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On A'-bundles of affine morphisms
By

Amartya Kumar DuTTA

1. Introduction

Let ¢ . X—Y be an affine faithfully flat morphism of finite type between local-
ly noetherian schemes. The aim of this paper is to investigate sufficient fibre
conditions (which would in some sense be minimal) for X to be an A'-bundle
over Y relative to the Zariski topology, or at least an A'-fibration over Y (i.
e., the fibre of ¢ at each point of Y is A').

In ([B-D]) this problem has been investigated in detail under the addi-
tional hypotheses that Y is affine and X is dominated by the affine n-space
over Y.

Recall that by a result of Bass, Connell and Wright ([B-C-W], 4.4) an
A'-bundle over an affine scheme is actually a line bundle.

We shall first prove the following result (see 3.4) in Section 3.

Theorem A. Let Y be a locally noetherian normal integral scheme and let ¢ :
X — Y be a faithfully flat affine morphism of finite type such that
(i) The fibve of ¢ at the generic point of Y is Al.
(ii) The fibve of ¢ at the generic point of each irreducible reduced closed
subscheme of Y of codimension one is geometrically integral.

Then X is an A'-bundle over Y. In particular if Y is an affine scheme then X is a
line bundle over Y.

This result has been proved earlier in ([K-M], Theorem 1) by Kam-
bayashi and Miyanishi under the additional assumptions that Y is locally facto-
rial and the fibres of ¢ at all points of Y are gemetrically integral. The other
result in this direction is the following theorem due to Kambayashi and
Wright ([K-W]).

Theorem. Let Y be a noetherian normal integral scheme and let ¢ © X—Y

be a faithfully flat morphism of finite type such that the fibve of @ at every point of
Y is A'. Then X is an A'-bundle over Y.

The proof of this result is quite involved and difficult. Our result
(Theorem A), apart from giving minimal sufficient fibre conditions for an
affine faithfully flat morphism over a locally noetherian normal integral
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scheme to be an A'-bundle, also provides in the process, an alternative and
simpler proof of the Kambayashi-Wright theorem when ¢ is assumed to be
affine.

Using Theorem A we next prove (see 3.5) :

Theorem B. Let Y be a locally noetherian scheme, ¢ . X—Y an affine
Sfaithfully flat morphism of finite type such that

(i) The fibre of ¢ at the genric point of every irreducible component of Y is
A

(1) The fiber of ¢ al the gemeric point of each irreducible reduced closed
subscheme of Y of codimension one is gemetrically integral.

Then all the fibres of ¢ are A'~forms. Thus if Y is a Q-scheme then ¢ is actually
an A'-fibration.

Examples in Section 4 would illustrate that the conditions in Theorems A
and B are the best possible.

Section 2 of this paper is on preliminaries. In Section 3 we prove our
main theorems. We make further discussion about our results with the help of
examples in Section 4.

2. Preliminaries

Notations. For a commutative ring R, R™ denotes a polynomial ring in »
variables over R and R” a free module of rank n over R.

Definition 2.1. A flat affine morphism ¢ . X—Y of finite type will be

called an A*-fibration if at ever point P of Y the fibre ¢! (P) is isomorphic to
the affine n-space A” over the residue field of P on Y. In this situation X will
also be called an A"-fibration over Y.

Definition 2.2. Let # be a field. A k-scheme X is said to be an A'-form
(over k) if there exists a k-isomorphism X X (2= A}, where % denotes the algeb-
raic closure of k.

Now we recall the lemma ([K-M], 1.3) of Kambayashi and Miyanishi.

Lemma 2.3. Let (R, m) be a discrete valuation ving and A a finitely gener-
ated flat R-algebra such that A[1/7] =R[1/7]" and A/TA is gemetrically integ-
ral. Then A=R".

