Nonexistence of twisted Hecke algebras

By
Akihiko Gyoja

0. Introduction.

Let $(W, S$) be a Coxeter system with finite $S \neq \phi$ (cf. [1]). The group ring $\mathbf{C}[W]$ can be deformed in two ways.
(0.1) The twisted group ring. Let $\mathbf{C}[W]^{\prime}$ be the vector space with the basis $\left\{e_{w}^{\prime}\right\}_{w \in W}$. Assume that $\mathbf{C}[W]^{\prime}$ has an associative \mathbf{C}-algebra structure, and that

$$
\begin{gathered}
e_{x}^{\prime} e_{y}^{\prime} \in \mathbf{C}^{\times} e_{x y}^{\prime} \\
e_{x}^{\prime} e_{1}^{\prime}=e_{1}^{\prime} e_{x}^{\prime}=e_{x}^{\prime}
\end{gathered}
$$

for all $x, y \in W$. If we express $e_{x}^{\prime} e_{y}^{\prime}=c_{x, y} e_{x y}^{\prime}$ with $c_{x, y} \in \mathbf{C}^{\times}$, then $c:=\left\{c_{x, y}\right\}_{x, y \in W}$ becomes a 2-cocycle in $H^{2}\left(W, \mathbf{C}^{\times}\right)$. We say that the \mathbf{C}-algebra $\mathbf{C}[W]^{\prime}$ is obtained by twisting the group ring $\mathbf{C}[W]$ by the cocycle c.
(0.2) The q-deformation of the group ring. (The Iwahori-Hecke algebra.) Let $q=\left\{q_{w}\right\}_{w \in W}$ be a family of non-zero complex numbers such that

$$
\begin{equation*}
q_{x} q_{y}=q_{x y} \text { if } l(x)+l(y)=l(x y), \tag{0.2.1}
\end{equation*}
$$

where $l(w)$ is the length of $w \in W$. Let $H(q, W)$ be the vector space with the basis $\left\{T_{w}\right\}_{w \in W}$. Then there is a unique associative \mathbf{C}-algebra structure in $H(q, W)$ such that

$$
T_{s} T_{w}= \begin{cases}T_{s w} & \text { if } s w>w \tag{0.2.2}\\ q_{s} T_{s w}+\left(q_{s}-1\right) T_{w} & \text { if } s w<w,\end{cases}
$$

where \leq is the Bruhat order. This C-algebra $H(q, W)$ is called the Iwahori-Hecke algebra (cf. [1, Chap.4, §2, Ex. 23]), which we shall regard as a q-deformation of the group ring $\mathbf{C}[W]$.

The purpose of this note is to show that, in a sense, 'the q-deformation of the twisted group ring' does not exist.

Let us explain our result more precisely. Let notation be as above, and H a vector space over \mathbf{C} with the basis $\left\{e_{w}\right\}_{w \in W}$.

Theorem. Assume that H has an associative C-algebra structure such that

$$
\begin{aligned}
& e_{s} e_{w} \in \mathbf{C}^{\times} e_{s w}(s w>w) \\
& e_{s} e_{w \in} \mathbf{C}^{\times} e_{s w}+\mathbf{C}^{\times} e_{w}(s w<w), \\
& e_{1} e_{w}=e_{w} e_{1}=e_{w}
\end{aligned}
$$

for $s \in S$ and $w \in W$. Then there exists $\left\{q_{w}\right\}_{w \in W}$ satisfying (0.2.1) and such that, if we put $T_{w}:=b_{w} e_{w}$ with suitable $\left\{b_{w}\right\}_{w} \in\left(\mathbf{C}^{\times}\right)^{W}$, then $\left\{q_{w}\right\}_{w}$ and $\left\{T_{w}\right\}_{w}$ satisfy (0.2.2).

Let us explain our motivation. In [4, p.109, $l .5]$, T. A. Springer conjectured that the algebra of self-intertwining operators ($=$ the Hecke algebra) of a representation of a finite Chevalley group with connected center induced from a cuspidal representation of a parabolic subgroup is isomorphic to the twisted group ring of a certain subgroup $W(\omega)$ of the Weyl group with a 2-cocycle $\gamma(\omega)$ in $H^{2}\left(W(\omega), \mathbf{C}^{\times}\right)$. This conjecture was proved affirmatively by R. Howlett and G. Lehrer [2] (cf. [3]) and $\gamma(\omega)$ turns out to be always the trivial cohomology class. The motivation of the present work is to understand why a twisted version of the Hecke algebra does not appear.

Before concluding the introduction, it would be worth mentioning the recent work of S. Ariki [6], where he considers for an irreducible finite Coxeter group W, when $W \longrightarrow W /$ (center of \underline{W}) $=: \bar{W}$ is the representation group of \bar{W}, i.e., the universal central extension of \bar{W}, and he shows that this is the case if and only if W is of type $E_{\underline{8}}, H_{4}$ or $I_{2}^{(4 m)}$. Then he constructs 'a q-deformation of the twisted group ring of \bar{W}^{\prime}.

1. Let H be a vector space over \mathbf{C} with a basis $\left\{e_{w}\right\}_{w \in W}$. Define linear endomorphisms $p_{s}, q_{t}(s, t \in S)$ of H as follows:

$$
\begin{align*}
& p_{s}\left(\mathrm{e}_{w}\right)= \begin{cases}c_{s, w} e_{s w} & (s w>w) \\
c_{s, w} e_{s w}+d_{s} e_{w} & (s w<w),\end{cases} \tag{1.1}\\
& q_{t}\left(e_{w}\right)= \begin{cases}c_{w, t} e_{w t} & (w t>w) \\
c_{w, t} e_{w t}+d_{t} e_{w} & (w t<w),\end{cases} \tag{1.2}
\end{align*}
$$

where $s, t \in S, w \in W, c_{s, w}, c_{w, t} \in \mathbf{C}^{\times}, d_{s} \in \mathbf{C}^{\times}$. (The same $c_{s, t}(s, t \in S$) appear both in (1.1) and (1.2).)

