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Two-dimensional Finsler spaces whose geodesics
constitute a family of special conic sections

By

Makoto MATSUMOTO

To find the Finsler spaces having a given family of curves as the geode-
sics is an interesting problem for geometricians and will be an important prob-
lem from the standpoint of applications [1]. A previous paper [5] of the pre-
sent author gave the complete solutions of this problem in the two-dimensional
case, and another paper [7] may be regarded as the first continuation of [5].
The present paper is the second continuation.

The purpose of the present paper is to give a geometrical development of
the preceding two papers above. The given families of curves treated in this
paper consist of semicircles, parabolas and hyperbolas respectively on the
semiplane. Some preliminaries are necessary and, in particular, the formula
(1.20) for the functions G’ (x, y) will enable us to obtain them easily without
finding the fundamental tensor.

§1. Preliminaries

Let us consider an n-dimensional Finsler space F”"= (M", L (x, y)) on an
underlying smooth manifold M” with the fundamental function L (x, y). The
fundamental tensor gi; (x, y). the angular metric tensor h;; (x, y) and the nor-
malized supporting element I; (x, y) of F* are defined respectively by

gii=hiytlli, hiy=LLogp, Li=Lw,
where Ly=0L/dy" and L= 0L/ 0y’.
The geodesic, the extremal of the length integral S:f,'L (r, y)dt, t2to, y'
=z'=dx'/dt, along a curve xr'=x'(t), is given by the Euler0 equation

(1.1) %Lm—LiIO,

where L;=0L/0x" and y'=x'. In terms of F (x, y) =L%(x, y) /2, (1.1) is
written in the well-known form

(1.2) I 126" (&, ) =h (),

where we put
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i ’F F
(1.3) 2giiG' (x, y) :yr<af,ay,~)_aaxj :

and h (t) = (d%/dt?) / (ds/dt).

We shall restrict our consideration to Finsler spaces of dimension two
and use the notation (x, y) and (p, q) respectively, instead of (x!, x2) and (y!,
y?) ([6]);1.1and 1.2 of [1]). Then, from the homogeneity of L (x, y; p, q) in
(p, q) we have

Le=LgpptLzgq ., Ly=LypptLyg ,
and the Weierstrass invariant
el _Log_Lag
2 Pq P2
Consequently the two equations of (1.1) reduce to the single equation
(1.4) Lag—Lup+ (pg—gp) W=0 ,

which is called the Wererstrass form of geodesic equation.
Next we are concerned with the associated fundamental function A (x, Y, z),
z=y ' =dy/dx defined as follows:

(1.5) Alx,y,2)=L(x, y;1,2) , L(x, y;p, q) =A<:c' v, %)P .

Then it is easy to show that (1.4) is written in terms of A (x, y, z) as
(1.6) Ay tAy tAL—A,=0, 2=y,

which is called the Rashevsky form of geodesic equation.
We observe in (1.4) that pg —gp = p%y”. Hence from (1.2) we have
another form of geodesic equation as follows:

w_2
(1.7) y =;(qG‘—sz) :

Now we consider the functions G’ (x, y) in detail. In a general F” we
have the Berwald connection BI'= (G, G;), defined by G';=0G"/dy’ and

G;x=0G";/0y*, and obtain two kinds of covariant differentiations; for a Fins-
lerian vector field V' (x, y). for instance, we have

OV OV gy, =0

1’4 ; = -
Toox? oy’ oy’ '

called the h-and v-covariant derivatives of V' respectively.
BI'is L-metrical, L ;=0, which gives
(18) Li=LG"; .

Further we get from (1.8)
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(1.9) Li(j>_fhrjc TG

Next, from (1.3) we have 2g;;G'y’= (0F/0x")y’, that is,
(1.10) 26 =Ly" .

We shall return to the two-dimensional case. Since the matrix (k) is of
rank one, we get e= %1 and the vector field m; (x, y) satisfying

(111) h,~,~=em,m; .

