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Asymptotic estimates for the distribution of additive
functionals of Brownian motion by the Wiener-Hopf
factorization method

By

Yasuki Is0zAK1

1. Introduction

In[4], we studied the supremum process of the integral of Brownian mo-
tion and obtained the following estimates: Let b(t) be the one dimensional
Brownian motion starting at 0. For ¥>0, A >0, 6>0 and a €R, let

t

(1.1) P.a(A) =P lj; b (u)du =r+at for all OStSA]
and

t
(1.2) Pyoo=P [j; b ) du<r+at+ot? for all 0<t< 00].
Then it holds
(1.3) P(A)~Ci(r,a) A V4 as At o
and
(1.4) Praa~cz (7’, a) Q.l/2 as Ul 0

with positive constants C; (r, a), i=1, 2, which can be given explicitly (see
[4]). This is a refinement of Sinai’s estimates in [9].

These asymptotics follow systematically from the theorem in [4]on a two
dimensional process called the Kolmogorov diffusion (cf. [5]) :

(1.5) Y(t)=y+b(t), X() =x+j;tY(u)du=x+yt+j:b (u) du.

Let T be the first hitting time to the positive y-axis :
(1.6) T=inf{t=0; X (t) =0, Y (¢t) =0}.

We denote by E, the expectation for the diffusion starting at (x, y) ER2
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Theorem ([4]). For a=0, b>0 and (x, y) ER? with x <0,
(1.7) 1—Eq@y (exp[—ad?T—boY (T)]1) ~C(a, b; x, y)v/o as o} 0.

Our proof in [4] was based on a formula obtained by McKean[6] while
Sinai’'s method was based on an extension of the fluctuation theory of Sparre
Andersen for sums of i. i. d. random variables. So it may be a natural question
to ask if the above estimates (1.3) and (1.4) (more generally the estimate
(1.7) ) could be recovered by a fluctuation theory for sums of i. i. d. random
variables and Lévy processes. The present paper is an attempt to this prob-
lem: The fluctuation theory we use is a version of the Wiener-Hopf decom-
position obtained by Rogozin[7]for Lévy processes as the continuous time ana-
logue of Spitzer's identity in [8]for sums of i. i. d. random variables. However
we need a generalization of the Spitzer-Rogozin identity to the case of two
dimensional Lévy processes (Th.1). Although we could not yet succeed to re-
cover the estimates (1.3) and (1.4) by this method, we can obtain some spe-
cial cases and furthermore, we can deduce a weaker form of (1.3) for a class
of odd additive functionals of Brownian motion including the integral of Brow-
nian motion (Th.3) .

2. The main theorems

Let (7, &) be a time homogeneous Lévy process, i. e. , a cadlag procéss
with stationary independent increments, with 7o=0 and §=0. Then the law of
this process is determined by the characteristic exponent ¢ (u, p) defined by

(2.1) E[ei”1‘+‘”e‘] =g W™ 1y pER.

Set

(2.2) &=sup &, &= inf &
0ssst 0ssst

and define for =0

(2.3) o (o, U, )7) = (0+¢(,u, 0))]: th[e—ol+iur,+in§t]'
(2.4) ¢_(0, 1, ) =(o+¢ (1 0)) fo " QtE[omorrinring]

We assume that Re¢ (¢, ) >0 if |¢|+|n|>0. Then we have the following
generalization of the Wiener-Hopf decomposition theorem which we call the
Spitzer-Rogozin identity in continuous time (cf. [71) :
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Theorem 1.

(2.5) ¢+ (o, , n) =exp ( j; wd—;E[e“"“”" (™) £2>0] >
(2.6) ¢ (0, 1, ) =exp ( fo m%E[e‘”'““" (M) ;St<0]>,
and

(2.7) b0, )9 (0, ) =T BT

The proof will be given in Section 3.
Let b (t) be the one dimensional Brownian motion with b(0) =0. Let L; be

t
the local time at 0: L;=1limg | ¢ —21?./; liceey (b)) du and 7, be the right con-
tinuous inverse of Ly T;=inf{u>0; L,>t}. For =0, we set

(2.8) E;=f sgn (b)) + |b(u)|*du
0
where
1 x>0,
sgnx=1—1 x<0,
0 x=0.