Using the result ([B-C-W], 4.4) which asserts that every locally
polynomial algebra is the symmetric algebra of a finitely generated projective

module and the fact that the Picard group of a factorial domain is trivial it fol-
lows from the above lemma :

Corollary 2.4. Let R be a principal ideal domain with quotient field K and
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A a finitely generated flat R-algebra such thet A®p K=K and A ® k(P) are
geometrically integral for all prime ideals P of R. Then A=R",

3. Main Theorems

In this section we prove our main theorems (3.4 and 3.5). The crucial step in
the proof of Theorem 3.4 is Lemma 3.3 which uses the lemmas 3.1 and 3.2.

Lemma 3.1. Let A be a faithfully flat R-algebra, ¢ an element of R" and
M an m X n-matvix with coefficients in R. Suppose that the system of linear equa-
tions

c=xM (3.1.1)
has a solution for X in A™. Then the system (3.1.1) also has a solution in R™.

Proof. Let L be the cokernel of the map f : R” — R” defined by y = yM, g
the canonical map R”— L and let /', g’ be the induced maps A”— A" and A"
— L& A respectively. We thus have the commutative diagram

f
R" — R* — L  — 0

} b 1)

’

o
A" —— A" — L®yA — 0

where both the horizontal rows are exact. Since the system (3.1.1) has a
solution over A™, i. e., j(e) €Eim (f), we have g’ (j(¢)) =0, i. e, p(g(c)) =0.
But A being faithfully flat over R, by a well-known result (see [A-K], pg. 85,
Theorem 1.9) the map p : L—L ® A is injective so that g (¢) =0. That
shows that ¢€im (f), i. e., the system (3.1.1) has a solution in R™. Hence the
result.

The following lemma has been proved in ([B-D], 3.9).

Lemma 3.2. Let R be a noetherian local ring and A a finitely generated
flat R-algebra. Suppose that theve exists a regular sequence a, b in R and an
elemnt 0€GL, (R [1/ab]) such that

(i)  All/a]l =R[1/a][F. -+, Ful =R[1/a]™.

(i)  A[1/b] =R[1/b][G1 ", Ga] =R[1/b]"™".
(i)  [FFalo =[Gy Gal.

Then A=R",

The next lemma shows that for a faithfully flat R-algebra A, Lemma 3.2
would be valid even if ¢ is an affine transformation of R [1/ab].

Lemma 3.3. Let R be a noetherian local ring and A a finitely generated
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Sfaithfully flat R-algebra. Suppose that there exists a regular sequence a, b in R
such that

(@) All/a]=R[1/al[F\,++, Fsl =R[1/a]™.
()  A[1/b] =R[1/b][Gy -+, Gu] =R[1/b]™.
(‘L‘Ll) G,:( Z 2,‘ij) +[,t,', where /2,-;, u,ER[l/ab] y 1 Si, ]SM

Then A=R™.

Proof. Without loss of generality we may assume that F;, Gi€ A for all 1
so that A;;, ui €R[1/a] for all i, j. Now in view of Lemma 3.2 it is enough to
show that there exists Uy, Un€A[1/a], V1, -+, Va€A[1/b] and a matrix A
€GL, (R[1/ab]) such that

(i) All/al=R[1/allU\ -+, Ual.
(i1)  A[1/b] =R[1/b][V1, -+, Val.
(iii)  [Uy, Ul A=[Vy,eee, Vi,

Let A = ((A;))F; (the transpose matrix). Note that R[1/ab][Fy, -+, Fn] =
R[1/ab][Gy, -+, G.) so that the matrix A defines an element of GL, (R [1/ab]).
Now the given relations may be expressed as

6=( Y buFte)/am

1<j<n
for bij, c;ER, mEZL*, 1<i<n. Thus

ci— — Z bij F,~+a'” G,‘.
1<j<n

(3.3.1)

Now let ¢ denote the vector [c1,**, ¢x] of R" and let F, G denote respectively
the vectors [Fy, -+, Ful, [G1, ***, Ga)] of A" Let B denote the n X n-matrix
whose (i, j)th entry is b;; and D the scalar matrix a”I, where I is the n X
n-identity matrix. From (3.3.1) we have the matrix equation

c=[—F:G]B:D]T (3.3.2)

