Commutant algebra of Cartan-type Lie superalgebra $W(n)$

By
Kyo Nishiyama and Haiquan Wang

Introduction

Undoubtedly, Weyl's classical reciprocity law is very important in Lie theory ([4]). It tells us that there is a correspondence between irreducible representations of general linear group $G L(V)$ in m-fold tensor space $V \otimes \cdots \otimes$ V and those of \mathfrak{S}_{m} (symmetric group of degree m). The correspondence is one-to-one and so an irreducible representation of \Im_{m} determines that of $G L$ (V) and vice versa. If we consider various m, then all the irreducible polynomial representations of $G L(V)$ appear in the decomposition, so one gets a classification of irreducible representations via those of \mathbb{S}_{m}.

In the article [2], the first author studied an analogous phenomenon for a Cartan-type Lie algebra of vector fields. In the present paper, we want to do it for a Cartan-type Lie superalgebra $W(n)$. By definition $W(n)$ is a Lie superalgebra of all the superderivations on a Grassmann algebra $\Lambda(n)$ of n-variables (see [1]), so $W(n)$ acts on $\Lambda(n)$ naturally. We call it the natural representation of $W(n)$ and denote it by ψ. To study an analogue of Weyl's reciprocity, the first important thing is to calculate the commutant algebra of the natural representation of $W(n)$ in m-fold tensor Grassmann algebra $\bigotimes^{m} \Lambda$ (n). Let End $[m]$ be the set of all the maps from $[m]$ to $[m]$, where $[m]=\{1$, $2, \cdots, m\}$, and denote the semigroup ring of End $[m]$ by \mathfrak{F}_{m}. There is the natural represntation of \mathfrak{F}_{m} on $\otimes^{m} \Lambda(n)$ (see Section 1.3) and denote the image algebra of this representation by \mathscr{E}_{m}. Also we denote the commutant algebra of $\psi^{\otimes m}(W(n))$ in End $\otimes^{m} \Lambda(n)$ by \mathscr{C}_{m} (see Section 1.2). One of the main results is the identification of the commutant algebra \mathscr{C}_{m} and the semigroup ring \mathscr{E}_{m} (Theorems 2.3 and 3.2). However, in Theorem 2.3 we assume $m \leq n$ (the rank n is larger then the power of tensor product m), and in Theorm 3.2 we restrict ourselves to the case $n=1$. In the future studies, we want to clarify the relationship between \mathscr{C}_{m} and \mathscr{E}_{m} fo general m and n.

The another main result is Theorem 3.3, which says that the bicommutant algebra of W (1) coincides with the image of its universal enveloping algebra $U(W(1))$. We consider it an analogy of Weyl's reciprocity for $W(1)$

[^0]$\times \operatorname{End}[m]$. However, we did not get any decomposition of the (nonsemisimple) representation of $W(1) \times$ End [m] on $\bigotimes^{m} \Lambda(1) \simeq \Lambda(m)$, and it is a future subject of ours.

We divide this article into three sections. In Section 1, we give the basic definitions. In Section 2, we calculate the commutant algebra \mathscr{C}_{m} for the case m $\leq n$. In Section 3, we get the commutant algebra and bicommutant algebra for the case $n=1$.

Acknowledgement. The authors express sincere thanks to Professor T. Hirai for discussions and encouragements. We Would like to dedicate this paper to him on his 60-th anniversary.

1. Lie superalgebra $W(n)$ and its natural representation

1.1. Tensor product of a natural representation of $W(n)$. Let $\Lambda(n)$ be a Grassmann algebra over \mathbf{C} in n variables $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$. If we set deg $\xi_{i}=1$, then $\Lambda(n)$ becomes a \mathbf{Z}-graded algebra. Let Λ_{k} be the space of k-homogeneous elements of $\Lambda(n)$:

$$
\Lambda_{k}=\left\langle\xi_{i_{1}} \wedge \xi_{i_{2}} \wedge \cdots \wedge \xi_{i_{k}} \mid 1 \leq i_{1}<\cdots<i_{k} \leq n\right\rangle,
$$

where $\langle B\rangle$ denotes the vector space over \mathbf{C} spanned by B. Then $\Lambda(n)=$ $\bigotimes_{k=0}^{n} \Lambda_{k}$, a direct sum, where $\Lambda_{0}=\mathbf{C}$. We can naturally condider $\Lambda(n)$ as a superalgebra, where even elements are $\Lambda_{\overline{0}}=\bigoplus_{k: \text { even }} \Lambda_{k}$, and odd elements are $\Lambda_{\overline{1}}$ $=\bigoplus_{k: \text { odd }} \Lambda_{k}$.

Let A be a superalgebra and $\operatorname{End}_{s} A$ the set of linear endomorphisms on A of degree s, that is $A=A_{\overline{0}} \oplus A_{\overline{1}}$ and $E^{2} d_{s} A=\left\{X \in\right.$ End $A \mid X\left(A_{i}\right) \subseteq A_{i+s}, \quad(i$ $\left.\left.\in \mathbf{Z}_{2}\right)\right\}$. A superderivation of degree $s\left(s \in \mathbf{Z}_{2}\right)$ of a superalgebra A is an endomorphism $D \in \operatorname{End}_{s} A$ with the property

$$
D(a b)=D(a) b+(-1)^{\operatorname{sdeg} a} a D(b)
$$

for any homogeneous $a, b \in A$. The space of all the superderivations of degree s is denoted by $\operatorname{Der}_{s} A$.

Let $W(n)$ be the set of all superderivations over $\Lambda(n)$, then it becomes naturally a Lie superalgebra. According to results in [1], every derivation D $\in W(n)$ can be written in the form

$$
D=\sum_{i=1}^{n} P_{i} \frac{\partial}{\partial \xi_{i}}
$$

with $P_{i} \in \Lambda(n)(1 \leq i \leq n)$, where $\frac{\partial}{\partial \xi_{i}}$ is a superderivation of degree 1 defined by

$$
\frac{\partial}{\partial \xi_{i}} \xi_{j}=\delta_{i j}
$$

By definition, the Lie superalgebra $W(n)$ acts on Grassmann superalgebra $\Lambda(n)$ as follows: for $\forall D \in W(n)$ and $\forall \xi_{i_{1}} \wedge \cdots \wedge \xi_{i_{r}}$

$$
D\left(\xi_{i 1} \wedge \cdots \wedge \xi_{i r}\right)=\sum_{s=1}^{r}(-1)^{(s-1) \operatorname{deg} D} \xi_{i 1} \wedge \cdots \wedge D\left(\xi_{i s}\right) \wedge \cdots \wedge \xi_{i r}
$$