It is well known that (7, &) is a two dimensional Lévy process with 7o=10
and S():O

As an application of Theorem 1 to this particular case together with the
overshoot argument in the fluctuation theory (cf. Bingham[2]), we obtain the
following

Theorem 2.  Let ©,= 0 (r) =inf{t>0: &>7 Jfor r>0. Then we have for
020, u=0, o+u>0, 120

(2.9) 1—E[e=90" 470 ~Be(n] ~ 0+‘/TC.(Q) y T@rm asr 0,

¢+ o, 1’#v 1’])
where
Mttty (a+2) I‘Z(:WI‘ /sm
(2.100  Cl@= 2 at2) )
ez (2(a+2 )

The proof will be given in Section 4.

Theorem 2 can be used to obtain some estimates of the law of additive
functionals of Brownian motion as stated in Introduction. For this, we intro-
duce the following two dimensional diffusion process (X ®,Y@®):
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Y () =y+b (1),
(2.11) .
X@) =x+j; sgn (Y(u)) * Y (u)]|odu.
The law of this diffusion is denoted by P, as usual. Let
T=inf{t>0; X (t) =0},
(2.12) T°=inf{t=>0; Y (t) =0},
X=X (T.
Then it is easy to see that under P, with >0, (T + T%0r, r+X (T +

T%071)) is equally distributed as (ze,, o, = Es,), where 6, is the usual shift
operator on the path space. Hence, by the strong Markov property, we have

_ _jE _ _,(T+T0087)—Ar =X (T+T00687)
1—El[e ™o emn] =1—E,ple™ T ]

=1—e*E,0le™*TG(Y(T); 2, )]

where

(2.13) G (y; 4, 1) =Equle™T7*°].

It can be proved that G (y; A, i) is the unique bounded solution of
(2.14) G (o A, ) =2 (u+A*)G b A, 1)

on [0, ) with the condition G (0; A, #) =1. By the scaling property of b (t),
we deduce easily for any ¢ >0 the following equivalence in law as 8 dimen-
sional processes:

1 1
?bczt ?chl
L
b ! 1 1
T & c2tet cav2er
‘/’(ﬂ’ n) o (o, ., 7)) = cd (u/c?, 0/c**?) ¢y (a/c, plc?, n/ce*?)
e, Tolr) 1 1
—@(Ca+27) S Tecat?y
¢ c
Hence, we have
(2.15) E[e—ure(r)—x-EO(r)] :E[e-rﬁurem—néem]
and
(2.16) G (cy; @2, c™?u) =G (3 A, ).

Then by Theorem 2. we obtain
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Corollary 1. For each =0 and A=20

1=Erole™ G(Y(T) ; 2 0)1=1—Ec1ole™@BT G (r T7Y(T) 5 4, )]
1/4
~¢T((§gi)117)c(a) rar as v 40,

In particular, the estimate (1.4) follows if we set a=1:

Corollary 2. If Prag is defined by (1.2), then

3)
5/694/3 =
3213
Jar(})
Remark. This result was obtained in[4] and the general results for
P,ss with a =0 can be reproduced from P,, by using the technique developed

there.
Proof. The lemma in [4]asserts that

(2.18) Proo=1—E,0le ?T"2¥ D]+ 0(0) as 0l 0.

where these T, Y (T) are defined with a=1.
On the other hand if a=1, 1=0, G (y; 0, #) equals to o Veuy, Replacing u¢
by 2 and 7 by 70°, we obtain by the scaling property of (X (), Y(t))as ¢4 0

orri0
35/624/31"<l>
Proo~1—E 10 [e-zﬂ/3azr—zrl/3awr)] ~ﬂC 1) (103) 1/e=___3,1/eﬁ,

)

(2.17) Proo— 6 /o, as al0orr!0.

because ¢4 (g, g, 0) =1.

