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1. Introduction

The general theory of (r, p)-capacity has been developed by Fukushima-Kaneko
[8] (see also [10]). In their theory, the regularity condition is fundamental.

To be precise, let X  be a  separable metric space and m be a  finite Borel
measure on X .  Suppose that a symmetric Markovian semigroup { 7 } on 1,2 (X ; m)
is given. B y  the Markovian property, {T} is a contraction semigroup on LP(X ; m)
for any pe [1 , p c). The Gamma transformation is defined by

oo

=  t r / 2 - 1 e —
` dt.

['(r/2) J0

Set A., p := 1;.(LP(X; m )) . Using A., p , we can define the (r, p)-capacity C,., p  a s
follows : for an open set G,

(1.1) Cr,p(G):= inf { uu, p ; u 1 m-a.e. on GI

and for an arbitrary set S g X,

(1.2) C,.,p(S):= inf {C, p (G); G  is  open and G .2  SI.

In this paper, we say that the (r, p)-capacity is regular if the following condition
is satisfied :

(R) n c b (X ) is  dense in  r

Here C,(X) denotes the set of all bounded continuous functions on X .  Assuming
the condition (R), Fukushima-Kaneko [8] proved the continuity from the below
of the (r, p)-capacity.

The purpose of th is paper is to give an example satisfying the condition
(R). Let (B, H, i.t) be an abstract Wiener space. W e take a function pe
with p > 0 p-a.e. and fix it. We consider the following Dirichlet form in O p ' p):
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(1.3) 6'(u, y) = f (Du(x), Dy(x))„.p(x) 2 pt(dx).

H ere D u  is  th e  H -derivative. L e t {T } b e  a n  associated semigroup. We shall
prove that the (r, p)-capacity associated with this semigroup satisfies the condition
(R).

In the case of r = 2 and p = 2, this condition is closely related to essential
self-adjointness o f th e  genera to r. In  th is case, we shall consider m ore general
Dirichlet form given by

(1.4) S ( u ,  u) =  f  (.\ / A* Du(x), / A* Dv(x)),,,p(x) 2 ,u(dx)

where A * is  a  strictly positive definite self-adjoint operator.
The organization of this paper is a s  fo llow s. In the section 2, we consider

th e  regularity o f (r, p)-capacity. W e d o  i t  in  th e  framework o f  th e  Malliavin
ca lcu lus. T o  show  the regularity, the  hypoellipticity of the Ornstein-Uhlenbeck
operator plays an  im portan t role. In  the  sec tion  3, w e concentrate upon the
problem of the essential self-adjointness. The hypoellipticity is crucial as well. In
addition, w e need the M eyer equivalence for an Ornstein-Uhlenbeck operator
with a  linear drift.

2. Regularity of ,-Fr

Let (B, H, p) b e  a n  abstract Wiener space: B  is  a  real separable Banach space,
H  is a  real separable Hilbert space which is embedded densely and continuously
in  B and pi is  a  Gaussian measure with

j2(0:= exp — 1 B< 1, x>B1/1(dx) = exp 1 1/142
leB* H .

L e t 
{ 7 t o - u } t , 0

 b e  the Ornstein-Uhlenbeck semigroup a n d  L  be its generator,
w h ich  w e  ca ll the Ornstein-Uhlenbeck o p e ra to r . F o r  p > 1, ITt ' u l  i s  the
strongly continuous contraction semigroup o n  M  {To-L " ( ) .  Moreover, u}  is
Markovian. F or r > 0, the Gamma transformation of I7,0 - 1 1 1 is defined by

F(r12)10

(2.1) vo - u =  trI2  -1  e - t  T o-u dt.

Here we set voo-u _ I  for r = 0 for convention, I  being the identity operator. As
usual, the  Sobolev space is defined by

(2.2) W " :=  Ran ( 1 .0-u) K o-u (0 1 ,0 ).

We denote the dual space o f W "  b y  W where p' is the conjugate exponent
of p :1 1 p +  llp ' = 1 . In  the sequel, we adopt the convention that the conjugate
exponent is indicated by adding th e  p r im e . F o r  notational simplicity, we use
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the following notation:

(2.3) Wr'P+ =  U rE [0, cc), p e L l, co),
q > p

(2.4) w— = n p e u , co),
r>0

(2.5) V" ' P +  =  n wr , + , peu , 00 ),
r > 0

(2.6) =  n W ", r  e  [0 , co], pe(1, co].
g < p

W e denote by 3, -;C:p the  set of all functions f  o n  B  which is expressed as

f(x) = F(<x, I,>, • • • ,<x, 1>), 11,•••,1EB*

where F e C (R"), (R ") being the  space o f  all bounded C  functions o n  R"
whose derivatives are all bounded.

