Note on reflection maps and self maps of

$$
U(n), S p(n) \text { and } U(2 n) / S p(n)
$$

Dedicated to Professor Teiichi Kobayashi on his sixtieth birthday

By
K. Morisugi and H. Ōshima

1. Statement of result

Let $U(n)$ and $S p(n)$ be the n-th unitary and symplectic group, respectively. We denote the complex numbers by \mathbf{C}, and the quaternions by \mathbf{H}. Let \mathbf{F} be \mathbf{C}, \mathbf{H} or (\mathbf{C}, \mathbf{H}). In order to describe uniformly for three cases, we write

$$
G_{n}(\mathbf{F})= \begin{cases}U(n) & \text { if } \mathbf{F}=\mathbf{C} \\ S p(n) & \text { if } \mathbf{F}=\mathbf{H} \\ U(2 n) / S p(n) & \text { if } \mathbf{F}=(\mathbf{C}, \mathbf{H}) .\end{cases}
$$

When \mathbf{F} is \mathbf{C} or \mathbf{H}, we denote by $P\left(\mathbf{F}^{n}\right)$ and $Q_{n}(\mathbf{F})$ the projective space and the quasi-projective space, respectively. We write $Q_{n}(\mathbf{C}, \mathbf{H})=\sum P\left(\mathbf{H}^{n}\right)_{+}$, the suspension of the union of $P\left(\mathbf{H}^{n}\right)$ and a point space. Recall from [1, 6, 8] (cf. $\S 2$ and $\S 4$ of this paper) that there is a map, called the reflection map,

$$
r: Q_{n}(\mathbf{F}) \rightarrow G_{n}(\mathbf{F})
$$

which induces an epimorphism on cohomology. Our result is
Theorem. For any integer k, there exist maps $c_{k}: Q_{n}(\mathbf{F}) \rightarrow Q_{n}(\mathbf{F})$ and m_{k} : $G_{n}(\mathbf{F}) \rightarrow G_{n}(\mathbf{F})$ such that
(1) the following diagram commutes

(2) c_{k} induces the homomorphism of k-multiple on the integral cohomology;
(3) m_{k} induces the homomorphism of k-multiple on the ring basis of the integ.
ral cohomology which will be given in Lemmas 2.1 and 4.1 below.
When \mathbf{F} is \mathbf{C} or \mathbf{H}, setting m_{k} to be the k-times multiplication map, Theorem may be well-known for experts. We give its proof in $\S 2$ for completeness, though. Since $G_{n}(\mathbf{C}, \mathbf{H})$ is not an H^{-}space for $n \geq 2$ (cf. [4]), the existence of the map m_{k} is not obvious when $\mathbf{F}=(\mathbf{C}, \mathbf{H})$.

The both authors thank Y. Hemmi for valuable discussion with him in the preliminary version and the referee for valuable suggestion to the contents of the section 5 .

2. The cases \mathbf{C} and H

In this section \mathbf{F} is \mathbf{C} or \mathbf{H}. All vector spaces are considered as right vector spaces. The standard inner product \langle,$\rangle in \mathbf{F}^{n}$ is defined so that if $x=$ $\left(x_{1}, \ldots ., x_{n}\right), y=\left(y_{1}, \ldots ., y_{n}\right)$ are elements of \mathbf{F}^{n} then $\langle x, y\rangle=\sum_{k} \bar{x}_{k} y_{k}$. We identify \mathbf{H}^{n} with $\mathbf{C}^{2 n}$ as follows: every quaternion n-vector $\left(z_{1}, \ldots \ldots, z_{n}\right)=x+j y$ determines a complex $2 n$-vector $\left(x_{1}, \ldots . ., x_{n}, y_{1}, \ldots . ., y_{n}\right)=x \oplus y$ where $z_{r}=x_{r}+j y_{r}$. Let ς $: S p(n) \rightarrow U(2 n)$ be the inclusion, $c: U(m) \rightarrow U(m)$ the complex conjugation, and $S\left(\mathbf{F}^{n}\right)$ the unit sphere of \mathbf{F}^{n}. Recall from [6] that the quasi-projective space is defined by

$$
Q_{n}(\mathbf{F})=S\left(\mathbf{F}^{n}\right) \times_{s(\mathbf{F})} S(\mathbf{F}) / S\left(\mathbf{F}^{n}\right) \times_{S(\mathbf{F})}\{1\}
$$

