2\pi (1-\gamma_{j}^{2})} \int_{-\infty}^{\infty} \exp\left(\frac{\gamma_{j}z_{j}y_{j}}{1-\gamma_{j}^{2}} - \frac{\gamma_{j}^{2}z_{j}^{2}}{2(1-\gamma_{j}^{2})} - \frac{\gamma_{j}^{2}y_{j}^{2}}{2(1-\gamma_{j}^{2})} \right. \\ &\quad + \sqrt{-1}z_{j}x_{j} - \frac{1}{2}z_{j}^{2} \right) dz_{j} \right\} \right] \\ &= \int_{\mathscr{S}^{*}} \nu(dy) \left[\prod_{j} \left\{ e^{\frac{x^{2}}{2}} \frac{1}{2\pi (1-\gamma_{j}^{2})} \int_{-\infty}^{\infty} \exp\left(- \left(\frac{x_{j}-\gamma_{j}z_{j} - \sqrt{-1} (1-\gamma_{j}^{2})x_{j}^{2}\right)^{2}}{2(1-\gamma_{j}^{2})} + \sqrt{-1}\gamma_{j}x_{j}y_{j} - \frac{1}{2}(1-\gamma_{j}^{2})x_{j}^{2} \right) dz_{j} \right\} \right] \\ &= \int_{\mathscr{S}^{*}} \prod_{j} \left\{ e^{\frac{1}{2}r^{*}_{x}z_{j}} e^{\sqrt{-1}\gamma_{x}\omega_{j}} \right\} \nu(dy) \\ &= e^{\frac{1}{2}|e^{-tx_{x}|^{2}}} \int_{\mathscr{S}^{*}} e^{\sqrt{-1}(e^{-tx_{x},y)}} \nu(dy) \\ &= \mathscr{F}[\nu] (e^{-tA}x). \end{split}$$

(b) In the above proof we have obtained

$$\mathscr{F}[F](e^{-tA}x) = \mathscr{F}[T^{A}_{t}F](x), \quad x \in \mathscr{S},$$

for any $F \in L_2(\mu) = (\mathcal{S}_0)$, which space is dense in $(\mathcal{S})^*$. However, for an element of (\mathcal{P}) , we shall give its direct proof to be clear the meaning of this equality. Set $F = \sum_{\alpha} a_{\alpha} \mathbf{h}_{\alpha}$ and assume that $a_{\alpha} = 0$ except for finite α 's $(\in \mathbf{N}_0^{\infty})$. Note that

$$\mathscr{F}[\mathbf{h}_{\alpha}](x) = (\sqrt{-1})^{|\alpha|} \frac{1}{\sqrt{\alpha!}} (\prod_{j} (e_{j}, x)^{\alpha_{j}}), \quad T_{t}^{A} \mathbf{h}_{\alpha}(x) = e^{-t \sum_{j} \lambda_{j} \alpha_{j}} \mathbf{h}_{\alpha}(x).$$

Therefore

$$\mathcal{F}\left[\sum_{\alpha} a_{\alpha} \mathbf{h}_{a}\left(\cdot\right)\right] \left(e^{-tA} x\right) = \sum_{\alpha} a_{\alpha} \left(\sqrt{-1}\right)^{|\alpha|} \frac{1}{\sqrt{\alpha !}} \left(\prod_{j} \left(e_{j}, e^{-tA} x\right)^{\alpha_{j}}\right)$$
$$= \sum_{\alpha} a_{\alpha} \left(\sqrt{-1}\right)^{|\alpha|} e^{-t\sum_{\lambda} \lambda_{\alpha}} \frac{1}{\sqrt{\alpha !}} \left(\prod_{j} \left(e_{j}, x\right)^{\alpha_{j}}\right)$$
$$= \sum_{\alpha} a_{\alpha} e^{-t\sum_{\lambda} \lambda_{\alpha}} \mathcal{F}\left[\mathbf{h}_{\alpha}\right]$$
$$= \mathcal{F}\left[\sum_{\alpha} a_{\alpha} e^{-t\sum_{\lambda} \lambda_{\alpha}} \mathbf{h}_{\alpha}\right]$$
$$= \mathcal{F}\left[T_{t}^{A} F\right]$$

Since T_t^A is a continuous map from $(\mathscr{S})^*$ to $(\mathscr{S})^*$ and \mathscr{F} is a continuous map from $(\mathscr{S})^*$ to $\bigcup_{p} \mathscr{C} \mathscr{A}_{p,1}$ (J. Potthoff and L. Streit [2]), we have the above equality for any summation of infinite $a_{\alpha} \mathbf{h}_{\alpha}$'s which converges in $(\mathscr{S})^*$.