We take a  function pc W ''`° -  w ith  p > 0 p-a.e. and fix it. L e t  u s  consider
the following Dirichlet form in  L 2 (p 2 11):

(2.7) e(u, i)) = (Du(x), Dy(x)),,,p(x) 2 ,u(dx).

Here D u  is  the H-derivative, i.e.,

T he  above bilinear
closable because

u < h ,  D u ( x ) > H »  =  urn
u(x + ch) — u(x)
 •

form  can be extended easily to Moreover e  is

(2.8) 6"(u, y) = fB

D* (p 2 Du)vp(dx)

B

{D* D u  (2 D  P

D u ) }
vp2 it(dx)

11.

= — ILu + 2(D log p, Du)H .lyp 2 tt(dx).

W e also denote the closure of (e, ..97 C )  by e.
Let IT, and {T,},„  be associated generator and semigroup. In addition, {7;1

is  a  strongly continuous contraction semigroup o n  LP(p 2 ,u) for a ll p e f t  co).
W e can define Sobolev spaces associated with {7; }  similarly:

V  = 1 f t r I 2 -  1  e -

r (rI2) o
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k(I-P 1P2 111).

If there is a  fear of confusion, we denote OP ) ,  ITi
(Pq a n d  k(P) to specify the

space LP(p 2 u). W e will later use the following fact substantially: for p > q  > 1,
6 (q) , {T ( ) }  a n d  I;.(q) a re  ex ten sio n s  o f  6 ( P) ,  { VP) }  a n d  k. (P) ,  respectively, e.g.,
Dom (6 (P)) Dom (6 (q)) a n d  Wq) = (5 ( P)  o n  Dom (6 ( P ) ) .  W e  c a n  d e f in e  the
(r, p)-capacity using tF r ,p . The following condition (R ) is  im portant to develop
the capacity theory.

(R)n  C b (B) is dense in

H ere  Cb (B ) denotes th e  s e t  o f  all bounded continuous functions o n  B .  For
example, Fukushima-Kaneko [8] showed the continuity from below of the capacity
under the condition (R ) .  We shall establish that condition (R) is satisfied in  our
situation.

Theorem 2.1. A ssume p, E  W " '" - . Then Y .' i s  dense in  ,9 7  f o r
p eE l, co).

Before giving a  proof, we prepare the following:

Proposition 2.2. F or any p > 1,

(2.9) FC7.° g  W 'P + n
r> 0

P r o o f .  First, recall that C1',D g -'2 ,2  and

C5( 2 ) f (x) = Lf (x) + 2(D log p(x), Df (x)) H ., f E C . .97

By the  assumption, W 2 )f  LP(p 2 p) for any p  > 1. Hence

f V2(2)(I 2))fV2(14 (I 6(2)) f

This implies f  e Ran (V2( P ) ) = ,F „  and

0 ( P)f  = 6 ( 2 )f  Lf + 2(D log p, Df )11. •

T a k e  a n y  q  w ith  q >  p .  T h e n  f o r  a n y  f e14/ 2- q ,  th e re  e x is ts  a  sequence
g  „FC,°, ' such that

f„ in  W 2 4 1  a s  n oo.

Hence

116 ( P )f„ — Lf — 2(D log p, Df)H*111.,11,24)

11-4(x) — (A P  P2 (x)g(dx) 
} l / p

{ f  ID log plf ,«ID/(x) — Df (x)Ifi.P2 (x)p(dx)
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11,1 }(q- puqp
1

-

-4„1-x) (x)lq ii(dx)} P2q1(' u(dx)

+ 2  { f  ID log PlfiV q - P ) P2 q / ( q - P ) (X)/i(dX)

• D fn (X) Df (x)171. P(dX)UB

Lfn LfM q  P 2  D fn — Df Ilq d ID log P 2 11q/(pq—p)

- 0  a s  n o o

which yields f e ,97 2, p  and

(2.10) 0(P)f =  Lf +  2(D log p, Df )H *.