It is noted that m; is determined by (1.11) within its orientation. Since we
have

(1'12) gfj:lilj+8m,1nj s
we get easily
(1.13) L'=1, Im'=mi'=0, mm'=¢,

where the lowering and raising of indices are done by g;; and its reciprocal

g”. Therefore we obtain the orthonormal frame field (I?, m*), called the Ber-
wald frame.

(1.13) shows that we have scalar fields h (x, y; p, ¢) and k (x, y; p, q)
such that

(1.14) (my, ma) =h (=12, 1) , (m', m?) =k(—1y 1) , hk=c¢ .
Then (1.12) and (1.14) yield
(115) g(zdet(gﬁ))=E(llm2—lzm1)2=€h2 s
1 1
(1.16) z(ml m?) :E(_lz, h) .
According to (1.15) ¢ is the signature of the metric.

We consider W. We have hiy=LLy,=LWgq? and hin=¢ (m,)2=eh?(1%) 2=
eh?(q/L)% Consequently we have

(1.17) L*W=eh*=g .

Now we consider the expression of G’ in the Berwald frame [4]. (1.9)
and (1.14) give

LegLip= [ (G =miG') = Lo (UGTHIGT) =—Zmo (4'G7)

which implies 2m,G”= (Lyg—Ly») L?/eh. Consequently this and (1.10) lead to

2
(1.18) 2G'= (Ly") '+ (qu—Lw)%m‘

If we put
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(1.19) Lo=Lwy", M=Lg—Ly ,

then it follows from (1.16) and (1.17) that (1.18) is written in the more
convenient form

(1.20) 26'=1(Lp— L) . 26=1(Lug+LoAL) .

This is also written in terms of A (x, y, z) as follows:

)

(1.207)

where we put
Ao=Ap+Ay | M=AIZ+A,,Z%—A,, .

Finally we shall summarize some essential points of projective change for
the later use. Let us consider two Finsler spaces F*= (M", L (x, y)) and F*
= (M" L(x,y)) on a common underlying manifold M. If any geodesic of F"
coincides with a geodesic of F” as a set of points and vice versa, then the
change L—L of the metrics is called projective and F" is said to be projective to
F* [1]. Then the geodesic equation (1.2) in an arbitrary parameter t shows

that F” is projective to F”, if and only if there exists a scalar field P (x, y),
positively homogeneous of degree one in y, satisfying

(1.21) G'(x, y) =G (x, y) +Px, y)y' .

P(x, y) is called the projective factor, or the projective difference of L from L.

In the two-dimensional case (1.21) can be easily verified from (1.7).
In fact, if F” is projective to F”, then (1.7) gives (G'—G")g= (G2—G?)p,
which is written as (G'—G)m;=0 from (1.14).

A Finsler space is called projectively flat, if it has a covering by coordinate
neighborhoods in which it is projective to a locally Minkowski space. Then
F" is projectively flat, if and only if we have locally a function P (x, y), posi-
tively homogeneous of degree one in y, satisfying

(1.22) G'lx,y)=—Plx, y)y' .

The notion of projective flatness coincides with the notion of “with recti-
linear extremals”, that is, any geodesic is locally represented by » linear equa-

tions x'=x'+a't of a parameter t, or n —1 linearly independent linear equa-
tions a%; (x'—x%) =0, a=1, -+, n—1.
We shall deal with a Randers change L—L =L+ f8, where B8 is a differen-
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tial one-form B (x, dxr) =b; (x)dx’ [4]. A Randers change is projective, if and
only if b; is a locally gradient vector field, that is, 8b;/0x’— db;/0x’=0; such
a change is called a gradient Randers change. In the case of dimension two it

is easy to verify it from (1.4). In fact, we have from L=L+j
l:rq_ljyp:L_tq_Lyp-'_abZ/ax—abl/ay N W: W .

Thus (1.4) shows that the geodesics coincide with each other if and only if
Oby/0x —0b1/dy=0. Then we have locally a function b (x*) such that b;=0b/
ox'.