Lemma. The following three conditions are equivalent:

$$
\begin{align*}
& p_{s} q_{t}=q_{t} p_{s} \tag{1.3}\\
& p_{s}\left(e_{1}\right)=q_{s}\left(e_{1}\right)=e_{s} \\
& c_{w, t} c_{s, w t}=c_{s w, t} c_{s, w}, \tag{1.4}\\
& c_{1, s}=c_{s, 1}=1 \\
& d_{s} c_{w, t}=c_{s, w} d_{t}, \text { if } s w=w t .
\end{align*} \quad(s, t \in S) .
$$

(1.5) There is an associative algebra structure in H such that

$$
\begin{aligned}
& p_{s}\left(e_{w}\right)=e_{s} e_{w}, q_{t}\left(e_{w}\right)=e_{w} e_{t} \\
& e_{1} e_{w}=e_{w} \mathrm{e}_{1}=e_{w} \quad(s, t \in S, w \in W)
\end{aligned}
$$

Proof. The proof of (1.3) $\Leftrightarrow(1.4)$ can be easily done by using the following fact: If $s, t \in S, w \in W, l(s w)=l(w t)$ and $l(s w t)=l(w)$, then $s w=w t$. Since (1.5) \Rightarrow (1.3) is trivial, let us prove (1.3) \Rightarrow (1.5). Let $w=s_{l} \cdots s_{2} s_{1}$ ($s_{i} \in S$) be a reduced decomposition of $w(\in W)$. Let

$$
p_{w}=c_{s_{2}, s_{1}}^{-1} c_{s_{3}, s_{2} s_{1}}^{-1} \cdots c_{s_{l, s l-1} \cdots s_{1}}^{-1} p_{s_{l}} \cdots p_{s_{1}}
$$

and

$$
q_{w}=c_{s_{l, s l-1}}^{-1} c_{s_{l l_{l-1}, s_{l-2}}^{-1}}^{-1} c_{s_{l-\cdots, s}, s_{1} 1}^{-1} q_{s_{1}} \cdots q_{s_{l}}
$$

Then, by (1.3), we have

$$
\begin{aligned}
& p_{x}\left(e_{1}\right)=q_{x}\left(e_{1}\right)=e_{x} \\
& p_{x}\left(e_{y}\right)=p_{x} q_{y}\left(e_{1}\right)=q_{y} p_{x}\left(e_{1}\right)=q_{y}\left(e_{x}\right) \quad(x, y \in W)
\end{aligned}
$$

Since $p_{x}\left(e_{y}\right)$ does not depend on the choice of the reduced decomposition of y, q_{y} is well defined. In the same way, we can show that p_{x} is well-defined. Let us define a multiplication by $e_{x} e_{y}=p_{x}\left(e_{y}\right)$. Then, as we have shown above,

$$
q_{y}\left(e_{x}\right)=p_{x}\left(e_{y}\right)=e_{x} e_{y} .
$$

Hence, noting $p_{x} q_{z}=q_{z} p_{x}$, we get

$$
e_{x}\left(e_{y} e_{z}\right)=p_{x} q_{z}\left(e_{y}\right)=q_{z} p_{x}\left(e_{y}\right)=\left(e_{x} e_{y}\right) e_{z} .
$$

Thus we have defined a desired \mathbf{C}-algebra structure.
2. Let H be as in $\S 1$ and $\left\{c_{s, w}\right\} \in\left(\mathbf{C}^{\times}\right)^{S \times W},\left\{d_{s, w}\right\} \in \mathbf{C}^{S \times W}$.

Lemma. The following conditions are equivalent:
(2.1) There is an associative \mathbf{C}-algebra structure in H such that

$$
\begin{aligned}
& e_{s} e_{w}= \begin{cases}c_{s, w} e_{s w} & (s w>w) \\
c_{s, w} e_{s w}+d_{s, w} e_{w} & (s w<w),\end{cases} \\
& e_{1} e_{w}=e_{w} e_{1}=e_{w} .
\end{aligned}
$$

(2.2) (a) $d_{s, w}=d_{s, s}$, which we shall denote by d_{s}.
 $c_{y, z} c_{x y, z}^{-1} c_{x, y z} c_{x, y}^{-1}=1 \quad(x, y, z \in W)$.
(Such an extension is unique. See [5; Chap. 2, §§7-9] for group cohomologies.)
(c) $d_{s c_{w, t}}=c_{s, w} d_{t}$, if $s w=w t$.
(d) $c_{1, s}=c_{s, 1}=1$.

