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Two-dimensional Finsler spaces whose geodesics
constitute a family of special conic sections

By

Makoto MATSUMOTO

To find the Fins ler spaces having a  given family of curves as the  geode-
sics is an interesting problem for geometricians and will be an important prob-
lem from the standpoint of applications [1]. A previous paper [5] of the pre-
sent author gave the complete solutions of this problem in the two - dimensional
case, and another paper [7] may be regarded as the  f irs t continuation of [5].
The present paper is the second continuation.

The purpose of the present paper is to give a  geometrical development of
the preceding tw o papers above. The given families of curves treated in  this
paper consist o f  sem icircles, parabolas a n d  hyperbolas respectively on the
sem iplane. Some preliminaries a re  necessary and, in particular, the form ula
(1.20) for the functions G1 (x, y )  will enable us to obtain them easily without
finding the fundamental tensor.

§ 1 .  Preliminaries

Let us consider an n-dimensional Fins ler space F '=  (M n  , L (x, y ) )  on an
underlying smooth manifold Mn  w ith  the  fundamental function L (x, y ) .  The
fundamental tensor gi; (x, y ), the  angular metric tensor hi; (x, y )  and the nor-
malized supporting element 1i (x, y ) of F n  a re  defined respectively by

hif=LL(i)(; ) ,

where L(i)=aL/ay' and L()(D= a/4day ] .

The geodesic, the extremal of the length integral s= f  L(x, y) dt, I ti) , y i
to

=ii=dx i/dt, along a  curve x '= x '( t ) ,  is given by the Euler equation

(1 .1) d  ,
d t

.L( j ) L i V ,

where L i = a L  a x ' and y' =  f .  I n  t e r m s  of F (x, y ) =1. 2 (x, y) /2 .  ( 1 .1 )  is
written in the well - known form

(1.2) (x, h

where we put
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(1.3) (x, Y) - Y r (  
a2F aF 

axray o ax ,

and h (t) = (d 2s cit2 ) (ds cit) .
W e shall restric t our considera tion  to  Finsler spaces of dim ension two

and use the notation (x, y )  a n d  (p, q) respectively, instead o f  (x', x 2 )  a n d  (y',
y 2)  ( [6 ] ; 1 .1  and 1.2  o f  [ 1 ] ) .  Then, from the homogeneity of L (x , y; p, q ) in
(p, q ) we have

Lx =L x pp+L x g q , L y =L y pp+L y gq

and the Weierstrass invariant

L pp L p. Lw = =  =
q 2 pq p2

Consequently the two equations o f  (1 .1 ) reduce to the single equation

(1 . 4) Lyp+ (p4 — qji) W = 0

which is called the  Weierstrass form  of geodesic equation.
Next we are concerned with the associated fundamental function A  (x, y , z),

z= y'= dy/dx defined as follows:

(1.5) A  (x, y, z)=L(x, y;1, , (x, y; p, q) = A (x 1 )p

Then it is easy to show th a t  (1 .4 ) is written in terms of A (x, y, z ) as

(1.6) A zzy”±A „y '±A ,— A y=0 , z=y '

which is called the Rashevsky form  of geodesic equation.
W e o b se rv e  in  (1 .4 )  th a t pcj — qjj = p2 y”. H ence from  (1 .2 )  w e have

another form of geodesic equation as follows:

2 (1.7) y',  =  3 (qG 1 — pG2 ) .

N ow  w e consider th e  functions Gi (x , y )  in  detail. In  a  general F " we
have the  Berwald connection BF= (Gi i k, G ii ) ,  defined by G'1 = aG I / a y ' and
Gi i

k =aG i day k , and obtain two kinds of covariant differentiations; for a  Fins-
lerian vector field Vi (x, y ) , for instance, we have

• avi a y ' O r  —   +VrGr'; , .;—
ax j  a y  r a y  j

called the h - and v - covariant derivatives of Vi respectively.
Bu s  L- metrical, L ;-= 0, which gives

(1.8) Lj lrGnj .

Further we get from (1.8)
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(1.9) L u p  
1

= — hriG r i+IrGi r i •

Next, from (1.3) we have 2g 1; Gi y -i = (aF/ ax . r )y r , tha t is,

(1 .10) 2Gi li =L rY r  •

W e shall return to the two - dimensional c a s e .  Since the m atrix  (h u )  is  of
rank one, we get 8= ± 1 and the vector field m i (x , y ) satisfying

(1.11) hi;= Ern m ;  .

It is no ted  that m, is de term ined  by  (1.11) w ith in  its o r ie n ta tio n . Since we
have

(1.12) ,

we get easily

(1.13) 1j/i= 1  ,  / im i =m i i i =  , m im i =s

where the  lowering and  raising of indices are  done by g i ;  a n d  its reciprocal
gJ T h e re fo re  w e  o b ta in  the  orthonormal frame field ( i i ,  m i ) ,  called the Ber-
wald frame.

