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On calculations of zeros of various L -functions

By

Hiroyuki YOSHIDA *

Introduction

A s w e have shown several years ago [Y 2], zeros o f  L(s, A ) a n d  L( 2 ) (s, A)
can be calculated quite efficiently by a  certa in  experim ental m ethod. H ere A
denotes the  cusp form  of weight 12 with respect to SL(2, Z) a n d  L(s, A ) (resp.
L( 2 ) (s, 4)) denotes the standard (resp. symmetric square) L-function attached to
A .  The purpose of th is paper is to  show that this m ethod can be applied to a
wide class of L-functions so that we can obtain precise numerical values of their
zeros.'

W e organize this paper a s  fo llow s. In  §1 , we shall describe basic features
o f  o u r  m e th o d  o f  ca lcu la tio n , w h ich  is  rep ea ted  applications of partia l
sum m ation. In §2, we shall study the r-th symmetric power L-function Lfr(s, A)
attached to A .  Since the cases r = 1, 2 are discussed in [Y2], we shall exclusively
treat the cases r = 3, 4. I n  § 3 ,  we shall study the L-functions attached to modular
forms o f half integral weight. These L-functions d o  n o t  have Euler products.
Naturally the Riem ann hypothesis fails for them ; we shall find many zeros off
the  critical line, though m ajor p a rt o f  zeros lie  o n  th e  critical line. We shall
also calculate the location of these zeros off the critical line. Though there is
som e hope to find relations among zeros of L-functions of two modular forms
which are in the Shim ura correspondence, no  explicit results cam e out so far.

In  § 4 , we shall study L-functions attached to Hecke characters of non-A,
ty p e  o f  rea l q u ad ra tic  fields. D .A . H ejhal show ed great in terest to  m ake
experiments in  th is  case, since coefficients are non-computable combinatorially ;
hence there is a  slight possibility that the Riemann hypothesis may break down
for these L-functions. W e have m ade experiments on 44 cases summarized in
Table 4.3; so  fa r no  counterexamples are found.

In  § 5 , w e  sha ll s tudy  the A rtin  L -function a ttach ed  to  a 4-dimensional
non-monomial representation of Gal (Q /Q ). In §6, we shall discuss the controle
of error estimates in our calculation. In §7, we shall consider the explicit formula
for the L -function a ttached  to  a  m odular form  o f  w e igh t 8  w ith  respect to
F 0 (2). W e  s h a ll  compare both sides of the explicit formula num erically. In §8,

*  During the final stage of writing this paper, the author was at M SRI supported in part by NSF
grant #DMS9022140.

'  After the publication of [Y 2], H . Ishii [Is] published a table of zeros of standard L-functions
attached to modular forms for 15 cases. It also comes to the author's notice that a program of the
calculation of zeros of L(s, z1) is included in "Mathematica" package, following the method of [Y2].
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we shall present sample programs to compute values of L-functions, which may
be convenient f o r  th e  re a d e r . I n  § 9 ,  w e shall form ulate  conjectures which
emerged during the  process of our experiments.

Most of sections have attached tables to  show results explicitly. Concerning
actual computations, we have used "UBASIC" created by Y . Kida. (It was not
available when we wrote [Y2].) The calculation was done by personal computers
which are not necessarily so fast. However our experiments extended over long
time (about three years) and UBASIC is quite  fast (compared with some other
softwares) for numerical calculations, the author thinks that our tables are fairly
extensive.

A  m otivation in these calculations has been to find non-trivial "functorial"
properties w hich  m ay  ex ist am ong  zeros o f L -func tions, a s  w a s  h in te d  in
[ Y 1 ] .  Though our experim ents a re  not successful in  th is  regard, conjectures
stemmed from them are  formulated in §9.

W e can pursue these calculations still further. T h e  topics which may be
included in  this paper are :
1) The Hasse-Weil zeta functions of algebraic curves, for example 3, 2 = x 5 — x + 1.

na — [ na] — 1/2
2) The Dirichlet series  studied by H ecke [H ], where a  is

n = 1

a  real irrational number.
3) Applications to  Riemann-Siegel type formulas.
4) Calculations of critical values of L-functions.
O ur results on these topics are still fragmentary, so the full discussion should be
postponed to future occasions.

N otation . F o r a  complex number z, we denote by 91(z) (resp. :5- (z)) the real

(resp. imaginary) p a rt o f  z. The letter q  stands for exp (271V  — 1z) when it is
clear from the  con tex t. F o r modular forms, we follow the notation in Shimura
[Shi].

§1 . An overview on our method of calculations

Let

(1.1) L (s)= E Gin n '
n = 1

b e  a  D irichlet series which is absolutely convergent when 91(s) > a  fo r  some
a >  1. In  this paper, we shall consider only such L(s) which can be analytically
con tinued  to  th e  whole complex p la n e  a s  a n  entire function a n d  satisfies a
functional equation of the form

(1.2) R(k — S) = K R(s).

Here K  is  a constant of absolute value 1, k  > 0,
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R (s)= Ns [I F(b i s + c i)L(s)
i=

with N  > 0, bi > 0, c e  C . W e  note tha t (1.2) is equivalent to

(1.3) R(k — s) = KR(s)

if a„e R, ci e R for all n and i. Put K-
1 = 14 with some Ki  e C . B y  (1.2), we have

(1.4) K iR (s)eR i f  91(s) = k/2.

Take any ô > O. F o r  T > 0, let N(6, T) denote the number of zeros of R(s)
counted with multiplicity in  the  domain

— 9i(s) k + 6, 0 3 ( s )  <  T.

L et D  b e  the rectangle whose vertices a re  — 6 ,k + 6 ,k +6 + iT , — ô + i T  and
le t  C  denote th e  co n to u r OD taken  in  positive  d irec tion . B y  the argument
principle, we have

(1.5) N ( 6 ,  T ) —  

 1   f  R'(s)
 d s ,

27zi R(s)

assum ing that neither zeros nor poles o f  R (s) l ie  o n  C .  L e t C ,  denote the
portion of C from k/2 to k/2 + i T .  By the functional equation (1.2), we obtain

1.6)
N (6, T )= n - 1 .4 arg R(s) = n -  z l(arg N s FT F(b i s + ci)) + n - 1 4 (arg L(s)),

where A arg denotes the variation of the argum ent on C1 ,  i.e., from  s = k l2 to
k l2 + i T  along k/2 to  k + 6 ,k + 6  to  k + 6  +iT , k + 6  +iT  to  k l 2 + i T .  Set 2

9 ( T )  =  arg (Ns n F(b i s + ci)).
i=1

Assume

91(0> —  b,k12 f o r  1 < i < m.

Then since bi > 0, Ns TIT_ ['( b is + c) has neither zeros nor poles in  the  domain
91(s) > k/2. H e n c e  8 ( T )  is e q u a l  t o  th e  v a r ia t io n  o f  th e  a rg u m e n t  o f
N s ir F  ( b i s + c i))  o n  th e  line  segment [k/2, k/2 + iT ] .  W e n o te  th a t  9(T)
can be computed in  high precision very easily using Stirling's formula (cf. [WW],
p. 252) combined with the relation F(s + 1) = F(s). We obtain

(1.7) N (6, T )= 9(T) + m A (arg L(s)).

N ow  let u s  consider the  case  when R(s) has zeros in  (— ô, k  + 6 ) . L et r

2 W hen it is c lear from  the context, we shall use 9 (T ) for the "phase factor" o f  this type in the
following sections without further explanation.
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denote th e  num ber o f zeros o f  R(s) i.e ., o f  L(s), in  this interval counted with
m ultiplicity. Then (1.7) holds with the modification

(1.8)N ( ,  T ) —  = 9(T) + 1 zl(arg L(s)).
2

Here A (arg L(s)) is counted by dividing C , into a  finite number of paths removing
real zeros of L(s) a n d  summing the variations of the argument of L(s) o n  each
of th e m . The validity of (1.8) can be seen by modifying C by small semi-circles
which detour the real zeros of L(s).

Throughout the paper, to compute L(s), we shall employ our method given
in  [Y2], which is repeated applications of Abel's partial sum m ation . Set

(0) (=  a n ,  u
0) — n — s

and d e f in e  s , u(
n°  recursively by

(1.9)
/I

E  s (m,_
m=,

(I) (I — 1)= —  (1 — 1) I  >Un t i n , ___

P ut V  E  swum.
n 1

T h e n  w e  have
=  n n

(1.10) S  =  S 1 ) — s(,2u1;,; 1
1

) .

As we have seen in [Y2], in several cases, V  seems to approximate L(s) amazingly
well when we choose N  and I  sufficienly la rg e . In  th e  succeeding sections, we
shall present various types of L-functions which can be treated in  m ore  o r less
sim ilar fashion. T he  efficacy of our m ethod seem s to depend strongly on the
arithmetical nature of the coefficients a„ of a D irichlet series L(s).

W e sh a ll co n c lu d e  th is  section by technical rem arks concerning actual
computations of V .  A s the first step, we should construct a  table  of an . For
D irichlet series considered i n  th is  paper, th is  s tep  can  be  ach ieved  ra the r
easily. S in c e  w e  c a n  c o m p u te  V  from  SIs?) b y  (1.10), th e  com putation of

=  E  an ti '  i s  th e  substantial a n d  th e  m ost tim e consum ing p a r t  o f  our
n = 1

calculation. However usually s;:) becomes very large and u n" )  very small when
increases. Therefore  it is indispensable to  perform  th e  actual com putation in
high precision. F o r un") ,  the  following formula (1.11) should preferably be used
than to compute it directly form the definition.

ta = N - s  i (±  (—  1 )'"  (1  ) in k )
k

=
1 m=1 M

S(S ± 1) • • • (S + k — 1)
( — 1 11̀    N - k

k!

N > > 1.
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(s+ 1) . •.(s+L)I (  1 ) 1 .+ 1 1N- s1If we replace E ,7  by E,L= ,, the error is less than 2̀
if 91(s) > — L — 1.