As for the estimate (1.3), we obtain the following result which is a gener-
alization of Sinai's estimate in [9]to a class of odd additive functionals of
Brownian motion b (t); We could not yet refine it in the precise form as (1. 3),
however. Let, for >0, A >0 and a=0,

P (A) =Py [T>A]
t
=P U'o sgn (b)) * [b(w)|%du<r for all 0< ¢ SA]

so that P (A) equals to P,o(A) defined by (1.1).

Theorem 3.
P (A) <T@ A as A * r‘ﬁ—»OO,

that is, there exist positive constants cf¥<c{ such that
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1 — _ 1
ciPr7@ ATV PR (A) <cPraarmA V4

2
provided that A * v~ a+z is large enough.

The proof will be given in section 5.

3. Proof of Theorem 1

We prove theorem 1 by an approximation of the Lévy process by random
walks. For a random walk, Spitzer's method ([8]) can be easily modified to
cover the two dimensional case. The approximation of the Lévy process by
random walks can be obtained along the line proposed in [7]. We should note
that Theorem 1 can also be proved by the method of Greenwood-Pitman[3].

In [8], Spitzer proved the following

Theorem 4 (Spitzer). Let Xx= (x1, ***, xx) be an arbitrary n-sequence of
real numbers, and S, be the n-th symmetric group. For 6E S, we define

(3.1) S (%) = max (fxo,).
Osksn i=1

where the summation over empty set is considered to be 0. For T €S, which is rep-
resented as a product of cyclic permutations on mutually disjoint sets:

= (a1 (7)) (2 (7)) -+ (a0 (7)),

we define

(3.2) T(x)=2( 2 x)*

j=1 keaj(r)

For any fixed X, the two sets [S (0X) lges, and [T (1X) lces, of n! numbers are
tdentical to each other.

From this theorem it is obvious that for any sequence of pairs of two real
numbers

(t, x) = ((t, x1), (b, x2) , =, (tn, %4)),

n n
the two sets [(Z toi, S (0%) )],e@,, and [(Z tej, T(TX))]TG@” are identical sets.
j=1 j=1

As a prototype of Theorem 1, we need the following

Theorem 5. Let (i, xi),1=1, 2, **be two dimensional i. i. d. random
variables. If we define

Ti=ttt+-+tr, To=0,
Skr=mx +xz+"'+xk, So=0,
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b (g, 7) =Ele™ 58] St=max (0, Si) ,
then it holds

(3 ) 3) E [eiu ‘r‘;,+mmaxosksnsk] — s Ij%(jlj,_(#_}]l)":

K142k g+ +jki+-tnk,=n J
kjz0

Furthermore

(3.4) is” E [ Tetinmaxog gy Sk] =exp[i 87 Ele™ ?"”"5:’]].
n=0

=1

Proof. Spitzer proved (3.3) and (3.4) in the case £=0 by using Theorem 4
and

(3 . 5) El[e"T™] = fll (E [einsf]) b

for T€ &, which contains k; (0=k;=<n) cyclic permutations of length j, j =1,
2, **, n. In our case, we need what we noted after Theorem 4 and

(3.6) ELe Frr ) =T (¢ (4 m)) .