(1.13) shows tha t w e  have scalar fields h (x , y ; p ,  q )  and k (x , y ; p ,  q)
such that

(1.14)(m 1 ,1 1 1 2 )  =h  ( - 12 , 1 ') , 2) =le ( - 12 , l i ) ,  h l e = s  .

T hen  (1.12) a n d  (1.14) yield

(1.15) g ( = det (go) ) = E (11m2 - 12M1) 2 =  Eh2

(1.16) —
h  

(m 1 , m 2 ) = —1 ( - 12, 11) •
1

According to (1.15) s  is the signature of the metric.

W e consider W .  W e have hii=L L pp=L W q 2 and  hii=8
( m i )  s h 2  ( / 2 )  2 —

E1/2 (q1 L) 2 . Consequently we have

(1.17) L3W = sh 2 =g  .

Now we consider the expression of  G 1 in  th e  Berwald fram e [4 ]. (1 .9 )
a n d  (1.14) give

Lx
 — L  = m  ( m  G r G r )= in,* (11Gr 1 +1 2Gr

2 ) = —E—m xh(y 1Gr
1)q yP r 2 1 1 2

L2

which implies 2m xG r = (L x q
— L,p)L 2 I Eh. Consequently this a n d  (1.10) lead to

(1.18) 2G'= (L r y r ) ( 1 , r q —  L y P )  L 2
h

If we put
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(1.19) Lo=Lryr , M = L xq
— Lyp

then  it fo llow s from  (1 .16) a n d  (1 .17) t h a t  (1 .18) is  w ritte n  in the m ore
convenient form

(1.20) 2G1=1L (L op  L, M
w )  ,  2 G 2 = L

i  (L oq+Lp M
w )

This is also written in terms of A (x, y , z )  as follows:

12G1= - -
A
l  (A oP  M lf z )

(1.20')

where we put

A o =A xp+A yq  ,  M = A x z +A y4 — .11, .

Finally we shall summarize some essential points of projective change for
the la ter u s e . L e t  u s  consider two Finsler spaces Fn= ( W , L  (x , y )) and P i
=  (M r , L  (x, y ) )  on a  common underlying manifold M '. I f  any geodesic of Fn
coincides with a  geodesic of P i  a s  a  se t o f  p o in ts  a n d  v ic e  v e rsa , then  the
change L L of the metrics is called projective and F n  is sa id  to  be  projective to
Fn [1]. Then the geodesic equation (1 .2 ) in  an  arbitrary param eter t shows
that Fn is  projective to  Fn, if and  only if there  ex ists a  sca lar field P (x, y ),
positively homogeneous of degree one in y, satisfying

(1.21) Gi (x, y)=Gi (x, y ) ±P (x, y )y ' .

P (x , y )  is called the projective factor, or the projective difference of L from L.
In  th e  two - dimensional c a s e  (1 .21) can  be  easily  verified  from  (1.7).

In  fact, if Fn i s  projective to  F n , th e n  (1 .7 ) g iv e s  (G  — G t) q (d2 G2) p ,

which is written a s  (d i — Gi )m 0  from  (1.14).
A Finsler space is called projectively f lat, if it has a covering by coordinate

neighborhoods in  w h ich  it is  projective to  a  locally Minkowski space . T hen
Fn is  projectively flat, if and only if we have locally a  function P (x, y ) ,  posi-
tively homogeneous of degree one in y , satisfying

(1.22) GI (x, y) = — P(x, y) y' .

The notion of projective flatness coincides with the notion of "with recti-
linear extremals", tha t is, any geodesic is locally represented by n linear equa-
tions x i = x i

o
- l- ai t of a  parameter t, or n - 1 linearly independent linear equa-

tions a", (x i — x l
0) =0, a= 1 , • -• , n - 1.

W e shall deal w ith a  Randers change 1,- - q .=  L+  p, where )3 is  a  differen.

2G2=1fA0q+mp(Ap—Azg)
A  t Azz
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tial one - form /3 (x, dx) = b (x) dx i [ 4 ] .  A Randers change is projective, if and
only if  bi is  a  locally gradient vector field, tha t is, abi/ax i — abdax i -= 0; such
a change is called a gradient R anders change. In the case of dimension two it
is easy to verify it from  ( 1 . 4 ) .  In fact, we have from L=L + 19

Lx , — Ly p=L x q
— Ly p- Fab21 abday ,  W =W  .