For a gradient Randers change we have M=M from (1.19). Thus, ap-
plying (1.20) to L=L~+j we get

ZpPL_+ZG‘b0=boop—bz% , 2qP[+Zszo=b00q+b1Mw7 ,

where bo=by" and beo= (8b;/0x’) y'y’. Since these give 2 (G'¢—G%») =—M/
W, we get

(1.23) 2P1:=b00—2b,~G' .

Consequently the projective difference P of the gradient Randers change is
given easily by (1.23) and such a change will be omitted in the following.

§2. From geodesics to the Finsler metrics

Let us consider a family of curves {C(a, b)| on the (x, y)-plane R? given
by the equation

(2.1) y=f(x;a,b) ,

with two parameters (a, b). The first purpose of a previous paper [5] was
to show how to find the two-dimensional Finsler space F2= (R%, L (x, y; p, q))
whose geodesics are given by (2.1). We shall give an outline of the method in
the notation in [7].

From (2.1) we get

(2.2) z2(=y)=fz(x;a,b) .

and these equations enable us to solve a and b as functions of x, y and z
(2.3) a=alx,y,2) , b=B(,y, 2) .

Next, y” =fzz(x; a, b) and (2.3) give the following function u (x, y, 2):
(2.4) Z=fux a B)=ulz, y 2) ,

which is precisely the second order differential equation of y characterizing
{Cla, b)}.
Now we are concerned with the Rashevsky form (1.6) of geodesic equa-
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tion. Since we get Lgg=A../p from (1.5) and A= Wp? (1.5) and (1.17)
show

(2.5) L*W=A%A,,=g .

Thus it is suitable to call A,, the associated Weierstrass invariant. We put B=
Az Then differentiation by z of (1.6), that is, Bu+ A,z + A, —A, =0
yields

(2.6) Bz+Byz+Bu+Bu,=0 .

1

The solution B (x, y, z) of the first order quasilinear differential equation
(2.6) is given as follows: Defining U(x; a, b) and V (x, y, z) by

2.7)  Ulx;a b)=exp Ju,(x,f fo)dxr , Vir,y,2)=U;a B) ,

we obtain

(2.8) Blr, y. o) =1 B)_

Vi, y, 2)

’

where H is an arbitrary non-zero function of two arguments.
From A,,=B we get A in the from

Alx, y, 2) =A%, y, 2) +Cx, y) +D(x, y)z ,
(2.9 2
A*= [ {[B(x, y, 2)dzl dz=fzo (z—t)Blx, y, t)dt .

where C and D are arbitrary but must be chosen so that A may satisfy (1.6),
that is,

(2.10) Cy—D,=Afu+Akz+A%L—AF .

It is easy to verify that the right-hand side of (2.10) does not depend on z.

Assume that a pair (Co, Do) has been chosen so as to satisfy (2.10).
Then (C—Co)y= (D—Dy) 1, so that we have locally a function E (x, y) satis-
fying Ez=C—Cy and E,=D—D,. Thus (2.9) is written as

A=A*+Cyt+Dozt+E,+E,z .
Therefore (1.5) leads to the fundamental function
Lz, y;p.a) =Lo(x, y; b, q) Telx, yip, 9)
Lo=A*(x, y, p/q)p+Colx, y)p+Do(x, y)g |
where ¢ is the derived form

(2.12) elx, y; dx, dy) =Edxr+E,dy .

(2.11) [

Since the change Lo — L is a gradient change, (R? L) is projective to (R?
Lo). Therefore the Finsler metric we found is uniquely determined depending
on the choice of the functions H and E of two arguments. Further, for any
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choice of a function H we obtain a Finsler space (R% L) which is projective to

each other, because each one has the same geodesics {C(a, b)}.