Here $s, t \in S, w \in W$.
Proof. First, let us prove (2.1) $\Rightarrow(2.2)$. If $s w>w$, then

$$
\begin{aligned}
e_{s}\left(e_{s} e_{w}\right) & =c_{s, w} e_{s} e_{s w} \\
& =c_{s, w} c_{s, s w} e_{w}+c_{s, w} d_{s, s w} e_{s w} \\
\left(e_{s} e_{s}\right) e_{w} & =\left(c_{s, s} e_{1}+d_{s, s} e_{s}\right) e_{w} \\
& =c_{s, s} e_{w}+d_{s, s} c_{s, w} e_{s w} .
\end{aligned}
$$

Hence $d_{s, s w}=d_{s, s}$ and we get (a). Let $w=s_{l} \cdots s_{2} s_{1}\left(s_{i} \in S\right)$ be a reduced decomposition of $w(\in W)$. Then

$$
\begin{gather*}
e_{w} e_{t}=\left(c_{s_{2}, s_{1}}^{-1} \cdots c_{s_{l, s l-1} \cdots s_{1}}^{-1}\right)\left(c_{s_{1}, t} c_{s_{2, s_{1} t}} \cdots c_{s_{l, s_{l-1} \cdots s_{1} t}}\right) e_{w t} \tag{2.3}\\
\text { if } w t>w \\
e_{w} e_{t}=\left(c_{s_{2}, s_{1}}^{-1} \cdots c_{s_{l, s l-1} \cdots s_{1}}^{-1} c_{t, t} c_{s_{3}, s_{2}} \cdots c_{\left.s_{l, s_{l-1} \cdots s_{2}}\right) e_{w t}+d_{t} e_{w}}^{\text {if } t=s_{1}}\right. \tag{2.4}
\end{gather*}
$$

Write (2.3) and (2.4) as

$$
e_{w} e_{t}= \begin{cases}c_{w, t} e_{w t} & (w t>w) \\ c_{w, t} e_{w t}+d_{t} e_{w} & (w t<w)\end{cases}
$$

with suitable $c_{w, t} \in \mathbf{C}^{\times}$. Define linear endomorphisms p_{s} and q_{t} by $p_{s}\left(e_{w}\right)=$ $e_{s} e_{w}$ and $q_{t}\left(e_{w}\right)=e_{w} e_{t}$. Then p_{s} and q_{t} are of the forms (1.1) and (1.2), and satisfy the condition (1.3). Hence $\left\{c_{s, w}\right\},\left\{c_{w, t}\right\}$ and $\left\{d_{s}\right\}$ satisfy the condition (1.4). In particular, we get (c) and (d). Note that, even if we replace d_{s} by 0 , (1.4) remains valid. Hence, by the implication $(1.4) \Rightarrow$ (1.5) for $d_{s}=0$, we get an associative \mathbf{C}-algebra structure in H such that

$$
e_{s} * e_{w}=c_{s, w} e_{s w}, e_{1} * e_{w}=e_{w} * e_{1}=e_{w}
$$

Then

$$
e_{x} * e_{y}=c_{x, y} e_{x y} \quad(x, y \in W)
$$

with some $\left\{c_{x, y}\right\} \in\left(\mathbf{C}^{\times}\right)^{W \times W}$. As is easily seen $\left\{c_{x, y}\right\} \in H^{2}\left(W, \mathbf{C}^{\times}\right)$. The uniqueness of $c_{x, y}$ can be proved by an induction on $l(x)$, using the cocycle condition on $\left\{c_{x, y}\right\}$. Thus we get (b). The implication (2.2) $\Rightarrow(2.1)$ is a direct consequence of Lemma in $\S 1$.
3. Let $\left\{c_{x, y}\right\}$ be a cocycle in $H^{2}\left(W, \mathbf{C}^{\times}\right)$normalizd so that $c_{w, 1}=c_{1, w}=1$. (The cocycle appeared in (2.2) satisfies this condition.)

Lemma. The following conditions are equivalent:
(3.1) There is $\left\{d_{s}\right\} \in\left(\mathbf{C}^{\times}\right)^{s}$ such that $d_{s} c_{w, t}=c_{s, w} d_{t}$, if $s w=w t$.
(3.2) $c_{s, w}=c_{w, s}$, if $s w=w s$.

Here $s, t \in S$ and $w \in W$.
A 2-cocycle which is normalized as above and satisfies these equivalent conditions is said to be admissible, provisionally in this paper. The admissibility depends only on the cohomology classes.

Proof. Since (3.1) \Rightarrow (3.2) is trivial, let us prove (3.2) \Rightarrow (3.1).
First, assume that $s z=z t, s w=w s, s, t \in S$ and $w, z \in W$. Then

$$
\begin{aligned}
& c_{w, z} c_{s w, z}^{-1} c_{s, w z} c_{s, w}^{-1}=1, \\
& c_{s, z}^{-1} c_{w s, z} c_{w, s z}^{-1} c_{w, s}=1 \\
& c_{z, t} c_{w z, t}^{-1} c_{w, z t} c_{w, z}^{-1}=1
\end{aligned}
$$

Multiplying these three equalities, we get

$$
c_{s, z} / c_{z, t}=c_{s, w z} / c_{w z, t} .
$$

This implies that, if $s w=w t, c_{s, w} / c_{w, t}$ does not depend on w, which we shall denote by $a_{s, t}$. Note that $a_{s, t}(s, t \in S)$ is defined if and only if s and t are conjugate in W.