T h u s  (1 .4 )  shows th a t th e  geodesics coincide with each other if and  only  if
ab2/ax — a b la y = 0 . Then we have locally a function b (x i )  such that bi=
ax

For a gradient Randers change w e have M = M  from  ( 1 .1 9 ) .  Thus, ap-
plying (1 .20) to L=L - I-  w e  g e t

2pPL+2G 1bo=booP —  b2--1
1

.
44 2,1PL+2G 2 b0=booq±bi M

w

where bo =biy i a n d  boo =  (ablax i )y i yi . Since these give 2 (0 1q— G2p) = —111/
W, we get

(1.23) 2PL= b o o
- 2bi Gt .

Consequently the projective difference P  of the gradient R anders change is
given easily by (1 .23) and such a change will be omitted in the following.

§2 . From geodesics to the Finsler metrics

Let us consider a family of cu rves IC (a, h) I on the  (x, y) -plane R2 , given
by the equation

(2.1) y= f (x; a, h)

w ith tw o param eters (a, b) The first purpose o f  a  prev ious paper [5 ]  was
to  show how to find the two- dimensional Finsler space F 2 = (R 2 , L (x, y ; p, g))
whose geodesics are given by ( 2 .1 ) .  W e shall give an outline of the method in
the notation in [7].

From  (2 .1 ) we get

(2.2) z (=y') =fx(x; a, b)

and these equations enable us to solve a and b as functions of x, y and z:

(2.3) a=  a (x, y, z )  , 6= 1(3(x, y, z) .

Next, y "= fx x (x; a, h ) a n d  (2 .3 ) give the following function u(x, y, z):

(2.4) z'=fxx(x; a, 13) (x, y, z)

w hich is precisely the second order differential equation o f  y  characterizing
IC (a, b) I .

Now we are  concerned with the Rashevsky fo rm  (1 .6 )  of geodesic equa-
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tion. Since we get Lw = A z z / P from  (1 .5 )  and A z z = WP3,  (1 .5 )  a n d  (1.17)
show

(2.5) L3W=A3Azz=g .

Thus it is suitable to call A z z  the  associated W eierstrass inv arian t. We put B=
A z z . Then differentiation by z  o f  (1 .6 ) , th a t  is , B u ± A y z z A x z

—  A , =  0,
yields

(2.6) Bx+Byz+Bzu+Buz=0 .

The solution B (x, y ,  z )  o f  th e  f irs t  o rd e r  quasilinear differential equation
(2 .6 ) is given as follows: Defining U(x; a , b) and V (x, y , z ) by

(2.7) U(x; a, b ) = e x p  f  (x, f, fx ) dx , V  (x , y , z )=U (x ; a, 13)

we obtain

(2.8) H (a, 13) B(x, y , z )=  v (x ,  y ,

where H is  an arbitrary  non - zero function of two arguments.
From A z z = B we get A  in the from

A (x, y , z )= A *  (x, y , 4 +C (x, y )+D (x, y )z
(2.9)

A *= ifB (x , y , z)dzidz= f z (z — t)B(x, y , t)dt .zo

where C and D  are a rb itra ry  but m ust be chosen so that A  m ay satisfy (1 .6),
that is,

(2.10) Cy—Dx=APzu- A:z z ±A,Pz
— .

It is easy to verify that the right - hand side o f  (2 .10) does not depend on z.
Assume th a t  a  p a i r  (Co, Do) h a s  b e e n  c h o se n  so  a s  to  s a t is fy  (2.10).

T h en  (C — 00 ),--= (D —  Do) x , so  that w e have locally a  function E (x, y) satis-
fying Ex =C — Co and Ey =D — Do . T h u s (2 .9 ) is w ritten as

A =A * - FC0 4- Doz-f- Ex +E yz

Therefore (1 .5 ) leads to the fundamental function

I
L (x, y; p , q )=L o (x, y; p , q) (x, y; p , q)

Lo = A *  (x, y, p/q)P±Co(x, y)PH- D0(x, y)q

where e is the derived form

(2.12) e (x , y ; dx, dy) =E x dx+E y d y  .

Since the change LoL  is  a gradient change, (le, L ) is  projective to  (le,
L0 ) . Therefore the Finsler metric we found is uniquely determined depending
on the  choice o f the  functions H  and  E of tw o a rg u m en ts . Further, fo r  any

(2.11)
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choice of a function H we obtain a  Fins ler space  (R2 , L ) which is projective to
each other, because each one has the same geodesics IC (a, b)1 .

