Nonexistence of twisted Hecke algebras

By

Akihiko Gyoja

0. Introduction.

Let (W, S) be a Coxeter system with finite $S \neq \phi$ (cf. [1]). The group ring $\mathbb{C}[W]$ can be deformed in two ways.

(0.1) The twisted group ring. Let C[W]' be the vector space with the basis $\{e'_w\}_{w \in W}$. Assume that C[W]' has an associative C-algebra structure, and that

$$e'_{x} e'_{y} \in \mathbf{C}^{\times} e'_{xy}$$

 $e'_{x} e'_{1} = e'_{1} e'_{x} = e'_{x}$

for all $x, y \in W$. If we express $e'_x e'_y = c_{x,y} e'_{xy}$ with $c_{x,y} \in \mathbf{C}^{\times}$, then $c := \{c_{x,y}\}_{x,y \in W}$ becomes a 2-cocycle in $H^2(W, \mathbf{C}^{\times})$. We say that the **C**-algebra **C** [W]' is obtained by twisting the group ring **C**[W] by the cocycle c.

(0.2) The q-deformation of the group ring. (The Iwahori-Hecke algebra.) Let $q = \{q_w\}_{w \in W}$ be a family of non-zero complex numbers such that

(0.2.1)
$$q_x q_y = q_{xy}$$
 if $l(x) + l(y) = l(xy)$,

where l(w) is the length of $w \in W$. Let H(q,W) be the vector space with the basis $\{T_w\}_{w \in W}$. Then there is a unique associative C-algebra structure in H(q,W) such that

$$(0.2.2) T_s T_w = \begin{cases} T_{sw} & \text{if } sw > w \\ q_s T_{sw} + (q_s - 1) T_w & \text{if } sw < w, \end{cases}$$

where \leq is the Bruhat order. This **C**-algebra H(q,W) is called the Iwahori-Hecke algebra (cf. [1, Chap.4, §2, Ex. 23]), which we shall regard as a *q*-deformation of the group ring **C**[W].

The purpose of this note is to show that, in a sense, 'the q-deformation of the twisted group ring' does not exist.

Let us explain our result more precisely. Let notation be as above, and H a vector space over \mathbb{C} with the basis $\{e_w\}_{w \in W}$.

Received February 3, 1995

Theorem. Assume that H has an associative C-algebra structure such that

$$e_{s} e_{w} \in \mathbf{C}^{\times} e_{sw} (sw > w),$$

$$e_{s} e_{w} \in \mathbf{C}^{\times} e_{sw} + \mathbf{C}^{\times} e_{w} (sw < w),$$

$$e_{1} e_{w} = e_{w} e_{1} = e_{w},$$

for $s \in S$ and $w \in W$. Then there exists $\{q_w\}_{w \in W}$ satisfying (0.2.1) and such that, if we put $T_w := b_w e_w$ with suitable $\{b_w\}_w \in (\mathbb{C}^{\times})^w$, then $\{q_w\}_w$ and $\{T_w\}_w$ satisfy (0.2.2).

Let us explain our motivation. In [4, p.109, *l.*5], T. A. Springer conjectured that the algebra of self-intertwining operators (= the Hecke algebra) of a representation of a finite Chevalley group with connected center induced from a cuspidal representation of a parabolic subgroup is isomorphic to the twisted group ring of a certain subgroup $W(\omega)$ of the Weyl group with a 2-cocycle $\gamma(\omega)$ in $H^2(W(\omega), \mathbb{C}^{\times})$. This conjecture was proved affirmatively by R. Howlett and G. Lehrer [2] (cf. [3]) and $\gamma(\omega)$ turns out to be always the trivial cohomology class. The motivation of the present work is to understand why a twisted version of the Hecke algebra does not appear.

Before concluding the introduction, it would be worth mentioning the recent work of S. Ariki [6], where he considers for an irreducible finite Coxeter group W, when $W \longrightarrow W/(\text{center of } W) = : \overline{W}$ is the representation group of \overline{W} , *i.e.*, the universal central extension of \overline{W} , and he shows that this is the case if and only if W is of type $E_{\underline{8}}$, H_4 or $I_2^{(4m)}$. Then he constructs 'a q-deformation of the twisted group ring of \overline{W} '.

1. Let *H* be a vector space over **C** with a basis $\{e_w\}_{w \in W}$. Define linear endomorphisms p_s , q_t $(s, t \in S)$ of *H* as follows:

(1.1)
$$p_s(e_w) = \begin{cases} c_{s,w} e_{sw} & (sw > w) \\ c_{s,w} e_{sw} + d_s e_w & (sw < w), \end{cases}$$

(1.2)
$$q_t(e_w) = \begin{cases} c_{w,t} e_{wt} & (wt > w) \\ c_{w,t} e_{wt} + d_t e_w & (wt < w), \end{cases}$$

where $s, t \in S, w \in W, c_{s,w}, c_{w,t} \in \mathbb{C}^{\times}, d_s \in \mathbb{C}^{\times}$. (The same $c_{s,t}$ $(s, t \in S)$ appear both in (1.1) and (1.2).)