(L+1)! N

§2. L-functions atached to symmetric tensor representations of GL(2)

Let f (z) = e Sk(S L(2, Z)) be a  normalized common eigenfunction
of Hecke opera to rs. The L-function L(s, f ) = cn n- s attached to f  converges

absolutely when 91(s) > 
k  + 1

and  has the Euler product
2

L (s, f ) = 11 (1 c p p - s  pk — 1 — 2s)— 1

Put

1 — C p X  pk - 1 — Otp X1(1 — 13 X )

with ocp , flp E C, where X  is an  indeterm inate. For a positive integer r, we define
an Euler product

(2.1) Pr(s, f ) m — ar„p - s)(1 — Œrp-  1  f lpp - s) • • • (1 -

—
w hich converges absolutely w hen 91(s) > 

r(k 1)
+  1 .  It is  con jec tu red  tha t

2
L n s , f )  can be analytically continued to the whole complex p lane  as an  entire
function and satisfies a  functional equation. The conjectural functional equation
of Lfr(s, f ) takes the following form (cf. Serre [S e ] ) . If r is odd, put r = 2m — 1,

m — 1

(2.2) k r)(s, f ) (27r) - m5( s  —  i ( k  —  1 ) ) e ) (s, f ),
i= o

(2.3) Cr ( s i o m+ck- um2

If r is even, pu t r = 2m,
m-1

l e ) (s, f )= m-s12(2n)ms( 1J r(s —  i(k —  1)))
i = o

(2.4)
F  s — m(k — 1) +  ) 1,fr(s, f ) ,

2

12.51 Cr
 = \/— 1 r +(k - 1)m(m+1)+,5

where (5 0 (resp. 1) if m is even (resp. o d d ). T h e n  the  functional equation

(2.6) le)(s, f ) = e r l e ) (r(k — 1) + 1 — s, f )

is p red ic ted . A  quick way to see (2.6) is a s  fo llow s. L et M1 b e  the motive of
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r a n k  2  o v e r  Q  a ttach ed  to  f . W e  s e e  th a t  th e  H odge realization o f  M1
corresponds to  the two dimensional representation

p = Ind (th; 1/14, )

o f  W R , C •  H ere  Ife  = C " , WR ,c  i s  the W eil g roup  o f  C  o v e r  R  a n d  th  i s  the
quasi-character t/4(x) = 1 )  of Wc . L e t  (Tr : G L(2) - 4  GL(r + 1) be the symmetric
tensor representation of degree r  and  pu t p r  = o p. Then we find

(2.7) P r '="' 7,=-01 Ind (x x  ( r -  i ) ( k -  1 )  -  i ( k  -  1) ; W" R , C ) , r = 2m — 1,

(2.8)
PrC ) ' in_- 0

1 Ind (x x  
( r  -  i ) ( k  -  1 ) i ( k  -  1 )  .  w w

0  ( x  _+ x  - m ( k -  1
)
( s g n  x ) m

( k  - 1 )
)  o r = 2m,

where t  denotes the transfer map from Wits to  I I ' The gamma factor and the
constant e r o f  t h e  functional equation can be calculated a s  th e  usual gamma
factor and the constant attached to the representation pr o f  WR ,c  ; hence we obtain
(2.2) — (2.6).

We refer the reader to Shahidi [Shah], [Sha2] for what are known on  these
symmetric power L-functions, in more general cases.

Let 4(z ) = (1 — ( 1 ) 24 E  r+123  (SL(2, Z)), q = e 2 i t ‘  
1 z The calculation of

zeros of Lfr) (s, 4) for r = 1, 2  is given in  [Y 2 ] .  We consider the case r > 3. To
compute Lfr) (s, 4), we modify our summation method slightly in  th e  following
w a y . Fix r, choose y = y,. > 0 and set

L frqs, 4) = E an n -  =  E (an n ') n -  v )

ii =1n  =  1

Put
(o) - ( s „ = a„n  , u o) = n

and  define s n") , u(
n
1) recursively by (1.9). W e s e t  g i

) =  E nN, I t  tu rn s  out
that a  suitable choice of y depending on  r yields good results. W e can interpret
this as the neutralization of the effect of extremely large value of s  extremely
small value of u;3

1) .

As the first example, let r = 3. W e take  y  =  8 . For s =  17 + it, t = 20, the
values of

Ri = 4.11 (exp (i ( t) )S (0 , I .  =  3(exp(i79 (t))S1,1))

are given in  Table  2 .1 . In  Table  2 .2 , we give the values of t,, the n-th zero of
L ( 3 ) (s, A ), s = 17 + it on  the  critical line for 0 <  t < 40.

N ext w e app ly  our sum m ation  m ethod  to  L ( 4 ) (s, A ) tak in g  y  =  1 2 . For
s = + it, t  = 10, the values of

Ri = 91(exp (i 9 (t))S1,P),I  =  3(exp (i 9 (t))M,1) )

are given in  Table  2 .3 . In  Table  2 .4 , we give the values of un  the n-th  zero of



Table 2.1

N 10 Ro 15 R , 111) RIO

1000  3 .95  -9 .3  x  10 - 2  3.9415443 1.3 x 10 3.9237277 3 .0  x  10 '
2000 4.023 . 3 x  10 - 2  3.92484134 . 6 x  1 0 ' 3 .9 2 3 8 1 9 0  -1 .1  x  1 0 - 5

4000 3.90 1 .0  x  1 0 - 1  3 .9233635  -2 .1  x  10  - 4  3 .9 2 4 2 2 0 9  -1 .8  x  1 0 - 5

6 0 0 0  3 .8 8  -3 .9  x  1 0 ' 3 .9 2 3 9 2 1 8  - 3 . 6 x  10 - 4  3 .9 2 4 2 1 7 8  -3 .7  x  1 0 - 6

8 0 0 0  3 .8 5  -1 .4  x  1 0 - 2  3.9245956 6 .6  x  1 0 ' 3 .9 2 4 1 9 8 9  5 .7  x  1 0 - 6

10000 3.92 2.5 x 10 - 2  3 .9240769  -8 .5  x  10 - 7  3 .9 2 4 2 0 5 4  -3 .2  x  1 0 - 7

13 5 R 3 5

1000 3.923939180351
2000 3.924204540724
4000 3.924203740852
6000 3.924203738244
8000 3.924203738121

10000 3.924203738135

4.8x 10 - 5

8.0 x 10 - 7

- 3.7 x 10
7.9 x 10 - 1 1

- 4.4 x 10 - 1 2

2.1 x 10 - 1 2

1 25 R251 30 R30

1000 3.92438069843
2000 3.92419997465
4000 3.92420378031
6000 3.92420373864
8000 3.92420373800

10000 3.92420373814

8.8 x 10 - 6 3.92417001558
1.2x 10 - 6 3.92420393248
2.6x 10 - 8 3.92420373301
1.5 x 10 - 9 3.92420373759

-2.7 x 10 - 1 0  3.92420373818
5.8x 10 - 1 1  3.92420373812

2.0 x 10 - 4

9.9 x 10 - 7

3.0 x 10 - 9

-1 .7  x  1 0 ' 0

- 8.9 x 10 - 1 3

- 1.0 x 10 - "

1 „ R15 1 20 R20

1000 3.92361007
2000 3.92423322
4000 3.92420427
6000 3.92420338
8000 3.92420375

10000 3.92420370

- 1.3 x 10 ° 3.924178604
- 3.8x 10 - 5  3.924207205

1.8 x
 10- 6 3.924203509

4.6x 10 - 7  3.924203748
- 1.9x 10 - 7  3.924203739

2.4x 10 - 8  3.924203738

- 4 .1  x  10 '
4.9x 10 - 6

- 1.8x 10 - 7

- 2.9 x 10 - 8

7.2x 10 - 9

- 1.0 x 10 - 9
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Table 2.2

n t,, n t,, n

1 0 2 4.1558656464 3 5.5491219562
4 8.1117756122 5 10.8952834492 6 12.0523651120
7 13.4542992617 8 14.9275108496 9 16.3036898019
10 17.7350625418 11 18.837088412 12 20.551890978
13 21.752187480 14 22.93715924 15 23.33859940
16 23.97767239 17 25.79365179 18 27.1212236
19 27.8904904 20 28.6462091 21 30.100668
22 30.884244 23 31.730116 24 32.248613
25 33.84677 26 34.08053 27 35.12990
28 36.04356 29 36.9637 30 38.2333
31 39.1512 32 39.7944
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Table 2.3

N Ro 10 R51 5 RIO 110

1000 -3 .04 -7.7 x 10 - 2 -2.9558 1.4 x 10 - 2 -2.95033 9 .3  x  10 '
2000 -2.85 3.1 x 10 - 3 -2.9629 -3.5 x 10 - 3 -2.95651 5.4 x 10 - 4

4000 -2.95 -9.7 x 10 - 3 -2.9588 7.3 x 10 -2.95642 -8.7 x 10 - 5

6000 -2.95 6.3 x 10 - 2 -2.9561 -1.4 x 10 - 3 -2.95659 9.4 x 10 - 5

8000 -2.98 6.9 x 10 - 2 -2.9558 -9.9 x 10 - 4 -2.95660 4.8 x 10 - 5

10000 -2.97 1.8 x 10 - 2 -2.9567 -2.3 x 10 - 4 -2.95659 1.1 x 10 - 5

N R I5 1, 5 R20 120

1000
2000
4000
6000
8000

10000

-2.956381 -2 .8
-2.956387- 3 . 6 x
-2.956613 -2 .3
-2.956592 -3 .8
-2.956593 -1 .7
-2.956593 -2 .3

x 10 - 3 -2 .9 5 9 1 4 4 9
1 0 ' -2.9568292

x 10 - 5 -2 .9 5 6 5 8 5 4
x 10 - 6 -2 .9 5 6 5 9 5 1
x 10 - 6 - 2.9565940
x 10 - 6 -2 .9 5 6 5 9 3 2

-4 .1  x  1 0 '
-9 .6 x  10 - 5

4.1 x 10 - 6

2.5 x 10 - 6

6.7 x 10 - 7

1.2 x 10 - 7

R „ 1
25 R30 13,

1000 -2.9584634 3.5 x 10 - 3 -2.95201141 3.7 x 10 - 3

2000 -2.9566395 1.9 x 10 ' -2.95638520 1.7 x 10 '
4000 -2.9565937 -7.5 x 10 - 6 -2.95659865 2.3 x 10 - 6

6000 -2.9565925 1.3 x 10" -2.95659358 -2 .0  x  1 0 '
8000 -2.9565932 -1.8 x 10 - 8 -2.95659347 4 .3  x  10 '

10000 -2.9565934 -1.0 x 10 - 7 -2.95659342 1.3  x  10 '

R35 /35

1000 -2.951829903 1.3 x 10"
2000 -2.956587888 -1 .9  x  1 0 '
4000 -2.956589949 3.4x 10 - 6

6000 -2.956593420 1.6 x 10 - 7

8000 -2.956593344 2.0 x 10 - 8

10000 -2.956593405 -5.0 x 10 - 9

Table 2.4

n u„ n u„ n u„ n u„

1 2.3864500 2 4.3752457 3 6.0435487 4 7.571907
5 8.841633 6 10.605890 7 11.437474 8 12.76622
9 13.76869 10 15.2075 11 15.6182 12 16.9663
13 18.0078 14 18.874

1.( 4 ) (s, A ), s = 4-1 + iu on  the  critical line for 0 <  u < 20.
W e can see, by the same technique as will be given in  §3 and §4, tha t the

Riemann hypothesis holds for 12 ) (s, z1) (resp. 1,( 4 ) (s, A)) in the range 0 < 3(s) < 40
(resp. 0 < 3(s) < 20) and tha t the zeros 17 + it,, (resp. +  iu„) are simple.
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§ 3 . Modular forms of half integral weight

Put

0(z) = e(n2 z) = 1 + 2q ' 2 , ri(z) = e(z/24) f1 (1 — e(nz)).
neZn 1 n  =  1

By Shimura, [Sh2], (4.1), we have

dim S8 (F0 (2)) = 1, dim S9 1 2 (F0 (4)) = 1

and (ti(z)11(2z)) 8 (resp. 0(z) - 3 q(2z) 1 2 )  spans S8 (10 (2)) (resp. S 9 1 2 (F0 (4))). Put

f (z) = (q(z)g(2z)) 8  =  E an q" , g(z) = 0(z) -  q(2z ) 1 2  =  E cog" ,
n= n=i

L (s, f )= an n - s, L(s, g )  = E Cn n — s ,
n = 1 n = I

R (s, f ) = 2 2  (270' F(s)L (s, f ), R(s, g) = 2s(271) - s.r(s)L(s, g).