Next, assume that $s w=w t, t z=z u, s, t, u \in S$ and $w, z \in W$. Then

$$
\begin{aligned}
& c_{w, z} c_{s w, z}^{-1} c_{s, w z} c_{s, w}^{-1}=1, \\
& c_{t, z}^{-1} c_{w t, z} c_{w, t z}^{-1} c_{w, t}=1, \\
& c_{z, u} c_{w z, u}^{-1} c_{w, z u} c_{w, z}^{-1}=1 .
\end{aligned}
$$

Multiplying these three equalities, we get

$$
\left(c_{s, w} / c_{w, t}\right)\left(c_{t, z} / c_{z, u}\right)=c_{s, w z} / c_{w z, u} .
$$

Hence $a_{s, t} a_{t, u}=a_{s, u}$. Let $\left\{S_{i}\right\}$ be the W-conjugacy classes of S and fix a representative u_{i} for each S_{i}. Let $d_{s}=a_{s, u_{i}}$ if $s \in S_{i}$. Then $a_{s, t}=d_{s} / d_{t}$. Hence

$$
c_{s, w} / c_{w, t}=d_{s} / d_{t} \quad \text { if } \quad s w=w t .
$$

4. Now, our task is to prove that an admissible cocycle is a coboundary, i.e., there exists $\left\{b_{x}\right\}_{x \in W} \in\left(\mathbf{C}^{\times}\right)^{W}$ such that

$$
\begin{equation*}
c_{x, y}=b_{y} b_{x y}^{-1} b_{x} \tag{4.1}
\end{equation*}
$$

In fact, if (4.1) holds, the multiplication law as in (2.1) can be written as

$$
e_{s} e_{w}= \begin{cases}b_{w} b_{s w}^{-1} b_{s} e_{s w} & (s w>w) \\ b_{w} b_{s w}^{-1} b_{s} e_{s w}+d_{s} e_{w} & (s w<w) .\end{cases}
$$

If we put $f_{w}=b_{w}^{-1} e_{w}$, then

$$
f_{s} f_{w}= \begin{cases}f_{s w} & (s w>w) \tag{4.2}\\ f_{s w}+b_{s}^{-1} d_{s} f_{w} & (s w<w),\end{cases}
$$

and $f_{1} f_{w}=f_{w} f_{1}=f_{w}(s \in S, w \in W)$. (Note that an admissible cocycle is assumed to be normalized as in $\S 3$, and that $b_{1}=1$.) Let $\left\{r_{s}\right\}_{s \in s}$ be an element of $\left(\mathbf{C}^{\times}\right)^{s}$ such that

$$
\begin{equation*}
r_{s}=r_{t} \text {, if } s \text { and } t \text { are conjugate in } W \text {, } \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
b_{s}^{-1} d_{s} r_{s}=r_{s}^{2}-1 \tag{4.4}
\end{equation*}
$$

(Note that from (3.1) follows $\mathrm{b}_{s}^{-1} d_{s}=b_{t}^{-1} d_{t}$ if $s w=w t$.) Let $\left\{r_{w}\right\}_{w \in W}$ be an element of $\left(\mathbf{C}^{\times}\right)^{\boldsymbol{W}}$ which is an extension of $\left\{r_{s}\right\}_{s \in S}$ and satisfies

$$
\begin{equation*}
r_{x} r_{y}=r_{x y} \text {, if } l(x y)=l(x)+l(y) . \tag{4.5}
\end{equation*}
$$

By (4.3), such an extension (uniquely) exists. Let $T_{w}=r_{w} f_{w}$ and $q_{w}=r_{w}^{2}$. Then by (4.2), (4.4) and (4.5), we get

$$
T_{s} T_{w}= \begin{cases}T_{s w} & (s w>w) \\ q_{s} T_{s w}+\left(q_{s}-1\right) T_{w} & (s w<w),\end{cases}
$$

and

$$
q_{x} q_{y}=q_{x y} \text {, if } l(x y)=l(x)+l(y) .
$$

The remainder of this paper is devoted to prove that an admissible cocycle is a coboundary.
5. In this section, we give some preliminaries on group cohomologies. See [5; Chap. 2, §9].

Let W be a group and present it as a quotient F / K of a free group F. Let $\bar{K}=K /[K, F]$ and $\bar{F}=F /[K, F]$, where $[K, F]$ is the group generated by the commutators $[k, f]=k f k^{-1} f^{-1}(k \in K, f \in F)$. Then

$$
\begin{aligned}
& 1 \longrightarrow \bar{K} \longrightarrow \bar{F} \longrightarrow W \longrightarrow 1, \\
& \bar{K} \subset Z(\bar{F}),
\end{aligned}
$$

where $Z(\bar{F})$ is the center of \bar{F}. For each $x \in W$, let us fix an element \bar{f}_{x} of \bar{F} such that $\bar{f}_{x} \longmapsto x$. Then

$$
\bar{f}_{x} \bar{f}_{y}=\bar{k}_{x, y} \bar{f}_{x y} \quad(x, y \in W)
$$

with some $\bar{k}_{x, y} \in \bar{K}$, and

$$
\bar{k}_{y, w} \bar{k}_{x y, w}^{-1} \bar{k}_{x, y w} \bar{k}_{x, y}^{-1}=1 \quad(x, y, z \in W) .
$$

We have the following exact sequence:
(5.1) $0 \rightarrow \operatorname{Hom}\left(W, \mathbf{C}^{\times}\right) \rightarrow \operatorname{Hom}\left(\bar{F}, \mathbf{C}^{\times}\right) \rightarrow \operatorname{Hom}\left(\bar{K}, \mathbf{C}^{\times}\right) \xrightarrow{r} H^{2}\left(W, \mathbf{C}^{\times}\right) \rightarrow 0$,
where γ is defined by

$$
\begin{equation*}
\gamma(\phi)=\left\{\phi\left(\bar{k}_{x, y}\right)\right\} . \tag{5.2}
\end{equation*}
$$

See [5; Chap. 2, (9.5)] for the proof.

