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Physically reasonable solutions to steady compressible
Navier-Stokes equations in 3D-exterior domains (v, = 0)

By

Antonin NovoTNY and Mariarosaria PADULA

1. Introduction

In this paper we study the asymptotic properties of the kinetic and density
fields of a compressible viscous Navier-Stokes fluid, filling a three dimensional
domain exterior to a compact reagion Q,, when the prescribed velocity at infinity
is zero. As far as the authors know, this is the first contribution in the subject.
(The existence and uniqueness to this problem was studied in several papers of
Matsumura and Nishida, Novotny and Padula, Novotny, Padula, see [14], [15],
[19], [16], [21])

The same problem, in the simpler case of incompressible Navier-Stokes fluids
attracted mathematicians since the paper of Leray [12], who constructed (for the
arbitrary size of external data) a solution of problem:

Au+ VIl = —u-Vu+f, divu=0, Ulag, =0 (1.1)

(here u denotes the velocity and p the pressure), with the finite Dirichlet integral
for the velocity (so called Leray solution). In 1965, Finn [4] proved (for small
external forces) existence of solutions with the spatial decay of rate |x|™' for the
velocity (so called physically reasonable- solutions)!. He also proved, in [4], [5],
[6] that any physically reasonable solution (if it exists) possesses the decay:

un~ x|, Vu~|x|"21g|x|, T~ |x|"*1g|x|. (1.2)

This statement was (for small data) in a certain sense improved by Borchers and
Miyakawa [2]. They have proved existence of solutions in weak Lebesgue spaces
L¥%(Q)®. More precisely

u~|x|7', Vue L¥?(9). (1.3)

Similar result was derived independently by Galdi and Simader [10]:

Communicated by Prof. T. Nishida, July 28, 1995

! Only recently, in 1991, Galdi [7] proved that the Leray solution was a physically reasonable
one, provided external data are “small”.

2 Recall the definition of L3¥?*(), 1 <t < . It is a Bnach space of functions ¢ with the finite

norm |||, , = supg| (meas E)'*V" | |o| dx]. (The supremum is taken over all bounded measur-
E

able subset of Q.)
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3
u~|x|7, Vu, ITeLY(RQ) for any q > 5 (1.4)

Only recently, Novotny and Padula [20] obtained (again only for small data)
existence of solutions with the decay

un~|xIt, Vu~|x|"2, T~ |x|2 (1.5)

This result is optimal in the sense that the decay (1.5) is precisely the same as
the decay of the fundamental solution to the Stokes operator.

The goal of the present paper is to prove similar result for the (compressible)
Poisson-Stokes equations.?

More precisely, we investigate the asymptotic structure of the isothermal
compressible flow. We prove, for the small external data, existence and unique-
ness of solutions in the class of functions with the following properties at
infinity:

e The velocity decays to 0 with the rate |x|™' as |x| — oo.

e The gradient of velocity decays to 0 with the rate |x|™? as |x|— co.

e The density tends to a constant with the rate |x|™% as |x| — oo.

Thus, we get, also for the compressible fluids, the solutions with the same decay
at infinity as that one of the fundamental Stokes tensor. Moreover, we show,
that the compressible part of the velocity field decays more rapidly than the
incompressible one. For the main results see Theorems 5.1, 5.2, 5.3 and 54.
The proofs rely on the following techniques
(i) The method of decomposition introduced in [19] which splits the lin-
earized Poisson-Stokes system into a Stokes-type equation (governing
the incompressible part of the velocity), a Neumann problem (governing
the compressible part of the velocity field), and a transport equation
(governing the density).

(ii) Known results for the above auxiliary linear problems in the exterior

domains.
(i) Integral representation formulas for the Laplace and Stokes operators,
due to Finn [4], Chang and Finn [3].

(iv) An estimate for weakly singular integrals of certain particular structure,
see Section 3.

(v) Some standard estimates of the decay of weakly singular integrals, see
e.g. Smirnov [28].

(vi) Estimates of the singular integrals of Calderon-Zygmund type in
weighted Sobolev spaces with the polynomial weights, due to Stein [29].