We denote in the following

D, (s, 11, ) : = (1—sE[e™ A]) Zs"Ele™ T ¢™F], Sn=max Si.

n=0 0sksn
O_(s, i, ) : = (1—sE[e™ T]) Zs"E[e™ T £5¥], S»= min Sk.
n=0 0sksn

Using (3.4) and the Taylor expansion of log(ﬁ) we obtain

(3.7) D, (s, 1, p) =exp (i 87 Ele* & (¢Mn—1); S,,>O]>,
n=1

(3.8) O_(s, 1, 1) =exp (i %E[e‘” T (gfmSn—1); Sn<0]>
n=1

and

(3.9) O, (5, 1, ) B (s, p, ) = —SEle ]

1—sE[e™ 51 eiﬂSl] :
To proceed to the continuous time process (i, &), we set Th= T2, Sp= E_
and s=¢"°’Y in the above. We will show that the both sides of (3. 7) converge

to those of (2. 5) when N tends to infinity. The left hand side converges to ¢+
(0, t, ») from the fact that (z;, &) has no fixed time of discontinuity :

¢+( —0/N . 7])
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. ad . n .
= A= Bl )) Semommp oy ]
n=
PP | e igp Nt |
=N (1—6 aIN=F s, O))j; dte a[Nr]/NE[etur n A imax sks[Ntle%]

—»(0+¢(#’ 0))-/;we—atE [eiur,+in-€‘]‘

This convergence holds for Imn=0. For the right hand side of (3.7),

oo _—on/N

oo (5

n=1

E[e‘”’%(ei"e%‘l) : E%>O]>

= ® L —og(INtI+1D/N [,- [Ntl+1< inelN1I+1L ) ]
exp (j; dt [Nt]+].e Ele"™ N ("N ——1 ,S[N?I+l>0

eoe—O'tdt

If #=0, this is proved by Rogozin ([7]) to converge to j; ; El[e™t—1 ; &,
>0]for any 1, Imn=0. In our situation,
(3.10) _[th]\f_'__le-a(wnﬂ)/EE [eiur“"jvﬁ(e—xe%“—‘_l); 5‘”5},“>0]

forA=0is dominated by

—Wj]vqe_”(w”“)mE [e-xe[”;’,'” —1; Ewga >O] _

which is positive and converges pointwise to an integrable function as N— 0,

together with their integral by j; dt. Moreover (3.10) converges pointwise to

—-0at
¢ TEle" e F—1) ;£>0].

Hence it follows that the integral of (3.10) tends to

o , —0t
./; %E [e"’”' (™% —1); 5'>0]'

which establishes (2.5) for » =i4, A=0. Continuity and analyticity of both
sides complete the proof. (2.7) can be proved either by taking limit in (3.9)

or by the formula of the Frullani integral applied to the product of (2.5) and
(2.6).

4. Proof of Theorem 2

Let 7,=L;! and & be defined by (2. 8). Then ¢ (i, 0) =4/2u. Most of ex-
plicit computations involving the properties of Brownian motion is done in
Lemma 3.
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Lemma 1. If 020, u=0, 0+4¢>0 and 220,

ooy [t B

Proof. It is sufficient to prove the following identity:

$+(0.ip i4) _ f AtE[e=otwm1=3%, £, < 4]

(4.1) 1—E[e 9" -#Toin~em] =

o+2u
ij.l-l/-‘u_—E[ —o8(r)- ”Te(r)“ee(r)]
g

By (2.3) and the strong Markov property of (7, &),

P+ (o, iy, iA :fw —ou—ut,— Ak,
ey . duEle ]

8(r) ] .
el [ o
0 8(r)

=E[f du e_a“_”“"éul@uq)] +E [f dt e-““"'””—ﬂf(e(r)m—fe(e(r)m]
0 0
=.]; du Elemo = ; §,<7]

+E [e—ue(r)—ure(,)—lée(r)E [f dt e—at—ur,—lé,] ]

:./;oodu E[e_au—u‘ru—léu; éu<7:| +M/—LE[ —06(1’)—111'8(,)—,259(,)]

We proceed to obtain the asymptotics for the right hand side of (4.1).