Lemma. The following three conditions are equivalent:

(1.3) $p_{s} q_{t} = q_{t}p_{s},$ $p_{s}(e_{1}) = q_{s}(e_{1}) = e_{s} \qquad (s, t \in S).$ (1.4) $c_{w,t}c_{s,wt} = c_{sw,t}c_{s,w},$ $c_{1,s} = c_{s,1} = 1 \qquad (s, t \in S, w \in W),$ $d_{s} c_{w,t} = c_{s,w} d_{t}, \text{ if } sw = wt.$ (1.5) There is an associative algebra structure in H such that

$$p_s(e_w) = e_s e_w, q_t(e_w) = e_w e_t,$$
$$e_1 e_w = e_w e_1 = e_w \quad (s, t \in S, w \in W).$$

Proof. The proof of $(1.3) \Leftrightarrow (1.4)$ can be easily done by using the following fact: If $s, t \in S, w \in W$, l(sw) = l(wt) and l(swt) = l(w), then sw = wt. Since $(1.5) \Rightarrow (1.3)$ is trivial, let us prove $(1.3) \Rightarrow (1.5)$. Let $w = s_1 \cdots s_2 s_1$ $(s_i \in S)$ be a reduced decomposition of $w (\in W)$. Let

$$p_{w} = c_{s_{2},s_{1}}^{-1} c_{s_{3},s_{2}s_{1}}^{-1} \cdots c_{s_{l},s_{l-1}\cdots s_{1}}^{-1} p_{s_{l}} \cdots p_{s_{l}}$$

and

$$q_{w} = c_{s_{l},s_{l-1}}^{-1} c_{s_{l}s_{l-1},s_{l-2}}^{-1} \cdots c_{s_{l}\cdots s_{2},s_{1}}^{-1} q_{s_{1}} \cdots q_{s_{l}}$$

Then, by (1.3), we have

$$p_x(e_1) = q_x(e_1) = e_x,$$

$$p_x(e_y) = p_x q_y(e_1) = q_y p_x(e_1) = q_y(e_x) \quad (x, y \in W)$$

Since $p_x(e_y)$ does not depend on the choice of the reduced decomposition of y, q_y is well defined. In the same way, we can show that p_x is well-defined. Let us define a multiplication by $e_x e_y = p_x(e_y)$. Then, as we have shown above,

$$q_{\boldsymbol{y}}(e_{\boldsymbol{x}}) = p_{\boldsymbol{x}}(e_{\boldsymbol{y}}) = e_{\boldsymbol{x}} e_{\boldsymbol{y}}.$$

Hence, noting $p_x q_z = q_z p_x$, we get

$$e_x(e_y e_z) = p_x q_z(e_y) = q_z p_x(e_y) = (e_x e_y) e_z.$$

Thus we have defined a desired C-algebra structure.

2. Let H be as in §1 and $\{c_{s,w}\} \in (\mathbb{C}^{\times})^{S \times W}, \{d_{s,w}\} \in \mathbb{C}^{S \times W}$.

Lemma. The following conditions are equivalent:

(2.1) There is an associative C-algebra structure in H such that

$$e_{s}e_{w} = \begin{cases} c_{s,w}e_{sw} & (sw > w) \\ c_{s,w}e_{sw} + d_{s,w}e_{w} & (sw < w), \\ e_{1}e_{w} = e_{w}e_{1} = e_{w}. \end{cases}$$

(2.2) (a) $d_{s,w} = d_{s,s}$, which we shall denote by d_s .

(b) $\{c_{s,w}\}\ can be extended to a 2-cocycle \ \{c_{x,y}\}_{x,y \in W}\ of \ H^2(W, \mathbb{C}^{\times}), \ i.e., c_{y,z}\ c_{xy,z}^{-1}c_{x,yz}\ c_{x,yz}^{-1} = 1 \ (x, y, z \in W).$

(Such an extension is unique. See [5; Chap. 2, §§7-9] for group cohomologies.)

(c) $d_{s}c_{w,t} = c_{s,w}d_{t}$, if sw = wt.

(d) $c_{1,s} = c_{s,1} = 1$.

Here s, $t \in S$, $w \in W$.