§ 3 . Family of semicircles

W e shall consider the  family of sem icircles IC (a, b) I given by the equa-
tion

F ig . 1

(3.1) (x — a)2+y 2=b2 , y, b>0

on the semiplane l a =  i(x , y ), y > 0 I  having the  cen tre  (a, 0) on the x - axis,
a n d  f in d  th e  Fins ler m etrics L  (x , y ; p ,  q )  such  tha t a ll g eodesics  of the
two - dimensional Fins ler space (R2

+ , L (x , y; p , q ))  belong to IC (a, b) I .
First, from  (3.1) we have

(3.2) x — a± y z =0  , z = y '  .

These equations give the functions a (x, y, z )  and $  (x, y, z )  as in the last sec-
tion:

(3.3) a=x -i-y z =a(x , y, , b =y .1 1 ± z 2 =i3(x , y, z )  .

The function u (x, y, z )  is given by

(3.4) z ' ( = y ' ' ) =  
1 ± z 2

 — u(x, y, z)

which yields the differential equation

(3.4') yy”--1-1± (y') 2 =0 ,

characterizing IC (a, b)I .
N ext w e shall find  th e  functions U (x; a ,  b )  a n d  V (x , y , z )  defined by

(2.7):

—2 ( x — a) uz = nz (x, f , fx ) =
(x — a) 2 — b2

U=exp f   —2 (x — a) 1 1
y 2(r — a) 2 — V d x =  I —a)2—b21 , 17=—
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Consequently we have from  (2.8) and  (2.9)

(3.5) B (x, y, = y 2H (a, 13 )  ,  A * (x, y, z) =y 2 i f  H (a, i3)dzi dz .

Thus the associated fundamental function A (x, y, z ) is w ritten as

(3.6) A =A * (x, y, z)+C(x, y)+D(x, y)z

where C and D must be chosen so that they satisfy (2.10).
W e shall deal w ith  (2.10) in  th is c a s e .  F irst A * m ay be  w ritten  in the

form  [5]

(3.7) A *= y2 f (z — t)F (t)d t F (t)= -H (x±yt, y.11±t2 ) .

If we put

       

(t) = (x ±yt, y .11 - F t2 ) ,  F 2 (t) =.14(X - Fyt, yi/1±t 2 )

then we have

A := 2 y fo (z — t)F (t) dt - Fy2f 0 (z — t) 1F1(t)t±F2(t)V1 - Ft2 1 dt

A: = y2f o
zF (t)d t , = y 2f:F i ( t)d t

2
4 , 2 =2y  fo

z F(t)dt±y 2f 0 iF 1 (t)t±F 2 (t).11 - kt2 idt

and A :z =B =y 2 H .  T h u s  (2.10) implies

(3.8) — Dx = 2 y fo F (t) tdt+y 21 0 F1 (t) dt

rz
±Y 2 J o  IF1 (t )t±F 2 (t) 1 d-t2 [ tdt — y (1+ z 2 ) H (a, 13)

Therefore we obtain

Theorem 1. Every associated fundamental function A (x, y, z ) of a Finsler
space (R2

+ , L (x, y; p, q ) )  hav ing the semicircles (3.1) as the geodesics is given
by

A =-A * (x, y, z) +C (x , y )+D (x ,y )z

where A * is def ined by  (3.7) , H is  an arbitrary function of (a, IS) given by (3.3)
and functions (C, D ) of (x, y) must be chosen so as to satisfy  (3.8).

Example 1. In particular w e first put H (a ,i3 )= a = x + y z  in the result
a b o v e . T h e n  (3.7) a n d  (3.8) yield

A* =y 2 f  z (z_t)(x+y t) dt = Y 2 2 . 2  (3x +yz) , C r  — Dx = —xy6
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Thus, choosing C=0 and D =x 2y / 2, we get

A (x, y, z) = l it ( x 2+xyz+ 1/2
3
z2 )  .

Therefore it follows from  (1.5) tha t the fundamental function L (x, y; p, q ) is
written in the form

(3.9) L (x , y; p, q ) = " (x 2p-i-x y q
 1 1 2 q2  

3p

where 1/2 was omitted by the homothetic change of metric.
To verify  (3.9) w e recall (1 .4 ). F o r  (3.9) we have

Lx, =2y(x+ ) , L y p=  -41(x+ 7)

L „= 2
p
1/2 ( x + 7 )  ,  W = Y 1 (.r -F " )  .

1)3P
Hence (1.4) leads to  (3.4') immediately.

Further, using the  form ula  (1.20), w e have the functions G' o f  (3.9) as
follows:

(3.10) 2G1L= — x 2p3 , 2 G 2L=  (p2 q 2) (xp+ 11
3
q ) ± x 2q3 .p2

Example 2. Secondly we shall consider the metric where H (a, 19) = 13n,
n being an arb itrary  rea l num ber. T hen  w e have from  (3.7) a n d  (3.8)

(3.11) IA * =yn +2 IZIn (Z) — fn (Z)[
c y _ D x = y n+1 1(11 +2 ) jn (z ) _ (1 ± z 2) n/2+11

in (Z) =  j : z (1 ±t 2 ) n / 2 Cit ,  bi 
= I: (1 ±t 2 ) n i 2 td t .