§3. Family of semicircles

We shall consider the family of semicircles {C (a, b)} given by the equa-
tion

Fig. 1

(3.1) (x—a)?+y?=p?, y,b>0,

on the semiplane R = {(x, y), y >0} having the centre (a, 0) on the xr-axis,
and find the Finsler metrics L (x, y; p, ¢) such that all geodesics of the

two-dimensional Finsler space (R%, L (x, y; p, q)) belong to {C(a, b)}.
First, from (3.1) we have

(3.2) r—atyz=0, z=y’

These equations give the functions a(x, y, z) and B(x, y, z) as in the last sec-
tion:

(3.3) a=xtyz=alx,y,z) , b=yJ1+22=8(x, vy, z) .

The function u (x, y, z) is given by

2
(3.4) z’(=y”)=—l—;Z =u(x,y, 2 ,

which yields the differential equation
(3.4) ' yy +1+(y)*=0,

characterizing {C(a, b)!.

Next we shall find the functions U (x; a, b) and V (x, y, z) defined by
(2.7):

= —22 __—2(x—a)
y ’ ul(x f fI) ( —a)z—bz 9’
—Z(x a) |, _ 1 _1
U= eXDf _bz l(x—a)z—b2| , V_E .
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Consequently we have from (2.8) and (2.9)

(3.5) Blr,y,2)=y*H(a.B) , A*(x,y,2)=y*J {JH(a, Bdzldz .
Thus the associated fundamental function A (x, y, z) is written as
(3.6) A=A*(x,y,2)+Clx,y)+D(x, y)z ,

where C and D must be chosen so that they satisfy (2.10).
We shall deal with (2.10) in this case. First A* may be written in the
form [5]

(3.7) A*=yzj;z(z—t)F(t)dt L F(W) =H Gyt y /118
If we put

Fi(t) =Ha(x+yt, y/1+2) | Fo(t) =Hg(x+yt, ysy1+1%) |

then we have
;"=2yj;z(z—l)F(t)dt'l-yzfoz(z—t) V() t+F (1) Y1+ dt |
Aff=yzj;zF(t)dt , ;‘zzyzj:Fl(t)dt .
=2y [ FOa+y [ 10 HF 0 /T
and A% =B=y?H. Thus (2.10) implies
(3.8) C,,—D1=2yj;zF(t) t‘dt+yzj;zFl (t)dt

ty f FL () Fy () VI 1t —y A+2) H (e, B) |

Therefore we obtain

Theorem 1. Every associated fundamental function A (x, y, z) of a Finsler
space (R%, L (x, y; p, q)) having the semicircles (3.1) as the geodesics is given
by

A=A*(x,y, 2) +Clx, y) +D(x, y)z ,
where A* is defined by (3.7), H is an arbitrary function of (a, B) given by (3.3)
and functions (C, D) of (x,y) must be chosen so as to satisfy (3.8).

Example 1. In particular we first put H(a, 8) =a=x+yz in the result
above. Then (3.7) and (3.8) yield

z 2,2
ar=y ["=0) Gty a=YE Gty . D= —ay .
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Thus, choosing C=0 and D=x%/2, we get

2.2
Alx, y, 2) =y2£<x2+xyz+y3i> .

Therefore it follows from (1.5) that the fundamental function L (x, y; p, q) is

written in the form

2.2
(3.9) Lz, y;p, q) =%Q<xzp+ryq+%%> .

where 1/2 was omitted by the homothetic change of metric.
To verify (3.9) we recall (1.4). For (3.9) we have

2
qu=2y(r+yg‘> , L”=—g*1;q—(x+ﬂ) ,

) P
L,,q=%%2(x+%‘l) , W=Zg;(x+}§l) .

Hence (1.4) leads to (3.4") immediately.
Further, using the formula (1.20), we have the functions G’ of (3.9) as
follows:

2
610 agL=—ah, 26L=E i) (xp+42) +27 .