At the last of this article we give an example of generalized function $\Psi \in (\mathscr{S})^*$ satisfying following (a) and (b).

(a) $\mathscr{F}[\varPsi]$ is a nonnegative \mathscr{S}^* -continuous function.

(b) $\mathscr{F}[\varPsi]$ does not belong to $(\mathscr{S})^*$.

These illustrate that $(\mathcal{S})^*$ or $\mathscr{C}(\mathcal{S})^*$ can not be invariant under \mathscr{F} .

Expamle 4.1. Fix $k_0 \in \mathbb{N}$, $p \in \mathbb{N}$ $(p \ge 1)$, set $a_n = \lambda_{k_0}^{pn}$ and set

$$\Phi = \sum_{n=0}^{\infty} \frac{(-1)^n a_n}{\sqrt{(2n)!}} h_{2n}((e_{k_0}, \cdot))$$

Then $\Phi \in (\mathscr{S}_{-p})$ and

$$\mathscr{F}[T^A_t \Phi] = \mathscr{F}[\Phi] (e^{-tA}x)$$

is a \mathscr{S}^* -continuous function. On the other hand,

$$\mathscr{F}[T_t^A \Phi](x) = \sum_n a_n \frac{e^{in\lambda_k}}{\sqrt{(2n)!}} (e_{k_0}, x)^{2n}$$

is non-negative for any $x \in \mathscr{S}^*$. Assume that $\mathscr{F}[T_t^A \Phi]$ belongs to $(\mathscr{S})^*$, then $\mathscr{F}[T_t^A \Phi]$ is μ -integrable since it is nonnegative and $1 \in (\mathscr{S})$. However $\mathscr{F}[T_t^A \Phi]$ is

not μ -integrable for some t, p and k_0 . Indeed,

$$\int_{\mathcal{A}^*} \mathcal{F}[T_t^A \Phi](x) \mu(dx)$$

= $\sum_n a_n e^{-2tn\lambda_{i_*}} \frac{(2n)!}{2^n n! \sqrt{(2n)!}}$
 $\geq \sum_n e^{n!(\rho \log \lambda_{i_*} - 2t\lambda_{i_*} - \frac{1}{2}\log 2)}.$

Then, when we fix one of the three numbers p, k_0 and t, we can chose other two numbers to make the above value infinity, and this implies that $\mathcal{F}[T_t^A \Phi]$ does not belong to $(\mathscr{S})^*$ in general.

Assume that $T_t^A \Phi$ is a signed measure on \mathscr{S}^* , then $\mathscr{F}[\Phi](e^{-tA}x)$ is μ -integrable for any t>0. By Proposition 4.2 we have

$$\mathscr{F}[T_t^A \Phi] (e^{-tA} x) = \mathscr{F}[\Phi] (e^{-2tA} x).$$

Thus the above example shows that $T_t^A \Phi$ is not a measure on \mathscr{S}^* for $\Phi \in (\mathscr{S})^*$ in general.

Acknowledgment. I am grateful to Professor Hiroshi Sato for his helpful suggestions and hearty encouragements. Especially, I thank him for invaluable comments on his own results.

DEPARTMENT OF BASIC ENGINEERING, FACULTY OF ENGINEERING OITA UNIVERSITY

References

- Yuh-Jia Lee, Analytic Version of Test Functionals, Fourier Transform and A Characterization of Measures in White Noise Calculus, J. Funct. Anal., 100 (1991), 359-380.
- [2] J. Potthoff and L. Streit, A Characterization of Hida Distribution, J. Funct. Anal., 101 (1991), 212-229.
- [3] Hiroshi Sato, Characteristic Functional of Probability Measure Absolutely Continuous with respect to a Gaussian Radon Measure, J. Funct. Anal., 61 (1985), 222-245.
- [4] Hiroshi Sato, Global Density Theorem for a Federer Measure, Tôhoku Math. J., 44 (1992), 581-595.
- [5] Ichiro Shigekawa, Sobolev space over the Wiener space baced on an Ornstein-Uhlenbeck operator, J. Math. Kyoto Univ., 32 (1992), 731-748.
- [6] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood Paley Theory, Princeton Univ. Press, Princeton, 1970.
- H. Sugita, Positive Generalized Wiener Functions and potential theory over abstract Wiener space, Osaka J. Math., 25 (1988), 665-696.