Note on reflection maps and self maps of U(n), Sp(n) and U(2n)/Sp(n)

Dedicated to Professor Teiichi Kobayashi on his sixtieth birthday

By

K. MORISUGI and H. ÖSHIMA

1. Statement of result

Let U(n) and Sp(n) be the *n*-th unitary and symplectic group, respectively. We denote the complex numbers by **C**, and the quaternions by **H**. Let **F** be **C**, **H** or (**C**, **H**). In order to describe uniformly for three cases, we write

$$G_n(\mathbf{F}) = \begin{cases} U(n) & \text{if } \mathbf{F} = \mathbf{C} \\ Sp(n) & \text{if } \mathbf{F} = \mathbf{H} \\ U(2n)/Sp(n) & \text{if } \mathbf{F} = (\mathbf{C}, \mathbf{H}). \end{cases}$$

When **F** is **C** or **H**, we denote by $P(\mathbf{F}^n)$ and $Q_n(\mathbf{F})$ the projective space and the quasi-projective space, respectively. We write $Q_n(\mathbf{C}, \mathbf{H}) = \sum P(\mathbf{H}^n)_+$, the suspension of the union of $P(\mathbf{H}^n)$ and a point space. Recall from [1, 6, 8] (cf. §2 and §4 of this paper) that there is a map, called the *reflection map*,

$$r: Q_n(\mathbf{F}) \rightarrow G_n(\mathbf{F})$$

which induces an epimorphism on cohomology. Our result is

Theorem. For any integer k, there exist maps $c_k : Q_n(\mathbf{F}) \rightarrow Q_n(\mathbf{F})$ and m_k : $G_n(\mathbf{F}) \rightarrow G_n(\mathbf{F})$ such that

(1) the following diagram commutes

(1.1)
$$Q_n(\mathbf{F}) \xrightarrow{r} G_n(\mathbf{F})$$
$$\downarrow^{c_k} \qquad \qquad \downarrow^{m_k}$$
$$Q_n(\mathbf{F}) \xrightarrow{r} G_n(\mathbf{F});$$

- (2) c_k induces the homomorphism of k-multiple on the integral cohomology;
- (3) m_k induces the homomorphism of k-multiple on the ring basis of the integ-

Communicated by Prof. G. Nishida, May 25, 1995

ral cohomology which will be given in Lemmas 2.1 and 4.1 below.

When **F** is **C** or **H**, setting m_k to be the *k*-times multiplication map, Theorem may be well-known for experts. We give its proof in §2 for completeness, though. Since $G_n(\mathbf{C}, \mathbf{H})$ is not an *H*-space for $n \ge 2$ (cf. [4]), the existence of the map m_k is not obvious when $\mathbf{F} = (\mathbf{C}, \mathbf{H})$.

The both authors thank Y. Hemmi for valuable discussion with him in the preliminary version and the referee for valuable suggestion to the contents of the section 5.

2. The cases C and H

In this section **F** is **C** or **H**. All vector spaces are considered as right vector spaces. The standard inner product \langle , \rangle in **F**ⁿ is defined so that if $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$ are elements of **F**ⁿ then $\langle x, y \rangle = \sum_k \bar{x}_k y_k$. We identify **H**ⁿ with **C**²ⁿ as follows: every quaternion *n*-vector $(z_1, ..., z_n) = x + jy$ determines a complex 2n-vector $(x_1, ..., x_n, y_1, ..., y_n) = x \oplus y$ where $z_r = x_r + jy_r$. Let c: $Sp(n) \to U(2n)$ be the inclusion, $c : U(m) \to U(m)$ the complex conjugation, and $S(\mathbf{F}^n)$ the unit sphere of \mathbf{F}^n . Recall from [6] that the quasi-projective space is defined by

$$Q_{n}(\mathbf{F}) = S(\mathbf{F}^{n}) \times_{S(\mathbf{F})} S(\mathbf{F}) / S(\mathbf{F}^{n}) \times_{S(\mathbf{F})} \{1\}$$