( 0  W e first treat the general case where n * -2 :  Then Jn  (z) =
I (1+ z 2 ) n i  2 + 1  — 1[ / (n+2) and Cy — —  yn+1 . Choosing D =0  and

C= — yn+2/ (n +2) , we obtain

(3.12) A  (x, y, z )=V + 2 1zIn (z) 1n+2 (1+ z
2 ) 2 +1)

Making use of (1.20') we obtain G ' o f  (3.12) as follows:

{2G 1=K np  , 2 G 2 =Kny - FP 2 + q 2  ,

Kn = (n+2) -q- P 2 ± ( 1 2 yn n  I ( q-)y L n p  '

(3.13)



366 Makoto Matsumoto

W e restrict our consideration to the case where n is  an in teger. Then w e
have the formula

(n +1)/n (z) =n/n_2 (z) (1 +z2 ) n
"  .

Thus, for a positive integer n we get the reduction formula

I

n ±n1 /n-2 (z) - F z  ( 1
n

1 7 2
1

)  n / 2  ,  1,t 2/rn (z) =

11 (z) = -1
2= (z.11 -1-  z2 ± loglz +1 +z 2 1) , /0(z) = z  .

For a negative integer n we get

++ 32 in+2  ( z )in  ( z )r n t +z (1 ±n +22)n2 /21 , n 4

(3.15)

{

(z) = z I_2(z) =- Tan - 1 2  , (z) = loglz + A/1 ±z 2 1
A/ 1 + 2

A s a consequence we are  interested in the following cases:
(ia ) n=1: We have from  (3.12)

A (x, y, z )=y 3 1k11. -1- z2 (z 2 - 2) Hilog lz  +1  + z 2 11 •

Therefore we obtain the fundamental function

(3.16) L (x, y; p, q) = y 3 p 2 q 2 f(g-p ) 2 —  +3q log p -F i ld - ( -q-
p ) 2 1

1
where —

6  
was omitted by the homothetic change.

( ib )  n=0: Similarly we get

(3.17) Lx, y; p, = 112 (q2 p 2 )

which is of the Kropina ty p e  (1.4 o f [1]).
(ic ) n =  — 1: We get as above

(3.18) L(x, y; p , q) =y(q log

( id )  n= — 3: W e have A =,/ld - z2 /y and the fundamental function is the
simple

(3.19) L (x, y; p, q) —
42 +q2

(3.14)

1+11±(Q)21—.1p2±q2) •
P P

T h is  i s  th e  well - known R iem annian m etric of constant curv ature — 1 (§74 of
[2 ] ) .  Its G' are given by
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(3.20) G1= — P IG 2 = P 2 -- g 2 -

r Y r 2Y

Since w e obtain  such a  s tanda rd  m e tric  (3 .19), we shall be concerned
w ith  the projective difference P (x, y; p ,  q ) o f  a  general m etric  (3 .12) from
(3 .1 9 ) . F rom  (3.13) a n d  (3.20) we get

2 (G1 — Gr ')  -= ( K . + - ) p 2 (G2 —  Gr2 ) = (Kn + -
4 )qY Y

Therefore we have the equation of the form  (1.21):

(3.13') Gi=w+py, p =   (n+4)q p2-Fq2
 n

 +,
l ( P )

g_\
2y 2 L  Y

'  

where L is the fundamental function determined by A  o f (3.12).
Sim ilarly (3.10) is w ritten in the form

(3.10') G1=G1+PY: ' P = eL ( q 2 — Ç ) ±

/

"Lifp x + 1 3qp) •

(ii) W e deal with the exceptional case n= — 2: F rom  (3.11) we get

A * =zTan - l z - - -
2-1  log (1+z2 )  , C — D = — 1 .

Hence, choosing C=0 and D=x1y, we obtain

(3.21) L (x , y; p , q) = q T an- 1 ( g -
p ) — -1 - log El + (g-p  ) 21 -Fx q -y  .

T he pro jective  difference o f  th is  L  from  th e  R iem annian (3 .19 ) is easily
obtained as follows:

GI =G : +Py l

(3.22)
{

r i  
2

2PL=l[p (q — (p 2 — q2) Tan - 1 (1 )—pq logil-P-) 1] .
Y Y

§ 4 .  Family of parabolas

W e shall consider the family of parabo las IC (a, b)1 given by the equation

(4.1) by= (x — a) 2 , y , b>0

on the semiplane R 2+ having the  vertex  (a, 0) on the x -ax is , and find the Fins-
ler m etrics sim ilarly to the  previous se c tio n . T h e  family suggests u s  Fig.20
o f  [2].