Example 2. Secondly we shall consider the metric where H (a, B) =j",
n being an arbitrary real number. Then we have from (3.7) and (3.8)

A*=y™*2 izl (2) — . ()]
(3.11) Cy—D:=y " {(n+2) Ju(2) — (1+27) ",

I,,(z)=j;z(1+t2)”/2dt , j,,=j:(1+t2)"/2tdt )

(i) We first treat the general case where n* —2: Then J, (z) =
{A+2H)"**1—1} /(n+2) and C,—Dr=—y"™*. Choosing D=0 and
C=—y™?/(n+2), we obtain

(3.12) Alx, y, 2) =y”+2[z1,, (2) _n%z(l +22) n/2+1] .

Making use of (1.20") we obtain G’ of (3.12) as follows:

2 2
2 =K,p . 26°=Kq+LTT
(3.13) y

= _q__LZ-'__qi n+1 q
K, (n+2)y .Y 1"(17)'
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We restrict our consideration to the case where » is an integer. Then we
have the formula

m+1)1,(2) =nl—p (z) +2(1+22) "2 .
Thus, for a positive integer n we get the reduction formula

(14"
n+1

1) =5 /T2 Hloge +VIF2]) | Lo(e) =2 .

For a negative integer n we get

+3 1+ n/2+1
In(2) Z%_WLHZ(Z) _in__zl_z)_z__ ., n=—4,

I (&) ==l (o) + nz2

(3.14)

(3.15)

1_3(2):/%22 . I,(z)=Tan'z, I_(z) =loglz+v1+2?| .

As a consequence we are interested in the following cases:
(ia) n=1: We have from (3.12)

Alz.y. 2) =y3{%~/1+z2 (2—2) +%log|z+«/1+zz|] .

Therefore we obtain the fundamental function

(3.16)  L(x, y;p.q) =y*Vp*+¢ [(%)2—2] +3¢ log

ot /1+(%)2| :

where % was omitted by the homothetic change.

(ib) »=0: Similarly we get

2
(3.17) Lz, y; p, ) =yp—<qz—p2) :
which is of the Kropina type (1.4 of [1]).
(ic) n=—1: We get as above
q q)
(3.18) Lz, y:p.q) =y<q logp+,/1+(p> |—~/p2+qz) :

(id) »n=—3: We have A=41+22/y and the fundamental function is the
simple

2 2
(3.19) L(x, y; p, q)=—%+q— )

This is the well-known Riemannian metric of constant curvature — 1 (§74 of
[2]). Its G' are given by
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2__ 2
3.20 ¢i=-H  ¢=E1
(3.20) ; ” . %
Since we obtain such a standard metric (3.19), we shall be concerned

with the projective difference P (x, y; p, q) of a general metric (3.12) from
(3.19). From (3.13) and (3.20) we get

2 =6 = (Kt D)o . 2676, =(Kut2)q

Therefore we have the equation of the form (1.21):

/ i i i _ mt+4)q_pH+¢ .n (l)
(3.13) G—? +Py' , P= 2 oL Y lnp ,

where L is the fundamental function determined by A of (3.12).
Similarly (3.10) is written in the form

’ i i i _;73_2 2_L2) }L‘Ii< lL‘L)
(3.10) G—Cr} +Py' P—L(q 2 +Lp x+3p .
(ii) We deal with the exceptional case #=—2: From (3.11) we get
A*=zTan“z—%log(l+zz) , C,,—Dx=—%.
Hence, choosing C=0 and D=x/y, we obtain
2
3.21 p.q)=qT -1(1)—1’— { +(1) J+5L
( ) L(z, y;p, q) =g Tan ) 2logl ) y

The projective difference of this L from the Riemannian (3.19) is easily
obtained as follows:

G'=G'+Py'

r

2PL=%[p(q—£y2> — (p*—¢?) Tan'1<g“) —pq log[l+%>2” .

(3.22)

§4. Family of parabolas
We shall consider the family of parabolas {C(a, b)| given by the equation
4.1) by=(@x—a)?, y, b>0,

on the semiplane R% having the vertex (a, 0) on the x-axis, and find the Fins-
ler metrics similarly to the previous section. The family suggests us Fig.20
of [2].

