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An example of regular (r, p)-capacity
and essential self-adjointness
of a diffusion operator in infinite dimensions

Dedicated to Professor Masatoshi Fukushima on his 60th birthday
By
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1. Introduction

The general theory of (r, p)-capacity has been developed by Fukushima-Kaneko
[8] (see also [10]). In their theory, the regularity condition is fundamental.

To be precise, let X be a separable metric space and m be a finite Borel
measure on X. Suppose that a symmetric Markovian semigroup {7;} on L*(X ; m)
is given. By the Markovian property, {T;} is a contraction semigroup on L?(X ; m)
for any pe[l, o0). The Gamma transformation is defined by

1
rr/2)

Set &%, ,:= K(L*(X;m)). Using %,

r,p'
follows: for an open set G,

I{:

o0
f t2 " Ye ! T dt.
0

»» we can define the (r, p)-capacity C, , as

(1.1 C,(G):=inf{||u|?,;ueZ, ,,u>1 m-ae. on G}
and for an arbitrary set S < X,
(1.2) C, ,(8):=inf{C, ,(G); G is open and G = S}.

In this paper, we say that the (r, p)-capacity is regular if the following condition
is satisfied:

(R) % ,nCy(X) is dense in #

np*

Here C,(X) denotes the set of all bounded continuous functions on X. Assuming
the condition (R), Fukushima-Kaneko [8] proved the continuity from the below
of the (r, p)-capacity.

The purpose of this paper is to give an example satisfying the condition
(R). Let (B, H, u) be an abstract Wiener space. We take a function pe W~
with p > 0 p-a.e. and fix it. We consider the following Dirichlet form in L?(p2p):
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640 Ichiro Shigekawa
(1.3) &, v) = j (Du(x), Dv(x)) e p(x)? p(dx).
B

Here Du is the H-derivative. Let {T,} be an associated semigroup. We shall
prove that the (r, p)-capacity associated with this semigroup satisfies the condition
(R).

In the case of r =2 and p =2, this condition is closely related to essential
self-adjointness of the generator. In this case, we shall consider more general
Dirichlet form given by

(1.4) &, v) = J (/ A* Du(x), / A* Dv(x));4: p(x)? p(dx)
B

where A* is a strictly positive definite self-adjoint operator.

The organization of this paper is as follows. In the section 2, we consider
the regularity of (r, p)-capacity. We do it in the framework of the Malliavin
calculus. To show the regularity, the hypoellipticity of the Ornstein-Uhlenbeck
operator plays an important role. In the section 3, we concentrate upon the
problem of the essential self-adjointness. The hypoellipticity is crucial as well. In
addition, we need the Meyer equivalence for an Ornstein-Uhlenbeck operator
with a linear drift.

2. Regularity of %, ,

Let (B, H, n) be an abstract Wiener space: B is a real separable Banach space,
H is a real separable Hilbert space which is embedded densely and continuously
in B and u is a Gaussian measure with

1
fl):= J exp {/— 1 <], x5} p(dx) = exp {— 3 |1|,2,.}, le B* < H*.

Let {T,°"Y},,, be the Ornstein-Uhlenbeck semigroup and L be its generator,
which we call the Ornstein-Uhlenbeck operator. For p>1, {T,°"Y} is the
strongly continuous contraction semigroup on L”(u). Moreover, {T,° Y} is
Markovian. For r > 0, the Gamma transformation of {T,;°”"} is defined by

1
r(r/2)

(2.1) I{O“U= J~ t’/z—le"’I;o—Udt.
o

Here we set ¥,°~Y = I for r = 0 for convention, I being the identity operator. As
usual, the Sobolev space is defined by
22) Wn?:= Ran ()°7Y) = oYL ().

We denote the dual space of W™? by W ~"? where p’ is the conjugate exponent
of p:1/p+1/p'=1. In the sequel, we adopt the convention that the conjugate
exponent is indicated by adding the prime. For notational simplicity, we use
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the following notation:

(2.3) Wrrt = () Wr, rel0, o), pe[l, o),
q9>p

(24) W*P = Do wrP, pe[l, o),

2.5) WPt = N Wret pell, o),
r20

(2.6) wrrm = N Wri rel0, o], pe(l, oo].
q<p

We denote by #C° the set of all functions f on B which is expressed as

f(x)zF(<x’ ll>a'”»<x7 1n>)’ ll*""lnEB*

where FeCP(R"), C°(R") being the space of all bounded C* functions on R”"
whose derivatives are all bounded.