F ir s t  (4 .1) yields

z ( _ y ,) _ 2ba ) 2b
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Fig. 2

Consequently the functions a (x, y, z) , ( x ,  y, z )  and vt (x, y, z )  as in  the pre-
ceding sections are given by

(4.2) a = x  2 Y = a (x, y, , b -= p (x, y , z)
z
2

(4.3)
2 2

z ' - 2y- =u (x, y, z )  .

The latter yields the differential equation

(4.4) 2yy"= (y') 2

characterizing IC (a, b) I .
Next we get uz =z 4  =2 / (x  — a ) and

U(x; a, b) = e x p f 2 d x  =  ( x  a) 2 ,  V ( X ,  y, z) = ( 4 ) 2 .x — a

T h u s  (2 .8) implies

2
B (x, y, z) =H (a, i3) z  = H  (a  )3)

4y2• Y13 •

On account of the  arbitrariness of H, we m ay write B  as B = H (a, 13) /y  and
A * o f  (2.9) is w ritten in the form

A* (x, y, z )= - H H (a, , ) (dz) 2 •

This is written, as in the last section, in the form
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(4.5) A * ( x , y , = l f z (z — (t) d t  ,  F (t) =11(x — '
411 )

y t t2

It is noted that f  z is  app lied  in  (4 .5), instead of f,  because t  is  in  the  de-

nominators in F (t) .
If we put

2u )(t) = H —

4y
F 2  (t) =H )3(X — , 4

: 2
/

)
a t t2

then it is easy to show that the condition (2.10) is w ritten as

7 2
(4.6)C y  — D x =  

2
H (a, [3) — 1 f  2 F (t) tdt

2y y2

—1 f  z ( t )  - -ti
t F2 dt

y

Therefore we obtain

Theorem 2. Every associated fundamental function A (x , y, z ) of a Finsler
space (4 , L  (x , y; p, q ))  hav ing the parabolas (4. 1) as the geodesics is given by

A =A * (x, y, z) +C (x , y) +D (x ,y )z

where A * is def ined by  (4 . 5) , H is an arbitrary function of (a, ,3) given by  (4.2)
and the functions (C, D ) o f (x, y )  must be chosen so as to satisfy  (4.6).

Example 3. In particular we consider the case where H (a, = sn for a
real number n. Then F (t) = (4y/t 2 ) n  f ro m  (4 .2), F i= 0 and F2=n (4 Y /12) 

n - 1 .

Hence (4 .5) a n d  (4 .6 ) give

(4.7) A *=4ny n-1(z  f  t - 2 n clt —
I
 t 1 - 2 n cit)

Ez2 2( n 1) t-2n _  f z
(4.8) Cy—Dx=-4nyn-2 

1 
1 - 2 n dt1 .

Thus our discussion must be divided into the following cases:
1(i) W e first deal w ith  the  general case where n * -
2  '  

1: Then the  equa-

tions above are  written as

A * 4 n y n - 1
2 (n — 1) (2n —1) 

1z2-2n±" ( 1)Z — (2n —1) 1

1Cy
— Dx = -

2
4n y n - 2  .

Thus, choosing C= 4nyn -
1/ 2 (n - 1) and D = — 4 n y '/  (2n - 1), we have A (x , y,

z) = 4n y n - 1 z 2 - 2 n
/ G (n - 1) (2n - 1 ) .  Therefore we obtain the fundamental func-
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tion

(4.9) L (X ,  y; p , 
q) = y 2 n p 2 n - 1

12  "

where 4n/2(n - 1) (2n - 1) was omitted.
The functions Gi o f  this metric are given easily by (1 .20 ) as

(4.10) G1= 0  , G 2= - - t
4y

1
(ii)

n = - 2 "  
(4 .7 ) a n d  (4 .8 ) give

A * =  2 y  (z —z +  1 )  ,  Cy —  Dx= Y  3 / 2

Choosing D = —C= 2y - 1, we have A  (x, y, z) =2y — lz  logizl. Consequently we
omit 2 and obtain

(4.11) L (x, y; p, q) =y 4 q  log

(iii) n=1: Similarly we have

A*= 4 (z — logizi — 1 )  ,  Cy—  Dx=Y  •
Choosing G = 4 and D = — 2x/ y — 4, w e have A (x, y, z ) = — I — 2xz/Y-
Therefore, omitting — 2, we obtain the metric

(4.12) L (x, y; p, q) = 2p log 1 4_1A_
P Y

 

