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Note on reflection maps and self maps of
U(n), Sp ( tt) and U (2n) /Sp (n)

Dedicated to Professor Teiichi Kobayashi on his sixtieth birthday

By

K. MORISUGI and H. bsiiimA

1. Statement of result

Let U (n) and Sp (n) b e  the n-th unitary and symplectic group, respective-
ly. We denote the complex numbers by C, and the quaternions by H. Let F be
C, H o r  (C, H) . In order to describe uniformly for three cases, we write

U(n)

{

if F =C

G n ( F )  =  Sp (n) if F = H

U (2n) /sp(n) if F =  (C, H) .

W hen F is  C or H, we denote by P (F ) a n d  Qn (F )  the projective space and
the quasi-projective space, respectively. W e write Qn (C, H) = EP (H") ±, the
suspension of the union of P (H ") and a point space. Recall from [1, 6, 8] (cf.
§2 and §4 of th is paper) that there is a map, called the reflection map,

r: Q, (F)G n ( F )

which induces an epimorphism on cohomology. Our result is

Theorem. For any integer k, there exist maps k Qn (F) (F) and M k :

Gn  (F) — ■Gn (F) such that
(1) the following diagram commutes

(F)Q (F) Gn

( 1.1) Ck

Q ( F ) G lI (F );

(2) ck induces the homomorphism of k-multiple on the integral cohomology ;
(3) m k induces the homomorphism of k-m ultiple on the ring basis of the integ-
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rai cohomology which will be given in  Lemmas 2.1 and 4.1  below.

W hen F  i s  C  o r  H, setting m k  to  b e  th e  k-tim es multiplication map,
Theorem may be well-known for experts. W e give its proof in §2 for complete-
ness, though. Since Gn (C, H )  is no t an H-space for 2  (cf. [4] ) , the  exist-
ence of the map m k  is not obvious when F= (C, H) .

The both authors thank Y. Hemmi for valuable discussion with him in the
preliminary version and the referee for valuable suggestion to  the contents of
the section 5.

2. The cases C and H

In  th is  section F  i s  C  o r  H . A ll vector spaces a re  considered a s  right
vector spaces. The standard in n e r  p ro d u c t  , in  Fn is defined so that if x

xn), y — ( y i . . . . . . yn) are elements of Fn then  (x, y) = Ek . f k y k .  We identify
W  w ith C2n a s  follows: every quaternion n-vector (z i „  z n) =x +fy  deter-
mines a  complex 2n-vector (xi „  x,, Yi, .... y n )=x @ y  where z r — X r+.1 1 Y r. L e t t
: Sp (n) U  (2n) be the inclusion, c: U (m ) U  ( m )  the  complex conjugation,
and  S  (Fn) th e  u n it sphere of F .  Recall from  [6 ]  th a t the quasi-projective
space is defined by

Q. (F) = S (F a ) 
X  s(F)S (F) /S (F a ) X s (F) {11

where S (F )  acts on  S  (P i )  b y  the multiplication from th e  righ t and  acts on
S (F ) by the inner automorphism. Note tha t Qn  (C ) = EP(C) +. Let x E S  (F t ) ,
y E Fn and /1ES (F). Then the reflection map r: Qn (F) (F) is defined by

r[x , A ] (y )=y +x (2 - 1) (x, y).

Now, for k E Z, define c i :  Q,  (F) — *Qn (F ) and m i : Gn( F )  by

ck[x, A] = [x, A r c ]  a n d  m k (x) =xk.

T hen, as is easily  seen, c i  is w ell-defined and  the  d iagram  (1 .1 )  commutes.
The following is well-known (cf. (3 .8 ) in  [6 ] or [7]).

Lemma 2.1 W e have

H*  (U (n); Z) = Az (xi „  x n ) , deg (x i ) = 2i — 1 ,
H* (sp (n); Z) =A, .....y n )  ,  deg (y) = 4i — 1

such that
(1) xi and y i a re primitive ;
(2) r* (xi )  and r* (yi )  are generators o f H2 1 - 1  (en (C) ;Z) and Fr i

-
1 (e n  (H) ;Z) ,

respectively ;
(3) c*  (xi) = ( - 1) ixi;

(4) e* (x i ) {( -
1 ) "Yi/2 i f  i  is even

0 if  i is odd.
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From  this lem m a, (2) and (3) of Theorem follow. T h is  ends the  proof of
Theorem for F=C, H.