We call it the natural representation of $W(n)$, and denote it by ψ.
Let us consider m-fold tensor product $\otimes^{m} \Lambda(n)$. Then we have a natural isomorphism as $W(n)$-modules

$$
\otimes^{m} \Lambda(n) \cong \Lambda\left[\xi_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right]=: \Lambda(n, m)
$$

where $\Lambda\left[\xi_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right]$ is a Grassmann algebra generated by $\xi_{i j}(1 \leq i$ $\leq_{n, 1 \leq j \leq m)}$. In the following, we identify $\bigotimes^{m} \Lambda(n)$ with $\Lambda(n, m)$. By means of a tensor prodet, $W(n)$ is imbedded into End $\left(\otimes^{m} \Lambda(n)\right) \cong$ End $\Lambda(n, m)$. More precisely, an element

$$
D=\sum_{i=1}^{n} P_{i}\left(\xi_{1}, \cdots, \xi_{n}\right) \frac{\partial}{\partial \xi_{i}} \in W(n)
$$

corresponds to an element

$$
\psi^{\otimes m}(D)=\sum_{i=1}^{n} \sum_{\alpha=1}^{m} P_{i}\left(\xi_{1 \alpha}, \cdots, \xi_{n \alpha}\right) \frac{\partial}{\partial \xi_{i \alpha}} \in \operatorname{Der} \Lambda(n, m)
$$

via m-fold tensor product $\psi^{\otimes m}$ of ψ.
1.2. Definition of commutant algebra \mathscr{C}_{m}. By definition of commutativity in Lie superalgebra, we say that a and b are commutative if $[a, b]$ $=0$, whence $a b=(-1)^{\operatorname{deg} a \cdot \operatorname{deg} b} b a$ if a and b are homogeneous. Let \mathscr{C}_{m} denote the commutant algebra of $\psi^{\otimes m}(W(n))$ in End $\Lambda(n, m)$:

$$
\mathscr{C}_{m}=\left\{E \in \text { End }\left(\otimes^{m} \Lambda(n)\right) \mid[E, D]=0, \forall D \in \psi^{\otimes m}(W(n))\right\}
$$

Then \mathscr{C}_{m} has a natural \mathbf{Z}_{2}-graded structure, $\mathscr{C}_{m}=\mathscr{C}_{m, \overline{0}} \oplus \mathscr{C}_{m, \overline{\mathrm{1}}}$. However, $\mathscr{C}_{m, \overline{\mathrm{1}}}$ vanishes as we see in the following lemma.

Lemma 1.1. The odd subspace $\mathscr{C}_{m, \overline{1}}$ of \mathscr{C}_{m} vanishes:

$$
\mathscr{C}_{m, \overline{1}}=\{0\}
$$

Proof. Let $\Lambda(n, m)_{k}$ be a space of homogeneous Grassmannian polynomials of degree k and put

$$
D_{0}=\sum_{i=1}^{n} \sum_{j=1}^{m} \xi_{i j} \frac{\partial}{\partial \xi_{i j}} \in \psi^{\otimes m}(W(n)) .
$$

Since D_{0} is an Euler operator and its eigenvalues are precisely \mathbf{Z}-degrees of Grassmannian polynomials, $E \in \mathscr{C}_{m}$ must preserve homogeneous spaces Λ (n, $m)_{k}$. Therefore $\operatorname{deg} E$ is zero.
Q. E. D.

By the above lemma, we have $\mathscr{C}_{m}=\mathscr{C}_{m, \overline{0}}$, hence the commutant algebra \mathscr{C}_{m} becomes

$$
\mathscr{C}_{m}=\left\{E \in \text { End }\left(\bigotimes^{m} \Lambda(n)\right) \mid E D=D E, \quad \forall D \in \psi^{\otimes m}(W(n))\right\}
$$

1.3. Action of the permutation semigroup. Denote by $[m$] the set $\{1,2, \cdots, m\}$ of integers, and put $\operatorname{End}[m]=\{\varphi:[m] \rightarrow[m]\}$ the set of all the maps from $[m]$ to itself. By composition of maps, End $[m]$ becomes a semigroup with unit, whose group elements form a permutation group \mathbb{S}_{m} of degree m. Denote the semigroup ring of End $[m]$ by \mathfrak{E}_{m}. An element $\varphi \in \operatorname{End}[m]$ acts on $\Lambda(n, m)$ as $(\varphi P)\left(\xi_{i j}\right)=P\left(\xi_{i \varphi(j)}\right)(P \in \Lambda(n, m))$ and we extend it to \mathfrak{F}_{m} by linearity (see[2]), thus, we have a representation of \mathfrak{F}_{m} on $\Lambda(n, m)$. Denote the image algebra of this representation by $\mathscr{E}_{m} \subset$ End $\Lambda(n, m)$. Using the above notations, we can state

Lemma 1.2. For arbitrary n and m, we have

$$
\mathscr{E}_{m} \subseteq \mathscr{C}_{m}
$$

Proof. Let $D=\sum_{i=1}^{n} P_{i}\left(\xi_{1}, \cdots, \xi_{n}\right) \frac{\partial}{\partial \xi_{i}} \in W(n)$, where $P_{i} \in \Lambda(n)$. Then

$$
\psi^{\otimes \mathrm{m}}(D)=\sum_{i=1}^{n} \sum_{=1}^{m} P_{i}\left(\xi_{1 \alpha}, \cdots, \xi_{n \alpha}\right) \frac{\partial}{\partial \xi_{i \alpha}} .
$$

For any $\varphi \in \operatorname{End}[m]$, we have

$$
\begin{aligned}
& \left.\varphi \psi^{\otimes m}(D)\left(\xi_{i, j_{1}} \wedge \cdots \wedge \xi_{i r j r}\right)\right) \\
& =\varphi\left(\sum_{i=1}^{n} \sum_{\alpha=1}^{m} P_{i}\left(\xi_{1 \alpha}, \cdots, \xi_{n \alpha}\right) \frac{\partial}{\partial \xi_{i \alpha}}\left(\xi_{i j j_{1}} \wedge \cdots \wedge \xi_{i r j r}\right)\right) \\
& =\sum_{i=1 \alpha=1}^{n} \sum_{i}^{m} P_{i}\left(\xi_{1 \varphi(\alpha)}, \cdots, \xi_{n \varphi(\alpha)}\right) \frac{\partial}{\partial \xi_{i \varphi(\alpha)}}\left(\xi_{i \varphi \varphi\left(j_{1}\right)} \wedge \cdots \wedge \xi_{i r \varphi\left(j_{r}\right)}\right) \\
& =P_{i_{1}}\left(\xi_{1 \varphi\left(j_{1}\right)}, \cdots, \xi_{n \varphi\left(j_{1}\right)}\right) \widehat{\xi_{i \varphi\left(j_{1}\right)}} \wedge \xi_{i_{2 \varphi}\left(j_{2}\right)} \wedge \xi_{i r \varphi\left(j_{r}\right)} \\
& +(-1) P_{i_{2}}\left(\xi_{1 \varphi\left(j_{2}\right)}, \cdots, \xi_{n \varphi\left(j_{2}\right)}\right) \xi_{i_{1 \varphi}\left(j_{1}\right)} \wedge \widehat{\xi_{i_{2} \varphi\left(j_{2}\right)}} \wedge \cdots \wedge \xi_{i r \varphi\left(j_{r}\right)} \\
& +\cdots \\
& +(-1)^{r-1} P_{i r}\left(\xi_{1 \varphi(j r)}, \cdots, \xi_{n \varphi(j r)}\right) \xi_{j i \varphi(j 1)} \wedge \cdots \wedge \xi_{i r-1 \varphi(j r-1)} \wedge \widehat{\xi_{i r \varphi}(j r)},
\end{aligned}
$$