Proof. First, let us prove $(2.1) \Rightarrow (2.2)$. If sw > w, then

$$e_{s} (e_{s}e_{w}) = c_{s,w}e_{s}e_{sw}$$
$$= c_{s,w}c_{s,sw}e_{w} + c_{s,w}d_{s,sw}e_{sw}$$
$$(e_{s}e_{s})e_{w} = (c_{s,s}e_{1} + d_{s,s}e_{s})e_{w}$$
$$= c_{s,s}e_{w} + d_{s,s}c_{s,w}e_{sw}.$$

Hence $d_{s,sw} = d_{s,s}$ and we get (a). Let $w = s_1 \cdots s_2 s_1$ ($s_i \in S$) be a reduced decomposition of $w \in W$). Then

(2.3)
$$e_{w}e_{t} = (c_{s_{2},s_{1}}^{-1} \cdots c_{s_{l},s_{l-1}\cdots s_{1}}^{-1}) (c_{s_{1},t}c_{s_{2},s_{1}t} \cdots c_{s_{l},s_{l-1}\cdots s_{1}t})e_{wt},$$

if $wt \ge w$

(2.4)
$$e_{w}e_{t} = (c_{s_{2},s_{1}}^{-1} \cdots c_{s_{l},s_{l-1}}^{-1} c_{t,t}c_{s_{3},s_{2}} \cdots c_{s_{l},s_{l-1}} e_{w,t} + d_{t}e_{w,t})e_{w}e_{t} + d_{t}e_{w}e_{t}$$

if
$$t = s_1$$

Write (2.3) and (2.4) as

$$e_{we_{t}} = \begin{cases} c_{w,t}e_{wt} & (wt > w) \\ c_{w,t}e_{wt} + d_{t}e_{w} & (wt < w) \end{cases}$$

with suitable $c_{w,t} \in \mathbb{C}^{\times}$. Define linear endomorphisms p_s and q_t by $p_s(e_w) = e_s e_w$ and $q_t(e_w) = e_w e_t$. Then p_s and q_t are of the forms (1.1) and (1.2), and satisfy the condition (1.3). Hence $\{c_{s,w}\}, \{c_{w,t}\}$ and $\{d_s\}$ satisfy the condition (1.4). In particular, we get (c) and (d). Note that, even if we replace d_s by 0, (1.4) remains valid. Hence, by the implication (1.4) \Rightarrow (1.5) for $d_s = 0$, we get an associative \mathbb{C} -algebra structure in H such that

$$e_s * e_w = c_{s,w} e_{sw}, e_1 * e_w = e_w * e_1 = e_w$$

Then

$$e_x * e_y = c_{x,y} e_{xy} \quad (x, y \in W)$$

with some $\{c_{x,y}\} \in (\mathbf{C}^{\times})^{W \times W}$. As is easily seen $\{c_{x,y}\} \in H^2(W, \mathbf{C}^{\times})$. The uniqueness of $c_{x,y}$ can be proved by an induction on l(x), using the cocycle condition on $\{c_{x,y}\}$. Thus we get (b). The implication $(2.2) \Rightarrow (2.1)$ is a direct consequence of Lemma in §1.

3. Let $\{c_{x,y}\}$ be a cocycle in $H^2(W, \mathbb{C}^{\times})$ normalized so that $c_{w,1} = c_{1,w} = 1$. (The cocycle appeared in (2.2) satisfies this condition.)

Lemma. The following conditions are equivalent:

(3.1) There is $\{d_s\} \in (\mathbf{C}^{\times})^s$ such that $d_s c_{w,t} = c_{s,w} d_t$, if sw = wt.

(3.2) $c_{s,w} = c_{w,s}$, if sw = ws.

Here s, $t \in S$ and $w \in W$.

A 2-cocycle which is normalized as above and satisfies these equivalent conditions is said to be *admissible*, provisionally in this paper. The admissibility depends only on the cohomology classes.

Proof. Since $(3.1) \Rightarrow (3.2)$ is trivial, let us prove $(3.2) \Rightarrow (3.1)$.

First, assume that sz = zt, sw = ws, s, $t \in S$ and w, $z \in W$. Then

$$c_{w,z}c_{sw,z}^{-1}c_{s,w,z}c_{s,wz}c_{s,w}^{-1} = 1,$$

$$c_{s,z}^{-1}c_{w,s,z}c_{w,sz}^{-1}c_{w,s} = 1,$$

$$c_{z,z}c_{w,z}^{-1}c_{w,z}c_{w,z}^{-1} = 1.$$

Multiplying these three equalities, we get

$$c_{s,z}/c_{z,t} = c_{s,wz}/c_{wz,t}$$

This implies that, if sw = wt, $c_{s,w}/c_{w,t}$ does not depend on w, which we shall denote by $a_{s,t}$. Note that $a_{s,t}$ (s, $t \in S$) is defined if and only if s and t are conjugate in W.