We take a function pe W' ®~ with p > 0 p-a.e. and fix it. Let us consider
the following Dirichlet form in L2(p2p):

(2.7) &(u, v) = J (Du(x), Dv(x))y-p(x)* u(dx).
B

Here Du is the H-derivative, i.e.,

u<h, Du(x)) . = lin(]) w
- €

The above bilinear form can be extended easily to W®*~. Moreover & is
closable because

(2.8) &, v) = f D*(p? Du)vu(dx)
B

J {D*Du - (2% , Du> }vpzy(dx)
B p H*

- f {Lu + 2(Dlog p, Du)y.} vp*u(dx).
B

Il

We also denote the closure of (&, #C;°) by &.
Let ® and {T;},,, be associated generator and semigroup. In addition, {T;}
is a strongly continuous contraction semigroup on LP(p%yu) for all pe[1, ).
We can define Sobolev spaces associated with {T;} similarly:

1
I'(r/2)

a0
V= j "2 le ! Todt,
o
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Z,.pi= KL (p* ).

If there is a fear of confusion, we denote G, {T,”},,, and VP to specify the
space L”(p?u). We will later use the following fact substantially: for p > g > 1,
69, {T?} and ¥ are extensions of ®P, {T,”} and W, respectively, e.g.,
Dom (6*) € Dom (6“) and 69 = 6 on Dom (6'”). We can define the
(r, p)-capacity using %, ,. The following condition (R) is important to develop
the capacity theory.

(R) % ,nC,(B) is dense in #,

np*

Here C,(B) denotes the set of all bounded continuous functions on B. For
example, Fukushima-Kaneko [8] showed the continuity from below of the capacity
under the condition (R). We shall establish that condition (R) is satisfied in our
situation.

Theorem 2.1. Assume p,p 'e W™ . Then FCy is dense in %,, for
pell, ).

Before giving a proof, we prepare the following:

Proposition 2.2. For any p > 1,

(2.9) FCLCWorr c &, = (| &

P e Y
Proof. First, recall that #C,° = &%, , and
6@ f(x) = Lf (x) + 2(Dlog p(x), Df (X)),  fEFC.
By the assumption, ®®fe L”(p?p) for any p > 1. Hence
[=V21 =62 f =KL - 62)f.
This implies feRan (K,?) = %, , and
GPf = f = Lf + 2(Dlog p, Df )y

Take any g with g>p. Then for any feW?>% there exists a sequence
{f,} € FCP such that

f,—fin W*9 as n— oo.

Hence

|6Pf, — Lf — 2(D1og p, Df Ve ll Lo o2

1/p
< U | Lf(x) — Lf(x)l"pz(x)u(dx)}
B

1/p
+ {J |Dlog plf+|Df,(x) — Df(x)|%~p2(x)u(dx)}
B
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l/q (g-p)/qp
< {f |Lfu(x) — Lf(X)I"#(dX)} {j pz"""“”u(dX)}
B B

(@—p)/qp
+2 U |Dlog pm‘a""-"’p“/‘q-"’(xm(dx)}
B

1/q
X {J |Df, (x) — Df(X)I‘;’p#(dX)}

< ”Lfn - Lf”q ||p||§t/1’/,(q—p) + 2 ” Dfn - Df”q ” |Dlog plg{‘pzlu/l&—p)

-0 as n— o
which yields fe #, , and
(2.10) &P f = Lf + 2(Dlog p, Df ).

We have therefore W*?* = &, . Moreover, by the expression (2.10), we have
&P fe W= P* for fe W=F*. This implies that W*?* < Dom (I — &) and

(I — GPYW=P+ < =rt,

Hence, by the iteration, we have

©,p*

W+ < (| Dom ((GP)) = Z,
k=1

This completes the proof.
The following lemma is well-known.

Lemma 2.3. Let X be a subspace of %,
conditions are equivalent to each other.

. =0, p>1. Then the following

(1) X is dense in %, ,.

(i) Ker (((I — 6PY/21 X)*) = {0}, i.e., if ueL? (p?y) satisfies
Lol (1= GPY 20350, = 0 Voe X,
then u = 0.
Now we can give a proof of Theorem 2.1.

Proof of Theorem 2.1. For r>s, % , is dense in % ,, (see, e.g., [10,
Proposition 2.5]), it is enough to prove the assertion in the case that r is an
even integer, say r = 2k. By Lemma 2.3, we shall show Ker (I — 6" 1 # C)*)

= {0}.
To show this, take any ueKer (((I — ®P)*1 #C*)*). Note that p2uel? (u)
since ue LP(p*p) and pe L® (u). By the assumption,

@.11) (pu, (I — GFf>, =0, Ve FCE.