W e have therefore W 2 4 3 +  g ; 2 , p .  Moreover, by the expression (2.10), we have
0 ( P)f e Woe'P +  fo r  f E Vr° 'P + . This im plies tha t B ic" '  Dom (/ — 1̀ ,5( P) )  and

(/ —  6 ( P) )14/''P +

Hence, by the iteration, we have
00

W " D o m  ((h ( P))k) =
k= 1

This completes the  proof.

The following lemma is well-known.

Lemma 2.3. L et X  be a subspace o f  [97,, p, r > 0 , p 1 .  Then the following
conditions are equivalent to each other.

(i) X  is dense in CFr,p.

(ii) Ker (((/ — 6 ( P ) Y1 2  X )* ) =  1 0 1 , i. e ., i f  uE LP' (p 2 tt) satisfies

L p,
 <p 2o (u, (I — (h ( P) )rI 2 v> L p(p 2 0 VveX,

then u = 0.

Now we can give a  proof of Theorem 2.1.

Proo f  o f  Theorem  2.1. F o r  r  >  s, g -  i s  d e n se  in  gi (see, e .g ., [10,
Proposition 2 .5 ]), it is  enough  to  p rove  the assertion in  the case th a t r  is  an
even integer, say r  =  2 k .  By Lemma 2.3, we shall show Ker (((/ — (V T '
= 101.

To show this, take any u e Ker (((/ — 37-, C 0 )* ) .  Note that p 2 u E L P (.1)
since uELP(p 2 ii) and p e 0 4 .  By the assumption,

(2.11) <P2u, — O ff > , =  0 , Vfeg;Ci,".

Here < • , • > g denotes the inner product in /2(j2). We use this notation extensively

}1 I q



644 khiro Shigekawa

to denote any kind of pairing, e.g., LP(p) and Lily) or I/V"  and W " ,  etc. S in c e
0  is expressed a s  (2.10), (2.11) holds fo r any f e .  O n  th e  o ther hand,
(I — 05)k can  be w ritten  as

(2.12) (I —  5) k  =  (I — L)" — R k

where R „ is a  linear combination of derivatives with degree < 2k — 1. Moreover
all coefficients of R k  belong to . Hence we have that R k: W s'

w s -  2 k  +  1 , a

is bounded for q >  a  > 1, s E R . By  using (I — L) - k f e for fEw e
have

<p2 u, (I — (f5)k (1 — L) - k f >  =  0.

Hence for any a, g  with a < q < p.

i<P2 u, f > ,41 = 1<p2 u, Rk(I — 1 ) - k  f >

• I1 P 2  U Mq Rk(1 L ) kf

• P2 u 11qk11 R11..r(w2k - (p» 11(1 — 14-  k f 112k -1,cr

=  P 2 U 11 11 RklISP (W2k 

which yields 11p2 u MI,. P2 u M, II Rktr(W 2k <  cc. S in c e  a , g  is arbitrary,
we have p2 u e W"P - . Using this, we repeat the above argument:

<p2 u, f>,1 11 p2 u 1,, 11 Rk(I - 1) -  k f  M -1, q
,

• II P214 11 1,q 11Rk11 p(w2 k - 2 , '
' , q ' )  11 - L r kf 112k - 2,a'

• 11P 21 4 111,q Rd ." (W 2 ' - 1 , W )  f II 2,a-
We have therefore p2 u e W2 'P  . Repeating above procedure, we eventually arrive
a t  p2 u e W "  .  B ut p , we easily get uc B y Proposition
2.2, u e ,q for any g  < p. Hence for .f E ,

0  =  <p2 u, (I — (5)k f >
= L q ( p 2  0 <u, (I — 0(q V f>  (p 2Ao
= Lq(p2,0<(1 — 0(q))ku, f \

 ( p 2

which yields (I — ( (q))u  = 0. Since I — CO) i s  injective, w e have u = 0.

3. Essential self-adjointness

In the previous section, we have proved that ,FC;,' is dense in • In the case
r = 2, p = 2, this asserts that 0 ( 2 ) is essentially self-adjoint on ,.97 C r .  Here the
basic Hilbert space is L2 (p2 4.

In  this section, we restrict ourselves to the case r = 2, p = 2 and discuss the
essential self-adjointness. H ere w e take the Ornstein-Uhlenbeck process with a
general drift a s  a  basic  process though in  th e  previous section w e have taken
the standard O rnstein-U hlenbeck process. Precisely speaking, th e  associated



Diffusion operator 645

Dirichlet form is given by

(3.1) e - u ( u ,  v) = ("A * Du(x ), / A * D v ( x ) ) p .  p(dx).