First (4.1) yields

z(=y") =%(x—a) , z'—%.
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Fig. 2

S

Consequently the functions a(x, y, z), B(x, y, 2) and u (x, y, z2) as in the pre-
ceding sections are given by

(4.2) a=x—‘2§£=a(x. v, 2) b=%=ﬁ(x, v, 2) ,
2 z

(4.3) z'=§—y=u(x. v, 2z) .

The latter yields the differential equation

(4.4) 2yy"=@)?,

characterizing {C(a, b)}.
Next we get u;=z/y=2/(x—a) and

Ulx; a, b)=expf 2dr _ @x—a)?, Vi, vy, Z)=<%L)2 .

xr—a

Thus (2.8) implies

B(x, y, 2) =H(a, B)ZZ'Z——H(a, B)yLB )

2

On account of the arbitrariness of H, we may write B as B=H (a, ) /y and
A* of (2.9) is written in the form

A* (. y. 2) =iffH(a, B) (dz)? .

This is written, as in the last section, in the form
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(4.5  A*(z.y 2) =ifl -0F@d, P =Hz—%, i‘;‘zi) .
z
It is noted that f: is applied in (4.5), instead of j:), because ¢ is in the de-

nominators in F(t).
If we put
_ 2y 4 — _2y 4y
Fl(t)_Ha< - t v‘}%) ) Fz(t)_HB< t ’ t2> y
then it is easy to show that the condition (2.10) is written as
2 1 (-
(4.6) D=t A5 [ PO
2y y*r
Ll - tr0)
i Fi(t) th(t) dt .

Therefore we obtain

Theorem 2. Every associated fundamental function A (x, y, z) of a Finsler
space (R%, L (x, y; p, q)) having the parabolas (4.1) as the geodesics is given by
A=A*(x, y,2) +Clx,y) +D(x, y)z ,

where A* is defined by (4.5), H is an arbitrary function of (a, B) given by (4.2)
and the functions (C, D) of (x, y) must be chosen so as to satisfy (4.6).
Example 3. In particular we consider the case where H(a, 8) =B" for a

real number #n. Then F (t) = (4y/t*)" from (4.2), F1=0 and Fo=n (4y/t?)"".
Hence (4.5) and (4.6) give

wn wemar(e [ [ar)

2—-2n

(4.8) C,,—DI=4"y”_2[22 +(n—1)flzt“2"dt] .

Thus our discussion must be divided into the following cases:
(i) We first deal with the general case where n#l' 1: Then the equa-

tions above are written as

A*= 2@—41”3/6;—1) 22" 12— 1)a— Cn—1)] |

Cy—D1=%4”y”_2 )

Thus, choosing C=4"y""'/2(n—1) and D=—4"y""'/(2n—1), we have A (z, y,
2) =4"y" 122 /2(n—1) (2n—1). Therefore we obtain the fundamental func-
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tion
(49) L(.’L‘, v P, q) :yn—lqz—anzrl—l , n#% ,
where 4"/2 (n—1) (2@—1) was omitted.

The functions G' of this metric are given easily by (1.20) as

2
1— 2 _ 9
(4.10) G'=0, G*= 4y -

(ii) n=%z (4.7) and (4.8) give
A*=2y“%(zlog|z|—z+1) , C,—Dy=y™¥% .

Choosing D= —C=2y_%, we have A (x, y, 2) =2y_%z loglz|. Consequently we
omit 2 and obtain

(4.11) Lz, y; p. q) =y iq log §| :
(iii) »=1: Similarly we have

A*=4(z—loglz] —1) , c,,—D,=§.