For a group G, denote $\operatorname{Hom}\left(G, \mathbf{C}^{\times}\right)$by G^{\vee}. Then (5.1) can be written as follows:

$$
\begin{equation*}
0 \rightarrow(W /[W, W])^{\vee} \rightarrow(\bar{F} /[\bar{F}, \bar{F}])^{\vee} \xrightarrow{\rho} \bar{K}^{\vee} \xrightarrow{r} H^{2}\left(W, \mathbf{C}^{\times}\right) \rightarrow 0 \tag{5.3}
\end{equation*}
$$

Since

$$
0 \rightarrow \bar{K} \cap[\bar{F}, \bar{F}] \rightarrow \bar{K} \rightarrow \bar{F} /[\bar{F}, \bar{F}]
$$

is exact,

$$
\text { image } \rho=\left\{\phi \in \bar{K}^{\vee} ;\left.\phi\right|_{\bar{K} \cap[\bar{F}, \bar{F}]}=1\right\}
$$

Hence

$$
\begin{equation*}
H^{2}\left(W, \mathbf{C}^{\times}\right)=\bar{K}^{\vee} / \text { image } \rho=(\bar{K} \cap[\bar{F}, \bar{F}])^{\vee} \tag{5.4}
\end{equation*}
$$

Here $\phi \in(\bar{K} \cap[\bar{F}, \bar{F}])^{\vee}$ is identified with $\left\{\widetilde{\phi}\left(\bar{k}_{x, y}\right)\right\} \in H^{2}\left(W, \mathbf{C}^{\times}\right)$, where $\widetilde{\phi} \in \bar{K}^{\vee}$ is any extension of ϕ. Since

$$
\bar{K} /(\bar{K} \cap[\bar{F}, \bar{F}])=\bar{K}[\bar{F}, \bar{F}] /[\bar{F}, \bar{F}] \subset \bar{F} /[\bar{F}, \bar{F}]=F /[F, F]
$$

$\bar{K} /(\bar{K} \cap[\bar{F}, \bar{F}])$ is torsion free. Hence

$$
\begin{equation*}
\text { torsion }(\bar{K}) \subset \bar{K} \cap[\bar{F}, \bar{F}] \tag{5.5}
\end{equation*}
$$

6. From now on, we assume that W is a Coxeter group, i.e., W is defined by the following presentation: W is generated by a finite set S which satisfies the relations

$$
\begin{aligned}
& s^{2}=1 \quad(s \in S) \\
& (s t)^{m(s, t)}=1 \quad(s, t \in S)
\end{aligned}
$$

where $m(s, t)(s, t \in S)$ are given integers. We assume that $S=\left\{s_{1}, \cdots, s_{l}\right\}$. In our case, we may take the free group generated by the set $\{\widetilde{s} \mid s \in S\}$ as F. (See the preceding section.) Then K is the minimal normal subgroup of F containing

$$
\left\{\widetilde{s}^{2},(\widetilde{s} \tilde{t})^{m(s, t)} \mid s, t \in S\right\}
$$

Let \bar{s} be the image of \widetilde{s} by $F \rightarrow \bar{F}$, and take \bar{f}_{x} so that $\bar{f}_{s}=\bar{s}(s \in S)$. Then \bar{K} is the subgroup of \bar{F} generated by

$$
\left\{\bar{s}^{2},(\bar{s} \tau)^{m(s, t)}\right\}
$$

Remember that \bar{K} is contained in the center of \bar{F}. Assume $s, t \in S$ given. First, assume that $m(s, t)=m=2 k$ and let $\bar{w}=\bar{s} \overline{\bar{s}} \bar{T} \cdots \bar{s}$ ($2 k-1$ factors). Then

$$
\begin{aligned}
\tau^{2} & =\left(\bar{w} \tau \bar{w}^{-1}\right)^{2}=\left(\bar{w} \tau \bar{w} \tau \tau^{-1} \bar{w}^{-2}\right)^{2} \\
& =((\bar{s} \tau)^{m} \bar{\tau}^{-1} \underbrace{\bar{s}^{-2} \tau^{-2} \frac{\left.\bar{s}^{-2} \cdots \tau^{-2} \bar{s}^{-2}\right)^{2}}{2}}_{2 k-1 \text { factors }} \\
& =(\bar{s} \tau)^{2 m} \tau^{-2}\left(\left(\bar{s}^{-2}\right)^{k}\left(\tau^{-2}\right)^{k-1}\right)^{2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left((\bar{s} \bar{T})^{m}\right)^{2}=\left(\bar{s}^{2}\right)^{m}\left(\tau^{2}\right)^{m} \tag{6.1}
\end{equation*}
$$

Next, assume that $m(s, t)=m=2 k+1$ and let $\bar{w}=T \bar{s} \cdots \bar{s} \bar{s}$ ($2 k$ factors) and $\bar{w}^{\prime}=\bar{s} \bar{T} \cdots \bar{s} \bar{T}$ ($2 k$ factors). Then

$$
\begin{aligned}
\bar{s}^{2} & =\left(\bar{w}^{\prime} \bar{s} \bar{w}^{\prime-1}\right)^{2}=\left(\bar{w}^{\prime} \bar{s} \bar{w} \bar{T} \cdot \tau^{-1} \bar{w}^{-1} \bar{w}^{\prime-1}\right)^{2} \\
& =\left((\bar{s} \bar{t})^{m} \bar{t}^{-1}\left(\bar{s}^{-1} \bar{t}^{-1} \cdots \tau^{-1}\right)\left(\bar{t}^{-1} \cdots \bar{s}^{-1}\right)\right)^{2} \\
& =((\bar{s} \bar{t})^{m} \bar{t}^{-1}(\underbrace{\left.\bar{s}^{-2} \tau^{-2} \cdots \tau^{-2}\right)}_{2 k \text { factors }})^{2} \\
& =(\bar{s} \bar{t})^{2 m} \tau^{-2}\left(\bar{s}^{-2}\right)^{2 k}\left(\tau^{-2}\right)^{2 k} .
\end{aligned}
$$