where $S(\mathbf{F})$ acts on $S(\mathbf{F}^n)$ by the multiplication from the right and acts on $S(\mathbf{F})$ by the inner automorphism. Note that $Q_n(\mathbf{C}) = \sum P(\mathbf{C}^n)_+$. Let $x \in S(\mathbf{F}^n)$, $y \in \mathbf{F}^n$ and $\lambda \in S(\mathbf{F})$. Then the reflection map $r: Q_n(\mathbf{F}) \to G_n(\mathbf{F})$ is defined by

$$r[x, \lambda](y) = y + x(\lambda - 1) \langle x, y \rangle$$

Now, for $k \in \mathbb{Z}$, define $c_k : Q_n(\mathbf{F}) \rightarrow Q_n(\mathbf{F})$ and $m_k : G_n(\mathbf{F}) \rightarrow G_n(\mathbf{F})$ by

 $c_k[x, \lambda] = [x, \lambda^k]$ and $m_k(x) = x^k$.

Then, as is easily seen, c_k is well-defined and the diagram (1.1) commutes. The following is well-known (cf. (3.8) in [6] or [7]).

Lemma 2.1 We have

$$H^*(U(n); \mathbf{Z}) = \Lambda_z(x_1, \dots, x_n), \quad \deg(x_i) = 2i - 1, \\H^*(Sp(n); \mathbf{Z}) = \Lambda_z(y_1, \dots, y_n), \quad \deg(y_i) = 4i - 1$$

such that

- (1) x_i and y_i are primitive;
- (2) $r^*(x_i)$ and $r^*(y_i)$ are generators of $H^{2i-1}(Q_n(\mathbf{C});\mathbf{Z})$ and $H^{4i-1}(Q_n(\mathbf{H});\mathbf{Z})$, respectively;

(3)
$$c^*(x_i) = (-1)^{i} x_i;$$

(4) $c^*(x_i) = \begin{cases} (-1)^{i/2} y_{i/2} & \text{if } i \text{ is even} \\ 0 & \text{if } i \text{ is odd} \end{cases}$

From this lemma, (2) and (3) of Theorem follow. This ends the proof of Theorem for $\mathbf{F}=\mathbf{C}$, \mathbf{H} .

As is well-known [8, 9], there is a map $T: Q_n(\mathbf{H}) \rightarrow Q_{2n}(\mathbf{C})$ such that the following square is commutative up to homotopy

$$Q_n(\mathbf{H}) \xrightarrow{T} Q_{2n}(\mathbf{C})$$

$$\downarrow^r \qquad \qquad \downarrow^r$$

$$Sp(n) \xrightarrow{\iota} U(2n)$$

and there is a cofibre sequence

$$P(\mathbf{C}^{2n})_{+} \xrightarrow{p_{+}} P(\mathbf{H}^{n})_{+} \xrightarrow{q} Q_{n}(\mathbf{H}) \xrightarrow{T} Q_{2n}(\mathbf{C}) \xrightarrow{\Sigma_{p_{+}}} \cdots$$

where *p* is the canonical map.

3. Sele map of a symmetric space

Let G be a topological group having an involutive automorphism $\sigma: G \rightarrow G$. Let H be a subgroup of G such that $H \subset G^{\sigma} = \{x \in G; \sigma(x) = x\}$. Notice that if G is a Lie group and H contains a path-component of G^{σ} , then G/H is a symmetric space. Lep $p: G \rightarrow G/H$ be the projection, and define a map $\xi: G \rightarrow G$ by

$$\xi(x) = x\sigma(x^{-1}).$$

Let $k \in \mathbb{Z}$. We define self maps μ_k , f_k of G by

$$\mu_k(x) = x^k \quad \text{and} \quad f_k(x) = \begin{cases} \xi(x)^l & \text{if } k = 2l \\ \xi(x)^l x & \text{if } k = 2l+1. \end{cases}$$

They induce maps $g_k: G/H \to G/H$ and $\tilde{\xi}: G/H \to G$ such that $g_k \circ p = p \circ f_k$ and $\tilde{\xi} \circ p = \xi$. If follows easily that $\tilde{\xi} \circ g_k \circ p = \mu_k \circ \tilde{\xi} \circ p$ so that $\tilde{\xi} \circ g_k = \mu_k$ $\circ \tilde{\xi}$.