Then f  a n d  g  are  in  the  Shim  ura correspondence; L (s, f ) a n d  L (s, g) can be
analytically continued to the whole complex plane as entire functions and satisfy
the functional equations

(3.1) R(s, f) =- R(8 —  s, f), R(s, g) = R(9/2 —  s, g).

This example is described in  detail in  [Sh2], §4. F or t > 0, le t 91 (0  (resp. 9g (t))
denote the variation of the argument of 2 2 (2m) F(s) (resp. 25 (27r) -  F (s)) from
4 to  4 + it  (resp. 9/4 to  9/4 + it).

F or L (s, f ), s = 4 + it , t  = 100, the values of

R i  = 91 (exp (i 9f  (t)),V ) ), I  =  3(exp (i9 f  (t))SW))

are given in Table 3.1.
F or L (s , g ) , s  = + it , t  = 100, the values of

R i  = %(exp (iag (t))Ski,) ), I  =  3(exp (igg (t))Ski)

are  given in Table 3.2.
By our method, we can compute zeros of L (s, f ) and of L(s, g) on the critical

line w ith sufficient accuracy observing sign changes o f ei 'imL(4 + i t ,  f )  and
ei 9 t ) .1(1 + it, g). In  T able  3.3, w e list the  n-th zero t„ of L (s, f ), s = 4 + i t  in
the range 0 < t  < 100. In Table 3.4, we list the n-th zero un o f  L (s, g), s = + iu
in the range 0 < u  < 100.

N ow  let us exam ine the R iem ann hyothesis fo r L(s, f). W e see f (iy ) > 0
for y > 0 by the product expansion of the n-function. By the integral representa-
tion

(2n) - sF(s)L (s, f ) = f c °  f (iy)ys -  dy ,



R 2 0 120R 1 5 1 , ,

R 3 0 1 3 0

1000 -1.7836430434865235424107 -3.5 x 10 - 6

2000 -1.7836428270926205946250 5.0 x 10 - 1 1

4000 -1.7836428271544153839298 1.1 x 10 - 1 5

6000 -1.7836428271544160178686 - 1 . 6 x  1 0 '
8000 -1.7836428271544160181358 2.7 x 10 - 2 0

10000 - 1.7836428271544160181708 - 3 .8  x  1 0 - 2 2

R 2 5 1 2 5

1000 - 1.7836271941181258672 -1.3x  10 - 5

2000 -1.7836428277732280167 1.1 x 10 - 9

4000 -1.78364282715462964171 . 4 x  10 - 1 5

6000 -1.7836428271544148349 9.0 x 10 - 1 6

8000 -1.7836428271544160390 2.0 x 10_ 1 8

10000 -1.7836428271544160184  - 6 . 2 x  10 -  1 9

191(s) - 41 < 1/2, 0  3 (s ) T

Table 3.1

N Ro lo R5 15R 1 0 110

1000  -1 .686 8.7 x 10 - 2  - 1 .7 7 5 8 2 1.6 x 10 - 2  -1 .782116715 1.7 x 10 - 3

2 0 0 0  -1 .8 3 5  -2 .9  x  1 0 - 2  -1 .7 8 4 3 2  -1 .4  x  1 0 - 3  -1 .7 8 3 6 6 3 9 6 3  -1 .9  x  1 0 - 5

4 0 0 0  -1 .7 5 8  -6 .5  x  1 0 -1 .78364  -1 .6  x  10 - 4  -1 .7 8 3 6 4 2 3 8 4  -1 .0  x  1 0 - 6

6 0 0 0  -1 .8 2 0  -5 .2  x  1 0 - 3  - 1 .7 8 3 6 6  2 .0  x  1 0 - 5  -1 .783642948  8 .6  x  1 0 - 8

8 0 0 0  -1 .7 6 0  -1 .1  x  1 0 - 2  - 1 .7 8 3 6 4  -2 .0  x  1 0 ' - 1 .7 8 3 6 4 2 8 1 6  -2 .7  x  1 0 - 8

1 0 0 0 0  -1 .7 8 6  8 .2  x  1 0 - 3  - 1 .7 8 3 6 3  1 .1  x  1 0 - 5  -1 .783642826  6 .5  x  1 0 - 9

1000 -1.783149679719 9.4  x  10 ' -1.7835293644621857 -2.4 x 10 - 5

2000 -1 .783644577360 -3 .2  x  10 - 8 -1.7836428890128260 8 .1  x  10 '
4000 -1.783642829247  - 2 . 2 x  10 - 9 -1 .7836428272010046 -1.3 x 10 -  1 1

6000 -1.783642827253 8.0 x 10 - 1 1  -1.7836428271539760 4 . 5 x  10 - 1 3

8000 -1 .783642827162 -6 .1  x  10 - 1 2  - 1.7836428271544534 - 7 .0  x  1 0 -  1 5

10000 -1.783642827150 -1 .4 x 10 -  1 2
 - 1.7836428271544125 -8.3x 10_ 1 6

R 3 5 1 3 5

1000 -1.7836435960725853092305493 -2.3 x 10 - '
2000 -1.7836428271502571300252154 -3.7 x 10 - 1 3

4000 -1.7836428271544160011102849  4 . 2 x  10 -
6000 -1.7836428271544160181784305 -8.5 x 10 - 2 1

8000 -1.78364282715441601816895021 .0  x  1 0  - 2 3

10000 -1.78364282715441601816901992 . 9 x  10-25
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we see that L(s , f)>  0  for s > O. For T >  0 , let N (T ) denote the number of
zeros of L(s, f) counted with multiplicity in the domain
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Table 3.2

N Ro /0 R ,1 R10 1 ,,

1000  3 .43  -3 .9  x  10 3.3563 -3.5 x 10 - 1  3 .2 4 0 8 6 0 5  -3 .5  x  1 0 - 1

2000 3.23 8.9 x 10 - 2  3 .1032 6.7 x 10 -  3  3.0945490 2 .3  x  10 '
4000 3.10 2.6 x 10 - 2  3 .0 9 0 6  -3 .1  x  1 0 - 4  3.0913811 2.3 x 10 - 6

6000 3.12  4 .1  x  1 0 - 2  3 .0912  3 .7  x  1 0  - 4  3.0914333 2 .3  x  1 0 - 6

8 0 0 0  3 .0 7  -4 .2  x  1 0 - 3  3 .0 9 1 4  -1 .7  x  1 0 ' 3 .0 9 1 4 3 4 0  -3 .9  x  1 0 - 7

10000  3 .12  -1 .8  x  10 - 2  3 .0 9 1 4  -1 .3  x  1 0 ' 3 .0 9 1 4 3 4 2  - 1 .6 x  1 0 '

12151 1 5 R20 120

1000 3.0854245832 -3.1 x 10 - 1 2.923318726655  - 2 .4 x  10 - 1

2000 3.0919697213 -3.7 x 10 - 5 3.091486059342 -6.5 x 10 - 5

4000 3 .09  l 4327625 -3 .9  x  10 '  3.091434224098 4.0 x 10 - 8

6000 3.0914342708 6 .1  x  10 ' 3.091434237097 5.7 x 10 - 1 °

8000 3.0914342301 -3.7 x 10 - 9 3.091434236714 -1.0 x 10 - 1 1

10000 3.0914342356 -3.6 x 10 - 1 °  3 .091434236735 -1 .3 x 10 - 1 2

R25 125 R30 /30

1000 2.80762049069122 -1.1 x 10 - 1 2.78668118045678635 7.4 x 10 - 2

2000 3.09143198592104 -2.2 x 10 - 5 3.09143105396801472 -3.5 x 10 - 6

4000 3.09143423720919 2 .4  x  10 ' 3.09143423678556380 3.9 x 10 - 1 1

6000 3.09143423674457 -5.1 x 10 - 1 2  3.09143423673870285  - 1 .7 x  10 -  1 3

8000 3.09143423673861 2.3 x 10 - 1  3  3.09143423673865144 1.9 x 10 -  1 5

10000 3.091434236738651 . 0 > <  10 - 1 4  3.09143423673865098 6.2 x 10 -  1 7

R „ 135

1000 2.913986351322328294702 . 7 x  10 - 1

2000 3.09143341359018088974 1.4 x 10 - 7

4000 3.09143423673979921383  - 2 .4 x  10 - 1 2

6000 3.09143423673865010310 -1.1 x 10 - 1 5

8000 3.09143423673865095777 -1.9 x 10 - 1 8

10000 3.09143423673865095240 -1.3 x  10_ 2 0

By (1.7) taking 6  = 1/2, we have

(3.2) N (T ) = 9f(T) + rt - 1  a r g  (L(s, f)).

Since L(s, f) 0  if 91(s) - 4  >  1/2 , A arg (L (s, f )) equals the  varia tion  of the
argument of L (s, f ) along the line segments L , = [4, 4 + 4 +  f t], L 2 =  [4 + 4 + kt,
4 + 4+ it+ iT ], 1,3 = [ 4  +  +  +  i'T, 4 + iT ] for any y >  O . T ake  T = 100, 12= 1.
Then we have n - 1  91 (100) = 69.0171 ••• . Hence if we can show I zlarg (L(s, f))1 <
rt 12, w e can conclude N (T )= 69. F o r  th is purpose, it suffices to  show  that
91(L (s, f ))> 0  w h e n  s e  L i , i = 1, 2, 3. F o r  L 1 , w e  h a v e  show n  th is  fac t
a b o v e . F o r  L2, this fact can be proved a s  in  [Y 2 ] , § 4 . F o r  L , ,  we divide it
in to  150  sm all in te rva ls a n d  ap p ea l to  o u r h eu ris tic  ca lcu la tio n . W e  have
observed
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Table 3.3

n t , n tn n t„

1 8.2720409199 2 11.3959869930 3 14.8616932015
4 17.1783243050 5 19.2124566315 6 20.8274294554
7 23.4659374198 8 25.2726883522 9 27.0035774491
10 28.1569222690 11 30.2145623343 12 31.6193141164
13 33.7856279775 14 34.9435854723 15 36.5559515067
16 37.6356026748 17 39.1608229256 18 40.6589300308
19 42.8804581030 20 43.2736012304 21 44.9765395474
22 46.4176568046 23 47.2517710599 24 48.7821808287
25 50.3519022325 26 51.5688981695 27 53.1356287828
28 54.0717837181 29 55.0990003336 30 56.4089955139
31 57.5391214415 32 59.1986375433 33 60.1739007171
34 61.6441827270 35 62.8146545420 36 63.4247884022
37 65.1023702197 38 66.0180646898 39 66.8050237006
40 68.6802278238 41 69.8132058342 42 70.7502185552
43 71.9861530156 44 72.7927328082 45 74.1137296216
46 74.8761895173 47 76.2796967025 48 77.4608764665
49 78.7319975717 50 79.5372511477 51 80.8499015926
52 81.9286308045 53 82.6995529553 54 83.4681179192
55 85.2402769759 56 85.6802121224 57 87.2830188249
58 88.5094955323 59 89.2377130355 60 90.0534073382
61 91.4472572430 62 92.0496894589 63 93.3566370961
64 94.2221147468 65 95.3044565474 66 96.6527715250
67 97.7264314003 68 98.4244540180 69 99.4730638315

Table 3.4

un n u„ n u„

1 12.9399446108 2 15.1248640287 3 17.2775088490
4 21.9119654118 5 23.7124474310 6 27.6868648494
7 29.1470584255 8 31.1315265360 9 31.9862854000
10 33.6323734231 11 35.7361264638 12 38.1008875317
13 39.9548075690 14 41.3629251312 15 43.0030848131
16 43.7924301232 17 49.3874980802 18 50.3892911690
19 51.9883497256 20 53.3610715851 21 55.5058736308
22 57.1306190068 23 58.5145765119 24 59.2810504632
25 60.8114113807 26 61.7177742037 27 62.3299217969
28 65.1200148215 29 66.3871768599 30 67.7658152255
31 68.5636482576 32 70.0994795387 33 71.9139076205
34 73.4598285562 35 74.4219698604 36 75.9259426071
37 76.7219513797 38 80.2370604179 39 80.9795116625
40 82.2141987387 41 84.1686266809 42 85.4558525934

43 86.4596989555 44 87.5017176801 45 88.7989284271
46 90.8930274655 47 91.6094970880 48 93.0648834307
49 93.8455295242 50 94.4090447654 51 95.8637476000
52 96.5025102751 53 97.8219970593 54 98.9086789539
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91(L(s, f)) > 0.83 o n  L3.