Next, assume that sw = wt, tz = zu, s, t, $u \in S$ and $w, z \in W$. Then

$$c_{w,z}c_{sw,z}^{-1} c_{s,w,z}c_{s,w}^{-1} = 1,$$

$$c_{t,z}^{-1} c_{w,t,z}c_{w,tz}^{-1} c_{w,t} = 1,$$

$$c_{z,u}c_{w,u}^{-1} c_{w,zu}c_{w,z}^{-1} = 1.$$

Multiplying these three equalities, we get

$$(c_{s,w}/c_{w,t}) (c_{t,z}/c_{z,u}) = c_{s,wz}/c_{wz,u}.$$

Hence $a_{s,t}a_{t,u} = a_{s,u}$. Let $\{S_i\}$ be the W-conjugacy classes of S and fix a representative u_i for each S_i . Let $d_s = a_{s,u_i}$ if $s \in S_i$. Then $a_{s,t} = d_s/d_t$. Hence

$$c_{s,w}/c_{w,t} = d_s/d_t$$
 if $sw = wt$.

4. Now, our task is to prove that an admissible cocycle is a coboundary, i.e., there exists $\{b_x\}_{x \in W} \in (\mathbb{C}^{\times})^W$ such that

In fact, if (4.1) holds, the multiplication law as in (2.1) can be written as

$$e_{s}e_{w} = \begin{cases} b_{w}b_{sw}^{-1}b_{s}e_{sw} & (sw > w) \\ b_{w}b_{sw}^{-1}b_{s}e_{sw} + d_{s}e_{w} & (sw < w). \end{cases}$$

If we put $f_w = b_w^{-1} e_w$, then

(4.2)
$$f_{s}f_{w} = \begin{cases} f_{sw} & (sw > w) \\ f_{sw} + b_{s}^{-1}d_{s}f_{w} & (sw < w), \end{cases}$$

and $f_1f_w = f_wf_1 = f_w$ ($s \in S$, $w \in W$). (Note that an admissible cocycle is assumed to be normalized as in §3, and that $b_1 = 1$.) Let $\{r_s\}_{s \in S}$ be an element of $(\mathbb{C}^{\times})^s$ such that

(4.3)
$$r_s = r_t$$
, if s and t are conjugate in W,

$$(4.4) b_s^{-1} d_s r_s = r_s^2 - 1.$$

(Note that from (3.1) follows $b_s^{-1}d_s = b_t^{-1}d_t$ if sw = wt.) Let $\{r_w\}_{w \in W}$ be an element of $(\mathbf{C}^{\times})^{W}$ which is an extension of $\{r_s\}_{s \in S}$ and satisfies

(4.5)
$$r_x r_y = r_{xy}, \text{ if } l(xy) = l(x) + l(y)$$

By (4.3), such an extension (uniquely) exists. Let $T_w = r_w f_w$ and $q_w = r^2_w$. Then by (4.2), (4.4) and (4.5), we get

$$T_s T_w = \begin{cases} T_{sw} & (sw > w) \\ q_s T_{sw} + (q_s - 1) T_w & (sw < w) \end{cases}$$

and

$$q_{x}q_{y} = q_{xy}$$
, if $l(xy) = l(x) + l(y)$.

The remainder of this paper is devoted to prove that an admissible cocycle is a coboundary.

5. In this section, we give some preliminaries on group cohomologies. See [5; Chap. 2, §9].

Let W be a group and present it as a quotient F/K of a free group F. Let $\overline{K} = K/[K, F]$ and $\overline{F} = F/[K, F]$, where [K, F] is the group generated by the commutators $[k, f] = kfk^{-1}f^{-1}$ ($k \in K, f \in F$). Then

$$1 \longrightarrow \overline{K} \longrightarrow \overline{F} \longrightarrow W \longrightarrow 1$$

$$\overline{K} \subset Z(\overline{F}),$$

where $Z(\overline{F})$ is the center of \overline{F} . For each $x \in W$, let us fix an element \overline{f}_x of \overline{F} such that $\overline{f}_x \longmapsto x$. Then

$$\overline{f}_{x}\overline{f}_{y} = \overline{k}_{x,y}\overline{f}_{xy} \quad (x, y \in W)$$

with some $\overline{k}_{x,y} \in \overline{K}$, and

$$\overline{k}_{y,w} \overline{k}_{xy,w}^{-1} \overline{k}_{x,y,w} \overline{k}_{x,y,w}^{-1} = 1 \qquad (x, y, z \in W).$$

We have the following exact sequence:

(5.1) $0 \to \operatorname{Hom}(W, \mathbb{C}^{\times}) \to \operatorname{Hom}(\overline{F}, \mathbb{C}^{\times}) \to \operatorname{Hom}(\overline{K}, \mathbb{C}^{\times}) \xrightarrow{\gamma} H^{2}(W, \mathbb{C}^{\times}) \to 0,$ where γ is defined by

(5.2)
$$\gamma(\phi) = \{\phi(\overline{k}_{x,y})\}.$$

See [5; Chap. 2, (9.5)] for the proof.