Therefore by Lemma 3.1 there exist r= [r1,**, 7.] and s = [s1,**, s»] in R”
such that

c=[—r:s][B:D]". (3.3.3)

By (3.3.2) and (3.3.3) we have [F—r]B"=[G—s]D. Since A;;=bi;/a™ this
equation implies

F—r)A=G—s. (3.3.4)
Now let U;=F;—*; and V;=G;—s;, 1 <i<wu. Since 7;, s, €R for all 1,
Al1/al =R[1/al[Uy, -, U], A[1/6] =R[1/b][V1,">+, Vil
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and by (3.3.4)
[Ulv"" Un] A= [Vl"", Vn]

Hence by Lemma 3.2, A=R".
The following result will prove Theorem A.

Theorem 3.4. Let Y be a locally noetherian normal integral scheme and let
¢ . X— Y be a faithfully flat affine morphism of finite type such that

(i) The fibre of ¢ at the generic point of Y is Al
(1) The fibre of ¢ at the gemeric point of every irreducible reduced closed
subscheme of Y of codimension one is geometrically integral.

Then X is an A'-bundle over Y.

Proof. Let P be a closed point of ¥ and let R=0yp. Replacing X by X X y
(Spec R) we assume that Y = Spec R for a noetherian normal local domain R
and X = Spec A for some finitely generated faithfully flat R-algebra A and
prove that A =R".

Let K be the quotient field of R. By conditions (i) and (ii) we have

(I) A®xK=K".
(II) A ®gk(P) are geometrically integral for all prime ideals of R of height
one.

The case dim R=0 (i.e., when R is the field K) follows from (I) and the case

dimR =1 (ie, R is a discrete valuation ring) follows from (2.3). So we
assume that dim R=2.

Since A4 is finitely generated over R from (I) it is easy to see that there
exists a non-zero element a €R such that

Al1/a]l =RI[1/a](F] (=R[1/a]™) for some FEA.

Let P, **, P; be the associated prime ideals of aR. Since R is a noetherian nor-
mal domain, ht P;=1 for all i, 1<i<t. Let

t
S=R\(U P,»). Ri=S7'R, A;=S7"'A.

i=1

Then R; being a semi-local Dedekind domain is a P.ID. and hence by (2.4),
A1=RY. Therefore there exists bES such that

A[1/6] =R[1/b][G] (=R[1/b]") for some G EA.
Note that by construction (a, b) form a sequence in R. Since

R[1/ab][F] =A[1/ab] =R[1/ab][G],
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we have a relation
G=AF+u for some A, uER[1/ab].
Therefore by Lemma 3.3, A=R".
We now prove Theorem B.

Theorem 3.5. Let Y be a locally noetherian scheme, ¢ . X —Y an affine
Sfaithfully flat morphism of finite type such that

(i) The fibres of ¢ at the gemeric points of all the irreducible components of
Y are A

(1)  The fibres of ¢ at the generic points of all irreducible redced cloed sub-
schemes of Y of codimension one are geometrically integral.

Then all the fibres of ¢ ave A'~forms. In particular if Y is a Q-scheme then X is
an Al-fibration over Y.

Proof. Fix a point PEY. We show that the fibre at P is an A'-form. Let
R=0yp. As before we may assume Y = Spec R where R is a local noetherian
ring with maximal ideal P and X = Spec A where A is a finitely generated
faithfully flat R-algebra. We prove that the fibre A ® gk (P) is an A'-form over
k(P) by induction on ht P(=dim R). The case ht P=0 is trivial.