A s is w ell-know n [8, 9], there is a  map T : Q n  (H) - •Q 2n (C) such that the
following square is commutative up to homotopy

Q ( H )  
l '

--
-
 Q 2 n (C )

Sp (n) t U (2n)

and there is a  cofibre sequence

P+ i'-'p (c2n) 4. P (I-P) + ----  Q n (H) - - - - -T  Q 2 n  (C)

where p  is the canonical map.

3. Sele map of a symmetric space

Let G be a  topological group having an involutive automorphism a': G - •
G. Let H be a  subgroup of G such that HC G =  {x E G ; a(x ) =x }.  Notice tha t if
G is  a Lie group and H contains a  path-component of Ga , then G/H is  a  sym-
metric space. Lep p:G - *G/H be the projection, and d e fin e  a  m a p  :G  ---• G  by

(x )  = xo- (x- 1 ).

Let k E Z. We define self maps ,uk ,fk  of G by

{ (x) ii f  k =21
Ilk (x) =x k a n d  fk (x) =

V x ) lx if k=21-1-1.

They induce maps gk : G/H --+ G/H and t :  G/H -*  G such that 9k  
o p

 = p  0  fk
and & o p  =  .  If follows easily that -. 0  g k

 ° p  =  Il k
 0

 O p
 so  th a t & 0  g k  = il k

o .

Lemma 3.1 (1) The following diagram is commutative.

p
G
Ifk

P
G

( 2 )  If Gc=-H, then & is  injective.

t

G/H G

9k

tG/H G
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Proof. The assertion (1) has already proved, and (2) is  true, s i n c e  (x ) =
(y) if and only if x-

lyEG a

W e would like to determine the cohomology induced homomorphism of g ,.
However it seems difficult in general. W e will treat this for some nice cases in
the following sections.

4. The case (C, H)

W e use the notations in §2. Let J: C'n C 'n  be the  conjugate linear map
defined by the m ultiplication of j  E  H from  th e  right. D efine a : U  (2n)
U(2n) by 0 -  (h )  = J o h o r l .  In words of matrices,

a (A) c (A) .1 ', J  =
In 0

Where I n is  the unit matrix of dimension n. Then, as is well-known, U(2n) a =
Sp (n) . Thus, from §3, we get a self map g k  o f  U (2n) /sp (n) , which from now
on is denoted by

m k U (2n) / Sp (n) U (2n) / Sp (n) .

We will show that m k  is the desired map.

Lemma 4.1. Under the notations of Lemma 2.1. we have

(1) H* (U (2n) / Sp (n) ; Z) = Az (zi, z n ) ,  deg (z1)  = 4 3,  p * ( )  = X2i-1

and, for any k E Z,

(2) (zì) =kz i

Proof. W e refer the proof of (1) t o  [7]. W e prove (2) as follows. A s we de-
scribed above, i s  the composition of the inner automorphism by Jn a n d  con-
jugation, and since x i is primitive, by Lemma 2.1, we see that

(xi ) = xi —c* (x i ) ---- (1+ ( — 1) :+1) xi

thus

/ (1+  (-1 P +1 )x ii f  k = 21

{1(1+ ( - 1) 1 ) +1}x ii f  k = 21+1.

Therefore, using Lemmas 2.1 and 3.1, we have the desired result.

To define the map r: EP  (H's)U  (2n) / sp(n) , we recall some construc-
tions. F o r  F  =  C , H, l e t  Vm  (Fn) b e  th e  Stiefel m anifold of orthonormal
m-frames in  Fn , Gm  (Fa) the Grassmann manifold of m-dimensional subspaces
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in Fn, and q: V m  (P a )  - 0 Gm (F n )  the natural projection. Define 0 :  Gm (C's) X I
U (n) by

(q 1, ...., v . ) ;  t) (x) = x+ El) k  (en" —1) (v k , 4 .

Notice tha t 0 (q(vi......v m) ; l) E = x e l t  ED), for x c q (v  1, v m ) = W  , y E

1/1/.1 . There exists a  map 0: EGm (11") +-• U (2n) /sp (n ) which makes the fol-
lowing diagram commutative.

G.(11') x i
eX id

(C2 '1) X I ç3U  (2n)

  

i qi P
Gm (11n )  X  Gm  (11n) x {0,1} EG.(Hn) + u (2n) /Sp (n)

Here e is the inclusion map. Write

r  =  : EGi(11n) EP (Hn) ± —•U (2n) / Sp (n) .