66

For a group G, denote Hom (G, \mathbb{C}^{\times}) by G^{\vee} . Then (5.1) can be written as follows:

(5.3)
$$0 \to (W/[W, W])^{\vee} \to (\overline{F}/[\overline{F}, \overline{F}])^{\vee} \to \overline{K}^{\vee} \to H^{2}(W, \mathbb{C}^{\times}) \to 0.$$

Since $0 \to \overline{K} \cap [\overline{F}, \overline{F}] \to \overline{K} \to \overline{F}/[\overline{F}, \overline{F}]$

is exact,

image
$$\rho = \{ \phi \in \overline{K}^{\vee}; \phi \mid \overline{K} \cap [\overline{F}, \overline{F}] = 1 \}$$

Hence

(5.4)
$$H^{2}(W, \mathbb{C}^{\times}) = \overline{K}^{\vee} / \text{image } \rho = (\overline{K} \cap [\overline{F}, \overline{F}])^{\vee}.$$

Here $\phi \in (\overline{K} \cap [\overline{F}, \overline{F}])^{\vee}$ is identified with $\{\phi(\overline{k}_{x,y})\} \in H^2(W, \mathbb{C}^{\times})$, where $\phi \in \overline{K}^{\vee}$ is any extension of ϕ . Since

$$\overline{K}/(\overline{K} \cap [\overline{F}, \overline{F}]) = \overline{K}[\overline{F}, \overline{F}]/[\overline{F}, \overline{F}] \subset \overline{F}/[\overline{F}, \overline{F}] = F/[F, F]$$

 $\overline{K}/(\overline{K} \cap [\overline{F}, \overline{F}])$ is torsion free. Hence

(5.5) torsion
$$(\overline{K}) \subset \overline{K} \cap [\overline{F}, \overline{F}].$$

6. From now on, we assume that W is a Coxeter group, i.e., W is defined by the following presentation: W is generated by a finite set S which satisfies the relations

$$s^{2} = 1$$
 ($s \in S$)
(st) ^{$m(s,t) = 1$} ($s, t \in S$)

where m(s, t) $(s, t \in S)$ are given integers. We assume that $S = \{s_1, \dots, s_l\}$. In our case, we may take the free group generated by the set $\{\tilde{s} \mid s \in S\}$ as F. (See the preceding section.) Then K is the minimal normal subgroup of F containing

$$\{\widetilde{s}^{2}, (\widetilde{s} \widetilde{t})^{m(s,t)} \mid s, t \in S\}.$$

Let \overline{s} be the image of \widetilde{s} by $F \to \overline{F}$, and take \overline{f}_x so that $\overline{f}_s = \overline{s}$ ($s \in S$). Then \overline{K} is the subgroup of \overline{F} generated by

$$\{\overline{s}^2, (\overline{s} \overline{t})^{m(s,t)}\}.$$

Remember that \overline{K} is contained in the center of \overline{F} . Assume s, $t \in S$ given. First, assume that m(s, t) = m = 2k and let $\overline{w} = \overline{s} \ \overline{t} \ \overline{s} \ \overline{t} \cdots \ \overline{t} \ \overline{s}$ (2k-1 factors). Then

$$\overline{t}^{2} = (\overline{w} \ \overline{t} \ \overline{w}^{-1})^{2} = (\overline{w} \ \overline{t} \ \overline{w} \ \overline{t} \ \overline{t}^{-1} \overline{w}^{-2})^{2}$$
$$= ((\overline{s} \ \overline{t})^{m} \ \overline{t}^{-1} \underbrace{\overline{s}^{-2} \ \overline{t}^{-2} \ \overline{s}^{-2} \cdots \ \overline{t}^{-2} \ \overline{s}^{-2})^{2}}_{2k-1}$$

$$= (\overline{s} \overline{t})^{2m} \overline{t}^{-2} ((\overline{s}^{-2})^k (\overline{t}^{-2})^{k-1})^2.$$

Hence

Akihiko Gyoja

(6.1)
$$((\overline{s} \overline{t})^m)^2 = (\overline{s}^2)^m (\overline{t}^2)^m$$

Next, assume that m(s, t) = m = 2k + 1 and let $\overline{w} = \overline{t} \ \overline{s} \cdots \overline{s} \ \overline{t} \ \overline{s}$ (2k factors) and $\overline{w}' = \overline{s} \ \overline{t} \cdots \overline{t} \ \overline{s} \ \overline{t}$ (2k factors). Then

$$\overline{s}^{-2} = (\overline{w}, \overline{s}, \overline{w}, \overline{v}^{-1})^2 = (\overline{w}, \overline{s}, \overline{w}, \overline{t}, \overline{t}^{-1}, \overline{w}^{-1}, \overline{w}, \overline{v}^{-1})^2$$
$$= ((\overline{s}, \overline{t}), \overline{t}^{-1}, (\overline{s}^{-1}, \overline{t}^{-1}, \overline{v}, \overline{t}^{-1}), (\overline{t}^{-1}, \overline{v}, \overline{s}^{-1}))^2$$
$$= ((\overline{s}, \overline{t}), \overline{t}^{-1}, (\overline{s}^{-2}, \overline{t}^{-2}, \overline{v}, \overline{t}^{-2}))^2$$