where \wedge means an elimination. On the other hand,

$$
\psi^{\otimes m}(D) \varphi\left(\xi_{i j 1 j} \wedge \cdots \wedge \xi_{i r i r}\right)
$$

$$
\begin{aligned}
= & \phi^{\otimes m}(D)\left(\xi_{i_{1} \varphi\left(j_{1}\right)} \wedge \cdots \wedge \xi_{i r \varphi\left(j_{r}\right)}\right) \\
=\sum_{i=1 \alpha}^{n} & \sum_{=1}^{m} P_{i}\left(\xi_{1 \alpha} \cdots \xi_{n \alpha}\right)\left(\delta_{i i_{1}} \delta_{\alpha \varphi\left(j_{1}\right)} \widehat{\xi_{i \varphi \varphi\left(j_{1}\right)}} \wedge \xi_{i 2 \varphi\left(j_{2}\right)} \wedge \cdots \wedge \xi_{i r \varphi\left(j_{r)}\right)}\right. \\
& +(-1) \delta_{i i_{2}} \delta_{\alpha \varphi\left(j_{2}\right)} \xi_{i_{1 \varphi} \varphi\left(j_{1}\right)} \wedge \widehat{\xi_{i 2 \varphi\left(j_{2}\right)}} \wedge \cdots \wedge \xi_{i_{i \varphi \varphi(j r)}} \\
& +\cdots \\
& \left.+(-1)^{r-1} \delta_{i i r} \delta_{\alpha \varphi\left(j_{r}\right)} \xi_{i \varphi \varphi\left(j_{1}\right)} \wedge \xi_{i 2 \varphi\left(j_{2}\right)} \wedge \cdots \wedge \widehat{\xi_{i r \varphi\left(j_{r}\right)}}\right) .
\end{aligned}
$$

So we obtain

$$
\varphi \psi^{\otimes m}(D)=\psi^{\otimes m}(D) \varphi \quad(\varphi \in \operatorname{End}[m])
$$

By the definition of \mathscr{E}_{m}, we complete the proof of the lemma.
Q. E. D.

2. Commutant algebra of $\psi^{\otimes m}(W(n))$ (the case $\left.m \leq n\right)$

2.1. Semigroup ring \mathscr{E}_{m} and commutant algebra \mathscr{C}_{m}. Let $(\psi, \Lambda(n))$ be the natural representation of $W(n)$ and $\left(\psi^{\otimes m}, \Lambda(n, m)\right)$ its m-fold tensor product. Denote by $U(W(n))$ the universal enveloping algebra of $W(n)$, then we have

Lemma 2.1. Put $\xi(\alpha)=\left(\xi_{1 \alpha}, \cdots, \xi_{n \alpha}\right)$. Then the subalgebra $\psi^{\otimes m}(U$ $(W(n))$) in End $\Lambda(n, m)$ is generated by

$$
\sum_{1 \leq \alpha_{1}, \cdots, \alpha_{k} \leq m} P_{1}\left(\xi\left(\alpha_{1}\right)\right) \cdots P_{k}\left(\xi\left(\alpha_{k}\right)\right) \frac{\partial^{k}}{\partial \xi_{b 1 \alpha 1} \cdots \partial \xi_{b k \alpha_{k}}}
$$

where $1 \leq b_{1}, \cdots, b_{k} \leq n$ are indices, P_{i} is a Grassmannian polynomial in n-variables, and $P_{i}(\xi(\alpha))=P_{i}\left(\xi_{1 \alpha}, \cdots, \xi_{n \alpha}\right)$.

Proof. Let $P_{i} \in \Lambda(n)$ be homogeneous and fix $1 \leq b_{1}, b_{2} \leq n$. Then it holds that

$$
\begin{aligned}
& \sum_{\alpha_{1}=1}^{m} P_{1}\left(\xi\left(\alpha_{1}\right)\right) \frac{\partial}{\partial \xi_{b_{1}, \alpha_{1}}} \sum_{\alpha_{2}=1}^{m} P_{2}\left(\xi\left(\alpha_{2}\right)\right) \frac{\partial}{\partial \xi_{b_{2}, \alpha_{2}}} \\
& =\sum_{\alpha_{1}, \alpha_{2}}\left\{P_{1}\left(\xi\left(\alpha_{1}\right)\right) \frac{\partial}{\partial \xi_{b_{1}, \alpha_{1}}} P_{2}\left(\xi\left(\alpha_{2}\right)\right) \frac{\partial}{\partial \xi_{b_{2}, \alpha_{2}}}\right. \\
& \left.\quad+(-1)^{\operatorname{degP} P_{2}} P_{1}\left(\xi\left(\alpha_{1}\right)\right) P_{2}\left(\xi\left(\alpha_{2}\right)\right) \frac{\partial^{2}}{\partial \xi_{b_{1} \alpha_{1}} \partial \xi_{b_{2} \alpha_{2}}}\right\} .
\end{aligned}
$$

By definition of $\psi^{\otimes m}$, we know that the left hand side and the first term in the right hand side of the above formula is in $\psi^{\otimes m}(U(W(n)))$, whence

$$
\sum_{\alpha_{1}, \alpha_{2}} P_{1}\left(\xi\left(\alpha_{1}\right)\right) P_{2}\left(\xi\left(\alpha_{2}\right)\right) \frac{\partial^{2}}{\partial \xi_{b_{1} \alpha_{1}} \partial \xi_{b_{2} \alpha_{2}}} \in \psi^{\otimes m}(U(W(n))) .
$$

We can complete the proof of the lemma by using indinduction on k. Q. E. D.