Lemma 3.1 (1) The following diagram is commutative.

$$G \xrightarrow{p} G/H \xrightarrow{\xi} G$$

$$\left| f_{k} \right| g_{k} \left| g_{k} \right| \qquad \left| \mu_{k} \right|$$

$$G \xrightarrow{p} G/H \xrightarrow{\xi} G$$

(2) If $G^{\sigma} = H$, then $\tilde{\xi}$ is injective.

Proof. The assertion (1) has already proved, and (2) is true, since $\xi(x) = \xi(y)$ if and only if $x^{-1}y \in G^{\sigma}$.

We would like to determine the cohomology induced homomorphism of g_k . However it seems difficult in general. We will treat this for some nice cases in the following sections.

4. The case (C, H)

We use the notations in §2. Let $J: \mathbb{C}^{2n} \to \mathbb{C}^{2n}$ be the conjugate linear map defined by the multiplication of $j \in \mathbf{H}$ from the right. Define $\sigma: U(2n) \to U(2n)$ by $\sigma(h) = J \circ h \circ J^{-1}$. In words of matrices,

$$\sigma(A) = J_n c(A) J_n^{-1}, \quad J_n = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$$

Where I_n is the unit matrix of dimension *n*. Then, as is well-known, $U(2n)^{\sigma} = Sp(n)$. Thus, from §3, we get a self map g_k of U(2n)/Sp(n), which from now on is denoted by

$$m_k: U(2n)/Sp(n) \rightarrow U(2n)/Sp(n)$$

We will show that m_k is the desired map.

Lemma 4.1. Under the notations of Lemma 2.1. we have

(1) $H^*(U(2n)/Sp(n); \mathbf{Z}) = \Lambda_{\mathbf{Z}}(z_1, ..., z_n), \quad \deg(z_i) = 4i-3, \quad p^*(z_i) = x_{2i-1}$ and, for any $k \in \mathbf{Z}$,

Proof. We refer the proof of (1) to [7]. We prove (2) as follows. As we described above, σ is the composition of the inner automorphism by J_n and conjugation, and since x_i is primitive, by Lemma 2.1, we see that

$$\xi^*(x_i) = x_i - c^*(x_i) = (1 + (-1)^{i+1})x_i$$

thus

$$f_k^*(x_i) = \begin{cases} l(1+(-1)^{i+1})x_i & \text{if } k = 2l\\ \{l(1+(-1)^{i+1})+1\}x_i & \text{if } k = 2l+1. \end{cases}$$

Therefore, using Lemmas 2.1 and 3.1, we have the desired result.

To define the map $r: \sum P(\mathbf{H}^n)_+ \to U(2n)/Sp(n)$, we recall some constructions. For $\mathbf{F} = \mathbf{C}$, \mathbf{H} , let $V_m(\mathbf{F}^n)$ be the Stiefel manifold of orthonormal *m*-frames in \mathbf{F}^n , $G_m(\mathbf{F}^n)$ the Grassmann manifold of *m*-dimensional subspaces

in \mathbf{F}^n , and $q: V_m(\mathbf{F}^n) \to G_m(\mathbf{F}^n)$ the natural projection. Define $\phi: G_m(\mathbf{C}^n) \times I \to U(n)$ by

$$\phi(q(v_1, ..., v_m); t)(x) = x + \sum_k v_k (e^{\pi i t} - 1) \langle v_k, x \rangle$$

Notice that $\phi(q(v_1, ..., v_m); t)(x \oplus y) = xe^{\pi it} \oplus y$ for $x \in q(v_1, ..., v_m) = W, y \in W^{\perp}$. There exists a map $\phi: \sum G_m(\mathbf{H}^n) \to U(2n)/Sp(n)$ which makes the following diagram commutative.

$$G_{m}(\mathbf{H}^{n}) \times I \qquad \stackrel{\iota \times id}{\longrightarrow} \qquad G_{2m}(\mathbf{C}^{2n}) \times I \qquad \stackrel{\phi}{\longrightarrow} \qquad U(2n)$$

$$\downarrow^{q} \qquad \qquad \qquad \downarrow^{p}$$

$$G_{m}(\mathbf{H}^{n}) \times I/G_{m}(\mathbf{H}^{n}) \times \{0,1\} = \sum G_{m}(\mathbf{H}^{n})_{+} \qquad \stackrel{\phi}{\longrightarrow} \qquad U(2n)/Sp(n)$$