Choosing C=4 and D= —2x/y — 4, we have A (z, y, z) = —4loglz| —2xz/y.
Therefore, omitting —2, we obtain the metric

(4.12) L(x,y;p, q) =2plog

1|+£q
Py

Now we shall return to the general case with the Finsler metric (4.9).
If we refer to the new coordinate system (&, §) = (x, v/y), then we have (p, q)
= (p, 2yq) and the metric (4.9) can be written in the form

(4.9') (1:' y-; ﬁ. q-) :41—n (q-)2-2n (ﬁ)Zn—l )

Since L does not depend on x and y, this is a specially simple metric, called a
locally Minkowski metric [1], [3], and (&, ) is an adapted coordinate system to
the structure. Further its matn scalar I, one of the two essential scalar fields
in the two-dimensional case, are constant as follows: Since (4.9") is of the
form (i) or (iv) of Theorem 3.5.3.2 of [1], we have directly as follows:

1

() e=11'>4 (2—2) 2n—1) <0 /I-Z_—4+1=2(2—2n) ,
(iv) e=—1 (2—2) @n—1)>0 , ——L—"t1=22—20).

NEw

Therefore we have
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Proposition 1. The Finsler space (R%, L (x, y; p, q)) with a metric (4.9)
is locally Minkowski, and has the signature € and the constant main scalar I as
follows:

1 _ 2 __ (4 _3)2
(1) n<z.,>L =1, I—Z(n_?)(zn_l) .

n—3)° 1 .
Remark. =1 n=1) =4+ =1 -1 The graph of 2 is

shown in Fig.3.

Fig. 3

Since a Finsler space of dimension two is Riemannian if and only if /=0,

Proposition 1 shows that (R%, L (x, y; p, ¢)) under consideration is Rieman-
nian, if and only if n=3/4; (4.9) reduces to

41 2 . Ry
(4.13) L*(x, y; p. q) o

which is, of course, the Lorentz metric. Consequently we can state that all the
Finsler spaces we consider in the present section are projectively flat [1], be-
cause they have the locally Minkowski spaces, given in Proposition 1, as the

representatives. In fact, referring to (£, y), G’ of the metric (4.9) vanish
obviously. Further it is easy to show that the metrics (4.11) and (4.12) are
written respectively in the form

(4.11) L& g 4) =2(q'10g

/ = 5 0 =2(5 2@&| Zq
(4.12) L(z, y; P, q) 2<plog| s +y_>,
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and G' of these metrics are of the form (1.22) as follows:

Si— __pi —_q
(4.11a) G Py’ , P Lj
(4.12a) Gi=—pPgi, P=—_q_7<£__‘i—215> .
Ly‘\y

§5. Family of hyperbolas

Finally we shall consider the family of rectangular hyperbolas {C (a, b)}
given by the equation

Fig. 4

(5.1) (x—a)y=b, y>0,

on the semiplane R% having the x-axis as one of the asymptotic lines, and find
the Finsler metrics as in the preceding sections.
First (5.1) yields

z<=y,):__b_ Zfzi
(x—a)?’ (x—a)®
Consequently we get
2
(5.2) a=x+*z-=a(x, v, 2) , b=—yz—=B(x, y,2) ,
2
(5.3) z'=27Z=u(x,y,z) .

The latter gives the differential equation

(5.4) yy' =2y,
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characterizing {C(a, b)}, which is quite similar to (4.4) in the form.
Next (5.3) gives u:=4z/y=—4/(x—a) and

Ulx; a, b) =exp T—u r—a)* Vix, vy, 2) v

Thus (2.8) and (5.2) lead to

Blr.y.2)=H(a B)(¥)'=H(a B (E)

From the arbitrariness of H we may write B=H (a, §8) /y“. Hence we have
from (2.9)

(5.5 A*(, y,2)=#flz(z—t)F(t)dt, PO =H(z+Y, —L)

Putting

2 2
Fl(t)=Ha(x+%, _y¢_> i Fz(t)=HB<J:+1tL, —yt—) ,

the condition (2.10) for the functions C (x, y) and D (x, y) is written as fol-
lows:

(5.6) C,—D;=H(a, B) -—-—fF (t) tdt
2
+_ 1 - 2 .
y4f1 Py (e) —yF2 (O] de

Theorem 3. Every associated fundamental function A (x, y, z) of a Finsler
space (R%, L (x, y; p, q)) having the hyperbolas (5.1) as the geodesics is given by

A=A*(x,y, 2) +Clx, y) +D(x, y)z ,

where A* is defined by (5.5), H is an arbitrary function of (e, B) given by (5.2)
and the functions (C, D) of (x, y) must be chosen so as to satisfy (5.6).