Lemma 2.2. If $m \leq n$, then the representation of \mathfrak{F}_{m} on $\Lambda(n, m)$ is faithful, hence we have

$$
\operatorname{dim} \mathscr{E}_{m}=\operatorname{dim} \mathfrak{E}_{m}=m^{m} .
$$

Proof. Put

$$
\mathcal{N}_{k}:=\{\varphi \mid \varphi \in \operatorname{End}[m], \# \operatorname{Im}(\varphi)=k\}=\left\{\varphi_{n}^{k} \mid h=1,2, \cdots, n_{k}\right\},
$$

where $n_{k}=\# \mathcal{N}_{k}$. Then the semigroup ring \mathfrak{F}_{m} is generated by \mathcal{N}_{k} 's, hence \mathscr{E}_{m} $=\sum_{k=1}^{m}\left\langle\mathcal{N}_{k}\right\rangle$. Suppose

$$
\left.\sum_{k=1}^{m} \sum_{h=1}^{n_{k}} c_{h}^{k} \varphi_{h}^{k}\right|_{\Lambda(n, m)}=0 \quad\left(c_{h}^{k} \in \mathbf{C}, \varphi_{h}^{k} \in \mathcal{N}_{k}\right) .
$$

We want to prove $c_{h}^{k}=0$. By the assumption and the condition $m \leq n$, we have

$$
\sum_{k=1}^{m} \sum_{h=1}^{n k} c_{h}^{k} \varphi_{h}^{k}\left(\xi_{11} \wedge \xi_{12} \wedge \cdots \wedge \xi_{1 m} \wedge \prod_{i=2}^{m} \xi_{i i}\right)=0
$$

Note that $\varphi_{h}^{k}(1 \leq k \leq m-1)$ kills the vector in the left hand side. So we obtain $c_{h}^{m}=0$ from the formula

$$
\sum_{h} c_{h}^{m} \xi_{1 \varphi_{n}^{m}(1)} \wedge \xi_{1 \varphi_{n}^{m}(2)} \wedge \cdots \wedge \xi_{1 \varphi m^{m}(m)} \wedge \prod_{i=2}^{m} \xi_{i \varphi \varphi_{n}^{m}(i)}=0 .
$$

We prove the result by induction on k. Assume that $c_{h}^{t}=0(t \geq k+1)$. Let us consider the case $t=k$. We have

$$
\sum_{t} \sum_{h} c_{h}^{t} \varphi_{h}^{t}\left(\xi_{11} \wedge \xi_{1 i 2} \wedge \cdots \wedge \xi_{1 i k} \wedge \prod_{i=2}^{m} \xi_{1 i}\right)=0
$$

where $1<i_{2}<i_{3}<\cdots<i_{k}$. So by the induction hypothesis, we get

$$
\begin{gathered}
\sum_{h} c_{h}^{k} \varphi_{h}^{k}\left(\xi_{11} \wedge \xi_{1 i_{2}} \wedge \cdots \wedge \xi_{1 i_{k}} \wedge \prod_{i=2}^{m} \xi_{i i}\right) \\
=\sum_{h} c_{h}^{k} \xi_{1 \varphi_{k}^{k}(1)} \wedge \xi_{1 \varphi_{k}^{k}\left(i_{2}\right)} \wedge \cdots \xi_{1 \varphi_{k}^{k}\left(i_{k}\right)} \wedge \prod_{i=2}^{m} \xi_{i, \varphi_{k}^{k}(i)}=0 .
\end{gathered}
$$

For any two elements $\varphi_{h_{1}}^{k}, \varphi_{h_{2}}^{k}$ of \mathcal{N}_{k}, obviously,

$$
\xi_{1 \varphi_{1}^{k_{1}}(1)} \wedge \xi_{1 \varphi \varphi_{1}^{k_{1}\left(i_{2}\right)}} \wedge \cdots \wedge \xi_{1 \varphi \varphi_{1}^{k_{1}}\left(i_{i}\right)} \wedge \prod_{i=2}^{m} \xi_{i\left(\varphi_{1}^{\phi_{1}}(i)\right.}
$$

if and only if

$$
\left(\varphi_{h_{1}}^{k}(1), \varphi_{h_{1}}^{k}(2), \cdots, \varphi_{h_{1}}^{k}(m)\right)=\left(\varphi_{h_{2}}^{k}(1), \varphi_{h_{2}}^{k}(2), \cdots, \varphi_{h_{2}}^{k}(m)\right), \text { i.e., } \varphi_{h_{1}}^{k}=\varphi_{h_{2}}^{k} .
$$

By the linear independence of elements

$$
\left\{\xi_{1 \varphi_{k}^{*}(1)} \wedge \xi_{1 \varphi_{\hbar}^{\hbar}\left(i_{2}\right)} \wedge \cdots \wedge \xi_{1 \varphi_{k}^{*}\left(i_{2}\right)} \wedge \prod_{i=2}^{m} \xi_{i \varphi_{k}^{*}(i)}(\neq 0) \mid \varphi_{h}^{k} \in \mathcal{N}_{k}\right\}
$$

we obtain $c_{h}^{k}=0$. By induction, we complete the proof.
Q. E. D.

Now we can prove the following

Theorem 2.3. If $m \leq n$, then the commutant algebra \mathscr{C}_{m} of $\psi^{\otimes m}(W(n))$ coincides with the representation image \mathscr{E}_{m} of the semigroup ring $\mathfrak{\xi}_{m}$ of the permutation semigroup End $[m]$:

$$
\mathscr{C}_{m}=\mathscr{E}_{m}
$$

Proof. Take an $E \in \mathscr{C}_{m}$. For Grassmannian polynomials P_{1}, \cdots, P_{m} in n-variables, put

$$
X\left(P_{1}, P_{2}, \cdots, P_{m}\right)=\sum_{1 \leq \alpha_{1}, \cdots, \alpha_{m} \leq m} P_{1}\left(\xi\left(\alpha_{1}\right)\right) \cdots P_{m}\left(\xi\left(\alpha_{m}\right)\right) \frac{\partial^{m}}{\partial \xi_{1 \alpha_{1}} \cdots \partial \xi_{m \alpha_{m}}}
$$

which is in $\psi^{\otimes m}(U(W(n)))$ by Lemma 2.1. Then we have

$$
\begin{aligned}
E\left(P_{1}(\xi(1)) P_{2}(\xi(2)) \cdots P_{m}(\xi(m))\right) & =E X\left(P_{1}, P_{2 .}, \cdots, P_{m}\right)\left(\xi_{11} \wedge \xi_{22} \wedge \cdots \wedge \xi_{m m}\right) \\
& =X\left(P_{1}, P_{2}, \cdots, P_{m}\right) E\left(\xi_{11} \wedge \xi_{22} \wedge \cdots \xi_{m m}\right)
\end{aligned}
$$