Here ι is the inclusion map. Write

$$r = \phi : \sum G_1(\mathbf{H}^n) + \sum P(\mathbf{H}^n) + \cdots U(2n) / Sp(n) .$$

Proposition 4.2. Let $p: U(2n) \rightarrow U(2n)/Sp(n)$ is the canonical projection. Then, the following square is commutative up to homotopy.

$$\Sigma P(\mathbf{C}^{2n})_{+} \xrightarrow{r} U(2n)$$

$$\downarrow \Sigma p_{+} \qquad \qquad \downarrow p$$

$$\Sigma P(\mathbf{H}^{n})_{+} \xrightarrow{r} U(2n) / Sp(n)$$

Proof. Define $\tilde{H}: I \times G_1(\mathbb{C}^{2n}) \times I \to U(2n)$ by

$$\tilde{H}(s, q(v), t)(x) = x + v \left(e^{\pi i (1+s)t} - 1 \right) \left\langle v, x \right\rangle + v j \left(e^{\pi i (1-s)t} - 1 \right) \left\langle vj, x \right\rangle.$$

This induces the map H which makes the following commutative.

Then H is a homotopy between $r \circ \sum p_+$ and $p \circ r$. This completes the proof.

Given $k \in \mathbb{Z}$, let $c_k : \sum P(\mathbf{H}^n)_+ \rightarrow \sum P(\mathbf{H}^n)_+$ be defined by

$$c_k[v, t] = [v, \widetilde{kt}]$$

where $kt - \widetilde{kt} \in \mathbb{Z}$ and $0 \le \widetilde{kt} \le 1$. Note that $c_k[v, \lambda] = [v, \lambda^k]$ under the identification $\sum P(\mathbf{H}^n)_+ = P(\mathbf{H}^n) \times S^1 / P(\mathbf{H}^n) \times \{1\}$.

Proposition 4.3. For any $k \in \mathbb{Z}$, the following diagram is commutative.

$$\sum P(\mathbf{H}^{n})_{+} \xrightarrow{r} U(2n) / Sp(n)$$

$$\downarrow^{c_{k}} \qquad \qquad \downarrow^{m_{k}}$$

$$\sum P(\mathbf{H}^{n})_{+} \xrightarrow{r} U(2n) / Sp(n)$$

Proof. Take $[W, t] \in \sum P(\mathbf{H}^n)_+ = \sum G_1(\mathbf{H}^n)_+$. Let W^{\perp} be the orthogonal complement of W in \mathbf{C}^{2n} . By definitions, $r[W, t] = (p \circ \tilde{\phi}) (\iota(W), t)$ and $\tilde{\phi}(\iota(W), t) (x \oplus y) = xe^{\pi i t} \oplus y$ for $x \in W, y \in W^{\perp}$. It follows that

$$\tilde{\xi}(r[W,t]) = \tilde{\xi} \circ p \circ \tilde{\phi}(\iota(W),t) = \xi(\tilde{\phi}(\iota(W),t)) = \tilde{\phi}(\iota(W),t) \sigma(\tilde{\phi}(\iota(W),t)^{-1})$$

which is the multiplication by $j^{-1}e^{-\pi it}je^{\pi it} = e^{2\pi it}$ on W and the identity on W^{\perp} , respectively. Then, for $x \in W$ and $y \in W^{\perp}$, we have

$$((\tilde{\xi} \circ r \circ c_k) [W, t]) (x \oplus y) = ((\tilde{\xi} \circ r) [W, \tilde{kt}]) (x \oplus y)$$
$$= xe^{2\pi i k t} \oplus y$$
$$= xe^{2\pi i k t} \oplus y$$

and

$$((\tilde{\xi} \circ m_k \circ r) [W, t]) (x \oplus y) = ((\mu_k \circ \tilde{\xi} \circ r) [W, t]) (x \oplus y)$$
$$= x e^{2\pi i k t} \oplus y.$$

Hence $\tilde{\xi} \circ r \circ c_k = \xi \circ m_k \circ r$, therefore $r \circ c_k = m_k \circ r$ by Lemma 3.1(2). This completes the proof.