T h u s  w e  c o n c lu d e  th a t  th e  R ie m a n n  hypo thesis  ho lds f o r  L (s , f )  when
0 < 3(s) < 100. All the  zeros are simple.

N ow  le t  u s  consider zeros o f  L(s, g). W e have g(iy) > 0  for y >  0  since
0(iy )> 0, n(iy )> 0  for y >  0 . By the integral representation

(270 - sr(s)L (s, g) = g(iy)ys - 1  dy,

w e see  that L(s, g) > 0  fo r s > 0. For T >  0 , le t  N (T ) denote th e  num ber of
zeros of L(s, g )  counted with multiplicity in  the  domain 3

191 (s) -  9/41 2, 0 3(s) T

By (1.7) taking (5 = 2, we have

N (T) = 7 - 1  9,(T) + arg (L(s, g)).

Here 4 arg (L(s, g)) denotes the variation of the argument of L(s, g )  along the line
segments L, = [9/4, 17/4], L2 = [17/4, 17/4 + i T ], L , = [17/4 + i T, 9/4 + i T ].
T ak e  T = 1 0 0 . T hen  w e  have ir - 1  9g (100) = 79.1885.... D iv id in g  L 2  a n d  L,
into small intervals, we have observed ir - 1  ( a r g  L(s, g)) = 0.8114 Thus we
obtain N (T )= 80. O n  th e  otherhand, w e have obtained only 54 zeros on the
critical line. Therefore, assuming that these zeros are sim ple, there m ust exist
1 3  z e ro s  i n  t h e  r ig h t-h a n d  s id e  o f  t h e  critical line : 9 / 4 <  91(s) < 17/4,
0 < 3(s) < 100. These zeros, together with those in  100 < 3(s) < 150, are given
in Table 3.5.

O ur method of calculation of these exceptional zeros is a s  fo llow s. Let us
consider a  b o x  B  g iven  by  d, 9 1 ( s )  d 2 , h, < 3(s) < h 2 . B y  the argument
principle, we can determine whether L(s, g )  has a  z e ro  incide B  o r  n o t .  First
we find a  b o x  B  in  which L(s, g )  has zeros by tria l and  error. Then dividing

Table 3.5

P. n P.

1 3.2308208282 +8.9496290911 i 2 3.0144204971 + 19.1670355895i
3 3.1880664988 + 26.3033849287 i 4 3.1549639910 + 36.6242398231i
5 2.7150409653 + 45.1719799932 i 6 2.4938210677 + 47.5816502442 i
7 3.3624175212-t- 54.4320525502 i 8 2.9077749773 + 64.2513434784 1
9 31 556119321 + 71.9344926377 i 10 2.4066868777 + 78.1144688947 i
11 2.9102154501 + 82.3890698796 i 12 2.8870784016 + 89.7875787849 i
13 3.3672596002 + 99.9194124003 i 14 2.7073645379+ 107.1592978688 1
15 2.7721770492 + 110.2613188689i 16 3.1645227049 + 117.3896482956i
17 2.5547542302+ 126.5001914198 i 18 2.8669588498+ 128.20700450991
19 3.1444059195+ 135.3354942155 i 20 3.3550056102+ 145.39389018731

3 The zero free region o f L (s, g) is  non-trivial. Here we content ourselves by regarding I 'X (s) -
9/41 2  is "sufficiently wide".
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B  into sub-boxes and applying the principle above successively, we can obtain a
good approximation for a zero inside of B .'

The Riemann hypothesis does not hold for L(s, g). This should be of no
surprise since L(s, g) does not have an Euler product.

W e  sh a ll s tu d y  o n e  m o re  exam ple o f  m odular fo rm s o f  half integral
w e igh t. F o r k  > 1, put

Let

1
Gk (z) = -- (1 — k) +

2

oo

a k — 1(n)q na k - 1 ( n )  =  E d k _ i .

n=1 din,d>0

b(z) — 
60

 (2G4(4z)0' (z) — G(4z)(9(z)) =- c(n)gn.
2ni n=1,na-0,Imod4

Then we have 5e S 1 3 1 2 (['0 (4)) (cf. Kohnen-Zagier [KZ], p. 177) and 6 corresponds
to  4(z ) = n( _

)

24 E S12(51-(2, Z ))  under the Shim ura correspondence. The values
of c(n) can easily be computed by

P -4 1
c(n) = co(.\/n) • n + 1 2 0  I  co(N/ n  — 4m)o-

3 (m)(2n — 9m) — 15no-
3 (n/4),

m=1

where

Let

co(x) =
0{
1

if xe Z,
if x “ .

60 (z) = c(n)q '4 .
n E  Omod4

Then we have (50 e S „ / 2 (F0 (4)) and

6(
 , \ 7 2 y 6 + 1 1 2 6 0 ( i y ) ,
4y

y > 0.

(cf. [K Z ], p . 190.) Put

h i (z) = (6 f 2 - 6 60 )(z), R(s, h.± ) = 2(2n)s r(s)L (s,

Then we have

n +  ) =  ± ( 20+1/2h ± ( i y ) ,

- ( 4y
y > 0.

Hence we obtain the functional equations for the entire functions R(s,

CO

I t  is  more efficient t o  use a variant o f the Newton m ethod  once  w e ge t a  rough approximation.
After finding a  precise  location, final check should  be done by the method described above.
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R (

13

 -  s, h + )  = R(s, h ± ).
2

W e have computed zeros of L(s, h + )  on  the  critical line 9i(s) = 13/4 in the
range 0 < 3(s) < 100. The results are given in  T ab le  3 .6 . There u,;±  denotes the
n-th zero of L(s, h ± )  for s = + iu.

Table 3.6

n n u : n u :

1 5.6185671952 2 9.3587692608 3 12.0264936925
4 13.7962357292 5 16.0894994874 6 17.7847280762
7 19.4575970308 8 21.8594962784 9 22.5758373316
10 24.1962387103 11 26.0225517432 12 27.3617234087
13 29.1281915898 14 299334498107 15 31.7848563053
16 33.0414393853 17 33.9453293541 18 35.7534640159
19 36.6630191145 20 38.2010379041 21 39.7144586843
22 40.6779144658 23 41.3507131813 24 43.0237415354
25 44.5137568744 26 45.2712575072 27 46.4744214908
28 47.8221666146 29 49.0105055856 30 49.9881789218
31 51.5155718913 32 51.6631984921 33 53.5375246718
34 54.4042145877 35 55.5750957955 36 58.8270009777
37 59.7418610167 38 61.2006909669 39 61.7440856002
40 63.2789136582 41 64.1010371646 42 64.8912913186
43 66.3286609040 44 67.5430514279 45 70.1770012608
46 71.4492522675 47 72.3027663172 48 73.1469069994
49 74.5424808567 50 75.2004527728 51 76.3094730233
52 77.0682809138 53 78.2931224271 54 79.2581319133
55 80.0330330946 56 81.1315223512 57 81.9704731391
58 83.0719604785 59 84.1964169499 60 85.2011952740
61 85.7778751490 62 86.9407183317 63 87.4479355411
64 88.7059787721 65 89.9368381341 66 90.6181312264
67 91.4583733416 68 92.7393858316 69 93.0881396596
70 94.5091774704 71 95.4769845208 72 96.1116129723
73 96.9317027531 74 97.8372552255 75 99.1010053953
76 99.8881597950

n u„- n u„ n un

1 0 2 24.4022873037 3 26.6418851276
4 29.3670678246 5 33.5747954436 6 35.2863556538
7 38.5418813017 8 40.0447318001 9 44.8539372315
10 46.8484465576 11 50.0699839799 12 52.1256566323
13 54.2746979473 14 55.4033486176 15 56.5807632829
16 58.8640673277 17 60.9985910184 18 63.8456398387
19 65.1978869599 20 71.4691922483 21 72.8978373808
22 75.0463737748 23 76.6579317410 24 78.6419254744
25 80.0462305996 26 83.8815457436 27 85.2027989008
28 86.6795992346 29 88.7015447955 30 90.5599843766
31 92.9081333908 32 94.5315054431 33 96.4777165784
34 97.7100184923 35 99.3454122963
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In Table 3.7, we also list zeros of L(s, h ± ) not on the critical line which are
searched in the region 13/4 < 91(s) 25 /4 , 0  <  3 (s)  <  100 ;  d e n o t e s  a zero of
L(s, h ± ). It is a very interesting phenomenon that L(s, h__) has much more zeros
outside of the critical line compared with L(s,

Table 3.7

n P : n P :

I 3.3591319232+57.3250633340i 2 3.5001503209+68.56793229651

n P,T n Pn

1 5.7692647648+8.9956889852i 2 4.8476735625+14.0858508094i
3 5.3846794177+18.2757545274i 4 4.2067408135+20.6821222248i
5 5.3861276711+26.6587658619i 6 4.5402410961+31.5997171480i
7 5.7862146670+36.65244159251 8 4.3281324452+41.9810464020i
9 5.2171816339+44.93322868441 10 4.7664043254+48.82408536001
11 5.6527005509+54.27126761151 12 4.6702375442+60.1227186672 1
13 5.2007749392+63.8919812818 1 14 3.7792244502+66.90237119451
15 3.5790185110+69.3185823254i 16 5.7686816361+72.22799846771
17 4.6599017691+76.8392451729i 18 5.3421407237+81.9810448650i
19 3.3026675429+82.2734272886 1 20 3.9986981918+88.8368300771i
21 4.9626158230+90.6464501774 1 22 4.7401362618+94.85475366 15i
23 5.8412001878+99.77955746451

§4. L-functions attached to Hecke characters o f infinite order o f real quadratic
fields

In this and the next section, we shall study two types of L-functions which
are closely related to algebraic number fields. W e can still apply our m ethod
o f  calculation described in  § 1  efficiently. H o w e v e r  the situation changes
drastically . The repeated application of partial summation does not yield good
results beyond rather limited number of tim es. Thus our calculation cannot be
as accurate as in the case of modular forms treated in §2  and §3.