Lemma 2. If 620, u=20, 6+u>0and A=0,

—(1+m)r

@2 [Tand ot o i) = (oI [ atE L E <),
Proof. We have

—(1+m)r bt inE
—0t—prt+in
e QA+in)r

= —oteur, [A1
fo dik e Mtfﬂn(lﬂn)e 'dﬂl

If A tends to infinity, the left hand side converges to

—(l+m)r —-Q+inr :
—ot—ut+ing —e ¢+ (g, Y, 77)
f_mdn 7t(2+m5 R0 e 1= f dn27t A+in) ~ o+42u

because (4.10) given below assures that the absolute value of the integrand is
dominated by
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2 |¢+(o ip, 7))|~ - p— -
Zalnll otz | constlEmmaslyl—eo,

which is integrable outside [—A, A]. The right hand side of (4.3) also con-
verges to

j; dtE[e~0t#7=24 E,<y]
because the inverse Fourier transform
A l_e—(/H-in)r inz
f_AZn:(Z-i-m) e
converges boundedly to e™** * 1¢,, (x).
The next lemma is the key to explicit computations.

Lemma 3. Let 0=W. Then we have as |n|—o,

(4.4) o+ (o, in, n) ~ v 0+\/ﬂ1 pi0(sgnn)
JCo (@) Inlzas

for a=0and (=0 uniformly on any compact set, where

r(a+2)a+z

25%3sin (zasw) I(at2)?

(4.5) Cola) =

Proof. First we obtain the asymptotics for the absolute value, and then we
prove the existence of the limit of arg@, (0,41, 1).

It is obvious that (z, ét) = (t:, —&;), and hence for any nER
¢ n)=¢ @ —n), Imp=0,

(4.6) ¢+ (0, i, m) =¢ (0,in, n), 0.
Then by (2.7),

. ot+v2
|¢+ (01 i, 77)|: 0.+¢, {;n ’ ﬂzo

Let M(t) be the local martingale

!
F(b}) exp <_%F/(0) Lz_j; (u+inbd®) 1ps>ods )

where F () is the unique bounded solution of F” (x) = (2u+ 2inx®) F (x) on
[0, ) with the condition F (0) =1. Stopping M (t) at 7; and at 0, respectively,
we obtain

E [P62) exp (—3F O Lo—pzt —in [ (62)= an)| =F (0).

Hence
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E[exp (—mf—mj:' )“du)] 'O

where 7/ is the time spent by b (t) in (0, %) until the stopping time 7;, and
7y is defined analogously:

7t 7t
@.7) = [ Lusads, 7= [ Locods.

T
Because the two dimensional processes (7, j;tlbu\/ 0]%u) and (77,

T
fo '|bu/\0|“du) are independent and identically distributed, it holds

T
Elexp (—F‘T*_i’?_/; lsgn (by) |bu|“du) ] :e%w'm)n‘ (0) = yIReF’ ()
and hence

(4.8) ¢ (i, ) = —ReF ' (0).

The limiting property of F ' (0) can be computed by using some knowledge on
the Bessel functions (Abramowitz-Stegun[1]). Let K, and I, be the usual mod-
ified Bessel functions :

— I—v( )_[v( )
K. (2) % ) zinwr :

and
_(z\ & (P4
L() _<§) ,,_Z_:(,kll"(i+k+1)’

Then w( /_ K_<a+2z 22>1s, up to a multiple constant, a unique bound-

a+2
ed solution to w” (z) =z%w (z) on [0, ). Hence if U (z) =w ((2i) @¥z z), then
F(x) for (u, n) = (0, 1) is given by 5(0) We note the following asymptotic

formula:

w(z) = [K_< m) Ji T <+ ) (a+2"’ y)";”

az\at+2® * )7 V¥ 2sin x 1‘( ) F(-“I—%)
(24
/(a-li-Z) aiz_ <Z—1F§)a+zz
E S“’a+2\ 5 fes)

From this F'(0) =U"(0) /U (0) for (¢, n) = (0, 1) can be computed as



222 Yasuki Isozaki

(a+2) 2 “i;)