Example 4. Similarly to Example 3, we are concerned with the space

(R2, L(x, y;p, q)) where H(a, B) =B"= (—y?/2z)" for a real number n. Then
(5.5) and (5.6) are written in the form

ar=(=)mr= e = i

C—Da= (=122 =) [ran)

(5.7)

To compute the integrals in these equations, we distinguish into three cases as
follows:
(i) . n=>1, 2: In this general case we get from (5.7)
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(_l)n 2n—4

A= ey T 2zt =D, G D= (< 1)yt

Choosing C= (—1)"y**/ (n—2) and D= (—1)""y?4/(n—1), we have A=
(=1 "y 42"/ (n—1) (n—2). Therefore, by the homothetic change of met-
ric, we obtain the fundamental function
(5.8) L(x, y;p, @) =y™™¢7"p" , n¥l 2.

(i) »n=1: (5.7) gives

A*:—é(zlog|z|—z+1) , C,,—sz—é.

If we choose C= —D=1/y2, then we obtain

(5.9) L{x,y;p,q) =;q; log

i
1.

(iii) »=2: It follows from (5.7) that

A*=z—1—loglz| , cy—DI=§ )

We can choose C=1 and D= —1—2x/y, and we obtain

(5.10) L(x, y;p, q) =plog

i'.{_m
P y

Now we return to the metric (5.8). Since it is of quite a similar form to
(4.9), we get also the result similar to Proposition 1 as follows:

Proposition 2. The Finsler space (R%, L (x, y; p, q)) with the metric
(5.8) are locally Minkowski, and have the signature € and the main scalar I as
follows:

(1) n<1,>2 =1, 12=(n—£2{‘);£)_2—2),
2) 1<n<2  e=—1, 12=——(n£—2§‘)—_(%2).
Remark. (n(_z?)_é))_zz) :4—nl1+nl2.

The graph of I? is shown in Fig.5.

Therefore for n=3/2 we get the Lorentz metric
(5.11) Lz, y; p. @) =§‘§ .

Those special metrics (4.13) and (5.11) suggest us the consideration of
the Lorentz metrics
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Fig. 5 ] \ |
| '
! :
8 |
I , |
L ! '
6 | !
! i
____.4, __________ _il_ T---—-- —
]
21 \ i
| ]
I {
) ' >m
0.5 1 1.5 2 2.5
(5.12) L*(x, y; b, 9) =y*pq ,

for arbitrary real numbers n. On account of (1.4) we get the equation of

their geodesics: yy”+2n (y')2=0 which is equivalent to (y*y’)’=0. Thus we
obtain their finite equations

(5.13) y"=c(x—a) , n#—%,
where a and ¢ are arbitrary constants. If we put = —1/4, then we get

(4.1), and if n=—1, then we have (5.1).

Similarly to the last section, we have the new coordinate system (z, y) =
(x, 1/y) adapted to the local-Minkowski structure of (5.8). From (8, ) = (p,
—q/y? we get the expression of (5.8) in the form
(5.8) L@ g;:p.g)=E)"" (=) .

(5.9) and (5.10) are also written as

(5.9) L&, g;$.4) =q'(1—log—"—_2_) :
Y
(5.10") L(& g 5.9 =ﬁlog—L_;_ ~20
ypt v

From these expressions it follows that their G are written in the form (1.22)
as follows:

-2
~Ni— __pi :_9__
(5.9a) G Py, P Ly

(5.10a) Gi=—pyi P=z-%(2y‘ﬁ—fq') .
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