Hence (6.1) holds also in this case. Since \bar{K} is a commutative group generated by

$$
\bar{s}^{2} \quad(s \in S)
$$

and

$$
(\bar{s} \bar{T})^{m(s, t)} \quad(s, t \in S),
$$

we have

$$
\operatorname{rank} \bar{K} \leqq l
$$

by (6.1). On the other hand,

$$
\begin{aligned}
\bar{K} /(\bar{K} \cap[\bar{F}, \bar{F}]) & \cong \text { image }(\bar{K} \longrightarrow \bar{F} /[\bar{F}, \bar{F}]) \\
& \cong \text { image }(K \longrightarrow F /[F, F]) \\
& =<\tilde{\tilde{s}}^{2} ; \tilde{s}^{m(s, t)} \tilde{t}^{m(s, t)}> \\
& =<\tilde{\tilde{s}}^{2} ; \tilde{\tilde{s}} \tilde{\tilde{t}}(m(s, t) \text { odd })>
\end{aligned}
$$

where $\langle x\rangle$ is the group generated by X, and $\tilde{\tilde{s}}$ denotes the image of \widetilde{s} by $F \rightarrow$ $F /[F, F]$. Hence $\bar{K} /(\bar{K} \cap[\bar{F}, \bar{F}])$ is a free \mathbf{Z}-module of rank l. Hence

$$
\begin{equation*}
\text { torsion } \bar{K}=\bar{K} \cap[\bar{F}, \bar{F}] \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{rank} \bar{K}=l \tag{6.3}
\end{equation*}
$$

(See (5.5). Although the following fact is not used in the sequel, it would be worth noting here : Since \bar{K} is finitely generated, torsion \bar{K} is a finite group. Hence, by (5.4) and (6.2), we have

$$
\left.H^{2}\left(W, \mathbf{C}^{\times}\right)=(\operatorname{torsion} \bar{K})^{\vee} \cong \operatorname{torsion} \bar{K} .\right)
$$

Thus, what we should prove is the following fact:

$$
\begin{align*}
& \text { If }\left\{\phi\left(\bar{k}_{x, y}\right)\right\} \text { with } \phi \in \bar{K}^{\vee} \text { is admissible, then } \tag{6.4}\\
& \qquad\left.\phi\right|_{\text {torsion } \bar{K}} \equiv 1 .
\end{align*}
$$

(See the end of §4. See also (5.1) and (5.2).)
7. In this section, we shall write the admissibility condition on $\left\{\phi\left(\bar{k}_{x, y}\right)\right\}$ in terms of $\phi\left(\in \bar{K}^{v}\right)$.

Let us apply the argument of $\S 5$ to our situation. If $s \in S, w \in W, s w=$ ws, then

$$
\begin{aligned}
& \bar{f}_{s} \bar{f}_{w}=\bar{k}_{s, w} \bar{f}_{s w} \\
& \bar{f}_{w} \bar{f}_{s}=\bar{k}_{w, s} \bar{f}_{w s} \\
& {\left[\bar{f}_{s}, \bar{f}_{w}\right]=\bar{k}_{s, w} / \bar{k}_{w, s} .}
\end{aligned}
$$

Hence $\left\{\phi\left(\bar{k}_{x, y}\right)\right\}$ is admissible if and only if

$$
\begin{equation*}
\phi\left(\left[\bar{f}_{s}, \bar{f}_{w}\right]\right)=1 \quad(s \in S, w \in W, s w=w s) \tag{7.1}
\end{equation*}
$$

Let

$$
\bar{M}=\left\langle\left[\bar{f}_{s}, \bar{f}_{w}\right]\right|[s, w]=1>\quad(\subset \bar{K})
$$

The condition (7.1) is equivalent to

$$
\begin{equation*}
\phi \mid \bar{M} \equiv 1 . \tag{7.2}
\end{equation*}
$$

Let $\bar{K}=\bar{K} / \bar{M}$ and $\bar{F}=\bar{F} / \bar{M}$. It suffices to prove that

$$
\begin{equation*}
\bar{K} \cong \mathbf{Z}^{l} \tag{7.3}
\end{equation*}
$$

In fact, by (6.3), (7.3) is equivalent to say that

$$
\begin{equation*}
(\text { torsion } \bar{K})=\bar{M} . \tag{7.4}
\end{equation*}
$$

Hence (7.2) implies (6.4), which is what we should prove.
8. Denote the image of $\bar{f}_{x}, \bar{k}_{x, y}$ in \bar{F} / \bar{M} by $\bar{f}_{x}, \bar{k}_{x, y}$, respectively. Note that $\overline{\bar{k}}_{s, w}=\bar{k}_{w, s}$ in \bar{F}, if sw $=$ ws. Hence, by the same argument as in the proof of Lemma in $\S 3$ we can find an element $\left\{\overline{\bar{d}}_{s}\right\} \in \bar{K}^{s}$ such that

$$
\bar{d}_{s} \bar{k}_{w, t}=\bar{k}_{s, w} \bar{d}_{t}, \text { if } \mathrm{sw}=\mathrm{wt} .
$$