Therefore Theorem for the case $\mathbf{F} = (\mathbf{C}, \mathbf{H})$ follows from Lemma 4.1, Propositions 4.2, 4.3 and Theorem for $\mathbf{F} = \mathbf{C}$. This completes the proof of Theorem.

5. M_k -structure

For a given path-connected space X and an integer k, if there exists a self map h_k of X such that $h_k^*(x) = kx$ for all $x \in QH^*(X; \mathbf{Q})$, then we say [5] that X has an M_k -structure or that X is an M_k -space, where $QH^*(X; \mathbf{Q})$ is the indecomposable module of the rational cohomology ring $\tilde{H}^*(X; \mathbf{Q})$.

Note that any connected, finite (co-) H-space is an M_k -space for any

non-negative integer k. So we think that if the space X is an M_k -space for all $k \in \mathbb{Z}$, then X must have some structure near (co-) H-space.

As a corollary of Theorem, we have

Corollary 5.1. U(2n)/Sp(n) and $Q_n(\mathbf{H})$ are M_k -spaces for any $k \in \mathbf{Z}$.

Proposition 5.2. U(2n+1)/O(2n+1) and E_6/F_4 are M_k -space for any $k \in \mathbb{Z}$.

Proof. According to Harris [3], in the above cases, the map $\psi: H \times G/H \rightarrow G$ defined by $\psi(h, gH) = h\xi(gH) = hg\sigma(g^{-1})$ is a rational equivalence. Therefore ξ induces an epi-morphism: $QH^*(G; \mathbf{Q}) \rightarrow QH^*(G/H; \mathbf{Q})$. Thus, from the commutative diagram of the right hand side in Lemma 3.1, it is clear that the map g_k in Lemma 3.1 gives the desired M_k -structure of G/H.

Hence U(2n)/Sp(n), U(2n+1)/O(2n+1) and E_6/F_4 are near H-spaces, and $Q_n(\mathbf{H})$ is a near co-H-space.

There are many symmetric spaces which can be considered far from H-spaces. An example is the following result of Glover and Homer [2].

Example 5.3. If **F** is **C** or **H** and $k \neq 0, \pm 1$, then $G_m(\mathbf{F}^n)$ is not an M_k -space for the following cases:

- (1) $2 \le m \le 3$ and $n \ge 2m+1$,
- (2) $m \ge 4$ and $n \ge 2m^2 1$.

DEPARTMENT OF MATHEMATICS, Wakayama university Department of Mathematics, Osaka city university

References

- M. C. Crabb and K. Knapp, On the codegree of negative multiples of the Hopf bundle, Proc. R. Soc. Edinb., 107 (1987), 87-107.
- H. Glover and B. Homer, Endomorphisms of the cohomology ring of finite Grassmann manifolds, Springer Lect. Notes Math. 657, Geometric Applications of Homotopy Theories (1977), 170-193.
- [3] B. Harris, Suspensions and characteristic maps for symmetric spaces, Annals of Math., 76 (1962), 295-305.
- [4] Y. Hemmi, The projective plane of an H-pairing, Jour. of Pure and Applied Algebra, 75 (1991), 277-296.
- [5] Y. Hemmi, K. Morisugi and H. Öshima, Self maps of spaces, preprint (1995).
- [6] I. M. James, The topology of Stiefel manifolds, London Math. Lect. Note 24 Cambridge U. P., 1976.
- [7] M. Mimura and H. Toda, The topology of Lie groups, Transl. Math. Monog., vol. 91, Amer. Math. Soc., 1991.
- [8] J. Mukai and S. Oka, A note on the quaternionic quasi-projective space, Mem Fac. Sci. Kyushu Univ., 38 (1984), 277-284.
- [9] H. Toda and K. Kozima, The symplectic Lazard ring, J. Math. Kyoto Univ., 22 (1982), 131-153.