Proposition 4.2. Let p : U (2n) U (2n) / Sp (n) is the canonical projec-
tion. Then, the following square is commutative up to homotopy.

 

U (2n)

 

Proof. Define H : ix  Gi  (C2n) X i --• U (2n) by

(s, q (y),(x )  = x ± v  (e ' r i " '"  - 1) (v, x) ±vj (eir g ( 1 - s ) t  - 1) (vj , x) .

This induces the map H which makes the following commutative.

IXG1(C 2 n ) X I

id Xq

EG (C 2n) +

U (2n)

H
U (2n)/ sp (n)

Then H is  a homotopy between r 0  Ep +  and p 0 r. This completes the proof.

Given k E  Z , let ck : E P (H n )+ - +EP(H n )+ be defined by

ck [v, t] = [v,
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—

where kt —  k t  E  Z and 0  k t <1. Note that ck [v, A] = [y, ii k ]  under the identi-

fication EP(11n ) += P (ll n ) X P (H n ) X  {1}.

Proposition 4.3. For any  k  EZ , the following diagram is commutative.

EP (Hn) ,, U (2n)/ SP(n)
Ck

mk

EP (Hn ) + U (2n)/ sp (n)

Proof. T a k e  [W, E  EP (Hr) + = EGI (H's) +. L et W ' be  the orthogonal

complement o f  W in  C2 n . By definitions, r [W, t ]  =  (p o
 - 0 (w ) , t) and

-0 ( t ( W ) ,  t )  ED y) = x e "  ED y for x  E W, y  E  WI . It follows that

(r [W, c iao (w) , t) (0(c(w) , t)) = (t (w) , t) a (0 (e (w) , t) - 1 )

which is the multiplication by j -
l e — r e n i t , e 2 r i t  

on  W and the identity on  HP- ,
respectively. Then, for x  E W and y E  WI , we have

° r ° ck) [W, 'a) y) = (Ct [W, 17d) (x  ED y)

=xe 211.2k7 ED y
— x e r i k t  ED y

and

( (  °Ink ° r) [147 , t]) (x y) = ((ltko r) [ W, d) (x  e  y)
Xe 2 Trikt y

Hence .& r  o  ck  =  ° r, therefore r ck = m k  r  by Lemma 3.1(2). This
completes the proof.

Therefore Theorem  fo r  th e  ca se  F = (C, H )  follows from Lemma 4.1,
Propositions 4.2, 4.3 and  Theorem fo r  F  =  C . T h is  completes th e  proof of
Theorem.

5. Mk -structure

For a given path-connected space X  and an integer k , if there exists a self
map hk of X  such that hi: (x) =kx for all x E QH*  (X ; , then w e say [5] that
X  has an M k-structure or that X  is an Mk-space, where QH*  (X  ; Q ) is  the  in-
decomposable module of the rational cohomology ring if* (x; Q).

Note tha t any  connec ted , fin ite  (c o -)  H-space i s  a n  Mk-space fo r  any
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non-negative integer k. So we think that if the space X  is an Mk-space for all k
E  Z, then X  must have some structure n ea r (co-) H-space.

As a corollary of Theorem, we have

Corollary 5.1. U(2n)/Sp(n) and  Q (H ) are  Mk-spaces for any k E  Z.

Proposition 5.2. U(2n+1) /0 (2n+1) and Es/F4 are Mk-space for any k E Z .

Proof. According to H a rris  [3 ], in the above cases, the map 0 : H X G/H
G defined by 0 (h, 911) (911) = hg (9 -

1)  is  a  rational equivalence. There-
fore i n d u c e s  an  epi-morphism: QH*  (G ; Q) QH* (G/H ; Q) . Thus, from
the commutative diagram of the right hand side in  Lemma 3 .1 , it is clear that
the map 9 k in  Lemma 3 .1  gives the desired Mk -structure of G/H.

Hence U (2n) /Sp (n) , U (2n 1 )  / 0  ( 2 n  1 )  and E6/F4 a re  near H-spaces,
and Qn  (H) is  a near co-H-space.

T h ere  a r e  m any sym m etric  spaces w hich  can  be  considered  f a r  from
H-spaces. An example is the following result of Glover and Homer [2].

Example 5.3. If  F is  C  o r H and k 0, ± 1, then G . (I") is  no t an
Mk - space for the following cases:

(1) 2 3 and n 2m+1,
(2) 4 and n 2m2 - 1 .
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