Consider the case ht P=1, i. e., dim R =1. Replacing R by R/Qo, where Q,
is a minimal prime ideal of R, we may assume R to be an integral domain with
quotient field K. Note that condition (ii) now means that A ® gk (P) is geomet-

rically integral. Let R be the normalisation of R and let A =4 ®R. Then 4 is
finitely generated faithfully flat ﬁ-algebra. By the Krull-Akizuki theorem R is
a Dedekind domain and since R is local, R is in fact a P.LD.. Moreover k (P)
are algebraic (in fact finite) extensions of k (P) for every maximal ideal P of
R. Thus by (i) and (ii)

(1) A®z;K=K".
(2) A®zk(P) are geometrically integral for every maximal ideal P of R.

Hence by (2.4), A=R™. In particular /T@,}-k (P) =k (P)™MV PEMax R show-
ing that A ®gk(P) is an A'-form over k(P).

We now consider the case ht P> 2. By induction hypothesis we assume
that A ® gk (Q) are A'-forms over k(Q) for all non-maximal prime ideals Q of

R. Let R denote the completion of R and let A=A ®RI§. Then R is a complete
local ring with maximal ideal P such that R/P=R/P. Now A is a finitely
generated faithfully flat I/?\—algebra. Moreover for any non-maximal prime ideal
Q of R, QNR#P so that A ® ;£ (Q) is an A'~form over k(Q). Thus replacing

R by R we may assume R to be a complete local noetherian ring and further
replacing R by R/Qo where Qo is a mininal prime ideal of R we may in fact
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assume R to be a complete local noetherian domain with maximal ideal P such
that the fibres of ¢ at all non-closed points are A'-forms and the fibre at the
generic point is Al

Let K be the quotient field of R. Since R is a complete local ring the norma-
lisation R of R is a finite R-module and hence is a noetherian normal local do-
main. Let A=A ®xR. Clearly Aisa finitely generated faithfully flat R-module
and by (i), A®:K (=A ®zK) =K". Now let Q be a prime ideal of R of height
one. Then Q=6ﬂR¢P and hence A ® gk (Q) and therefore fT@gk (5) 1S an
Al~form over k(Q). In particular A ®zk(Q) is geometrically integral. Thus by
Theorem 3.4, A=R". In particular A ®z£(P) =k (P)"™, where P is the unique
maximal ideal of R. Hence A ®k(P) is an A'-form over k(P).

Thus all fibres of ¢ are A'-forms. Since separable A'-forms over a field

are trivial it follows that if Y is a Q-scheme then X is actually an
A'-fibration over Y. This completes the proof of the theorem.

Remark 3.6. The above proof shows that in the statement of Theorem
3.5 it is enough to assume in (i) that the generic fibres are A'-forms. (In the

proof take R to be the integral closure of R in L where L is a finite extension
of K such that A ®zL=L").

Remark 3.7. In the situation of Theorem 3.5 if Y is neither normal nor
a Q-scheme then all fibres being A'-forms does not imply that all fibres are
actually A' (see[B-D], 4.2). Also it is well-known that if ¥ is a non-normal
scheme then an A'-fibration need not be an A!-bundle even if Y is a
Q-scheme (see[K-W], 3.4).

Remark 3.8. S.M. Bhatwadekar has pointed out as a corollary to
Theorem 3.5 that when Y is a reduced affine scheme then under the hypotheses of
Theorem B, theve actually exists a finite surjective morphism ¢ . Y=Y from an
affine noetherian scheme Y’ such that X X y Y’ is a line bundle over Y.

4. Examples

In this section we mention some examples to illustrate that the hypotheses in
our theorems cannot be relaxed.

Note that the example ([K-W], 3.2) of A. Bialyniki-Birula shows that
the assumption that the morphism ¢ : X—Y is “affine” is necessary in our re-
sults. It is also easy to construct examples to show that the condition of “faith-
ful flatness” is essential. For instance, let Y be the affine plane Spec (k[x, y]),
k a field, and let X =Spec A where A =k[x, y][u, v]/ (xu +yv —1). Then the
fibres of A at all prime ideals of k[x, y] of height<1 are A! but (x, y)A=A.