Let k  b e  a  real quadratic field. F o r  simplicity, we assume th a t  the class
number of k  is 1. Let D be the discriminant and e be  the fundamental unit of
k. Let lc,' denotes the idele group of k. For a finite place y of k, let k , denote
the completion of k  a t  y  and 0„ denote the ring of integers of kv . Since k  is
of class number 1, we have

(4.1) lc; =  ( F I C :  x Rx x Rx)

w here y extends over all finite places of k. Let x =  T1 Y.v  — v  b e  an unramified
un ita ry  H ecke  charac te r of k . L e t  a ,  ( r e s p .  a 2 ) b e  the identical (resp.
non-identical) isomorphism of k into R and let oo (resp. oo,) be the corresponding
archimedean place of k. As unitary characters of R , x a n d  x ,  tak e  the
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following form :

(4.2) xo3;(x) = sgn (x)mi II"' f o r  x e j  =  1, 2,

where m;  =  0  o r  1, vi e  R . B y  (4.1), w e see that x  is completely determined by
x ,  a n d  x 2 . S ince  x  is t r iv ia l  o n  le ,  w e  m u s t  h a v e  x (x )  =  1  f o r  all

IC n (1 1
 

x x  R X ) ,  which is the group o f units of k. Therefore we have

(4.3) (•  1 ) - - " n 2  = 1, sgn (ear  agn (e 2)"12 e 6 1I  g ' = 1.

It is easy to see that (4.3) is a  necessary and  sufficient condition for x , which is
determined by x 00 ,  and x,, 2 ,  to  b e  a  Hecke character of By (4.3), we have
m , = m 2 . P ut m  =  m , . Then (4.3) is equivalent to

(4.4) IcI ( v l  v 2 )  = sgn (N(e))m.

Let x ,  be the associated ideal character of k. If (a), ace l e  is  a prim e ideal, we
have, by definition

X* 4 00) = X(( . •. , 1 , • • • oc, • • • 1 ,...))
_ x((ot- = sgn (N(cx))'" • (l et rvi l e 2 li v2 ) - 1

Here (• • , 1, • • • , a, • • • , 1, • -)e kAx  denotes the idele whose (a)-component is a  and  all
the other components a re  1. Hence we have

(4.5) X*((a)) = sgn (N(a))rn I 1- 1 v 1  a c 2 1- f o r  every a c k  ,

L(s, x) = L(s, x * ) = E ( Œ ) x * ((a))N((cx)) — s. Put

R (s, x )=IDI s 1 2 7r- " m ) n - i ( "I + v 2 ) 1 2 F((s + m  + iv 1)/2)

F((s + m  + iv 2)/2)L(s, x),

R ( s ,  x -
1) = m)nuv, +v2)12

r ( ( s  +  m  —  i v 1 ) / 2 )

F((s + m —  iv 2)12)1(s, X  1 ).

Then the functional equation is (cf. Weil [W ], L anglands [LL])

(4.6) R(s, x) = (— 1)"2 4((d))R(1 —  s,

where (d) denotes the  different o f k  over Q .  Since R(s, = R(s, '),
pu t (4.6) in  the  form of (1.2):

(4.7)R (1 — =  —  1 )m X* ((d)) R(s, X).

We get

we can

      

(4.8) X *((d))-1/2R(s, X) = (—  1)mx* ((d)) - 1 /2 R(s, x) i f  91(s) = 1/2.

Hence x* ((d)) - 1 /2 R(s, x) takes real or pure  imaginary values on the critical line
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according a s  m  =  0  o r  1 .  W e also  no te  tha t w e  m ay  assume y 2 =  0  without
losing any generality since th e  choice of y 2 can  be  taken  in to  accoun t as the
shift of the variable s. Then, if m = 0, we have y, = - 2n7r/log E with n E Z by
(4.4). W e denote this H ecke character by x n . B y  (4 .5 ) , w e  have

(4.9) (x n )* (0 0 ) =  1 / 12nrzi/logE ,Œ e k x .

If m = 1, by (4.4), we have y i =  - 2n7r/log e or y 1 = - (2n + 1)7r/log e with n E Z
according as N(E) = 1 or N(E) = -  I. W e denote this Hecke character by x;,. By
(4.5), we have

(4.10) (x)((Œ))) ((a)) =
sgn (N (I)) 

c e l 2 n r z i/ lo g c

i f  N(E) = 1,
 

s g n  ( N ( ) )  Iot 1(2n + Oni/logt i f  N(E) =  -  1 .

As our first example, we take k = Q( N/ 2 ) .  W e  have e = 2 + 1, (d )= (  2) 3 ,
1D1 = 8. W e are going to study L(s, x i ) applying our sum m ation m ethod. For
s  =  +  it, t = 15 and 50, the values of

Ri = 9 1 (X* ((d)) - 1 / 2  exP (i 90 4 0 0 , l i = 3(x * ((d)) - 1 /2  exp (i90 (t))SW))

are given in Tables 4.1a and in 4.16 respectively. Here 4((d)) - 1 / 2 2  -  3 n i / l o g e ,

90 (t)  =  arg (8s/
2 7 r - s e a / l o g e 1"((s -  2ni/log E )/ 2 )F (s / 2 )) .  F r o m  t h i s  ta b le , it i s

evident that R is for higher j  do not give good results. W e can judge, from the
values of WI, R 2  gives the  best result, then R 3 ,  R I i n  th is  o rde r. W e  m ust be

Table 4.1a

N Ro 10 R, 11 R2

1000 2.22 6.3 x 10 - 3 2 .1 7 7 7 - 1 .1  x  1 0 ' 2.173977 2.6 x 10 - 4

5000 2.14 -2.2 x 10 - 2 2 .1 7 0 0 3.7 x 10 - 3 2 .1 7 3 5 4 4 - 1 .2  x  1 0 '
10000 2.18 -1.3 x 10 - 2 2 .1 7 5 3 1.1 x 10 2.173833 -1.0 x 10 - 4

30000 2.19 -2.2 x 10 - 2 2 .1 7 2 9 -6.9 x 10 - 4 2 .1 7 3 7 5 9 -1.0 x 10 - 5

100000 2.17 1.2 x 10 - 2 2 .1 7 3 5 1.0 x 10 ' 2.173747 -4.7 x 10 - 6

R3 13 R4 14 R, 15

1000 2.167862 -6 .2  x  1 0 ' 2.20484- 5 . 4 x  1 0 - 2 2 .4 9 1 8 6 7.1 x 10 - 2

5000 2.173880 -6.8 x 10 - 4 2 .1 7 9 3 5 -1.6 x 10 - 4 2 .1 8 3 0 2 2.7 x 10 - 2

10000 2.173937 1.8 x 10 - 4 2 .1 7 2 6 7 1.6 x 10 - 3 2 .1 6 3 8 0 -2.8 x 10 - 3

30000 2.173700 -2.3 x 10 - 6 2 ,1 7 3 6 7 -3.7 x 10 - 4 2 .1 7 5 5 1 -9.3 x 10 - 4

100000 2.173745 -5.9 x 10 - 6 2 .1 7 3 7 8 -5.1 x 10 - 5 2 .1 7 4 0 6 9.7 x 10 - 5

N R6 16 R7 17 R8 18

1000 2.352 1.2 -1.442 2.2 7.975 -6.1
5000 2.082 7.3 x 10 - 2 1 . 8 3 5 -1.7 x 10 - 1 2 . 1 9 5 -1 .0

10000 2.170 -4.1 x 10 - 2 2 . 2 9 3 - 6 . 2 x  1 0 - 2 2 . 4 8 0 2.2 x 10'
30000 2.179 5.3 x 10 - 3 2 . 1 6 5 2.4 x 10 - 2 2 . 1 0 1 1.0 x 10 - 2

100000 2.173 1.3 x 10 - 3 2 . 1 6 9 1.8 x10 - 3 2 . 1 6 4 -7.2 x 10-3
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Table 4.1 b
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N Ro 10 R11 1 R2 -12

1000 3.263 8.3x  10 - 2 3.3048 6.1 x 10 - 2 3.28176 2.6 x 10 - 2

5000 3.305 -1.1 x 10 - 2 3.2708 - 1.8 x 10 - 2 3.26879 - 8 .6 x  10 - 4

10000 3.245 6.4 x 10 - 3 3.2612 -4.8 x 10 - 3 3.26487 6.8 x 10 - 4

30000 3.263 2.9 x 10 - 2 3.2697 9.0 x 10 - 4 3.26616 1.7x 10 - 4

100000 3.276 -8.2 x 10 - 3 3.2665 5.8 x 10 - 4 3.26610 4.9x 10 - 5

R 3 13 R4 14 R5 15

1000 3.38022 2.5 x 10 - 2 3.524 2.2 33.06 8.3
5000 3.26878 6.2x  10 - 3 3.080 7.2 x 10 - 2 1.75 -2 .9

10000 3.26486 -2.7 x 10 - 3 3.329 -3.1 x 10 - 2 3.88 1.0
30000 3.26672 - 1 .6 x  10 - 4 3.271 1.2x 10 - 2 3.06 1.0 x 10 - 1

100000 3.26609 6.8 x 10 - 5 3.264 -1.3 x 10 - 3 3.28 -3.1 x  10 - 2

Table 4.2

n t„ n t ,, n t„ n

1 10.2562 2 13.6866 3 15.9599 4 17.038
5 19.026 6 20.017 7 22.472 8 23.745
9 25.351 10 26.229 11 27.561 12 28.847
13 29.986

- 1 -3.12740 - 2 -6.5577 - 3 -8.8310 - 4 -9.9092
- 5 -11.8976 - 6 -12.888 - 7 -15.343 - 8 -16.616
- 9 -18.222 -1 0 -19.101 -11 -20.433 -1 2 -21.718
-1 3 -22.857 -1 4 -24.859 -1 5 -25.892 -1 6 -26.850
-1 7 -28.418 -1 8 -28.927

more cautious than in  §2  and  §3  abou t the  accuracy of the value e t '° ( L(s,
F o r  example, le t  t =  1 5 .  W e em pirically judge that x„((d)) -

1 1 2  e1 0 ( l ) L(s, x i ) =
2.17375 with error 10 - 5  f ro m  R 2  and 12 • W e  have constructed Table 4.2 in
which zeros o n  th e  critical line 9i(s) = 1/2 a re  listed in the range 13(s)1_ 30.
Here, for n > 1, t n (resp . t , )  denotes the  n-th  zero  of L(s, s  = 1/2 + it on
the critical line for 0 < t <  30  (resp . 0  <  - t < 30).

L e t  u s  e x a m in e  th e  R ie m a n n  hypothesis f o r  L(s, x i ) in  th e  r a n g e
0 <  3(s) <  100. We have observed 84 sign changes of x((d)) -

 i /2 eL 9 0 ( t) L(1- + it, x i )
for 0  <  t <  1 0 0 . F o r  T >  0 ,  le t  N (T ) denote th e  num ber o f  zeros o f  L(s, x i )
counted with multiplicity in  the  domain

0 < 91(s) < 1, 0  3 ( s ) T.