2k factors

$$= (\overline{s} \overline{t})^{2m} \overline{t}^{-2} (\overline{s}^{-2})^{2k} (\overline{t}^{-2})^{2k}.$$

Hence (6.1) holds also in this case. Since \overline{K} is a commutative group generated by

$$\overline{s}^2 \qquad (s \in S)$$

and

$$(\overline{s} \overline{t})^{m(s,t)} \quad (s, t \in S),$$

we have

rank $\overline{K} \leq l$

by (6.1). On the other hand,

$$\overline{K}/(\overline{K} \cap [\overline{F}, \overline{F}]) \cong \operatorname{image} (\overline{K} \longrightarrow \overline{F}/ [\overline{F}, \overline{F}]) \\
\cong \operatorname{image} (K \longrightarrow F/ [F, F]) \\
= \langle \overline{s}^2; \, \overline{s} \, {}^{m(s,t)} \, \overline{t} \, {}^{m(s,t)} \rangle \\
= \langle \overline{s}^2; \, \overline{s} \, \overline{t} \, (m(s,t) \, odd) \rangle,$$

where $\langle x \rangle$ is the group generated by X, and \tilde{s} denotes the image of \tilde{s} by $F \rightarrow F/[F, F]$. Hence $K/(K \cap [F, F])$ is a free **Z**-module of rank *l*. Hence

(6.2) torsion
$$\overline{K} = \overline{K} \cap [\overline{F}, \overline{F}]$$

and

(6.3) rank
$$\overline{K} = l$$
.

(See (5.5). Although the following fact is not used in the sequel, it would be worth noting here: Since \overline{K} is finitely generated, torsion \overline{K} is a finite group. Hence, by (5.4) and (6.2), we have

$$H^2(W, \mathbf{C}^{\times}) = (\text{torsion } \overline{K})^{\vee} \cong \text{torsion } \overline{K}.)$$

Thus, what we should prove is the following fact:

(6.4) If
$$\{\phi(\overline{k}_{x,y})\}$$
 with $\phi \in \overline{K}^{\vee}$ is admissible, then
 $\phi \mid_{\text{torsion } \overline{K}} \equiv 1.$

(See the end of §4. See also (5.1) and (5.2).)

68

7. In this section, we shall write the admissibility condition on $\{\phi(\overline{k}_{x,y})\}$ in terms of $\phi \in \overline{K^{\vee}}$.

Let us apply the argument of §5 to our situation. If $s \in S$, $w \in W$, sw = ws, then

$$\overline{f} s \overline{f} w = \overline{k} s, w \overline{f} sw,$$

$$\overline{f} w \overline{f} s = \overline{k} w, s \overline{f} ws,$$

$$[\overline{f} s, \overline{f} w] = \overline{k} s, w / \overline{k} w, s$$

Hence $\{\phi(\overline{k}_{x,y})\}$ is admissible if and only if

(7.1)
$$\phi([\overline{f}_{s}, \overline{f}_{w}]) = 1 \quad (s \in S, w \in W, sw = ws).$$

Let

$$\overline{M} = < [\overline{f}_{s}, \overline{f}_{w}] \mid [s, w] = 1 > \qquad (\subset \overline{K}).$$

The condition (7.1) is equivalent to

(7.2)
$$\phi \mid \overline{M} \equiv 1.$$

Let $\overline{K} = \overline{K}/\overline{M}$ and $\overline{F} = \overline{F}/\overline{M}$. It suffices to prove that
(7.3) $\overline{K} \cong \mathbb{Z}^{l}.$

In fact, by (6.3), (7.3) is equivalent to say that

$$(7.4) (torsion K) = M.$$

Hence (7.2) implies (6.4), which is what we should prove.

8. Denote the image of \overline{f}_x , $\overline{k}_{x,y}$ in $\overline{F}/\overline{M}$ by \overline{f}_x , $\overline{k}_{x,y}$, respectively. Note that $\overline{k}_{s,w} = \overline{k}_{w,s}$ in \overline{F} , if sw = ws. Hence, by the same argument as in the proof of Lemma in §3 we can find an element $\{\overline{d}_s\} \in \overline{K}^s$ such that

$$\overline{d}_{s} \overline{k}_{w,t} = \overline{k}_{s,w} \overline{d}_{t}$$
, if sw=wt.