where $S(\mathbf{F})$ acts on $S\left(\mathbf{F}^{n}\right)$ by the multiplication from the right and acts on $S(\mathbf{F})$ by the inner automorphism. Note that $Q_{n}(\mathbf{C})=\sum P\left(\mathbf{C}^{n}\right)_{+}$. Let $x \in S\left(\mathbf{F}^{n}\right)$, $y \in \mathbf{F}^{n}$ and $\lambda \in S(\mathbf{F})$. Then the reflection map $r: Q_{n}(\mathbf{F}) \rightarrow G_{n}(\mathbf{F})$ is defined by

$$
r[x, \lambda](y)=y+x(\lambda-1)\langle x, y\rangle .
$$

Now, for $k \in \mathbf{Z}$, define $c_{k}: Q_{n}(\mathbf{F}) \rightarrow Q_{n}(\mathbf{F})$ and $m_{k}: G_{n}(\mathbf{F}) \rightarrow G_{n}(\mathbf{F})$ by

$$
c_{k}[x, \lambda]=\left[x, \lambda^{k}\right] \text { and } m_{k}(x)=x^{k} .
$$

Then, as is easily seen, c_{k} is well-defined and the diagram (1.1) commutes. The following is well-known (cf. (3.8) in [6] or [7]).

Lemma 2.1 We have

$$
\begin{aligned}
& H^{*}(U(n) ; \mathbf{Z})=\Lambda_{z}\left(x_{1}, \ldots ., x_{n}\right), \quad \operatorname{deg}\left(x_{i}\right)=2 i-1, \\
& H^{*}(\operatorname{Sp}(n) ; \mathbf{Z})=\Lambda_{z}\left(y_{1}, \ldots ., y_{n}\right), \quad \operatorname{deg}\left(y_{i}\right)=4 i-1
\end{aligned}
$$

such that
(1) x_{i} and y_{i} are primitive ;
(2) $r^{*}\left(x_{i}\right)$ and $r^{*}\left(y_{i}\right)$ are generators of $H^{2 i-1}\left(Q_{n}(\mathbf{C}) ; \mathbf{Z}\right)$ and $H^{4 i-1}\left(Q_{n}(\mathbf{H}) ; \mathbf{Z}\right)$, respectively;
(3) $c^{*}\left(x_{i}\right)=(-1)^{i} x_{i}$;
(4) $\quad \iota^{*}\left(x_{i}\right)= \begin{cases}(-1)^{i / 2} y_{i / 2} & \text { if } i \text { is even } \\ 0 & \text { if } i \text { is odd. }\end{cases}$

From this lemma, (2) and (3) of Theorem follow. This ends the proof of Theorem for $\mathbf{F}=\mathbf{C}, \mathbf{H}$.

As is well-known $[8,9]$, there is a map $T: Q_{n}(\mathbf{H}) \rightarrow Q_{2 n}(\mathbf{C})$ such that the following square is commutative up to homotopy

and there is a cofibre sequence

$$
P\left(\mathbf{C}^{2 n}\right)_{+} \xrightarrow{p_{+}} P\left(\mathbf{H}^{n}\right)_{+}-Q_{n}(\mathbf{H}) \xrightarrow{T} Q_{2 n}(\mathbf{C}) \xrightarrow{\Sigma p_{+}} \cdots
$$

where p is the canonical map.

3. Sele map of a symmetric space

Let G be a topological group having an involutive automorphism $\sigma: G \rightarrow$ G. Let H be a subgroup of G such that $H \subset G^{\sigma}=\{x \in G ; \sigma(x)=x\}$. Notice that if G is a Lie group and H contains a path-component of G^{σ}, then G / H is a symmetric space. Lep $p: G \rightarrow G / H$ be the projection, and define a map $\xi: G \rightarrow G$ by

$$
\xi(x)=x \sigma\left(x^{-1}\right)
$$

Let $k \in \mathbf{Z}$. We define self maps μ_{k}, f_{k} of G by

$$
\mu_{k}(x)=x^{k} \quad \text { and } \quad f_{k}(x)= \begin{cases}\xi(x)^{l} & \text { if } k=2 l \\ \xi(x)^{\iota} x & \text { if } k=2 l+1\end{cases}
$$

They induce maps $g_{k}: G / H \rightarrow G / H$ and $\tilde{\xi}: G / H \rightarrow G$ such that $g_{k} \circ p=p \circ f_{k}$ and $\tilde{\xi} \circ p=\xi$. If follows easily that $\tilde{\xi} \circ g_{k} \circ p=\mu_{k} \circ \tilde{\xi} \circ p$ so that $\tilde{\xi} \circ g_{k}=\mu_{k}$ - $\tilde{\xi}$.