N ow  w e shall re turn  to  the  general case w ith  th e  Finsler m etric  (4 .9).
If we refer to the new coordinate system #)= (x, , then we have (p, q)
= 2y4) and the m etric (4 .9 ) can be written in the form

(4.9') L (±, P, =41-n 
( )  2 - 2 n  (f5 ) 2 n - 1

Since f  does not depend on and #, th is  is  a  specially simple metric, called a
locally Minkowski metric [1], [3 ], a n d  (±, #) is  an adapted coordinate system to
th e  s tru c tu re . Further its main scalar I, one of the two essential scalar fields
in  th e  two-dimensional case , are  constan t as follows: Since (4 .9 ')  is  of the
form (i) or (iv) of Theorem 3 .5 .3 .2  o f  [1], we have directly as follows:

(i) E =1, 12 >4, (2 — 2n) (2n — 1) < 0  , 1 +1 = 2 (2 — 2n)
ih z _ 4

(iv) a= —1, (2 — 2n) (2n —1) > 0 , +1 = 2 (2 — 2n) .

Therefore we have
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Proposition 1. The Fins ler space (R2
+ , L (x, y; p, q ))  w ith a m etric (4.9)

is locally  Minkowski, and has the signature 6 and the constant m ain scalar I as
follows:

(1) n <-
1

2 ' >1. e=1 ,

1(2) —

2  
<n <1: 6= ,

(4n-3)2  P= 
2 (n  —  1) (2n  —  1)

(4n - 3) 2  

P= 2(n— 1) (2n — 1)

(4n-3)2 1 1 Remark
'  2  (n  — 1)  ( 2 n 1 )

 = 4 + 
2 (n — 1) 2 n - 1

 T h e  graph of 12 is

shown in Fig.3.

Fig. 3

Since a  Finsler space of dimension two is Riemannian if and only if 1 =0,
Proposition 1 shows th a t  (R 2

+ , L  (x , y ; p, q ) )  under consideration is Rieman-
nian, if and only if n=3/4; (4.9) reduces to

(4.13) L2 (x, y; p, q) = =2j54 ,
A /Y

which is, of course, the Lorentz metric. Consequently w e can state that all the
Finsler spaces we consider in  the  present section are projectively f la t  [1 ], be-
cause they have the locally Minkowski spaces, given in Proposition 1, as the
representatives. In  fac t, re fe rr in g  to  (±, #), d i  o f  th e  m e tric  (4 .9 ') vanish
obviously . F urther it is  easy  to  show that the m etrics (4 .11) a n d  (4.12) are
written respectively in the form

(4.11')L  ( ± ,  4 ;  f i ,  4 )  = 2 ( 4  log fi q)

 

fi, 4) =2(15 log[T j+  xv-4)(4.12')
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and di of these metrics are of the form  (1.22) as follows:

(4.11a) G' = — 13 #  ,  P = Ly

(4.12a) G = — , P  = ( . 1 1_ — 215) .
L y  Y

§5 . Family of hyperbolas

Finally we shall consider the  family of rectangular hyperbolas iC (a, b)1
given by the equation

Fig. 4

(5.1) (x —a)y =1 )  , y >0 ,

on the semiplane R2
+ having the x -ax is  as one of the asymptotic lines, and find

the Finsler metrics as in  the preceding sections.
F ir s t  (5.1) yields

z ( = 0 =   b
( x

—
 a ) 2

Consequently we get

2b z '=
(x — a) 3  •

2
(5 . a=x +-Y -=a(x , y , z )  , 1 )= — B — = 13(x, y , z)

, 2(5.3) z z2= •=u y, .

The latter gives the differential equation

(5.4) yy"=2 (y') 2 ,
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characterizing  C (a , b)1 , which is quite sim ilar to (4.4) in the form.
N ext (5.3) gives uz= 4z/y -= — 4/ (x — a) and

r  — 4dx _ 1  ,  V(x, y , z ) = ( )U (x; a, b)=ex p J  x — a a) 4

T h u s  (2.8) and  (5.2) lead to

B (x , y , z ) =H  (a, 5) = H (a, 5) .

From  the  arbitrariness of H  w e m ay w rite B =H  (a, 13 )  / 0 .  Hence we have
from  (2.9)

(5.5) A * (x, y, z) = I f  z (2. — (t) d t  ,  F (t) =11(x ± k  

t ' ty 4

Putting

F 1 (t) =H a ( x ± 'It ,  - - Y ±
t )  ,  F 2 (t) = 1113(X± Y

t
- , 11

1_2 )

the condition (2.10) for the  functions C (x , y )  and D  (x , y ) is w ritten  a s  fol-
lows:

(5.6) Cy—Dx= H (a. 18)
2 2

54
5 f zF (t) tdt

± 2 i z( t ) — yF2 (t)1 dt .
y 4 1

Theorem 3. Every associated fundamental function A  (x , y , z ) of  a Finsler
space (R2

+ , L (x , y; p, q ))  hav ing the hyperbolas (5.1) as the geodesics is given by

A =A * ( x ,y ,z )+C (x ,y )+D (x ,y ) z

where A * is def ined by  (5.5), H is an arbitrary function of  (a, )3) given by  (5.2)
and the functions (C, D) of  (x , y ) m ust be chosen so as to satisfy  (5.6).