Since $\Lambda(n, m)$ is generated by $\left\{P_{1}(\xi(1)) \cdots P_{m}(\xi(m)) \mid P_{i} \in \Lambda(n)\right\}, E$ is completely determined by $E\left(\xi_{11} \wedge \xi_{22} \wedge \cdots \wedge \xi_{m m}\right)$. On the other hand, Euler operators

$$
\sum_{\alpha=1}^{m} \xi_{j \alpha} \frac{\partial}{\partial \xi_{j \alpha}} \quad(1 \leq j \leq n)
$$

are in $\psi^{\otimes m}(W(n))$, and

$$
\begin{align*}
\sum_{\alpha=1}^{m} \xi_{j \alpha} \frac{\partial}{\partial \xi_{j \alpha}} E\left(\xi_{11} \wedge \cdots \wedge \xi_{m m}\right) & =E\left(\sum_{\alpha=1}^{m} \xi_{j \alpha} \frac{\partial}{\partial \xi_{j \alpha}}\left(\xi_{11} \wedge \cdots \wedge \xi_{m m}\right)\right) \\
& = \begin{cases}E\left(\xi_{11} \wedge \cdots \wedge \xi_{m m}\right) & \text { if } 1 \leq j \leq m \\
0 & \text { if } m<j \leq n\end{cases} \tag{2.1}
\end{align*}
$$

This means that if $1 \leq j \leq m$, then $E\left(\xi_{11} \wedge \cdots \wedge \xi_{m m}\right)$ is the eigenvector of the Euler operator with eigenvalue 1 and if $m+1 \leq j \leq n$, then $E\left(\xi_{11} \wedge \cdots \wedge \xi_{m m}\right)$ is in the kernel of the Euler operator. So $E\left(\xi_{11} \wedge \cdots \wedge \xi_{m m}\right)$ is degree 1 in ($\xi_{j_{1}}, \cdots$, $\xi_{j_{m}}$) if $1 \leq j \leq m$ and degree 0 in $\left(\xi_{j_{1}}, \cdots, \xi_{j_{m}}\right)$ if $m+1 \leq j \leq n$. Hence we obtain

$$
E\left(\xi_{11} \wedge \cdots \wedge \xi_{m m}\right)=\sum_{1 \leq j_{1}, \cdots, j_{m} \leq m} a_{j_{1} \cdots j_{m}}\left(\xi_{1_{1}} \wedge \cdots \wedge \xi_{m j_{m}}\right) .
$$

So $\operatorname{dim} \mathscr{C}_{m}$ is less than or equal to m^{m}.
On the other hand, by Lemma $1.2, \mathscr{C}_{m}$ contains the subalgebra \mathscr{E}_{m} and by Lemma 2.2, its dimension is equal to m^{m} if $m \leq n$. Therefore we conclude the theorem.
Q. E. D.

3. A kind of Weyl reciprocity for $W(1) \times \operatorname{End}[m]$

3.1. Commutant algebra of $\psi^{\otimes m}(W(1))$. In this section, we consider the case $n=1$. In this case, we get a stronger result which is independent of m. For $n=1$, it becomes

$$
W(1)=\left\langle\frac{\partial}{\partial \xi}, \xi \frac{\partial}{\partial \xi}\right\rangle, \operatorname{deg}\left(\frac{\partial}{\partial \xi}\right)=1, \operatorname{deg}\left(\xi \frac{\partial}{\partial \xi}\right)=0 .
$$

For convenience, we use isomorphism

$$
\Lambda(1, m):=<\xi_{1}, \xi_{2}, \cdots, \xi_{m}>\cong \Lambda(m) .
$$

So we have

$$
D_{-1}:=\psi^{\otimes m}\left(\frac{\partial}{\partial \xi}\right)=\sum_{i=1}^{m} \frac{\partial}{\partial \xi_{i}}, D_{0}:=\psi^{\otimes m}\left(\xi \frac{\partial}{\partial \xi}\right)=\sum_{i=1}^{m} \xi_{i} \frac{\partial}{\partial \xi_{i}} .
$$

Obviously, $D_{-1}\left(\Lambda_{k}\right) \subseteq \Lambda_{k-1}, D_{0}\left(\Lambda_{k}\right) \subseteq \Lambda_{k}$ for any k. Further, we have

Lemma 3.1. The operator D_{-1} is an exact derivation, i.e., $\left(\mathrm{D}_{-1}\right)^{2}=0$ and the chain complex

$$
0 \rightarrow \Lambda_{m} \xrightarrow{D-1} \Lambda_{m-1} \xrightarrow{D-1} \cdots \xrightarrow{D-1} \Lambda_{2} \xrightarrow{D-1} \Lambda_{1} \xrightarrow{D-1} \Lambda_{0} \rightarrow 0
$$

is exact.
Proof. First of all, note that $\left(D_{-1}\right)^{2}=0$. So D_{-1} is a boundary operator. To prove the exactness, we define linear operators $P_{k}: \Lambda_{k} \rightarrow \Lambda_{k+1}$ by

$$
P_{k}\left(\xi_{i_{1}} \wedge \cdots \wedge \xi_{i_{k}}\right)=\xi_{1} \wedge \xi_{i_{1}} \wedge \cdots \wedge \xi_{i_{k}}
$$

where $0 \leq_{k} \leq m$. We put $P_{-1}=0$ for convenience. Then

$$
\begin{aligned}
& \left(D_{-1} P_{k}+P_{k-1} D_{-1}\right)\left(\xi_{i_{1}} \wedge \cdots \wedge \xi_{i_{k}}\right) \\
& \quad=D_{-1}\left(\xi_{1} \wedge \xi_{i_{1}} \wedge \cdots \wedge \xi_{i_{k}}\right)+P_{k-1} D_{-1}\left(\xi_{i_{1}} \wedge \cdots \wedge \xi_{i_{k}}\right) \\
& \quad=\xi_{i_{1}} \wedge \cdots \wedge \xi_{i_{k}}+\sum_{t=1}^{k}(-1)^{t} \xi_{1} \wedge \xi_{i_{1}} \wedge \cdots \wedge \widehat{\xi_{i t}} \wedge \cdots \wedge \xi_{i k} \\
& \quad+P_{k-1}\left(\sum_{t=1}^{k}(-1)^{t-1} \xi_{i_{1}} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \xi_{i_{k}}\right) \\
& \quad=\xi_{i_{1}} \wedge \cdots \wedge \xi_{i_{k}}
\end{aligned}
$$

So we obtain

$$
D_{-1} P_{k}+P_{k-1} D_{-1}=I \quad(k=0,1,2, \cdots, m) .
$$

By general theory of algebraic topology, the lemma follows from the above formula (e.g., see [3, p.163]).
Q. E. D.