Lemma 3.1 (1) The following diagram is commutative.

(2) If $G^{\sigma}=H$, then $\tilde{\xi}$ is injective.

Proof. The assertion (1) has already proved, and (2) is true, since $\xi(x)=$ $\xi(y)$ if and only if $x^{-1} y \in G^{\sigma}$.

We would like to determine the cohomology induced homomorphism of g_{k}. However it seems difficult in general. We will treat this for some nice cases in the following sections.

4. The case (C, H)

We use the notations in §2. Let $J: \mathbf{C}^{2 n} \rightarrow \mathbf{C}^{2 n}$ be the conjugate linear map defined by the multiplication of $j \in \mathbf{H}$ from the right. Define $\sigma: U(2 n) \rightarrow$ $U(2 n)$ by $\sigma(h)=J \circ h \circ J^{-1}$. In words of matrices,

$$
\sigma(A)=J_{n} c(A) J_{n}^{-1}, \quad J_{n}=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)
$$

Where I_{n} is the unit matrix of dimension n. Then, as is well-known, $U(2 n)^{\sigma}=$ $S p(n)$. Thus, from $\S 3$, we get a self map g_{k} of $U(2 n) / S p(n)$, which from now on is denoted by

$$
m_{k}: U(2 n) / S p(n) \rightarrow U(2 n) / S p(n)
$$

We will show that m_{k} is the desired map.
Lemma 4.1. Under the notations of Lemma 2.1. we have

$$
\begin{equation*}
H^{*}(U(2 n) / \operatorname{Sp}(n) ; \mathbf{Z})=\Lambda_{\mathbf{z}}\left(z_{1}, \ldots, z_{n}\right), \quad \operatorname{deg}\left(z_{i}\right)=4 i-3, \quad p^{*}\left(z_{i}\right)=x_{2 i-1} \tag{1}
\end{equation*}
$$ and, for any $k \in \mathbf{Z}$,

$$
\begin{equation*}
m_{k}^{*}\left(z_{i}\right)=k z_{i} . \tag{2}
\end{equation*}
$$

Proof. We refer the proof of (1) to [7]. We prove (2) as follows. As we described above, σ is the composition of the inner automorphism by J_{n} and conjugation, and since x_{i} is primitive, by Lemma 2.1, we see that

$$
\xi^{*}\left(x_{i}\right)=x_{i}-c^{*}\left(x_{i}\right)=\left(1+(-1)^{i+1}\right) x_{i}
$$

thus

$$
f_{k}^{*}\left(x_{i}\right)= \begin{cases}l\left(1+(-1)^{i+1}\right) x_{i} & \text { if } k=2 l \\ \left\{l\left(1+(-1)^{i+1}\right)+1\right\} x_{i} & \text { if } k=2 l+1\end{cases}
$$

Therefore, using Lemmas 2.1 and 3.1, we have the desired result.
To define the map $r: \sum P\left(\mathbf{H}^{n}\right)_{+} \rightarrow U(2 n) / S p(n)$, we recall some constructions. For $\mathbf{F}=\mathbf{C}, \mathbf{H}$, let $V_{m}\left(\mathbf{F}^{n}\right)$ be the Stiefel manifold of orthonormal m-frames in $\mathbf{F}^{n}, G_{m}\left(\mathbf{F}^{n}\right)$ the Grassmann manifold of m-dimensional subspaces
in \mathbf{F}^{n}, and $q: V_{m}\left(\mathbf{F}^{n}\right) \rightarrow G_{m}\left(\mathbf{F}^{n}\right)$ the natural projection. Define $\bar{\phi}: G_{m}\left(\mathbf{C}^{n}\right) \times I$ $\rightarrow U(n)$ by

$$
\bar{\phi}\left(q\left(v_{1}, \ldots ., v_{m}\right) ; t\right)(x)=x+\sum_{k} v_{k}\left(e^{\pi i t}-1\right)\left\langle v_{k}, x\right\rangle .
$$