Lemma. We have

$$
\begin{gather*}
\left(\bar{f}_{s} \bar{f}_{t}\right)^{m(s, t)}=\left(\bar{f}_{s}^{2} \bar{f}_{t}^{2}\right)^{n} \tag{8.1}\\
\text { if } m(s, t)=2 n,
\end{gather*}
$$

$$
\begin{gather*}
\left(\bar{f}_{s} \bar{f}_{t}\right)^{m(s, t)}=\left(\bar{d}_{s} / \bar{d}_{t}\right)\left(\bar{f}_{s}^{2}\right)^{n}\left(\bar{f}_{t}^{2}\right)^{n+1}, \tag{8.2}\\
\text { if } m(s, t)=2 n+1 .
\end{gather*}
$$

Proof. For the sake of brevity, we shall prove (8.1) (resp. (8.2)) assuming $n=2$ (resp. $n=1$). First, let us prove (8.1). Since

$$
\bar{f}_{s} \bar{f}_{t} \bar{f}_{s} \bar{f}_{t}=\bar{k}_{s, t} \bar{k}_{s t, s} \bar{k}_{s t s, t} \bar{f}_{s t s t}
$$

$$
\begin{aligned}
& =\bar{k}_{s, t} \bar{k}_{s t, s} \bar{k}_{t, s t s} \bar{f}_{t s t s} \\
& =\bar{f}_{t} \bar{f}_{s} \bar{f}_{t} \bar{f}_{s},
\end{aligned}
$$

we have

$$
\left(\bar{f}_{s} \bar{f}_{t}\right)^{4}=\left(\bar{f}_{s} \bar{f}_{t} \bar{f}_{s} \bar{f}_{t}\right)\left(\bar{f}_{t} \bar{f}_{s} \bar{f}_{t} \bar{f}_{s}\right)=\left(\bar{f}_{s}^{2} \bar{f}_{t}^{2}\right)^{2} .
$$

Next, let us prove (8.2). Since

$$
\begin{align*}
\bar{d}_{t} \bar{f}_{s} \bar{f}_{t} \bar{f}_{s} & =\bar{d}_{t} \bar{k}_{s, t} \bar{k}_{s t, s} \bar{f}_{s t s} \tag{8.3}\\
& =\bar{k}_{s, t} \bar{k}_{t, s t} \bar{d}_{s} \bar{f}_{t s t} \\
& =\bar{d}_{s} \bar{f}_{t} \bar{f}_{s} \bar{f}_{t},
\end{align*}
$$

we have

$$
\begin{aligned}
\left(\bar{f}_{s} \bar{f}_{t}\right)^{3} & =\left(\bar{f}_{t} \bar{f}_{s} \bar{f}_{t} \cdot \bar{d}_{s} / \bar{d}_{t}\right)\left(\bar{f}_{t} \bar{f}_{s} \bar{f}_{t}\right) \\
& =\left(\bar{d}_{s} / \bar{d}_{t}\right) \bar{f}_{s}^{2}\left(\bar{f}_{t}^{2}\right)^{2}
\end{aligned}
$$

Lemma. If $m(s, t)$ is odd, then

$$
\begin{equation*}
\bar{d}_{s}^{2} \bar{f}_{s}^{-2}=\bar{d}_{t}^{2} \bar{f}_{t}^{-2} \tag{8.4}
\end{equation*}
$$

Proof. For the sake of brevity, we shall prove (8.4) assuming that $m(s, t)=3$. By (8.3), we have

$$
\begin{aligned}
& \bar{d}_{t}^{2}\left(\bar{f}_{s} \bar{f}_{t} \bar{f}_{s}\right)\left(\bar{f}_{s} \bar{f}_{t} \bar{f}_{s}\right)=\bar{d}_{s}^{2}\left(\bar{f}_{t} \bar{f}_{s} \bar{f}_{t}\right)\left(\bar{f}_{t} \bar{f}_{s} \bar{f}_{t}\right), \\
& \bar{d}_{t}^{2} \bar{f}_{s}^{2} \bar{f}_{t}^{2} \bar{f}_{s}^{2}=\bar{d}_{s}^{2} \bar{f}_{t}^{2} \bar{f}_{s}^{2} \bar{f}_{t}^{2} .
\end{aligned}
$$

Hence we get (8.4).
9. Let $S=\left\{s_{1}, \cdots, s_{l}\right\}, \bar{f}_{i}=\bar{f}_{s_{i}}, \bar{f}_{i}=\bar{f}_{s_{i}}, \bar{d}_{i}=\bar{d}_{s_{i},} m_{i j}=m\left(s_{i}, s_{j}\right)$ and $n_{i j}=$ $\left[m_{i j} / 2\right]$. Define a character $\phi_{i} \in F^{\vee}$ by $\phi_{i}\left(\widetilde{s_{i}}\right)=2$ and $\phi_{i}\left(\widetilde{s}_{j}\right)=1(j \neq i)$. Since F^{\vee}, \bar{F}^{\vee} and \bar{F}^{\vee} are naturally identified with each other, ϕ^{i} can be regarded as a character of \bar{F}. Remember that we are assuming that $\bar{f}_{i}=\bar{s}_{i}$.