Here (-, -}, denotes the inner product in L*(u). We use this notation extensively
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to denote any kind of pairing, e.g., L”(u) and L (u) or W"? and W ~""  etc. Since
® is expressed as (2.10), (2.11) holds for any fe W< *~. On the other hand,
(I — ®)* can be written as

(2.12) (I — &)= —Ly— R,

where R, is a linear combination of derivatives with degree < 2k — 1. Moreover
all coefficients of R, belong to W ®~. Hence we have that R,: W9 s~ 2k+1a
is bounded for ¢ > a > 1, seR. By using (I — L) *fe W ®~ for fe W, we
have

CpPu, (I — O} — L) ¥, = 0.

Hence for any «, g with a < g < p,

[<p?u, [l = 1<p?u, R(I = L)7*f),|
< Ip*ully IRl = L) *f Iy
< Ip?ully I Rill g rer oy I — L) *f ok 1.0
= | PZ“” ||Rk||.£!’(W2"“v"',L'i'(u)) ”f”—l,a’

which yields || p%ull; , < || p? ully I Ryl e war- 1.0 pay < 00. Since a, q is arbitrary,
we have p?ue W"?~. Using this, we repeat the above argument:

[<p2u, [, < lp%ully o IR — L) *fll_y 4
<|p? Ully g IRl war- 2.0 - 1.y | (I — L)~ “flok-2.0
< 1p?ully o IRl g war-2ar w1y |1 = 2,00

We have therefore p>ue W27~ . Repeating above procedure, we eventually arrive
at plue WP~ But p 'eW> =", we easily get ue W*?~. By Proposition
22, ue#,, for any g <p. Hence for fe W=,

0= (p*u, (I = B,
= L‘I(pzu)<u’ (I — (B{q’))kf>l,q'(p2,l)
= L‘?(pz;[)<([ - (ﬁ(q))kua f>Lq’(pl,,)

which yields (I — ®“@)u = 0. Since I — ®@ is injective, we have u = 0.

3. [Essential self-adjointness

In the previous section, we have proved that #C,° is dense in %, ,. In the case
r =2, p=2, this asserts that ®'¥ is essentially self-adjoint on #C. Here the
basic Hilbert space is L?(p?p).

In this section, we restrict ourselves to the case r = 2, p = 2 and discuss the
essential self-adjointness. Here we take the Ornstein-Uhlenbeck process with a
general drift as a basic process though in the previous section we have taken
the standard Ornstein-Uhlenbeck process. Precisely speaking, the associated
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Dirichlet form is given by

3.1 &9 V(u, v) = j (/A* Du(x), \/ A* Dv(x)) - p(dx).
B

Here (B, H, p) is an abstract Wiener space as before and A* is a strictly positive
self-adjoint operator in H*. We simply denote ./ A*D by D,.
We assume that C®(4*)n B* is dense in H*. Here C®(A*)= () Dom ((4*)").
k=1
In this case, the space & C° needs be modified as follows: FCy° is the set of
all functions f that can be expressed as

S)=F(x, 1), {x, 1)) 1,...,1,e C*(A*)n B*

where Fe C®(R"). Then the bilinear form §°~Y of (3.1) is well-defined on #C°
and closable. By taking closure, we get a Dirichlet form, which we want. In
addition, we assume that there exists a diffusion process, which we call the
Ornstein-Uhlenbeck process with the drift A, associated with the Dirichlet form
(3.1). We can define the Sobolev space W"? associated with this diffusion process.

Take a function pe W2®~ with p >0 a.e. Let us consider the following
Dirichlet form:

(3.2) &u, v) = J (D 4u(x), D 40(x))yp(x)* p(dx).
B

As in Section 2, we can see that & on #Cy is closable. Moreover, the associated
generator can be seen by

(3.3) Eu, v)= — j {L u+2(D4log p, D 4u)y.}vp* p(dx).
B

We also denote the closure of (&, #C°) by &. We use the same notations as
in Section 2, e.g., {T;},»o, and ® denote associated semigroup and generator,
respectively. The following is the main theorem in this section.

Theorem 3.1. Assume pe W=~ . Further we assume that |D 4p|y/pe L** (1)
and L,p/pel'*(u). Then &'? is essentially self-adjoint on FC.

Before proving this theorem, we prepare the following:

Proposition 3.2. Under the same condition as in Theorem 3.1, it holds that
D%(D4p/p)e L™ (1)

Proof. Formally we have

D L 2
(3.9) D;<_£>= _Lap Dl paegy
p P b

To show this, take any ¢ > 0. Then
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D*<D,4p>=_ L 1Daplie
N\p+e p+e (p+e)?