We now discuss the finiteness condition. Note that in ([B-D], 3.11) it
was shown that if Y is an affine scheme and X is a flat affine Y-scheme
dominated by some affine n-space over Y, then the condition that “¢p : X—VY is a
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morphism of finite type” can be deduced from appropriate fibre conditions.
But below we quote an interesting example of Bhatwadekar which illustrates
that in our situation (i.e., without the additional assumption that X is domin-
ated by A%), the condition that ¢ is a “morphism of finite type” cannot be de-
duced from other conditions even when Y is the affine line and X an affine
noetherian regular factorial integral scheme dominated by another affine noeth-
erian regular factorial integral scheme Z which is of finite type over Y.

Example 4.1 (Bhatwadekar). Let R=Cl[x] and K =C(x). Choose an ele-
ment y in C[[x]] which is transcendental over C(x) and let B=Clx, 1/x, y],
A=BNC[[x]]. Let Y=Spec R, X=Spec A and Z=Spec B.

We first show that A is a factorial domain. Note that Ry, 1/x] =A[1/x]
=B are all factorial domains. Now it is easy to see that xC[[x]] NA =xA4 so
that A/xA = C, in particular, x is a prime element of A. Therefore, as

m r"A s m 2"C[[x]] = (0), it follows by Nagata’s criterion that A is a

n20 n20
factorial domain.

We now show that A is noetherian. By a theorem of Cohen it is enough to
show that every prime ideal of A is finitely generated. Fix PESpec A. If xEP
then as xA is a maximal ideal of A, P=xA is in fact principal. So assume x &
P. In this case xA and P are comaximal so that there exists ¢ €P such that (x,
¢)A=A. Thus A/cA=A[1/x]/cA[1/x] =B/cB which is of course noetherian.
Therefore P/cA is finitely generated and hence P is finitely generated. Thus A
is a noetherian factorial domain.

Now R being a P.LD., A is obviously faithfully flat over R. As A[l/x] =
R[1/x, y] it follows that A ® kK =K"™ and A/ (x —a)A#C" for all a#0. We
already showed that A/xA =C. Thus all the hypotheses of (2.4) (except that
A is a finitely generated R-algebra) are satisfied. But as A/xA =C, clearly A
is not finitely generated over R.

In ([B-D], 3.10 and 3.12) it was shown that if ¥ is an affine integral
scheme which is either normal or a Q-scheme and if X is a flat affine
Y-scheme dominated by the affine n-spac A% over Y such that fibre at the gener-
ic point of Y is A' and the fibres at the generic points of all closed sub-
schemes of Y of codimension one are integral, then X is an A'-fibration over
Y. However the following example shows that in our situation the condition of
integrality on height one fibres does not imply geometric integrality.

Example 4.2. Let Y be the affine plane Spec R where R=Cl[x, y]. Let A
=R[u, v]/ (yu +x —v?) and X =Spec A. A is a free module over R[u] and
hence over R. The generic fibre is A'. For any prime ideal P of R with y &P,
A ®gk (P) =k (P)". However for P=yR the fibre is integral but not geometri-
cally integral.

Acknowledgement. The author sincerely thanks S. M. Bhatwadekar for
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SCHOOL OF MATHEMATICS

TATA INSTITUTE OF FUNDAMENTAL RESEARCH
Homi BHABHA ROAD

BomBay-400 005, INDIA
e-mail:dutta@tifrvax.bitnet

References

[A-K] A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in
Mathematics, 146, Springer-Verlag, 1970.

[B-C-W]H. Bass, E. H. Connell and D. L. Wright, Locally polynomial algebras are symmetric algebras,
Invent. Math., 38 (1977), 279-299.

[B-D]S. M. Bhatwadekar and A. K. Dutta, On A'-fibrations of subalgebras of polynomial algebras, to
appear in Compositio Math.

[K-M] T. Kambayashi and M. Miyanishi, On flat fibrations by the affine line, Iltinois J. Math., 22-4
(1978), 662-671.

[K-W] T. Kambayashi and D. Wright, Flat families of affine lines are affine line bundles, Illinois J.
Math., 29-4 (1985), 672-681.