By the above lemmas, we can prove the following

Theorem 3.2. Let $n=1$ and the notations be as above. Then the commutant algebra \mathscr{C}_{m} of $\psi^{\otimes m}(W(1))$ coincides with the representation image \mathscr{E}_{m} of semigroup ring \mathfrak{E}_{m} of the permutation semigroup End $[m]$:

$$
\mathscr{C}_{m}=\mathscr{C}_{m}
$$

Proof. By Lemma 1.2. we have $\mathscr{E}_{m} \subseteq \mathscr{C}_{m}$, so it is enough to prove $\mathscr{C}_{m} \subseteq$ \mathscr{E}_{m}. For this purpose, we introduce some notations. For any $E \in \mathscr{C}_{m}$, put

$$
\begin{gathered}
E_{k}:=\left.E\right|_{\Lambda_{k}}, \\
\mathfrak{\Im}_{k}:=\left\{E \in \mathscr{C}_{m} \mid E_{i}=0(\forall l>k)\right\}, \\
D_{-1, k}:=\left.D_{-1}\right|_{\Lambda_{k}} .
\end{gathered}
$$

Clearly,

$$
\mathscr{C}_{m}=\mathfrak{I}_{m} \supseteq \cdots \supseteq \mathfrak{I}_{1} \supseteq \mathfrak{I}_{0}=(0)
$$

and

$$
\left.\mathscr{C}_{m} \simeq\left(\Im_{m} / \Im_{m-1}\right) \oplus\left(\Im_{m-1} / \Im_{m-2}\right) \oplus \cdots \oplus \Im_{1} \quad \text { (as a vector space }\right)
$$

We divide the proof into 5 steps.
STEP 1. Taking a complementary subspace Λ_{k}^{\prime} of $\Re\left(D_{-1, k+1}\right)$ (here \Re ($D_{-1, k+1}$) is the image space of $D_{-1, k+1}$), we have

$$
\begin{equation*}
\Lambda_{k}=\mathfrak{R}\left(D_{-1, k+1}\right) \oplus \Lambda_{k}^{\prime} . \tag{3.1}
\end{equation*}
$$

We define a linear operator $P_{k}: \mathfrak{I}_{k} / \Im_{k-1} \rightarrow \operatorname{Homc}\left(\Lambda_{k}^{\prime}, \Lambda_{k}\right)$ by

$$
P_{k}(\bar{E}):=\left.E_{k}\right|_{A^{\prime} k}, \text { for any } \bar{E} \in \mathfrak{I}_{k} / \mathfrak{S}_{k-1}
$$

where $E \in \mathfrak{F}_{k}$ is a representative of $\bar{E} \in \mathfrak{F}_{k} / \mathfrak{Y}_{k-1}$. This map is well-defined, be-
cause if two elements $E, E^{\prime} \in \mathscr{C}_{m}$ satisfy $E-E^{\prime} \in \mathfrak{S}_{k-1}$, then by definition, ($E-$ $\left.E^{\prime}\right)_{k}=E_{k}-E_{k}^{\prime}=0$.

STEP 2. We show that P_{k} is an injection. Assume that $P_{k}(\bar{E})=0$ for an $\bar{E} \in \mathfrak{S}_{k} / \mathfrak{\Im}_{k-1}$, then there exists a representative $\bar{E} \in \mathfrak{S}_{k}$ such that $\left.E\right|_{\Lambda^{\prime} k}=0$. On the other hand, for any $x \in \Re\left(D_{-1, k+1}\right)$, there exists $y \in \Lambda_{k+1}$ such that $x=$ $D_{-1} y$, so

$$
E_{k} x=E_{k} D_{-1} y=D_{-1} E_{k+1} y=0,
$$

whence $\left.E_{k}\right|_{\Lambda_{k+1}}=0$. Then we see $E_{k}=0$ in total and $E \in \mathfrak{I}_{k-1}$. Thus we obtain \bar{E} $=0$.

STEP 3. We show P_{k} is surjective. For any $H \in \operatorname{Homc}_{\mathbf{c}}\left(\Lambda_{k}^{\prime}, \Lambda_{k}\right)$, we define $E \in \operatorname{Homc}_{\mathrm{c}}\left(\Lambda^{\prime}(n), \Lambda(n)\right)$ as follows:

$$
\left\{\begin{array}{c}
\left.E\right|_{\Lambda_{l}}=0 \quad(l \neq k-1, k), \\
\left.E\right|_{\Re(D-1, k+1)}=0,\left.E\right|_{A^{\prime} k}=H, \\
\left.E\right|_{\Re(D-1, k)}=D_{-1, k} H,\left.\quad E\right|_{A^{\prime} k_{k-1}}=0
\end{array}\right.
$$

By Lemma 3.1 and the definiton of E, we have $D_{0} E=E D_{0,} D_{-1} E=E D_{-1}$ and $E \in$ \mathfrak{J}_{k}. Furthermore, let \bar{E} be the image of E in $\mathfrak{J}_{k} / \mathfrak{S}_{k-1}$, Then

$$
P_{k}(\bar{E})=\left.E_{k}\right|_{\Lambda^{\prime} k}=H .
$$

So P_{k} is surjective.
So far, we have the following result.

$$
\begin{gathered}
\mathscr{C}_{m} \simeq\left(\Im_{m} / \mathfrak{\Im}_{m-1}\right) \oplus\left(\mathfrak{I}_{m-1} / \Im_{m-2}\right) \oplus \cdots \oplus \Im_{1} \\
\simeq \operatorname{Homc}\left(\Lambda_{m}^{\prime}, \Lambda_{m}\right) \oplus \operatorname{Homc}\left(\Lambda_{m-1}^{\prime}, \Lambda_{m-1}\right) \oplus \cdots \oplus \operatorname{Homc}\left(\Lambda_{1}^{\prime}, \Lambda_{1}\right)
\end{gathered}
$$

STEP 4. Let us prove that above $\Lambda^{\prime}{ }_{k}$ can be replaced by $\Lambda_{k-1} \wedge \xi_{m}$, that is,

$$
\begin{equation*}
\Lambda_{k}=\Re\left(D_{-1, k+1}\right) \oplus\left(\Lambda_{k-1} \wedge \xi_{m}\right), \tag{3.2}
\end{equation*}
$$

where $k=1,2, \cdots, m$ and $D_{1, m+1}=0$. If $x \wedge \xi_{m}=D_{-1, k+1} y$ with $x \in \Lambda_{k-1}, y \in \Lambda_{k+1}$, then

$$
D_{-1, k}\left(x \wedge \xi_{m}\right)=D_{-1, k} D_{-1, k+1} y=0
$$

and

$$
D_{-1, k}\left(x \wedge \xi_{m}\right)=\left(D_{-1, k} x\right) \wedge \xi_{m}-(-1)^{k-1} x .
$$

So it holds that

$$
x \wedge \xi_{m}=\left((-1)^{k-1}\left(D_{-1, k} x\right) \wedge \xi_{m}\right) \wedge \xi_{m}=0 .
$$

This means that

$$
\begin{equation*}
\mathfrak{R}\left(D_{-1, k+1}\right) \cap\left(\Lambda_{k-1} \wedge \xi_{m}\right)=(0) \tag{3.3}
\end{equation*}
$$