By using L,p/peL'*(u) and |D,p|/peL?*(u), it is easy to see that the right
hand side converges as ¢ = 0. Consequently, we get (3.4).

For notational simplicity, we denote D, logp in place of D p/p. D logp
can not be defined in the Malliavin calculus because we do not assume the
integrability of log p. We also denote L, log p in place of — D*(D,p/p).

Proposition 3.3. Assume the same condition as in Theorem 3.1. Then for
any pe[1, 2], W»P* < %, ,. More precisely, for any q > p, there exists a constant
¢ such that

(3.5) I = 6P) flloprw <l flag  feW?
Proof. For any fe #C;°, we have

(I —Lyf—2(Dylogp, Dyf)y: ”Ll’(pzu)

e |D 4p |5 e
< {J (1 — LA)fI”let(dx)} + 2{[ o7 |DAf|”*PZ/t(dx)}
B B

1/q (a—p)/ap
< ” I —Lyf I"u(dX)} {J pz""""”u(dX)}

1/q
+ 2” IDAfI‘h*u(dx)} { f |DAp(x)|;;'/“'""’p‘2'PW@‘%(dx)}
B B

(a—p)lap

<cllfllzg

Here we used the fact |D,f |, <M fll,,, for some constant M > 0. By noting
that ZC2 is dense in W24, we get (3.5).

We introduce the following function. Let y be a C®-function on R such

that 0 <y <1 and
1 if t>1,
x(t)={

0 if t<i.
For neN, we set
xa(t) = x(271).

Then it is easy to see that supp [x,] <[27""',27"] and there exists a constant
C such that

(3.6) < Ct™ 1.
In fact, we may take C = || x'||,. Further, we set ¢, = x,(p). Notice that

|D4p(X)|ne

) ID4@n(¥) e < C
p(x)
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Now let us turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. We shall prove that Ker ((I — ®® 1% Cr)*) = {0}.
Take any veKer (I — ®'® 1 £ C)*). Then for any fe FCp,

(3:8) W, (I = 6P) )22 = <p*0, (I = L) f — 2(D410g p, D4 f)u+), = 0.

By Proposition 3.3, we can see that (3.8) holds for fe W= ",
If few>>" then (I — L, 'feW™®>®" and therefore we have

PPo, (I =6 = L) ">, =<p?0 f —2(D4log p, Dy(I = L) "f)u>u = 0.

Hence

<p*v, [, =<p?v, 2(Dylog p, D4(I — L) ' Nu-Dn-
Then for any 1 <g <2,

I<p?0, £l = ’<pzv» 2<9;—p, D, — LA)_lf) >
-

= 1<pv, 2(D 4p, D4(I = L)"')l
<2 vaAp"q [ DI — Ly~ 1f“p

1/q
< {j p"v"IDApl"#(dX)} 1Al =1,p
B

1/2 (2-4q)/2q
< {j pzvzﬂ(dx)} {f |DAp|2q/(2—41)#(dx)} ||f||—l.p
B B

(3.9 ||P20||1,q < U”LZ(pZu) ||P||1.2q/(2—q) < 0.

n

which yields

Thus we have
(3.10) plrewt?,

Using (3.10), we have for a > 1,

1<p?0, f),1 < 21<p0, (Dylog p, Dy(I — L)™' [yl
< 2|KD%(p*vD4log p), (I — L)~ 'f,l
< 2|{(D 4(p?v), D4log p)us, (I = L)~ £,
+2[<p*vLylogp, (I — L)™' f ),
< 21/(D4(p?v), D glog pla-ll 1T — L)™' Il
+2llp*vLlog pll 1T — L)~ 'Sl
< 2{ (D ,(p*v), D 4108 p)g+ Il + | p*vL 410g plla} I f I12,00-

By noting p?ve W'?~ and D,logpeL®*(u), we can choose a>1 so that
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(D 4(p*v), D 4log p)y«ll, < c0. Moreover, note that

pzv(ﬂ N |D,,€|f,‘>

p p
= |[pvL4p|, + Il pv(D 4108 p, D 4p)g+ll,-

lp*vL logpl, = ‘

r

Now by using veL?(p?u), pe W2*~ and |D log p|y.€L?*(u) we can choose
r> 1 so that |p*vL,logp|, < co at the same time. Thus we have

(3.11) ploe Wttt

Since ¢,/p*eW?®~, we have o, =p®v-(p,/p)eW>'*. Now by
Proposition 3.3, we obtain ¢,ve%, ;. We shall show that (I — G'V)(¢,v)
converges in L!(p?p).