F'(0) =—2a+z ¢ 1GtD :
w2
Thus it holds as || = o,
¢ (e, m) =Inlarzg Glyl~@¥op, sgnn) ~|nl@2g (0, £1) =Cy(a) Il

where

4.9)  Col@) :=¢(0, £1)=—Re F'(0) =—— ﬂ(a+2)a*+7 —
2a+zsin ( )2
2(a+2) a+2
Hence
(4.10) 16 (0, i, )|~ [—TES2 o

Co(@) n|a+z

arg @+ (0, iy, ) is the imaginary part of the exponent in the right hand of
(2.5) :

argd. (o, i) =f0 %E le=ot=#7 sin (n&/*)]

=sgn(n)fw%E[e'”'_”"”Sin(|77|t“+2$1+)]

_sgn(n)
a+2 u

and, as |n|—o0, this converges to

E[ —ow/ I aiz- W/'""“”’lsm u&)]

—%Yn—_ég—E[ —smv €1>Ol

_sen(n) gn (1)
=ats 51>°] 1 lats)

The convergence above follows by the repeated use of the fact that for x >0,

f{ sint dt <£(0) f smfdt

for any positive decreasing function f (t), and that the integral f

smt dt .
is

continuous and vanishes as x — 0,

Proof of Theorem 2. From (4.4), it follows that the left hand side
f (4.2) behaves as 7} 0,
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) —Q+in)r ) —u+m)r 1
Jam gty o+ i) = [ m) gy e i )

—rl iz 1
= | gyt 0. 0
- 1= Vot/2pu 2(a+2)

N N )

Vot o 2(at2)
@ ygry)

Ix |2(a+2) oot = 9 (o + 2) /I"(2 (a1+2) ) is

i6(sghx)

T e

~

Here the identity f dx

obtained by using I" (2) F(l —z) = sinnn'z and the following integrals for v >

- 1L fmx”sin xdz = I' (1 +v) cos (vr/2) and fmx”cos wx=—T01+v)
0 0
sin (vr/2).

Hence
1—E[¢799" 479 ~Rein] = a?:—m%f dtE [e—ﬂf—ur,—letg <7]
+ y

1— —(1+m)r

+ (o, i/.t. iA) f_.,,d /27[(,1 +in) o+ (0, i, 1)

1 va+J_ 2(a+2)

T (0, i i) JC, (@) Y
g Co (@ F(Z(a+2))

We have thus obtained (2. 9) with

C (@)= (a+2)
[(2 (a+2) )

2 atars (a+2) l-ﬁ:ﬂ/sin (2 (a’ﬂrz) ) F(aiz)

il )
2 (a+2
5. Proof of Theorem 3
Lemma 4. Let S and T be non-negative random variables and assume

that
P[T+S>Al~cy A %and P[S>Al ~c, AV as A t o
with 0O<v<1 and 0<c<cy. Then
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(5.1) (el 0HD — /0 v PIT>A)<c1A Y as A 1 oo,
Proof. We set

.. P[T>A] _

lim inf———=

A—oo

k

-V

Then for any €>0, there exists A, such that

M<ca+e and P[T+—‘S;>A]~>cl—e for all A> Ao
A v [A v
and for infinitely many large B,
PIT>Bl ...
B—U
We choose B large enough to satisfy P B o = Ao Then
<C2+5_ )
(ci—e) (A+B) »*<P[T+S>A+B]
<P[S>A1+P[T>B]

<(cate)A7V+ (k+e) B
Hence

(k+e)B7 > (cy—¢) (A+B) >— (c;+e) A7

The last term is maximized when we set A=B (ﬁ—l)'”“’“’to yield

kte> [ (cy—&) V9D — (c,+¢) 1/(v+1)]v+1'

We intend to apply this lemma with (T, S) = (T, T° 0 67) . If we set 0=
0, A=0 in Theorem 2, it follows

2
1—Ecro [e-ra+2u<r+ro ooT)] ~ (2u) 1/“7—2(a1+2>C(a) as7 1 0.