On the other hand, we have

$$
\operatorname{dim} \Lambda_{k}^{\prime}=\binom{m-1}{m-k}
$$

which is proved by induction on k. By a direct calculation, we get

$$
\operatorname{dim}\left(\Lambda_{k-1} \wedge \xi_{m}\right)=\binom{m-1}{k-1}=\binom{m-1}{m-k}
$$

Thus, from (3.1) and (3.3), we obtain the direct sum relation (3.2).
STEP 5. A basis of the space $\Lambda_{k}^{\prime}=\Lambda_{k-1} \wedge \xi_{m}$ is given by

$$
\left\{\xi_{j_{1}} \wedge \cdots \wedge \xi_{j_{k-1}} \wedge \xi_{m} \mid 1 \leq j_{1}<j_{2}<\cdots<j_{k-1}<m\right\}
$$

For any basis element $\xi_{i_{1}} \wedge \xi_{i_{2}} \wedge \cdots \wedge \xi_{i_{k}}$ of Λ_{k}, we define $\varphi_{i_{1} \cdots i_{k-1 i_{k}}}^{j_{1} \cdots j_{k-1} m} \in$ End [m] as follows:

$$
\varphi_{i_{1} \cdots i_{k-1 i_{k}}}^{j_{1} \cdots j_{k-1} m}=\left(\begin{array}{cccccccc}
1 & 2 & \cdots & j_{1} & \cdots & j_{k-1} & \cdots & m \\
i_{k} & i_{k} & \cdots & i_{1} & \cdots & i_{k-1} & \cdots & i_{k}
\end{array}\right),
$$

i.e., $\varphi_{i_{1} \cdots i_{k-1 i_{k}} \cdots j_{l}}^{j_{l}}\left(j_{l}\right)=i_{l}(1 \leq l \leq k-1), \varphi_{i_{1} \cdots i_{k-1 i_{k}}}^{j_{1} \cdots j_{k-1} m}(j)=i_{k}\left(j \notin\left\{j_{1}, \cdots, j_{k-1}\right\}\right)$. Then we have

$$
\varphi_{i_{1} \cdots i_{k-1} j_{k} \cdots j_{k-1} m}\left(\xi_{j_{1}} \wedge \cdots \wedge \xi_{j_{k-1}} \wedge \xi_{m}\right)=\xi_{i_{1}} \wedge \cdots \wedge \xi_{i_{k-1}} \wedge \xi_{i_{k}}
$$

and

$$
\varphi_{i_{1} \cdots i_{k-1} i_{k}}^{j_{1} \cdots j_{k-1} m}\left(\xi_{s_{1}} \wedge \cdots \wedge \xi_{s_{k-1}} \wedge \xi_{m}\right)=0 \text { for }\left(s_{1}, \cdots, s_{k-1}\right) \neq\left(j_{1}, \cdots, j_{k-1}\right) .
$$

Therefore the set

$$
\left\{\varphi_{i_{1} \cdots i_{k-1} i_{k}}^{j_{1} \cdots j_{k-1} m} \mid 1 \leq j_{1}<j_{2}<\cdots<j_{k-1} \leq m-1,1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m\right\}
$$

is a basis of $\operatorname{Homc}\left(\Lambda_{k}^{\prime}, \Lambda_{k}\right)$. So we get a surjection

$$
\mathscr{E}_{m} \longrightarrow \bigoplus_{k=1}^{m} \operatorname{Homc}\left(\Lambda_{k}^{\prime}, \Lambda_{k}\right) \simeq \mathbf{C}^{m}
$$

and $\operatorname{dim} \mathscr{C}_{m} \leq \operatorname{dim} \mathscr{E}_{m}$. By Lemma 1.2, we have finally $\mathscr{E}_{m}=\mathscr{C}_{m}$.
Q. E. D.

3.2. The bicommutant algebra.

In the special case where $n=1$, we also get the bicommutant algebra of $\phi^{\otimes m}$ ($W(1)$). The next Theorem 3.3 states that it is the image of the enveloping algebra $\psi^{\otimes m}(U(W(1)))$. Therefore, in this case, we have an analogue of Schur duality for $W(1) \times \operatorname{End}[m]$.

Theorem 3.3. The bicommutant algebra of m-fold tensor product $\psi^{\otimes m}$ of the natural representation ψ of $W(1)$ is equal to the image $\psi^{\otimes m}(U(W(1)))$ of the enveloping algebra.

Proof. Let $U(W(1))$ be the universal enveloping algebra of $W(1)$. Then by Poincaré-Birkhoff-Witt theorem, $U(W(1))$ is spanned over \mathbf{C} as

$$
U(W(1))=\left\langle\left(\xi \frac{\partial}{\partial \xi}\right)^{k}, \left.\left(\xi \frac{\partial}{\partial \xi}\right)^{k} \frac{\partial}{\partial \xi} \right\rvert\, k=0,1, \cdots\right\rangle / \mathbf{C}
$$

Denote the bicommutant algebra by \mathscr{C}_{m}^{\prime}. Obviously $\psi^{\otimes m}(U(W(1))) \subseteq \mathscr{C}_{m}^{\prime}$ holds. Put

$$
D_{0}=\psi^{\otimes m}\left(\frac{\xi}{\partial \xi}\right), D_{-1}=\psi^{\otimes m}\left(\frac{\partial}{\partial \xi}\right),
$$

then, under the representation $\psi^{\otimes m}$,

$$
\psi^{\otimes m}(U(W(1)))=\left\langle I, D_{0}^{k}, D_{0}^{k-1} D_{-1} \mid k=1,2, \cdots\right\rangle / \mathbf{C} .
$$

We prove that $\left\{I, D_{0}, \cdots, D_{0}^{m}, D_{-1}, D_{0} D_{-1}, \cdots, D_{0}^{m-1} D_{-1}\right\}$ are linearly independent, hence $\operatorname{dim} \psi^{\otimes m}(U(W(n))) \geq 2 m+1$.