3 The first existence theorems for small external data in this situation were proved by Matsu-
mura, Nishida [14]-[15] and Novotny, Padula [19]. The velocity and its gradient possess the
decay |x|™'. From the point of view of the above observation, this classes of functions are not
optimal.
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2. Equations and heuristic approach

We consider a steady isothermal motion* of a viscous compressible fluid in
a 3-D exterior domain Q. The motion is governed by the classical Poisson-
Stokes equations for the unknown functions p > 0 (the density) and v = (v, v,, v3)
(the velocity):

—p 4o — (uy + p)V diveo+ Vp = pf —div (pv ® ), xe,
div (pv) =0, xeQ. (2.1
Here u,, u, are the constant viscosities satisfying
>0, pp >3 2.2

and f is the external force. The boundary conditions and the conditions at
infinity are

v|50=0, v(x) >0, p(x)—1 as |x| - oo. (2.3)
The equations for the perturbations (v, 6) where p =1 + o, read
—udv— (p, + )V divo+ Vo = F(o,v), xeQ,
div v + div (ov) =0, xXeN,

V=0,
v(x) =0, a(x)>0 as |x| — oo 2.4)
with
Fo,v)=—=div(l + a)o®0v) + (1 + 0)f (2.5)

As in [19] we firstly solve the linearized system
—Av — (uy + py)Vdivo+ Ve = % xeQ,
div v + div (ow) =0, xeQ (2.6)
with the boundary conditions and the conditions at infinity
vlee =0,
v(x)—0, a(x)—0 as |x| > oo 2.7

for the unknown functions (o, v) (and w, &% given).
The solution of (2.6), (2.7) is found as follows. We define a (linear) operator

Ll (2.8)

in the following way:

* The results are valid also for the barotropic (i.e. in particular for the isentropic) case. Then Fp
in equation (1.1) is replaced by Fn(p), where the pressure = is a scalar function, a restriction on
R} (the positive real axe) of an analytic function on C, (a complex half-plane containing R}).
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i) For a given & we find (/7, u) by solving the Stokes problem
—wdu+ VIl =%, xe,
divu=0, xeQ,
ulag = —Vélia,
u(x)—0 as x| > oo . (2.9)

ii) When IT is known, we find ¢ as a solution of the transport equation
(with w given)

o+ Qu, + pyp) div(ow) =11, xeQ,
a(x)—0 as x — o0 . (2.10)
iii) Once o is known, ¢ is found as a solution of the Neumann problem
Ap = —div (ow), xe,
o¢

6v 20

E}

Ve(x)—0 as |x| — o0 . (2.11)

The reader easy verifies that the fixed point ¢ of &£ (if it exists) and the
corresponding (77, o, u), satisfy the system of equations

—wdu+ VIl =%, xXe,

divu=0, xeQ,

ulag = —Vélia,
u(x)-0 as |x| - o, (2.12)
o+ 2u, + wu,)div(ow) = 1T, xeQ,
a(x)—0 as x = oo, (2.13)
A¢ = —div (ow), xeQ,
o

o
Vé(x)—0 as |x| —» o (2.14)
or equivalently
o and v=u+V¢

satisfy the linearized problem (2.6), (2.7).
If the system (2.12)—(2.14) is solved, we find the solution of the nonlinear
problem (2.4), (2.5) in the form
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o, v=V¢+u
where (0, ¢, u) is a fixed point of the nonlinear operator
N (1, & 2)— (0, P, u). (2.15)

In (2.15), (0,¢,u) is a solution of the problem (2.12)-(2.14) corresponding to
F =F(t,Vé+2z) and w=FV¢ + z.

It is worth noting, that the fixed point (o, ¢, u) of A" and the corresponding
I1, solve the system

—p du+ VIl =F(o,u+V¢), xef,
divu=0, x€eQ,

ulgo = —Voloa

u(x) -0 as |x|— o0, (2.16)
A¢ = —div (a(u + V), xeQ,
|
ol
Pé(x)—0 as |x| - oo (2.17)

6+ Qu, + py)div(eu + Ve) =11, xeQ,
o(x)—0 as x — o0, (2.18)

which is formally equivalent to system (2.4), (2.5).

3. Fundamental solutions and related estimates

3.1. Fundamental solutions. In connection with our problem, we consider
two linear operators

L E = A8, LU P) = pu, AU +VP. 3.1)

The fundamental solutions to these equations are well known

1
Ex)=———,
) 47| x|

1 (6 x;x; 06 X;
Ui (x) = — o TP = —(x) = —5 . 32
0= g (1) 200 = 550 = i e

They solve, in the sense of distributions, the following equations®'®

5 If not stated explicitly otherwise, we use the Einstein summation convention over the repeated
indeces.

¢ In order to avoid the ambiguities, we explain our notation of differentiation of particular composite
functions. Let f:R3>— R!. Then Vf(x —y) is a gradient of f calculated in the point x — y;
Voflx —y) = Vf(x —y), B f(x —y) = —Ff(x = y).
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4, 8(x —y)=6(x—y),

0%,
ﬂleallij(x -+ Ox (x—y= 6ij6(x -,
J
a”ll,-j _
x. (x—y)=0. (3.3)

J

Here 6;; is the Kronecker delta and ¢ is the Dirac distribution. Recall the
asymptotic properties & £ and %:

Cc
V& (x)] SW s

a ¢ a, c
2 (x)| < Pk Ve (x)| < P 34

here ¢ >0, «a =0,1,... and x 0. Moreover

5 (1)
Py = X

|x/?