Notice that $\bar{\phi}\left(q\left(v_{1}, \ldots, v_{m}\right) ; t\right)(x \oplus y)=x e^{\pi i t} \oplus y$ for $x \in q\left(v_{1}, \ldots ., v_{m}\right)=W, y \in$ W^{\perp}. There exists a map $\phi: \sum G_{m}\left(\mathbf{H}^{n}\right)_{+} \rightarrow U(2 n) / S p(n)$ which makes the following diagram commutative.

$$
\begin{aligned}
& G_{m}\left(\mathbf{H}^{n}\right) \times I / G_{m}\left(\mathbf{H}^{n}\right) \times\{0,1\} \rightleftharpoons \sum G_{m}\left(\mathbf{H}^{n}\right)_{+} \xrightarrow{\phi} U(2 n) / S p(n)
\end{aligned}
$$

Here c is the inclusion map. Write

$$
r=\phi: \sum G_{1}\left(\mathbf{H}^{n}\right)_{+}=\sum P\left(\mathbf{H}^{n}\right)_{+} \rightarrow U(2 n) / S p(n) .
$$

Proposition 4.2. Let $p: U(2 n) \rightarrow U(2 n) / S p(n)$ is the canonical projection. Then, the following square is commutative up to homotopy.

Proof. Define $\tilde{H}: I \times G_{1}\left(\mathbf{C}^{2 n}\right) \times I \rightarrow U(2 n)$ by

$$
\tilde{H}(s, q(v), t)(x)=x+v\left(e^{\pi i(1+s) t}-1\right)\langle v, x\rangle+v j\left(e^{\pi i(1-s) t}-1\right)\langle v j, x\rangle .
$$

This induces the map H which makes the following commutative.

Then H is a homotopy between $r \circ \sum p_{+}$and $p \circ r$. This completes the proof.

Given $k \in \mathbf{Z}$, let $c_{k}: \sum P\left(\mathbf{H}^{n}\right)_{+} \rightarrow \sum P\left(\mathbf{H}^{n}\right)_{+}$be defined by

$$
c_{k}[v, t]=[v, \widetilde{k t}]
$$

where $k t-\widetilde{k t} \in \mathbf{Z}$ and $0 \leq \widetilde{k t}<1$. Note that $c_{k}[v, \lambda]=\left[v, \lambda^{k}\right]$ under the identification $\sum P\left(\mathbf{H}^{n}\right)_{+}=P\left(\mathbf{H}^{n}\right) \times S^{1} / P\left(\mathbf{H}^{n}\right) \times\{1\}$.

Proposition 4.3. For any $k \in \mathbf{Z}$, the following diagram is commutative.

Proof. Take $[W, t] \in \sum P\left(\mathbf{H}^{n}\right)_{+}=\sum G_{1}\left(\mathbf{H}^{n}\right)_{+}$. Let W^{\perp} be the orthogonal complement of W in $\mathbf{C}^{2 n}$. By definitions, $r[W, t]=(p \circ \tilde{\phi})(c(W), t)$ and $\tilde{\phi}(c(W), t)(x \oplus y)=x e^{\pi i t} \oplus y$ for $x \in W, y \in W^{\perp}$. It follows that
$\tilde{\xi}(r[W, t])=\tilde{\xi} \circ p \circ \tilde{\phi}(c(W), t)=\xi(\tilde{\phi}(c(W), t))=\tilde{\phi}(c(W), t) \sigma\left(\tilde{\phi}(c(W), t)^{-1}\right)$
which is the multiplication by $j^{-1} e^{-\pi i t} j e^{\pi i t}=e^{2 \pi i t}$ on W and the identity on W^{\perp}, respectively. Then, for $x \in W$ and $y \in W^{\perp}$, we have

$$
\begin{aligned}
\left(\left(\tilde{\xi} \circ r \circ c_{k}\right)[W, t]\right)(x \oplus y) & =((\tilde{\xi} \circ r)[W, \widetilde{k t}])(x \oplus y) \\
& =x e^{2 \pi i k t} \oplus y \\
& =x e^{2 \pi i k t} \oplus y
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(\tilde{\xi} \circ m_{k} \circ r\right)[W, t]\right)(x \oplus y) & =\left(\left(\mu_{k} \circ \tilde{\xi} \circ r\right)[W, t]\right)(x \oplus y) \\
& =x e^{2 \pi i k t} \oplus y .
\end{aligned}
$$

Hence $\tilde{\xi} \circ r \circ c_{k}=\xi \circ m_{k} \circ r$, therefore $r \circ c_{k}=m_{k} \circ r$ by Lemma 3.1(2). This completes the proof.