Taking 5 =  1/2  in (1.7), we get

(4.11) N(T) = 7r -
1 9 (T )  + iz 'A  arg (L(s, )(,)).

Since L(s, x i ) 0  if 91(s) 1, A arg (L(s, x,)) equals the variation of the argument
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o f  L(s, x i )  a lo n g  th e  lin e  segments L i  = 1 +  p], L 2  =  [1  ±  t ,  1 + p +  iT ],
L3 = [1 +  p +  iT ,1 +  iT ]  fo r any p >  0. T a k e  T =  100 a n d  ki =  1 .  W e have
7r -  9 (100) = 84.8864 Hence if w e can show — r  <  arg (L(s, xi)) < 0, then
we can conclude that N(100) = 84. For L i , we divide it into 15 intervals. W e
observed that L(s, x i ) moves from 0.3482 + 0.0712/— 1 to 0.8011 + 0.0969..J—  1
keeping 9i(L (s, x))>  O. F o r  L 2 , we can show without difficulty that 91(L(s, xi))>
0  o n  L 2 .  F or L 3 ,  w e divide it in to  150 sm all in tervals. W e observed that
L(s, x i )  moves from 0.8159 + 0.1227,/—1 to — 0.0110 — 0.0072 N/ — 1 w hen s
m oves from  2 + 100 .\/ — 1 to + 100.\/—  1 ; L(s, x i ) never crossed the  half line
3(L(s, x i )) = 0 ,  91(L(s, xi)) 0. H e n c e  w e  g e t  N ( 1 0 0 )  =  8 4 . The Riem ann
hypothesis holds and  all zeros of L(s, x i )  are simple zeros in  this range.

By (4.11), we should have

N(100) = 84.8864... — rt-larctan 
(   7 1 2   )  (

1 tr '  arctan 7 2 =  8 4 .0 0 6 7 . . . .
3482 110

The error is about 6 .7  x  10 ' and  this is much bigger than the usual error inherent
in  our calculations. The reason is that L(s, x i ) takes rather small value at +
100.\/ —1 ; such an  error can be made much smaller in  the  following w a y . We
take T = 1 0 1 . W e  have observed 86 sign changes of x,((d)) - 1 /2 ei '0 ( )̀ L (  +  it, x i )
for 0  <  t <  1 0 1 . W e have rt - 1  9(101) = 86.0881- •-. W e divide [2+ 101

+ 101 — 1] into 150 sm all intervals. W e observed that L(s, x i ) moves from
0.9322 + 0 .2563/— t to  1 .7137 —  0.1288J-1 . H ence by (4 .11), w e have

N(101) = 86.0881 ••• — 7T- 1  a r c ta n  
 712 1288

a r c t a n

 (  1 2 8 8   )  

= 86
3482 17137

w ith  e rro r le ss than  10 '.
In Table 4.3, we have listed 44 examples of L(s, )6) for which we made experi-

ments in  the range 0 <  3(s) <  T; N (T) denotes the  num ber o f zeros o f  L(s, L i )
in the domain 0 <91(s) < 1, 0 < 3(s) <  T W e found that all zeros in the ranges
of Table 4.3 lie on the critical line and are simple.

§ 5. A r t in  L -functions

L e t  k  b e  t h e  m in im al sp litting  field o f  t h e  irreducible polynomial
f  (X) = X 5 — X + 1 o v e r  Q . T h e n  k D Q (N /19  151 ) =  1(0 , k  is unramified over
k0 , Gal (k/Q)-L= S 5 , Gal (klk o )'L' A , .  The discrim inant A  o f  a  ro o t of f (X ) is
19 . 151 . This example is due to E. Artin (cf. Lang [LG ], p. 121). Let p  be an
irreducible 4-dimensional representation o f  S ,  whose character z p is  g iv e n  as
follows.

conjugacy class (1) (12) (123) (1234) (12)(34) (12)(345) (12345)
4 2 1 0 0 —1 —1
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Table 4.3

k n T N(T) k n T N (T)

Q(.12) 1 100 84 Q(.\/2) —1 100 93
Q(.,./2) 2 100 82 Q(.,/2) —2 100 96
Q (I2 ) 3 100 81 Q(,/i) —3 100 98

Q (J ) 4 100 80 Q(.12-) —4 100 100
Q(.\ /2) 5 100 78 Q(..\/-2) —5 100 101
Q( ,./2) 10 100 79 Q(s/i) —10 100 108

1 100 75 Q(.15) —1 100 88
Q(J5-) 2 100 72 Q(.15) —2 100 92
Q (i5 ) 3 100 71 Q(.\/3) —3 100 95
Q(.,/3) 4 100 71 Q(.1-5) —4 100 97
Q(s /5) 5 100 71 Q (f5 ) —5 100 99
Q (j5 ) 10 100 93 Q(.\/3) —10 100 106
Q(,./F9) 1 50 51 Q(.,/i4) —1 50 52
Q(,/i4) 2 50 50 Q(.\/19) —2 50 53
Q(.\/ ) 1 100 107 Q( s./24) —1 100 112
Q(.,/ ) 2 100 105 Q (.,/ ) —2 100 114
Q (f2 -9) 3 100 104 Q(1274) —3 100 116
Q(.19-) 4 100 102 Q(.s/ ) —4 100 117

5 100 102 Q(/2-9-) —5 100 118
Q(.,./ ,) 10 100 99 Q( .s. ) —10 100 123
Q(,,/ ) 1 40 41 Q(.,./ ) —1 40 42
Q(s/C7) 1 30 32 Q (J -67) —1 30 33

Since S , does not have  a  subgroup of index 4, p  is  no t m onom ia l. W e have
L(s, p) = Hp Lp(s , P )  fo r 91 (s)  > 1  w ith  th e  E u le r  p -fa c to r  L p (s, p). W e can
compute L p (s, p) as follows. First we assume that a prime number p is unramified
in  k , i.e., p 0 19, 151. Then w e see easily that L p (s, p) '

p

p - 13 ( 1

 ▪  

V S )

(1 p  S)2 (1 p S p- 25)

+  P- 1( 1 ±  P - 2 1

p —s p - 2 s  p -3s 

▪ p

-4s

(1 p—s)2(1 p—s)2

— P- s )( 1 + P - s )( 1 + + P - 2 5 )

if ap {(1)} ,

i f  Grp  = 1(12)1,

i f  o-p  = 1(123)1,

i f  up  = 1(1234)1,

i f  up  = 1(12345)1,

i f  Grp  = 1(12)(34)1,

i f  o-
p  = 1(12)(345)1.

Here ci 1, denotes the Frobenius conjugacy class of p and 1-E1 denotes the conjugacy
class of TES5.

Let p  = 1 9  o r  1 5 1 . Let I p  deno te  the inertia group of a prim e factor p of
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p in  k. By definition, we have

(5.1)

Hiroyuki Yoshida

L p (s, p) - 1  = det (1 — (p(o-
p )117 4 ) • Vs).

Here V denotes the representation space of p, V '" the subspace of I p -fixed vectors
and u p a  Frobenius of p  which is determined modulo I .  S i n c e  k  is  unramified
over /c o , it is obvious that 1/p 1 = 2, I p G a l  (k/k o ) A , .  Hence we may assume
tha t I is  genera ted  by  (12) choosing a  suitable p  lying over p. Let D , denote
th e  decomposition group o f  p. Then Dp l p a n d  D i,/ l p is  g e n e ra te d  b y  o-

p

mod I D . W e have

N55(10)= X S3,

where N s 5 (4 )  denotes the normalizer of Ip in  S 5  and S3  denotes the permutation
group o n  three letters {3, 4, 5}.

Let p = 1 9 . Then

f (X ) (X  —  6) 2 (X 3 + 12X 2 + 13X + 9) mod 19

i s  t h e  factorization o f  f ( X )  mod p  in to  irreducib le  fa c to rs  in  (Z/pZ)[X].
Therefore the residue field extension ZVI, of Z/pZ contains the cubic extension
o f  Z/pZ, where C ik  denotes the  ring  o f integers o f  k. Hence we immediately
obtain Dp /I p Z /  3 Z  a n d  th a t  a p m a y  b e  ta k e n  a s  (345 )e  S ,. Now we find
easily that

Lp(s, =1 p _ 3 5 i f  p 1 9 .

Let p = 151 . Then

f (X ) (X  —  39)2 (X — 9)(X 2 + 87X + 61) mod 151

is  the factorization of f (X ) mod p  into irreducible factors in  (Z / p Z )[X ]. By a
similar consideration a s  above, we find that Dp //p Z / 2 Z  and  that u p m ay be
taken a s  (34)E S 3 .  We obtain

Lp(s, p )
l ( 1  +  p ) ( 1 p - 1 2

i f  p = 151.

Let f (p ) denote the  Artin conductor of p . We easily obtain

f (p )= 19 . 151.

For example, let p = 19 and p be as above. W e have shown Gal (kp /Q1 9 )
Z/2Z x Z/3Z. W e find that the restriction of p  to  D p  sp lits in to  a  d irect sum
o f  fo u r  o n e  dimensional representations o f  Dp s u c h  th a t  th r e e  o f  th em  are
unramified and one is ram ified. H ence the exponent o f  19 in f (p) i s  1.

W e take a n  isomorphism a  o f  k  in to  C  a n d  le t ce Gal (k/Q) S ,  b e  the
restriction of the complex conjugation to k. Then c E Gal (k/k o ) A , .  Hence c
is conjugate to (12)(34) in S , .  Let Gal (C/R) be identified with the decomposition
group <c> of the archimedean place of k which corresponds to  a. The restriction
of p  to Gal (C/R) splits into a direct sum of two trivial representations and two
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non-trivial representations. Therefore the G am m a factor t o  g o  w ith  L(s, p) is
given by (cf. Langlands [LL])

2 ( s/ 2)) 2( - (s+ 11/ 21"((s 1)/2))2.7

Put

R (s, p)= (19 • 151
) / 2 7 - 2 s r ( s

/
2
)2 F((s + 1)12) 2 L(s, p).

Since p  is equivalent to its contragredient, we have the functional equation

(5.2) R(s, p)= KR(1 — s, p),

where K = 1 is  the A rtin root num ber attached to p. Let tif be  the additive
character of Q A / Q  such that

tfr „,, (x) = exp (27r.\ / — 1 x), x e Q R,

Op (x) = exp ( — 27r.\ / —1 Fr (x)), x  Q P'
where Fr denotes the fractional p a r t  o f  x . By a theorem of Langlands, we have

1
K  = 1-1 8 ( — O v )2

with the e-factor defined in  [ L L ] .  By the above considerations, we easily get

( 1 Ç1i f  p 19, 151,
2  P P '  P  ) 1 i i f  p = 19 or 151,

E (

1
-
2  P . ,  tfr .) = j 2 .

Hence we obtain

(5.3) K = I.

The values of

Ri  = 91(exp(i9(t))SV )), I  = 3(exp(i9 (t))SW))

for L(s, p), s + it, t = 5  are  given in  T ab le  5 .1 . Here

(t) = arg ((19 • 151 ) /27C2s F(s12)2 F((s + 1)/2) 2), s = 1  + it.
2

In Table 5.2, we give the values of u n , the n-th zero of L(s, p), s  =1+ iu  on the
critical line for 0 < u < 10.