Here (B, H, it) is an  abstract Wiener space as before and A * is a  strictly positive
self-adjoint operator in  H * .  W e sim ply denote /A * D  by  DA.

CO

We assume tha t C ' (A*) n B* is dense in H * .  H e r e  C ' (A*) = f l  D om  ((A*)k ).
k = 1

In  this case, the spacea•FC,;"° needs be modified a s  follows : .9FC °  is  the set of
all functions f  that can be expressed as

f (x ) = F(<x , l i > • • , (x, 1„>), 1 1 ,...,1„e C"(A *)n B*

where F e (11n). Then the bilinear form eci - u of (3.1) is well-defined on
and closable. By taking closure, we get a Dirichlet form, w hich  w e w ant. In
addition, w e  assum e tha t the re  ex ists  a diffusion process, w hich  w e ca ll the
Ornstein-Uhlenbeck process with the drift A , associated with the Dirichlet form
(3.1). W e can define the Sobolev space Wr'P associated with this diffusion process.

Take a  function p c 14/2 ' w ith p > 0  a . e .  L e t u s  consider the  following
Dirichlet form :

(3.2) e (u, = (D A u(x), D A v(x)),,, p(x) 2  p(dx).

As in Section 2, we can see that e  on is closable. Moreover, the associated
generator can be seen by

(3.3) e (u, =  —  f  IL A u +  )  log p, DAu)H.lv p 2  p(dx).

W e also denote the  closure of (6', ,TeCr) by  e . W e use the sam e notations as
in  Section 2 , e.g., {Ti },"  and  0i denote associated sem igroup a n d  generator,
respectively. The following is the m ain theorem in  this section.

Theorem 3.1. Assume p c W 2 . Further w e assume that ID A p1,4 p e L2 +  (p)
and L A p I p (p). T hen  05 ( 2 )  is essentially  self-adjoint on

Before proving this theorem, we prepare the following :

Proposition 3.2. Under the sam e condition as in Theorem 3.1, it holds that
WA' (D A p I p)e + Cu).

P ro o f . Formally we have

( D ,p ) 1,,,p ID ,p1 2

(3.4)   e (p).
p 2

T o  show this, take any e > O . Then
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(

DA pL A P I D A P *

p + e p +  e  ( p  +  0 2 .

By using L A p I p e L '( p )  and IDA plIpeL 2 + (p), it is easy to see that the right
hand side converges as e —> O. Consequently, we get (3.4).

For notational simplicity, we denote DA log p  in place of DA p Ip . DA log p
can not be defined in the Malliavin calculus because we do not assume the
integrability of log p. We also denote LA log p  in place of — DI(D A pl p).

Proposition 3.3. A ssum e the same condition as  in  Theorem 3.1. Then for
any pe  [1, 2], 147 2 'P+  g  ,F 2 , p . More precisely, f or any q> p , there exists a constant
c  such that

(3.5) II(I — 0 (P ) ).f IlLp(p2,) c I f II 2 , , , f e  W 2 'q •

P ro o f. For any f E.FCr , we have

— L A )f — 2(D A  log p, DA ) J I . LP  (p2

DA P 11;1.
1 I p 1IP

f — ' , XV '  P2  /1 (dX)} ±  2 { J A f  I f i . P 2 111 (dX)}
B PP

{.{ 1(1 — L A ) f Iq p(dx)}  { 1  P2q/(q -P) tt(dx) (q-P"P
11q

B B

+
 2 f

 f  ID A  f lqw ,p(dx)}  {  f ID A p(x) 0 (a-  P) p
( 2

-  mql(q-  p) p(dx)
1/q (q -  P)Iq p

a B

e II f  112,g .
Here we used the fact 11 DA f Il q

that .F C r is dense in W2 '", we get (3.5).

We introduce the following function. Let x  be a  C'-function on R such
that 0 < x < 1 and

X(t)
{ l

i f  t > 1,=
0 if t < .

For n EN, we set

x (t)  = x (T t) .

Then it is easy to see that supp [2'  ,  2 - 1  and there exists a constant
C  such that

(3.6) I X;.(01 Ct - '.