Therefore Theorem for the case $\mathbf{F}=(\mathbf{C}, \mathbf{H})$ follows from Lemma 4.1, Propositions 4.2, 4.3 and Theorem for $\mathbf{F}=\mathbf{C}$. This completes the proof of Theorem.

5. $M_{k}-$ structure

For a given path-connected space X and an integer k, if there exists a self map h_{k} of X such that $h_{k}^{*}(x)=k x$ for all $x \in Q H^{*}(X ; \mathbf{Q})$, then we say [5] that X has an M_{k}-structure or that X is an M_{k}-space, where $Q H^{*}(X ; \mathbf{Q})$ is the indecomposable module of the rational cohomology ring $\tilde{H}^{*}(X ; \mathbf{Q})$.

Note that any connected, finite (co-) H-space is an M_{k}-space for any
non-negative integer k. So we think that if the space X is an M_{k}-space for all k $\in \mathbf{Z}$, then X must have some structure near (co-) H-space.

As a corollary of Theorem, we have
Corollary 5.1. $\quad U(2 n) / S p(n)$ and $Q_{n}(\mathbf{H})$ are M_{k}-spaces for any $k \in \mathbf{Z}$.
Proposition 5.2. $U(2 n+1) / O(2 n+1)$ and E_{6} / F_{4} are M_{k}-space for any $k \in \mathbf{Z}$.
Proof. According to Harris [3], in the above cases, the map $\psi: H \times G / H \rightarrow$ G defined by $\psi(h, g H)=h \xi(g H)=h g \sigma\left(g^{-1}\right)$ is a rational equivalence. Therefore ξ induces an epi-morphism: $Q H^{*}(G ; \mathbf{Q}) \rightarrow Q H^{*}(G / H ; \mathbf{Q})$. Thus, from the commutative diagram of the right hand side in Lemma 3.1, it is clear that the map g_{k} in Lemma 3.1 gives the desired M_{k}-structure of G / H.

Hence $U(2 n) / \operatorname{Sp}(n), U(2 n+1) / O(2 n+1)$ and E_{6} / F_{4} are near H-spaces, and $Q_{n}(\mathbf{H})$ is a near co- H-space.

There are many symmetric spaces which can be considered far from H-spaces. An example is the following result of Glover and Homer [2].

Example 5.3. If \mathbf{F} is \mathbf{C} or \mathbf{H} and $k \neq 0, \pm 1$, then $G_{m}\left(\mathbf{F}^{n}\right)$ is not an M_{k}-space for the following cases:
(1) $2 \leq m \leq 3$ and $n \geq 2 m+1$,
(2) $m \geq 4$ and $n \geq 2 m^{2}-1$.

Department of Mathematics, Wakayama university
Department of Mathematics, Osaka city university

References

[1] M. C. Crabb and K. Knapp. On the codegree of negative multiples of the Hopf bundle, Proc. R. Soc. Edinb., 107 (1987), 87-107.
[2] H. Glover and B. Homer, Endomorphisms of the cohomology ring of finite Grassmann manifolds, Springer Lect. Notes Math. 657, Geometric Applications of Homotopy Theories (1977), 170-193.
[3] B. Harris, Suspensions and characteristic maps for symmetric spaces, Annals of Math., 76 (1962), 295-305.
[4] Y. Hemmi, The projective plane of an H-pairing, Jour. of Pure and Applied Algebra, 75 (1991), 277-296.
[5] Y. Hemmi, K. Morisugi and H. Ōshima, Self maps of spaces, preprint (1995).
[6] I. M. James, The topology of Stiefel manifolds, London Math. Lect. Note 24 Cambridge U. P., 1976.
[7] M. Mimura and H. Toda, The topology of Lie groups, Transl. Math. Monog., vol. 91, Amer. Math. Soc., 1991.
[8] J. Mukai and S. Oka, A note on the quaternionic quasi-projective space, Mem Fac. Sci. Kyushu Univ., 38 (1984), 277-284.
[9] H. Toda and K. Kozima, The symplectic Lazard ring, J. Math. Kyoto Univ., 22 (1982), 131-153.