Lemma. The following two conditions for $x_{i}, x_{i j} \in \mathbf{Z}$ are equivalent:

$$
\begin{gather*}
\prod_{i=1}^{l}\left(\bar{f}_{i}^{2}\right)^{x_{i}} \prod_{i<j}\left(\left(\bar{f}_{i} \bar{f}_{j}\right)^{m_{i j}}\right)^{x_{i j}}=1 . \tag{9.1}\\
2 x_{i}+\sum_{i<j} m_{i j} x_{i j}+\sum_{i>j} m_{j i} x_{j i}=0 \quad(1 \leqq i \leqq l) .
\end{gather*}
$$

(In (9.2), the summations are taken for j.)
Note that this Lemma implies:

$$
\begin{equation*}
\prod_{i=1}^{l}\left(\bar{f}_{i}^{2}\right)^{x_{i}}=1 \text { if and only if } x_{1}=\cdots=x_{l}=0 \tag{9.3}
\end{equation*}
$$

$$
\text { If } \begin{align*}
& \bar{f}:=\prod_{i=1}^{l}\left(\bar{f}_{i}^{2}\right)^{x_{i}} \prod_{i<j}\left(\left(\bar{f}_{i} \bar{f}_{j}\right)^{m_{i j}}\right)^{x_{i j}} \neq 1, \text { then } \tag{9.4}\\
& \bar{f}^{2}, \bar{f}^{3}, \cdots \neq 1 .
\end{align*}
$$

Since (9.3) and (9.4) together with (6.3) implies $\bar{K} \cong \mathbf{Z}^{l}$, this lemma concludes our proof. By applying ϕ_{i} to (9.1), we get (9.2). Hence our task is to prove implication (9.2) $\Rightarrow(9.1)$.

Proof of $(9.2) \Rightarrow(9.1)$. Assume that (9.2) holds. By using (8.1) and (8.2), the left hand side of (9.1) can be written as follows:

$$
\begin{align*}
& \prod_{i=1}^{l}\left(\bar{f}_{i}^{2}\right)^{x_{i}} \prod_{\substack{i<j \\
m_{i j} \text { even }}}\left(\bar{f}_{i}^{2} \bar{f}_{j}^{2}\right)^{n_{i j} x_{i j}} \tag{9.5}\\
& \times \prod_{\substack{i<j \\
m_{i j} \text { odd }}}\left(\left(\bar{d}_{i} / \bar{d}_{j}\right)\left(\bar{f}_{i}^{2}\right)^{n_{i j}}\left(\bar{f}_{j}^{2}\right)^{n_{i j+1}}\right)^{x_{i j}} \\
& =\prod_{\substack{i<j \\
m_{i j} \text { odd }}}\left(\bar{d}_{i} / \bar{d}_{j}\right)^{x_{i j}} \prod_{i=1}^{l}\left(\bar{f}_{i}^{2}\right)^{y_{i}},
\end{align*}
$$

where

$$
\begin{align*}
& y_{i}= x_{i}+\sum_{\substack{i<j \\
m_{i j} \text { even }}} n_{i j} x_{i j}+\sum_{\substack{j<i \\
m_{i j} \text { even }}} n_{j i} x_{j i} \tag{9.6}\\
&+\sum_{\substack{i<j \\
m_{i j} \text { odd }}} n_{i j} x_{i j}+\sum_{\substack{j<i \\
m_{i j} \text { odd }}}\left(n_{j i}+1\right) x_{j i} \\
&=\frac{1}{2}\left(2 x_{i}+\sum_{i<j} m_{i j} x_{i j}+\sum_{i>j} m_{j i} x_{j i}\right) \\
&-\frac{1}{2}\left(\sum_{\substack{i<j \\
m_{i j} \text { odd }}} x_{i j}-\sum_{\substack{i>j \\
m_{i j} \text { odd }}} x_{j i}\right) \\
&=--\frac{1}{2}\left(\sum_{\substack{i<j \\
m_{i j} \text { odd }}} x_{i j}-\sum_{\substack{i>j \\
m_{i j} j d d}} x_{j i}\right) .
\end{align*}
$$

(Here the summations are taken for j.) Hence (9.5) is equal to

$$
\begin{equation*}
\prod_{i=1}^{l}\left(\bar{d}_{i}^{2} \bar{f}_{i}^{-2}\right)^{-y_{i}} \tag{9.7}
\end{equation*}
$$

where y_{i} is given by (9.6), and our task is to prove that (9.7) equals 1 . For this purpose, it suffices to prove that

$$
\begin{equation*}
\prod_{s_{i} \in S^{\prime}}\left(\bar{d}_{i}^{2} \bar{f}_{i}^{-2}\right)^{y_{i}}=1 \tag{9.8}
\end{equation*}
$$

for each W-conjugacy class S^{\prime} of S. By (8.4), $\bar{d}_{i} \bar{i}_{\bar{i}} \bar{i}^{2}$ is constant on S^{\prime}. Hence, by (9.6), we can prove (9.8). Thus we conclude the implication (9.2) \Rightarrow (9.1) and the proof of our main theorem is over.

Department of Fundamental Sciences, Faculty of Integrated Human Studies, Kyoto University

References

[1] N. Bourbaki, Groupes et algèbres de Lie, Chap. IV, V, VI, Masson, 1981.
[2] R. Howlett and G. Lehrer, Induced cuspidal representations and generalized Hecke rings, Invent. Math., 58 (1980), 37-64.
[3] G. Lusztig, Characters of reductive groups over a finite field, Annals of Math. Studies $\mathbf{1 0 7}$ (1984), Princeton.
[4] T. A. Springer, Cusp forms for finite groups; Seminar on algebraic groups and related topics, Lecture Notes in Math., 131 (1970), Springer.
[5] M. Suzuki, Group theory I, Springer, Berlin-Heidelberg-New York, 1982.
[6] S. Ariki, q-Analogue of a twisted group ring, preprint.