„ „In fact, we may take C = II X'll Further, we set (p — X(P)•oo• Notice that

I DAP1x) 1H*(3.7) .IDA 49.14 H .  C
p(x)

M 11 f  111,g
 for some constant M > 0. By noting
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N ow  let us tu rn  to  the proof of Theorem 3.1.

Proof  o f  Theorem 3.1. W e shall prove that K er ((/ —  0 ( 2 ) Î c , c,°)*) = 101.
Take any v E Ker ((i — 0 ( 2 ) .97 Q 0 )*). Then for any fe ,*7

(3.8) (v, (/ — 0 5 ( 2 ) )f )L 2( p 2m) =  <p2 v, (I — L A ) f — 2(DA  log p, D A f)H*>„ = 0.

By Proposition 3.3, we can see that (3.8) holds for f E W
If fEW °D .' , then (I —  LA) 1fEW a n d  therefore we have

<p2 v, (I — 1:5(2 ) )(I — L f> g  = <p 2 v, f — 2(D A  log p, D A (I — L A ) f )ip>„ = 0.

Hence

<P2v, f>  = <p 2 v,2(DA log p, D A (1 —  LAY

Then for any 1 < q < 2,

(p 2 v, 2 ( D A P  , DA (/ — LA) -  f )
H * )

= <PV, 2 (D AP, D A(1 —  A r  1 PH*>111

▪ 2 11PvDAP11,1 11DA(/ — LAY VII,
14i

pqvgiDA pr P(dx)}1 1 f  Il-

1/2 } (2  - 0/ 2 9

LB

•

p2 v2 u(dx)} f f
ÙB

 ID AP12q " 2 - q ) P(dx) 11f11-1,„

which yields

(3.9) 11P2V 1 1,qI l  y  L 2 (p 2 g) Il P lI1 ,2 q / (2 -q ) <  D.

Thus we have

(3.10) p2ve

Using (3.10), we have for a > 1,

<P2 v, f >„I 21<p 2 v, (DA  log p, A (I — L A ) 1 f )11*>

• 21<D,*4 (p2 vD A log p), (I — L A ) lf
2 1 ((D A(P2 V ), D AlOg P )H .,  —  A r  1 f >Al

+ 21 <p2 vLA  log p, (I — LA ) -  f  > it

• 211(DA (p 2 v), DA 10g P)II*11a11(1A r  if 11 ot'

+ 211 p 2  vL A  log P 11.11(1  — Ar 1.I111ce
2 (D A(P2 V), DA log p)H•11. + 11 p2  VLA  log P11.1 11f  II 2 , e .

B y noting  p 2 v E14/ 1- 2 -  a n d  DA log p E L2 +  (a ) , w e  can  ch o o se  a >  1  so  tha t

l<P2 v, f>,1=
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11(D A11,20, DA log p)H *11„ < co. Moreover, note that

p 2p2 vL A  log plI r =  p  v +2  ( L API D A P I L *

=  P - AP pv(D A  log p, D A p)H *  r .

N ow  by  using  v e L2 21 0 , p e  w2,co —

r>  1  so  th a t 11p2 vL A log p  <  c o  a t  the same tim e .  Thus we have

(3.11) p 2v e  w 2 ,1 +

S in c e  9n/09 2 e  W2,00— , w e  
h a v e  ( N I )  _  p 2v  (

(pn
/p 2) e  W 2 , 1 + .  N o w  b y

Proposition  3.3, w e  o b ta in  cpnv e „97
2. , W e  s h a ll  sh o w  t h a t  (I — ( ( 1 ) ) (T v )

converges in L l  (p2 p).
T o  show this, we note tha t for f e ,

L (p 2 )< 6 ( (P,,,V) —  (Pn V, f>Lco(p 2 g)

= 6.1. )1. 2  (p 2 )  —  (9„v, f)i_2(p2p)
= (y, 6 (f 49 .)/(.2(p2,) — (v, 2(DA f, DA 9n)H .)L 2(p 2 )

— (y ,  f  (101.2(p2A) ((NI), f)L2(p2g)
= — <yp 2 , 2(DA f, DA9,)H*>,— ‹vp 2 , f69.>„

= 2 <(DA(vP 2 ), D A 9.)fl., f>, + 2<vp 2 L A 9,,, <vp2, f 69,> „
= 2 <(I) Avp 2 ), D A9.6, f>,+ <vp 2 LAT, f>„

— 2 <vp2 , f(D A log p, D A  n)H* > Iv

By the monotone class theorem, the above equation holds for any f el...(p 2  tt),
i.e.,

L1(p 2 )< (V )  —  (pn v, f> L co( p 2n ) =  2 <(D A (vp2 ), D A49 .)H*, f>,+ <vP 2 LA9„, f>,
— 2 <vp 2 , f (DA  log p, D A9n )H*>g .