To show this, we note that for fe #C;°,

L1 o2 O@,0) — 00, [ L0(p2
= (@n0, Of )22 — (@aV, L2402
= (v, G’(fq’n))LZ(pzu) — (v, 2(D 4 f, DA(pn)H*)Lz(pzu)
— (v, f(5¢n)L2(p2u) — (a0, f)Lz(pZ;t)
= —<vp?, 2(D 4 f. D 4@ )y, — <0P%, [ 60,
= 24(D 4(9%), D4 @uues [ O + 2K0p* Ly, 5, — <09*, [ G0, ),
= 2{(D4(P?), D g@u)pss [ + K0P’ L 4@y [,
—2<wvp?, f(D 4108 p, D 4@,)gD,-

By the monotone class theorem, the above equation holds for any fe L*(p?p),
ie.,

L‘(pzy)<(§((pnv) - @n0, f>L°°(p2;4) = 2<(DA(Up2)’ DA(pn)H" f>u + <UPZLA(P,,, f>;4
- 2<Up2, f(DAlog P DA(pn)H*>;4'

Let us estimate each term of the right hand side. To show this we take ¢’
so that D log pe L% (u). First,

I<(D 4(P?), D 4@ s f Dl

< f |DA(Up2)|H‘|DA(pn|H*|f(x)| u(dx)
B
1/q , 1/q’
< {J IDA(DPZ)I?:*ﬂ(dX)} {f |D 4, ‘},.,u(dx)} IS 1L (2
B B

1/q’
< lvp?llyq |If||Loo(,,z,l)U lxn(p)I* IDApI‘h*u(dx)}
B

Daplue 1
< vp?ll1q Ilfllm,,z,,){f {M p(dx)
(p<2-n) P
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1/q’
< ollpzgemllp i 1,29/(2-q) ||f||L°°(p2u) {J |D4log pﬂl*/‘(dx)} .

{p<2-m

Here, in the last line we used (3.9).
Secondly,

|<vp? L 405 ]

12 1/2
< {j Iv(X)IZP(X)Zu(dX)} {f ILAfpnlzpzu(dX)} 1S 1l o2
B B

Further, by noting that

L,¢,= — D%D,p, = — D(x.(p)D 4p) = %, (P)(D 4p, D 4p)+ + 2a(p) L 4p

we have
/12
U |L49.1%p? u(dx)}

1/2
{f {xn DD 4plis + [ 2a(P) ILApI}szu(dx)}

D 2* D . 2 1/2
< {J {C' A127|H + CI A |LAP|} pzu(dx)}
(p<2-1 p P

D 4‘ 1/2
< C{j | AlilH pzu(dx)}
tp<2-m P

ID | 1/2
+ CU AP |1 4p 202 p(dx)
{p<2—1

|D |2‘ 1/2
< C” AP D 4 B (d)
pez-m P

‘ 1/2
+ C{ f |DAp|ﬁ.1L,.p|2u(dx)} .
fp<2—m

Hence

<0P? L s, [l < C{ f

B

1/
X [{j |D4log P|121*|DAP|121*#(dx)}
fp<2—1

1/2
+ {J |DAp|I2i'|LAp|2ﬂ(dx)} J
(p<2-m
Thirdly,

[<vp?, f(D4log p, D4, )usD,l

1/2
Iv(X)lzp(x)zu(dX)} IS 1l o2y

P
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1/2
< {j |U(X)|2p(X)2ﬂ(dX)} ”f”L"“(pzu)
B
1/2
X {J |DA ]og pllz-l"HDA(pnlzpzl‘l(dx)}
B
1/2
< ol L2z | f L= U |D 4log plis [ xn(0)I? IDApI?ppzu(dx)}
B

1/2
<C] U“Ll(plu) ”f“L"’(pzp) {J |D4log plfnp"z |DAp|fpp2,u(dx)}

fps27n}

1/2
<C| U”Lz(pzu) ||f||1,ﬂ°(p2u){J~ |D4log p|§1* |DAP|1%1*#(dx)} .

fp<2-m

Thus we have

1/q’
G = D (@a0) 12 < | vu,,z(,,z,,,[{ J D log plz;.u(dx)}

fp<2-1

1/2
+2C {J D 4log pli |DAp|121‘ﬂ(dx)}
fp<2-7}

1/2
+ C{j |DAp|é«|LApI2#(dX)} ]
{p<2—n

-0 as n—o> oo

since pe W>*~ and we have taken q' so that |D,log p|,.€ LY (n).

Thus we have (6 — I)(p,v) >0 in L'(p?n). Since ¢,v—v in L'(pu) as

n— oo, we have ve %, ; and (6" — I)v = 0. Since G'V — [ is injective, we have
v=20. This completes the proof.
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