Lemma. We have (8.1) $(\overline{f}_{s}\overline{f}_{t})^{m(s,t)} = (\overline{f}_{s}^{2}\overline{f}_{t}^{2})^{n},$ $if \ m(s, t) = 2n,$ (8.2) $(\overline{f}_{s}\overline{f}_{t})^{m(s,t)} = (\overline{d}_{s}/\overline{d}_{t}) \ (\overline{f}_{s}^{2})^{n} \ (\overline{f}_{t}^{2})^{n+1},$ $if \ m(s, t) = 2n+1.$

Proof. For the sake of brevity, we shall prove (8.1) (resp. (8.2)) assuming n=2 (resp. n=1). First, let us prove (8.1). Since

$$\overline{f}_{s} \overline{f}_{t} \overline{f}_{s} \overline{f}_{t} = \overline{k}_{s,t} \overline{k}_{st,s} \overline{k}_{sts,t} \overline{f}_{stst}$$

Akihiko Gyoja

$$= \overline{k}_{s,t} \overline{k}_{st,s} \overline{k}_{t,sts} \overline{f}_{tsts}$$
$$= \overline{f}_{t} \overline{f}_{s} \overline{f}_{t} \overline{f}_{s},$$

we have

$$(\overline{f}_s \overline{f}_t)^4 = (\overline{f}_s \overline{f}_t \overline{f}_s \overline{f}_t) (\overline{f}_t \overline{f}_s \overline{f}_t \overline{f}_s) = (\overline{f}_s^2 \overline{f}_t^2)^2.$$

Next, let us prove (8.2). Since

$$(8.3) \qquad \overline{d}_{t}\overline{f}_{s}\overline{f}_{t}\overline{f}_{s} = \overline{d}_{t}\overline{k}_{s,t}\overline{k}_{s,t}\overline{s}_{t,s}\overline{f}_{sts}$$
$$= \overline{k}_{s,t}\overline{k}_{t,st}\overline{d}_{s}\overline{f}_{tst}$$
$$= \overline{d}_{s}\overline{f}_{t}\overline{f}_{s}\overline{f}_{t},$$

we have

$$(\overline{f}_s \overline{f}_t)^3 = (\overline{f}_t \overline{f}_s \overline{f}_t \cdot \overline{d}_s / \overline{d}_t) \ (\overline{f}_t \overline{f}_s \overline{f}_t)$$
$$= (\overline{d}_s / \overline{d}_t) \overline{f}_s^2 (\overline{f}_t^2)^2.$$

Lemma. If m(s, t) is odd, then

(8.4)
$$\overline{d}_{s}^{2}\overline{f}_{s}^{-2} = \overline{d}_{t}^{2}\overline{f}_{t}^{-2}.$$

Proof. For the sake of brevity, we shall prove (8.4) assuming that m(s, t) = 3. By (8.3), we have

$$\overline{d}_{i}^{2}(\overline{f}_{s}\overline{f}_{t}\overline{f}_{s}) \quad (\overline{f}_{s}\overline{f}_{t}\overline{f}_{s}) = \overline{d}_{s}^{2}(\overline{f}_{t}\overline{f}_{s}\overline{f}_{t}) \quad (\overline{f}_{t}\overline{f}_{s}\overline{f}_{t}),$$
$$\overline{d}_{i}^{2}\overline{f}_{s}^{2}\overline{f}_{t}^{2}\overline{f}_{s}^{2} = \overline{d}_{s}^{2}\overline{f}_{t}^{2}\overline{f}_{s}^{2}\overline{f}_{t}^{2}.$$

Hence we get (8.4).

9. Let $S = \{s_1, \dots, s_i\}$, $\overline{f}_i = \overline{f}_{s_i}$, $\overline{f}_i = \overline{f}_{s_i}$, $\overline{d}_i = \overline{d}_{s_i}$, $m_{ij} = m(s_i, s_j)$ and $n_{ij} = [m_{ij}/2]$. Define a character $\phi_i \in F^{\vee}$ by $\phi_i(\widetilde{s}_i) = 2$ and $\phi_i(\widetilde{s}_j) = 1$ $(j \neq i)$. Since F^{\vee} , \overline{F}^{\vee} and \overline{F}^{\vee} are naturally identified with each other, ϕ^i can be regarded as a character of \overline{F} . Remember that we are assuming that $\overline{f}_i = \overline{s}_i$.

Lemma. The following two conditions for $x_i, x_{ij} \in \mathbb{Z}$ are equivalent:

(9.1)
$$\prod_{i=1}^{l} (\overline{f}_{i}^{2})^{x_{i}} \prod_{i < j} ((\overline{f}_{i} \overline{f}_{j})^{m_{ij}})^{x_{ij}} = 1$$

(9.2)
$$2x_i + \sum_{i < j} m_{ij} x_{ij} + \sum_{i > j} m_{ji} x_{ji} = 0 \quad (1 \le i \le l).$$

(In (9.2), the summations are taken for j.)