Let us estimate each term of the right hand side. T o  show this we take
so  tha t DA log p E L9'(//). First,

<1DA(vP 2 ), IDA . n, H* 5

f ID A(vp2 )11pID A9,1H*I f (x)I p(dx)

• tfUB  A(VP2)11141(dX)}  {JB DA ( P nit* JI (dX )} IIIf  11L. 6,20

• II VP 2 111,q I f  11L- (p2, ) 1i .  lx;,(P)1' ID AP11;4(d X )un

• II vp 2 II1,,II fl1L-(p2)f
ID A p l i p } '

 p ( d x )
}

1 / g '

a n d  IDA  log p1H .e L 2 + (p) we can choose

q'

}1
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1/q'
111)11L2(p2,)11P111,2q/(2 -q) M f  II L -(p 2 ) IDA log pl*p(dx)} .

2

Here, in the last line we used (3.9).
Secondly,

1<vP 2 LA (P ., f> ,1
1/2 1 / 2

If I v(x)12 P(x) 2 ,u(dx)} I f  LA(Pni 2  P2 ki(dx)
}

Further, by noting that

If  11L-(p2o•

1.,A(Bn = DIDA(,0 n = DI(Xn (P)DAP) X :(P )(D A P , D A P )H *  x (p )L AP

we have

f B" 21LA(Pn 12P2P(dX)}

ff {14(0 1DAP + Xn(P)1 1LAP 12p212(dX)} 1/ 2

co
{

c
if) APIL*

 +  C
ID AP1n

 ' ,
*

A PT ' P2  P(dx)
• { 1 {P 2"}

ID A PIP  2
11/2

• C 4 p p(dx)
{ 2 P

AP1L*2
1/2

C API-P2y(dx)
}

{f{p_.52--) P 2

IDAPIL*
} 1 / 2

• C I DAP 141(dX)
f(P  2 - ") P 2

1/2
C IDAPI;PILAPI2g(dX)} .

(P_2 - ")

Hence
1/2

<VP2LA (Pri, f>A 1 C t f  Iv(x)1 2 P(x) 2 P(dx)}

1.1/ 2
D A log PlipIDAPIL*P(dx)x [ t f ( p < 2  r , )

1/2
ID )9 12 * A  Pl2 P(dX)} 1.H

{I{P<2 - ") A

Thirdly,

<VP 2 , f (D  A log P, D A49 „)11*>
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1/2•If 1V(X)12 P(X)2  ii(dx)} Ilf 11 L.(p , p)

1. 1 /2
X {I ID A log  Pq1.11D A40 „12  P 2  ii(dx)

f__' .  C  11V 111.2 (p2 12)11 111 ,(p2 ,) {

}1 / 2

f -") 
IDA log pIL.V 2 IDA pli,.p 2 /2(dx)

(p. 2 
( C

• C 11 V I L2 (p2AL) f 111.03(p2,0 ID A lo g A p lip p (d x )} .
f{p1<_2 - "}

• 111)11L2(„,2) 11 f 11L-( p2,)
{ f  IDA  log plip 1 xn(P)12  1DAPp 2  p(dx)

B

}1 / 2

11V111.2(p2g)[{
f

ID A log oil:, p(dx)
fp. 2 -")

+ 2 C {
f

ID A log p 1L*ID A p 1. p(dx)}1/ 
2

p 2 -")

+ C {
f

IDAPIH* ILAP2 p(dx)1
}1/ 2]

Thus we have

11(6") — I)((pnv) II Li (,2 p)

}1/q'

—› 0 a s  n o o

since p  W  2  ' and  we have taken g '  so that ID A log p I,* e Lq' (p).
Thus w e have (O w  — 1)(c, on e) —■ 0 in  Li  (p2 p). Since (pn v in  L i  (p2 y ) as

n o o ,  we have v e g72, 1 and ( 1 )  — /)v = O . Since O w  — I  is injective, we have
= O. This completes the proof.
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