In fact, assume that

$$
\sum_{i=0}^{m} k_{i} D_{0}^{i}+\sum_{i=1}^{m} k_{m+i} D_{0}^{i-1} \mathrm{D}_{-1}=0
$$

then

$$
\left(\sum_{i=0}^{m} k_{i} D_{0}^{i}+\sum_{i=1}^{m} k_{m+i} D_{0}^{i-1} D_{-1}\right)\left(\xi_{1} \wedge \cdots \wedge \xi_{r}\right)=0 .
$$

Take $r=0,1, \cdots, m$, then we get $k_{0}=0$ and

$$
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
2 & 2^{2} & \cdots & 2^{m} \\
\vdots & \vdots & \ddots & \vdots \\
m & m^{2} & \cdots & m^{m}
\end{array}\right)\left(\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{m}
\end{array}\right)=0
$$

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
1 & 1 & \cdots & 1 \\
1 & 2 & \cdots & 2^{m-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & (m-1) & \cdots & (m-1)^{m-1}
\end{array}\right)\left(\begin{array}{c}
k_{m+1} \\
k_{m+2} \\
k_{m+3} \\
\vdots \\
k_{2 m}
\end{array}\right)=0
$$

So we have $k_{1}=k_{2}=\cdots=k_{2 m}=0$.
Second, we prove that

$$
\operatorname{dim} \mathscr{C}_{m}^{\prime} \leq 2 m+1
$$

For this purpose, let Q_{k} be the projection from $\Lambda(m)$ onto Λ_{k}, then

$$
\mathscr{C}_{m}^{\prime}=\bigoplus_{i, j=0}^{m} Q_{i} \mathscr{C}_{m}^{\prime} Q_{j}
$$

For any $\overline{\mathrm{E}} \in \mathscr{C}_{m}^{\prime}$, we have $E=\sum_{i, j=1}^{m} E_{i j}$ where $E_{i j}=\mathrm{Q}_{i} E \mathrm{Q}_{j}$, and $E_{i j}$ is essentially a linear operator from Λ_{j} to Λ_{i}. For any multi-index $\left(j_{1}, \cdots, j_{k}\right)$, take a $\varphi \in \mathbb{S}_{m}$ such that

$$
\varphi\left(j_{t}\right)=t(1 \leq t \leq k) .
$$

By $E \varphi=\varphi E$, we have

$$
E\left(\xi_{j_{1}} \wedge \cdots \wedge \xi_{j_{k}}\right)=\varphi^{-1} E\left(\xi_{1} \wedge \cdots \wedge \xi_{k}\right)
$$

So the value $E\left(\xi_{j_{1}} \wedge \cdots \wedge \xi_{j_{k}}\right)$ is determained uniquely by $E\left(\xi_{1} \wedge \cdots \wedge \xi_{k}\right)$.
Let us now consider $E_{i j}$.
1°. The case $E_{i j}(j<i)$. Put

$$
E_{i j}\left(\xi_{1} \wedge \cdots \wedge \xi_{j}\right)=\sum_{1 \leq t_{1}<\cdots<t_{i} \leq m} c_{t_{1} \cdots t_{i} \xi_{t_{1}} \wedge \cdots \wedge \xi_{t_{i}}}
$$

Take a $\varphi \in \operatorname{End}[m]$ such that $\varphi(k)=k(1 \leq k \leq j), \varphi(k)=j(j<k \leq m)$. Then, because of $E_{i j} \varphi=\varphi E_{i j}$,
whence $E_{i j}=0$.
2°. The case $E_{i j}(j \geq i+2)$. Put

$$
E_{i j}\left(\xi_{1} \wedge \cdots \wedge \xi_{j}\right)=\sum_{1 \leq t_{1}<\cdots<t_{i} \leq m} c_{t_{1} \cdots t_{i} \xi_{t_{1}}} \wedge \cdots \wedge \xi_{t_{i}}
$$

For any $1 \leq k_{1}<k_{2}<\cdots<k_{i} \leq m, 1 \leq k \leq m$, and $k \notin\left\{k_{1}, \cdots, k_{i}\right\}$, take $\varphi \in \operatorname{End}[m]$ such that $\varphi\left(k_{l}\right)=k_{l}(1 \leq l \leq i), \varphi(t)=k\left(t \notin\left\{k_{1}, \cdots, k_{i}\right\}\right)$. Then $\varphi\left(\xi_{1} \wedge \cdots \wedge \xi_{j}\right)=$ 0 , and it holds that

$$
\begin{aligned}
& 0= E_{i j} \varphi\left(\xi_{1} \wedge \cdots \wedge \xi_{j}\right)=\varphi E_{i j}\left(\xi_{1} \wedge \cdots \wedge \xi_{j}\right) \\
&=\sum_{1 \leq t_{1}<\cdots<t_{i} \leqslant m} c_{t_{1} \cdots t_{i}} \xi_{\varphi\left(t_{1}\right)} \wedge \cdots \wedge \xi_{\varphi\left(t_{j}\right)} .
\end{aligned}
$$

Therefore we obtain $c_{k_{1} \cdots k_{i}}=0$, whence $E_{i j}=0$.
According to the above facts, an operator $E \in \mathscr{C}_{m}^{\prime}$ is determined completely by the values

$$
E_{0,0}(1), E_{1,1}\left(\xi_{1}\right), \cdots, E_{m, m}\left(\xi_{1} \wedge \cdots \wedge \xi_{m}\right),
$$

and

$$
E_{1,0}\left(\xi_{1}\right), E_{2,1}\left(\xi_{1} \wedge \xi_{2}\right), \cdots, E_{m, m-1}\left(\xi_{1} \wedge \cdots \wedge \xi_{m}\right) .
$$

Further, if we take

$$
\varphi=\left(\begin{array}{ccccccccc}
1 & 2 & \cdots & r & r+1 & \cdots & j & \cdots & m \\
1 & 2 & \cdots & r & r & \cdots & r & \cdots & r
\end{array}\right),
$$

then φ maps $\Lambda_{r}(m)$ into the one-dimensional subspace $\mathbf{C} \xi_{1} \wedge \cdots \wedge \xi_{r}$. So by $E \varphi=\varphi E$, we get

$$
\begin{gathered}
E_{r, r}\left(\xi_{1} \wedge \cdots \wedge \xi_{r}\right) \in \mathbf{C} \xi_{1} \wedge \cdots \wedge \xi_{r} \\
E_{r, r-1}\left(\xi_{1} \wedge \cdots \wedge \xi_{r-1}\right) \in \mathbf{C} \xi_{1} \wedge \cdots \wedge \xi_{r}
\end{gathered}
$$

Therefore, it holds that

$$
\operatorname{dim} \mathscr{C}_{m}^{\prime} \leq 2 m+1
$$

In conclusion, we have $\operatorname{dim} \mathscr{C}_{m}^{\prime}=2 \mathrm{~m}+1$ and $\mathscr{C}_{m}^{\prime}=\psi^{\otimes m}(U(W(1)))$. This completes the proof of the theorem.
Q. E. D.

Division of Mathematics
Faculty of Integrated Human Studies Kyoto University
Department of Mathematics Kyoto University

References

[1] V. G. Kac, Lie superalgebra, Advances in Mathematics, 26(1977), 8-96.
[2] K. Nishiyama, Commutant algebra and harmonic polynomials of a Lie algebra of vector fields, to appear in J. Alg.
[3] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[4] H. Weyl, The classical group, Princeton Univ. Press, Princeton, NJ, 1946.

[^0]: Communicated by Prof. T. Hirai, May 17, 1995
 Revised June 13, 1995