Note that this Lemma implies:

70

(9.3)
$$\prod_{i=1}^{l} (\overline{f_i^2})^{x_i} = 1 \text{ if and only if } x_1 = \cdots = x_l = 0.$$

(9.4) If
$$\overline{f} := \prod_{i=1}^{l} (\overline{f}_{i}^{2})^{x_{i}} \prod_{i < j} ((\overline{f}_{i} \overline{f}_{j})^{m_{ij}})^{x_{ij}} \neq 1$$
, then
 $\overline{f}^{2}, \ \overline{f}^{3}, \dots \neq 1$.

Since (9.3) and (9.4) together with (6.3) implies $\overline{K} \cong \mathbb{Z}^l$, this lemma concludes our proof. By applying ϕ_i to (9.1), we get (9.2). Hence our task is to prove implication (9.2) \Rightarrow (9.1).

Proof of $(9.2) \Rightarrow (9.1)$. Assume that (9.2) holds. By using (8.1) and (8.2), the left hand side of (9.1) can be written as follows:

$$(9.5) \qquad \prod_{i=1}^{l} (\overline{f}_{i}^{2})^{x_{i}} \prod_{\substack{i < j \\ m_{ij} \text{ even}}} (\overline{f}_{i}^{2} \overline{f}_{j}^{2})^{n_{ij}} x_{ij} \\ \times \prod_{\substack{i < j \\ m_{ij} \text{ odd}}} ((\overline{d}_{i}/\overline{d}_{j}) (\overline{f}_{i}^{2})^{n_{ij}} (\overline{f}_{j}^{2})^{n_{ij+1}})^{x_{ij}} \\ = \prod_{\substack{i < j \\ m_{ij} \text{ odd}}} (\overline{d}_{i}/\overline{d}_{j})^{x_{ij}} \prod_{i=1}^{l} (\overline{f}_{i}^{2})^{y_{i}},$$

where

$$(9.6) y_{i} = x_{i} + \sum_{\substack{i < j \\ m_{ij} even}} n_{ij} x_{ij} + \sum_{\substack{j < i \\ m_{ij} even}} n_{ji} x_{ij} + \sum_{\substack{j < i \\ m_{ij} even}} (n_{ji} + 1) x_{ji} \\ + \sum_{\substack{i < j \\ m_{ij} odd}} n_{ij} x_{ij} + \sum_{\substack{j < i \\ m_{ij} odd}} (n_{ji} + 1) x_{ji} \\ = \frac{1}{2} (2x_{i} + \sum_{\substack{i < j \\ i < j}} m_{ij} x_{ij} + \sum_{\substack{i > j \\ m_{ij} odd}} m_{ij} x_{ji}) \\ - \frac{1}{2} (\sum_{\substack{i < j \\ m_{ij} odd}} x_{ij} - \sum_{\substack{i > j \\ m_{ij} odd}} x_{ji}) \\ = -\frac{1}{2} (\sum_{\substack{i < j \\ m_{ij} odd}} x_{ij} - \sum_{\substack{i > j \\ m_{ij} odd}} x_{ji}).$$

(Here the summations are taken for j.) Hence (9.5) is equal to

(9.7)
$$\prod_{i=1}^{l} \left(\overline{d}_{i}^{2} \overline{f}_{i}^{-2} \right)^{-y_{i}},$$

where y_i is given by (9.6), and our task is to prove that (9.7) equals 1. For this purpose, it suffices to prove that

(9.8)
$$\prod_{s_i \in S'} \left(\overline{d}_i^2 \overline{f}_i^{-2} \right)^{y_i} = 1$$

Akihiko Gyoja

for each W-conjugacy class S' of S. By (8.4), $\overline{d}_i^2 \overline{f}_i^{-2}$ is constant on S'. Hence, by (9.6), we can prove (9.8). Thus we conclude the implication (9.2) \Rightarrow (9.1) and the proof of our main theorem is over.

DEPARTMENT OF FUNDAMENTAL SCIENCES, FACULTY OF INTEGRATED HUMAN STUDIES, KYOTO UNIVERSITY

References

- [1] N. Bourbaki, Groupes et algèbres de Lie, Chap. IV, V, VI, Masson, 1981.
- [2] R. Howlett and G. Lehrer, Induced cuspidal representations and generalized Hecke rings, Invent. Math., 58 (1980), 37-64.
- [3] G. Lusztig, Characters of reductive groups over a finite field, Annals of Math. Studies 107 (1984), Princeton.
- [4] T. A. Springer, Cusp forms for finite groups; Seminar on algebraic groups and related topics, Lecture Notes in Math., 131 (1970), Springer.
- [5] M. Suzuki, Group theory I, Springer, Berlin-Heidelberg-New York, 1982.
- [6] S. Ariki, q-Analogue of a twisted group ring, preprint.