We rewrite this using the Tauberian theorem,

21/4A -1/4
r(3)

On the other hand, we can extract T° o 7 :

(5.2) Prol(TH+T° 067) >A]~ C(a) as A t oo,

(5.3) 1= Eciole 7@ (700 01 )| =1—E10[G (Y(T) : 0, prave) ]

1
=1—E10 [e—VZu ra+z¥ (D]

The asymptotic behavior of the last term can be obtained by the Taube-
rian theorem and Corollary 1:
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Lemma 5. As vl 0, it holds

(5.4) 1—Ec10lG (rarzy (T) ; 2, 0)1~ ~2latd) (|x|r)ﬂﬁff
[(2(a+2)>

and hence

(5.5)

g5 (a+2)1 a+2r( a-ll- z)Si“ 2 (aﬁ- 2)
g arz) |

The proof is given at the end of this section. From (5.5) and (5.3) we
know

1—Ec 1o [e—@m_wl»zwr)] ~ (2p) Vay/2asd

N S 1 1 .
g 27t 2) el Jsing )

F(%) | */_F< a+2))
21/4A 1/4 ;
- r<4) )\/ 2 °“2(a+2)

P<—1,0)[(T0 o 0r) >A] -

(5.6)

Comparing (5.2) and (5.6) explicitly, we can apply Lemma 4 and thereby
complete the proof of Theorem 3 with

2\5
214 atzx V! 2v4
(a) 4/5 4/5 5/4 — — (@) —
4 4

Remark. For a=1, P,; (A) ~C(r, a) A™"* has been obtained in [4].
It amounts

Pm (A) ""0.7182"' * A_IM,
while our Theorem 3 asserts only
0. 1231+ « A7V4<P1(A) <1.972:+- « A7Y* for all large A.
Proof of Lemma 5. From (4.4),
Vot+J2u ,__1
A) ~ A 2@D as A—+co,
VCola)

Hence if we make g {4 O in Corollary 1, we get the asymptotic (5.4). For (5.5),
we must compute

(5.7) lim PiolY(T) >A] _

Amoo A~ -1/2

Once C is explicitly obtained, we readily obtain

¢+ (0, i, i
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(5.8) 1—Ec 10)[ ~Vaurl/ardy T)] (2u) mm—[( )

To compute C explicitly, we note that G (y; A, 0) is a bounded solution to
G" (y) =22y%G (y) on [0, ) and hence G (y; % 0) =w(y) /w(0) where

w (2) = “/_K*<a+2 a+2> By (5.4) we deduce that

g 05— s

r <2(a+2)
and hence
(5.9) c f w%(o)Ly'mdy _2lat2) oo
r ( (a+2))

As we obtained in Section 4,

r(a+2) ez _(a+2)a+21‘< +2>.
25inaf_—2[‘<g—__::%) 2

-1/2.

w(0) =

Finally we integrate—w’ (y) y
__j;“w, () y~2dy

- [~.- 1 2 axz a1 2 axd
= j;y ‘/Zdylz/;Kﬁ<m 2 )-h/; yzK a+2<my 2 )]

and by the change of variable C=a%y$2&so that dC=y%dy, this is equal to

_j:odC[ (a+2) CK—(C) +K (C)]

Note that pr (2) +K'y(2) = =Ky (2) and K, (2) =%j;wd2 - QR FARID,

the above further equals to
[Catk 2,4 ©
_f dA - Xm‘szd—zge'%u“m

_f ]a+2 1_ T
Al
Zsing o 1o

From (5.9) we obtain
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1

(a+2) @zl ——=

S Z(QTZ) oy - Zr(a+z>

2sing 10 +2) r(z (a+2)>
and hence
1 . T

2 -z@rn (a+2)”ai2 sin

(20) braaa(3) C= (2u) brer r(“”) 2(at2)

ilgary)
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