()

. P28(x) = VP(x) = e

(3.5)

with 2; e L*(S,), J Z:dS =0 (i =1, 2) where S, is a unit sphere, are the singular
S,

kernels of the Calderon-Zygmund type, cf. e.g. Stein [30].

3.2. Some estimates of weakly singular and singular integrals. First we prove a
lemma, which (besides the decomposition) plays the main tool for the proof of the
decay rate of the solutions (see also Novotny, Padula [20]). It concerns with
the decay of the weakly singular integral of the type

F(x)= JQ 2(x — y)div g(y) dy, (3.6)

where Q is an exterior domain (we suppose, without loss of generality that the
unit sphere of center zero is contained in R*\Q) and 2 is a smooth function
on R*\{0} with the decay properties
C C
|x|*” Ix|*
Lemma 3.1. Let ge W"®(Q) such that |x|*’ge L*(2) and |x|* divge L*(Q).
Let 2 be function satisfying (3.7). Then # is defined a.e. in £,

|x|2# € L*(Q)

[2(x)] < V2(x)| < (3.7)

and we have the estimate

Nx122 N0, < c(ll1xI?gllo, 0 + I1xI* div gllo,a) - (3.8)
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Proof. Fix x € Q and put |x| = R. For R sufficiently great, we decompose
the exterior domain into five parts (we denote by Bg(x) the sphere of center x
and radius R, BR(x) = R3\Bg(x), Qg = QN Bx(0)):

Y = QR/z > % = Bi(x), G = BR/z(x)\B1 (x),
%y = B3g;2(0)\(Bg)2(0) U Bg5(x)), 9, = B>**(0). (3.9

Let us estimate integrals .#, ..., ., defined as follows

<

vV
Fx) =, ) L 2(x — y) divg(y) dy = Z‘: Fi(x) . (3.10)

1

1. Estimates of .#;: We have the identity

Fi(x) = —L V,2(x — y)-g(y)dy + L 2(x — y)g(y)-vdS,

Q

+ L . 2(x — y)g(y)-vdS, = 1 (x) + Fpa(x) + Fpa(x) . (3.11)
Bg;2(0)

Now, we estimate the integrals at the r.h.s. separately as follows <notice that

R
for ye %, |x—y|l = 5):

R/2

S <cR7? J

Qg2

< cR7?||x[*gllo, , 0

1

Iy 1gDIylI™ dy < cR73 j j (Iy1*lg(»D dly| dS
S

[ A1) < CR-2“|X|2g”0,ao,Q >

|Z13l < cR72[[1x1%gll0, 0, 0 - (3.12)

. . . R
2. Estimates of .#;,: Notice that in ¥, |y| = 5 Therefore

Fy < cR73 J 120x — y)l1y*Idiv g(y)| dy

Y

1

< cR73|x|? div g”O,w,QJ
0

f d|z|dS < cR?|1x]? div gllo, .0 - (3:13)
M

. . . R
3. Estimates of .4,;;: Notice that in 4, [ x —y|>1 and |y| > 5

Therefore

Fin < cR7? f Ix — y| 72|yl |div g(y)| dy

Y

R
< cR7?|||x|? div gllo,m,gf J dly| dS < cR7?|||x[> div gllo, w0, 0 - (3.14)
1 Js,
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. . . R R
4. Estimates of .#,: Notice that in %,,, [x —y|>— and |y| > . Hence

2 2
3R/2
Sy <cR7? f lyI*|div g(y)| dy < eR7?|||x]? div gllo,w,gf J ly|* d|y| dS
Gy R2 Js,
< cR2|[xdivgllo.e.o- (3.15)

. . . 3R
5. Estimates of .4,: Notice that in %,, |x — y| > |y| — |x| > }|y| and |y| > 5
Therefore
Iy < 1x1> div glio,w, 0 J Iy dlyl dS < cR72[|Ix[*divglio, w0 -  (3.16)
S,

3R/2

The decomposition (3.10) and the estimates (3.11)—(3.16) imply the statement.
Lemma 3.1 is thus proved.

Further, we recall a classical lemma about the decay of the integrals
g(
I,(x)=j 90y (3.17)
alx—yl

The proof can be found e.g. in Smirnov [28].