§ 6. Estimation of errors in our calculations

The most serious defect of our method of calculation is that we do  not have
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Table 5.1

N Ro 1 R , 12 14

1000 3.09 5.3 x 10 - 1 3.334 4.5 x 1 0 ' 4.9 x 10 -

5000 3.31 -5.5 x 10 - 2 3.317 -2.4 x 10 - 2 3.335 -3.2 x 10 - 3

10000 3.42 1.5 x 10 - 1 3.417 -7.8 x 10 - 3 3.389 -1.3 x 10 - 2

30000 3.45 - 1 4 x 10 - 3.385 -2.3 x 10 - 2 3.380 -6 .2 x  10 - 3

100000 3.25 -4.8 x 10 - 2 3.375 1.6 x 10 - 3 3.383 1.2 x 10 - 3

N R6 16 R , R10 110

1000 3.9634 6.4 x 10 ' 4.03999 6.2 x 1 0 - 1 4.792707 5.2 x 10 - 1

5000 3.3419 3.6 x 10 - 2 3.38817 4.1 x 10 - 2 3.400866 6.3 x 10 - 2

10000 3.3825 -1.0 x 10 - 2 3.37107 -4.5 x 10 - 3 3.377550 4.8x 10 - 3

30000 3.3803 1.9 x 10 - 4 3.38367 1.4x 10 - 3 3.383935 3.6 x 10 - 4

100000 3.3839 1.2 x 10 3.38369 -8.5 x 10 - 5 3.383657 8.2 x 10 - 6

Table 5.2

n u, n u, n u, n u, n u„

1
6

2.79373
7.46

2
7

4.0887
7.90

3
8

5.362
8.8

4
9

5.887
9.6

5 7.03

rigorous controle o f  e rro r estim ates. I n  previous sections, w e regarded  the
magnitude of 3(e i '9 (t) g ) ) (resp. 91(e1 ( ') g ))) as a  rough measure of errors from the
tru e  value, w hen P ( `) L(o- + i t )  should  be  rea l (resp. pu re  im aginary). I n  this
section, we shall present several da ta  which support this practice.

Suppose th a t  th e  functional equation (1.2) fo r L (s) h o ld s . T h e n  w e  have
e i “t ) L (k /2  + it)eR , teR  w h e r e  (t) = arg (ici Ns F ( b i s  +  c e)) , s  = k /2  + it in
the notation of (1.4). Take 0 < t, < t 2 s o  t h a t  e ` ) ro ta te s  o n  th e  u n it  circle
exactly once when t  moves from t ,  to  t2 . We expect that max1 ,, 1 < 1 2 13(P ( `) S01
can be used as the  measure of e r ro rs . M ore explicitly, it seems plausible that

(6.1) I 91(e i 9 ( g ) ) - L (k /2 + it)I < 10 m a x  13(e i ' ( i) S nI.<tt2

In  examples below, we use 91(S14')) a s  a  substitute for L (k /2 + it ) taking large M
and p  (except for in  Example 6), and examine the ratio of two terms in  (6.1) for
S ) taking relatively small N  and 1. The results are given in Table 6.1.

Example 1. W e  ta k e  the prim itive form  f  S,(F 0 (2 )) a n d  consider the
L-function L (s, f ), s = 4 + it. W hen t  moves from 97.9 t o  100, ei `) ro ta te s  on
the unit circle approximately o n c e . We calculated the ratio

,.(1) _ max97.9<t<100 (191 ( e i 9 " ) S (250 %  e i 9 (̀ ) 0 )  )
I 5 N  -

fo r  1 N  < 6, dividing [97.9, 100] into 21 intervals of length 0.1.

MaX97.9<t <100 (1 3 (e i9 (t ) '-' 0ç 2(50N )0)1)
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Table 6.1

N r;P r 4) N 4 ) N rr
5 0.96 0.98 0.93 0.92 0 1.03 0 0.98
10 0.95 1.05 1.12 0.84 2 0.82 1 0.99
15 1.07 1.06 0.85 1.03 4 0.81 2 1.01
20 1.07 1.09 1.23 1.07 6 1.19 3 0.99
25 1.06 0.90 1.25 0.87 8 1.39 4 1.01
30 0.88 0.88 0.80 1.22 10 0.67 5 0.94

max98.2<t<icw(13(ei8u)S(250N0)0)1)

fo r 1 < N  < 6 , dividing [98.2, 100] in to  18 intervals of length 0.1.

Example 3. We take 4 e S , 2 (SL(2, Z)) and consider the L-function L (3 ) (s, 4),
s  =17  + it, attached to the third symmetric power representation of G L (2 ) . When
t  moves from 17.5 to  20, e"" ) rotates on the unit circle approximately o n c e . We
calculated the ratio

r(
5

3
N  -

) max 17.5 < t< 20  ( I 3  (ei9 ( `) S ei "S(1305d00)D

max 1 7.5< t < 20 (1
91(e °(`)

S (25a 0 ) 1)

for 1 < N  < 6, dividing [17.5, 20] into 25 intervals of length 0.1. In  this example,
we have normalized 9 (t) as in §2 so that ei 9 ( `) L ( 3 )  (17 + it, A) is pure imaginary.

Example 4. We consider the L-function L ( 4 ) (s, 4), s = 4 5 /2  +  it, attached to
the  fourth symmetric power representation o f  G L (2 ) . W hen t  moves from 7.2
to  10, ei 9 ( `) rotates on the unit circle approximately o n c e . We calculated the ratio

r
(4) max7.2<t<to (IN( ei3u)

 ç ( 5 N )

e i9 ( " S1130540)1)
5 N  -

max7.2<t<io (1 3 (ei9 u ) S (250N0)0 )  )

fo r 1 < N  < 6 , dividing [7.2, 10] in to  28  intervals of length 0.1.

Example 5. We consider the Artin L-function treated in § 5 .  When t moves
from 4  to  5.8, ei “' ) rotates on the unit circle approximately o n c e . We calculated
the ratio

(5) MaX4 < t < 5.8 i000p(19 1 (e is m VoToo e' s “) S( 1 ° )  o ) i )
r2N

MaX4 < t < 5.8 (13 (ei9 ( )̀ VoN40)1)

for 0  <  N  < 5 , dividing [4 , 5 .8] in to  18 intervals of length 0.1.

Example 6. W e consider th e  H ecke  L -function  L (s, x ,) f o r  k Q ( . / )
treated in  § 4 .  W hen t  moves from 47.9 t o  50, ei ' ( `) ro ta te s  o n  th e  u n it circle

Example 2. W e take g E S9 / 2 (F o (4)) as in  § 3 .  W hen t  moves from 98.2 to
100, e 1 3 on the unit circle approximately o n c e . We calculated the ratio

(2) max98.2.<1 (191(ei9(̀ )S(250Ndo e i 9 m S (130540)1)r
5 N  

=
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approximately o n c e . We calculated the ratio

r  =
aX47.9<t<50 (191 (e SINO)000 e S i2d0000)l)

(
6)

max47.9<1 < 50 (13 (e iS M S (1N0)000)1)

for 0 < N  < 5, dividing [47.9, 50] into 21 intervals of length 0.1.

§ 7 .  A  comparison with the explicit formula

W e take the new form f e S 8 ( r o (2)) treated in  § 3 . L e t  Tr be the irreducible
unitary automorphic representation of G L(2, Q A )  with corresponds to f . We have

Lf(s, n) = L (s +  -7  , f ) .
2

where L f (s, 7r) denotes the finite part of the Jacquet-Langlands L-function attached
to  7E. Let

Lf(s, 7r) = ui 
_ p - s ) ( 1  - 1%p- 1 r 1

be  the Euler product of L f (s, n). F o r  p = 2, the Euler 2-factor degenerates so
that a 2 =  -  1/,/2, ,q2 =  0 .  For p 0 2, we have 10(1,1 = 11%1= I by the Ramanujan-
Petersson conjecture proved by P . D eligne. W e have the explicit formula

(7.1)
xP E f  (0, 7r)E E ' +  [3;) log p  = - E

p 1 + co  13(p ) i I, n)

+ log ( ." : _x1-3-c2 x - i / 2  -  2  X
- 3 / 2  

— —
2  

X
- 5 / 2

3 5

for x >  1 .  H e r e  E' means that the term (oe; + IV log p  should be multiplied by
1/2 when p" = x ; p extends over zeros of L f (s, n) such that 0 < 91(p) < 1. This
formula can be shown in  the  usual way a s  in  Ingham [In ], p . 77 -80 . T he  last
term

(  g(x):= l o g  ' \ /
2 2

2 x - 1 / 2  _  x -3/2 x -5 / 2 ,

N/ X  —  1 3 5

which is equal to

2  E
k = 3  2k  + 1

represents th e  c o n tr ib u t io n  o f  th e  t r iv ia l z e ro s  o f  L 1 (s, n ) ;  th e y  a r e  at
7 9 11

N ow  it seem s very interesting to compare both  sides of (7.1) numerically

co —(2k+ 1)/2X



by
-

( t 2 +  -I[ c o s  (t„ log x) + 2t„ sin (t„ log x)]
" 4

(7.2)
69

h 6 9 (X ) : =  E
n = 1

Z ero s  o f  va riou s L-fu n ction s6 8 9

using the zeros of L (s, f ) given in  T ab le  3 .3 . We approximate

lirn E  xP

1 (P)1< 1 . P

with tn g iven in  T ab le  3 .3 . W e have

L f  (0, = L ( -
7

2  , = 0.5942254156.••, LAO, it) = L ' (
7

= 0.1875716234.-,
2

(°' n )  = 0.3156573558....
L1 (0, it)

To obtain these values, we simply applied our repeated abel summation technique
as before, though more rigorous evaluation could be made in this case. In Figure
7.1, we drawed the  graphs of the "step function"

F ig u re  7.1
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E E' (cx", + finp) 1°g P
p

and — 11 6 9 (x) + g(x) — 0.3156 for 1.1 x  <  2 0 .  (W e have used "Mathematica"
to  m ake Figure 7.1.) The coincidence seems fi ne.

§ 8 . Sample programs

In  this section, we shall present a  few sample programs to compute L(s, f ),
f e S 8 (F0 (2)) (cf. §3). All programs, which are ready to be executed, are written
in UBASIC created  by Y . K ida. Let

CO

f(z) = (q(z)q(2z)) 8  =
n=1

Using Program A, we can compute a„ for 1 < n < M  fo r any M , 1 < M  < 10 4 .
F ro m  lin e  5 0  to  1 5 0 , the coefficients A (n) i n  ri(z) = q " 2 4 1 A(n)q" - 1  a r e
computed for 1 < n  < M  using Euler's formula

(2 .) q1 124 f i q n )  =  q 112 4  E (_ l)" q 3 " 2
.

1)/ 2

n=1 n= —

From line 160 to 220, the coefficients B(n) in  q(z)11(2z) = q
1 1 8 t

L B(n)qn -  a r e
computed for 1 n M  by B(1) = r + 2 1 , - 1 + 2

 A (J)A (L ). From line 270 to 390,E  
the expansion of h(z)q(2z) is raised to the eighth power ; the final result will be
stored in the data file "wt8".