Example 4. Sim ilarly to Exam ple 3, w e a re  concerned with th e  space
(4 ,  L (x , y; p, q ))  where H (a, /3) = Sn = (— z ) n  for a  real number n. Then
(5.5) a n d  (5.6) are w ritten in the form

(5.7)

{

A * — (- 1) ny 2n - 4 (z f i
z t'd t —  f i

z t'd t)

Cy
— Dx = ( - 1) n 2y 2n - 5 12 - n + (n — 2) fi zt i - ndt1 .

To compute the integrals in these equations, we distinguish into three cases as
follows:

(i) n 1 ,  2 :  In  this general case we get from (5.7)

4
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A * n y 2 n - 4
(n  — 1) i2 n+ (n - 2) z+ (n - 1) ,  C y

— Dx = (— 1) n2 2"-
5

Choosing C = ( - 1)ny 2n- 4 / (n - 2 ) and D= (—  1) 
n + l y 2 n - 4 /

 (n - 1), we have A =
( _  1 )  n y 2 n - 4 z 2 — n

/ (n - 1) (n - 2 ) .  Therefore, by the  homothetic change of met-
ric, we obtain the fundamental function

(5.8) L ( x ,  y ;  p ,  
q ) = p 2 n - 4 6 1 2 - n p n - 1

n i ,  2  .

(ii) n = 1 : (5 .7 ) gives

A * = 1 (z logizi z + 1 )  ,  C , D x =  2y 2

Y 3
If we choose C= — D=1/y 2, then we obtain

(5.9) L(x, y; p , q) = - q -
y 2 log .

(iii) n=2: It follows from (5 .7 ) that

A * = z — l — logizi , C D =  —
2

Y •

We can choose C=1 and D = — 1 — 2x/y, and we obtain

(5.10) L (x, y; p , q) =p log g_1+ 2xq
PI •

 

Now we return to the m etric  ( 5 .8 ) .  Since it is of quite a  similar form to
(4 .9 ), we get also the result sim ilar to Proposition 1 as follows:

Proposition 2. T he Finsler space (R2
+ , L  (x , y ; p ,  q ) )  with the metric

(5.8) a re  locally M inkowski, and have the signature  an d  th e  m a in  scalar I as
follows:

(2n-3(1) n< 1 , >2: s = 1, 1.2
(n - 1) (4

—)2

2) '

(2n-3(2) 1<n<2: E-= j 2 =  (n - 1) (n—
) 2 

2) •

(2n - 3) 21 1 Remark
'  (n  — 1 ) (n  — 2 )  = 4 n - 1 

+
n - 2 '

The graph of /2 is show n in Fig.5.

Therefore for n=3/2 we get the Lorentz metric

(5.11) (x, y; p , q) .

Those special m etrics (4 .13 ) a n d  (5 .11 ) suggest u s the  consideration of
the Lorentz metrics
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Fig. 5

(5.12) L2 (x , y; q) —  y 2npq

fo r  arb itrary  rea l num bers n. O n account o f  (1.4) w e ge t th e  equation of
their geodesics: yy"-F2n (0 2 =0 which is equivalent to (y2ny )  = O . T h u s w e
obtain their finite equations

(5.13) y 2 n + 1 , c  (x — a )  , — —
1

2 '

w here a  a n d  c  a re  a rb itra ry  c o n s ta n ts . I f  w e  pu t n = — 1 /4, then we get
(4.1), and if n= — 1, then we have (5.1).

Similarly to the  last section, we have the new coordinate system (±, =
(x, 1/y) adapted to the local - Minkowski structure of (5 .8 ) .  From  (fi, =  (p,

— q4 2)  we get the expression of (5.8) in the form

(5.8') L(Y , g ; p ) —  (/5) n - 1  HO 2 - n

(5.9) a n d  (5.10) are  also written as

(5.9')

(5.10')

L (±,

L

j5, =40 —

4

#
q
2j )  ,

2=4.--015, =j5 log

From these expressions it follows that their C l  a re  w ritten in the form  (1.22)
as follows:

(5.9a)

(5.10a) d1 j P  2= ( yfi — xq) .
14 2

2

d i =  — 13V  ,  P =  
,7

Ly '
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