Program B computes the value of ei 'f (`) L (4 + it, f )  for t =  1 0 0 . To save the
space, this program gives the values of ei 3 f (% ) f o r  N  = 2000, 0 < 1 4 0 .  By
point 15 command (line 20), UBASIC gives the precision to the 70-th digit. From
line 300 to 580, the value of ei 9 f“) w ill be com puted and  stored in the variable
T H E . T h e  calculation proceeds as follow s. W e have

1
91 (t) = arg (2s/ 2 (27r) -  s r(s)) ,4+  it = — log 2 — log 27r) t + arg F(4 + it).

2

W e also have

arg F(z ) = arg I - (z + 1)—  arctan (3(z )/91(z )), 91(z) > 0, arg F(z ) = 3(log 1 (z)).

By these formulas, it suffices to compute log 1- (z  + 100) for z  = 4 + it. We have
the asymptotic expansion (cf. [WW], p. 252)

( o r - 1  B r

(8.1) log [(z ) ( z  —  
1 

) log z — z  + —

I  

log 2ir + E 
2 2 r=1 2r(2r — 1)z 2 r - 1

where B r denotes the r-th Bernoulli n u m b e r. In (8.1), w e use the term s up to
r = 10. W e  c a n  g e t  an approximation of elf " ) w hich is accurate at least to the
40-th digit (cf. [WW], p. 252).
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From  line 660 to 740, the values of

V )  = ann - s, s!!! = E s;; - 1 ) , 1 < 40, (4° )  = a n )
n=1 n=1

a re  com pu ted . F rom  line  770  to  1020 , th e  v a lu e s  o f  S V  a re  computed for
1 I 40 using (1.10) and  (1 .11). W e use the approximation

_(1) N - , 1v :0  ( ,e...,+
=

( i r  ( I ) m k ) (  0 , s(s + 1 )  • • • (s +  k  -  1)
uN  N .

k =1  m =1 m k!

The error from  the truncation by 100 is negligible (cf. §1). The variable U(K)

s t a n d s  f o r  ( —  1 ) k  
s(s + 1) • • • (s +  k —1)
 ;  the variable C o stands for Ern' = i  ( —  ir

k!
( m

l )m k ; the variable T ( I )  stands for

lo o  (  i
1  E (— 1)-( i )mk)(— ok 

s ( s + 1 ) • • • ( s + k - 1 )  

N-k.
k =1  m =1 m k!

In  the  line 1000, X = SW )  is multiplied by

Program A

1 0  word 8
2 0  point 2
3 0  dim A(10000), B(10000)
4 0  input M
5 0  Al = sqrt (24*M + 1)
60  M 1 =  in t ((Al + 1)/6)
70 A (1) =1
8 0  for I =  1  to M1
90 It = I —  2*int (I/2)

100 12 = 1 — 2*I1
1 1 0  J int ((3 *1*i + I)/2) + 1
120 A(J) = A(J) + 12
130 J = int ((3*I*I — I)/2) + 1
140 A(J) = A(J) + 12
1 5 0  next I
1 6 0  for I =  1  to M
1 7 0  It =  in t ((I +  1)/2)
1 8 0  for L =  1  to  I I
190 J= I —  2*L + 2
200 B(I) = B(I) + A(J)*A(L)
2 1 0  next L
2 2 0  next I
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2 3 0  for I =  1  to M
240 A(I) = B(I)
250 B (I) =  0
2 6 0  next I
270  K  =  1
2 8 0  for I =  1  to M
2 9 0  print K, I
3 0 0  for J  =  1  to I
310 B(I) = B(I) + A(J)*A(I + 1  —J)
3 2 0  next J
3 3 0  next I
3 4 0  for I =  1  to M
350 A(I) = B(I)
360 B (I) =  0
3 7 0  next I
380 K  =  K  +  1
3 9 0  if K  <4 then goto 280
4 0 0  open "w t8" for output as #1
4 1 0  for I =  1  to M
4 2 0  print I, A(I)
4 3 0  print #1, A(I)
4 4 0  next I
4 5 0  close #1
4 6 0  end

Program B

1 0  word 70
2 0  point 15
3 0  dim Bn(20), Bd(20), C(2000), T(100), U(200), Sm(50)
40  A b =  40
50 Bn(1) = 1
60 Bd(1) = 6
70 Bn(2) = 1
80 Bd(2) = 30
90 Bn(3) = 1

100 Bd(3) = 42
110 Bn(4) = 1
120 Bd(4) = 30
130 Bn(5) = 5
140 Bd(5) = 66
150 Bn(6) = 691
160 Bd(6) = 2730
170 Bn(7) = 7
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180 Bd(7) = 6
190 Bn(8) = 3617
200 Bd(8) = 510
210 Bn(9) = 43867
220 Bd(9) = 798
230 Bn(10) = 174611
240 Bd(10) = 330
2 5 0  A = 1/sqrt(3)
260 P = 6*atan(A)
270 S = 4 + 100*#i
2 8 0  Ss = S
290 T = im (S)
3 0 0  Th = T*(log (2)/2 — log (2* P))
310  U  =  0
3 2 0  for I =  1  to  100
3 3 0  5 1  =  re (S)
340 S2 = im (S)
3 5 0  if Si > S2 goto 380
360 U = U — (P/2) + atan (S1/S2)
370 goto 390
380 U = U — atan (S2/S1)
390 S =  S + 1
4 0 0  next I
410 T h =  T h +  U
420 T = im (S)
4 3 0  R  =  re (S)
440 X1 = atan (T/R)
450  X 2  =  (log (R*R + T*T))/ 2
460 X3 = X2 + X1*#i
470 X4 = (S — (1/2))*X3
480 Th = Th + im (X4) — T
490  K  =  10
500 S1 =  S
5 1 0  for I =  1  to  K
520 X1 = Bn (I)/(2*I*(2*I — 1)*Bd(I)*S1)
530 Th = Th + im (X1)
540 S1 = —  Sl*S*S
5 5 0  next I
560 X1 = int (Th/(2*P))
570 X2 = Th — 2*P*X1
5 8 0  The = exp (X2*#i)
5 9 0  S  =  Ss
600 X  =  0
6 1 0  open "wt8" for input as #1
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6 2 0  for M  =  1  to 2000
6 3 0  input #1, C (M)
6 4 0  next M
6 5 0  close #1
6 6 0  for M  =  1  to 2000
670 Sm (1) = Sm(1) + C(M)
6 8 0  for I =  2  to Ab
690 Sm  (I) = Sm (I) + Sm (I — 1)
7 0 0  next I
710  X 1  =  log (M)
720 X2 = exp ( — Xl*S)
730 X = X + C (M)*X2
7 4 0  next M
750 Z = The*X
7 6 0  print Z
770 N  = 2001
7 8 0  A = log (N)
7 9 0  Ni = exp ( — A*S)
800 U(1) = —  S
8 1 0  for K  =  2  to  100
820 U(K) = — U(K — 1)*(S + K — 1)/K
8 3 0  next K
8 4 0  for I =  1  to  Ab
850 T(I) =  0
8 6 0  if T> 1  then goto 890
870 X = X — Sm(1)*N1
880 goto 1000
8 9 0  I i =  I — 1
9 0 0  for K  =  Ii to  100
910 C o = — I i
920 A 1= — T i
9 3 0  for L  =  2  to Ii
9 4 0  Al = — A1*(li —L + 1)/L
9 5 0  Co -= Co + (A 1 *(L A K))
9 6 0  next L
970 T(I) = T(I) + Co*U(K)/(N  A K)
9 8 0  next K
990 X = X — Sm (I)*Nl*T(I)

1000 Z = The*X
1 0 1 0  print I, Ss, Z
1 0 2 0  next I
1 0 3 0  end
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§ 9 .  Conjectures

In this section, we shall discuss a few conjectures which emerged during the
process of experiments: No non-trivial coincidences of zeros of two L-functions
attached to two non-equivalent irreducible A-adic representations of Gal (Q/Q)
are fo u n d . W e  sh a ll use the framework o f autom orphic representations of
GL(n, Q A )  to formulate this fact in more general case.

Let i t  b e  an irreducible unitary cuspidal autom orphic representation of
GL(n, QA ). The contragredient representation n to i t  is equivalent to the complex
conjugate representation it of n  and we have the functional equations:

L(s, = c(s, n)L(1 — s, ft), L(s, = L(§, n).

Let wi t b e  the central character of It. For s e C, set vs(x) = x , x E Q; where
Ix IA  denotes the idele norm of x. We can find a tE R  so that coo , '  i s  a character
of Q A

x o f  finite order. Since w i r e  i s  the central character of TE 0 (v i t i n  .  det) and

(L  s  + —
i t

, n  = L (s , n  0  (0 1" . det)), w e m ay assume, without losing substantial
n

generality, that co R  i s  of finite order.

Conjecture 9.1. L et n i  an d  n 2  be irreducible unitary  cuspidal autom orphic
representations of GL(n i , Q A ) and of  GL (n 2 , QA )  w ith the central characters
and (242 respectively. W e  assume that n, is not equivalent to n 2  an d  that co ri ,  and
0.42 are of  ,f inite order. T h e n  L ( s ,n ,)  and L(s,
critical strip 0 < 91(s) < 1 ex cept f or s = 1/2.

Remark. I f  w e replace Q  b y  an algebraic number field, the assertion is
obviously false.

As a variant of 9 .1 , w e  can  fo rm ula te  a conjecture on L-functions of
motives. Let E  be an algebraic number field of finite degree. Let M , and M 2

be  motives over Q  w ith  coefficients in E  of pure weights w , and w2 ,  of ranks
n , and n2 respectively. W e assume w, = w 2  and put w = w,. Fix an embedding
a  of E  in to  C  and let L(s, M 1 ) (resp. L(s, M 2 ))  b e  the L-function of M , (resp.
M 2 ) with respect to  o- . For a finite place A of E, let p i : Gal (Q / Q ) GL(n i , E A ),
i = 1 , 2  b e  the A-adic representation obtained from  the A-adic realization of
M i . W e assume meromorphic continuation of L(s, M 1) ,  i  = 1, 2 t o  the whole
complex plane.

Conjecture 9.2. A ssum e that p i ,  i  =1 , 2  are  absolutely irreducible and that
Pi is not equivalent to p 2  f o r a f inite place A  of  E . T hen L (s, M O  and L(s, M 2 )

h av e  n o  com m on z eros i n  t h e  c ritic al s trip  —

w  

<91(s) < —

w  

+ 1  e x c e p t  for
2 2

n 2 )  have no common zeros in the

s = (w + 1)/2.

Remark. W e  u n d e rs ta n d  th a t a  p o le  o f o rd e r  k  is a  z e ro  o f order
— k. Conjecture 9.2 implies the (usual) Artin conjecture except for s  = 1/2.
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R em a rk . The condition on p i im plies that M , and M 2 are simple motives
w ith coefficients in 0 .  D. Blasius observed that th e  analogous conjecture for
motives over a  finite field is true under the Tate conjecture (cf. M ilne [M ], p. 415,
Proposition 2.6).
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