Lemma 3.2. (a) Let |x|ge LYR)NLP(Q) with 3<qg<3<p. Then |x|I, €
L*(2) and we have the estimate

X1 llo,e < c(llxIgllo.q + I1x1gllo,p) - (3.18)
(b) Let |x|*g e L*(2). Then |x|I, € L*(2) and we have the estimate
x11 1o, < clllxI?gllo,w - (3.19)

Finally, we need a lemma about the decay of the singular integrals of the
Calderon-Zygmund type, i.e.

g(y) dy (3.20)

(=)
Lix) = j —l—L
Q

x—y?

where % is Holder continuous on the unit sphere S, and J #'dS =0. The
following lemma is due to Stein [29]. S

3 3 t
Lemma 33. Let 1 <t<o, ——<a<- <t’ = —T> Let |x|"g € LY(Q).
t t

Then |x|"I, € L'Q) and
Ix1*I; 00, < clllx|*gllo,. - (3.21)
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4. Function spaces

Let Q = R3 be an exterior domain such that 2, = R*\Q is a compact set which
contains 0 and its boundary 9 is of class ¥***, k=0, 1, ...; the outer normal
to 0Q is denoted by v. By Bg(x), we denote a ball in R® with the radius R
and the center in x, 2z = Br(0)\RQ, (provided 2, = Bg(0)), QF = R3\Bg(0). Sup-
pose (without loss of generality) that B,(0) c Q..

We use the following function spaces:

% (L) is the set of all infinitely differentiable functions with the compact
support in £.

%(Q) is a Banach space of continuously differentiable functions up
to the order k up to the boundary with the finite norm |b|g =
supye o (Yheo [P7b(x)).

LY(R) = W%'(2), 1 <t < oo is the usual Lebesgue space with norm |||, ,
and W*'(Q) (resp. WE'(Q), 1 <t < o), k=1, 2, ... are usual Sobolev
spaces with the norms ||| =Y k_o IF™|lo,. (Index zero denotes the
zero traces.)

HY Q) = (@), 1 <t < o0, is a Banach space with the norm ||, , =
[V +llo... Here and in the sequel, the superposed bar with a norm denotes
the completion in this norm. If 1 <t < 3 then the elements u of HL(Q)
are such that ue L3/379(Q), Vue L(Q), ul;o =0. Moreover, we have
the classical estimates

<cl|Fully, . 4.1)

l
||u||0.3x/(3—:) < clPullo,, , ” % ’0‘1
If t >3 then an u, ue L} (2), Vue L(Q), belongs to HL'(Q) if and only
if ulzo=0.
The dual space to HY'"(Q), t™! + ¢! = 1 is denoted by H™1*(2) and its
norm is |-|_, ,. It is worth noting that for 1 <t <3, 4°(2) = H Q)
and the imbedding is dense. The first inequality in (4.1) yields, for
ue L33T(Q), te(3, o),

[ul_y,, < lullo, 3003+ - 4.2)

HL Q) = ¢2(Q)", 1 <t < oo, is a Banach space with the norm |-|; , =
IV -1lo,,. If 1 <t<3 then the elements u of I-Ali;'(Q) are such that ue
L36=9(Q), Pue L'(Q). Moreover, we have the classical estimates

lullo, 3ey3-n < cllPullo,, - 4.3)

If t > 3, then the elements of HL'(2) are the equivalence classes {u + c},
where u e L',.(2), Vue L'(Q) and c e R,

The dual space to HL'(Q), t™ +¢"' =1 is denoted by (H""(€))* and
its norm is |-], ,.
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e We emphasize, that we do not distinguish in the notation between the
spaces of the scalar and the vector valued functions, e.g. W*'(Q), means
either W*'(Q,R') or W*'(Q,R3). The difference is always clear from
the context.

For the detailed description and properties of spaces W*'(Q), HY'(Q) and H1(Q)
see Adams [1], Simader, Sohr [26], Simader [25], Galdi [8].

Recall some useful technical estimates which are the consequences of the
interpolation and imbeddings and which will be currently used without an explicit
reference: ‘

(i) Let l<g<t<p<oo. Then LYQ)NLP() < LY(L2) and

p(t —q)

z < |z (1—a) z at R a= .
Izllo.e < llzllo,4™ 12115, » p—aq

(4.4)

(ii) For t >3, Wh'(Q)c ¢°(Q) and
[z|go < cllizlly, 4.5)
(iii) Let 1<qg<3<pand ze Wh4(Q), Vze LP(Q). Then
VzeLX(Q), q<s<p |zl <cllzlig+z]1,).
ze LS(QNE°(Q), g<s< o,
lzllo,s < clllzlly,q + lIzlly,p) - (4.6)

(iv) Let 1<g<3<p and ze HY'(QNHF(Q), Vze WhH(Q)N W2 (Q).
Then

V2ze L(Q), g<s<p,
172zllo., < c(IV?zll0,q + 1722]l0,p) ;
Vze LX(Q)NE°Q), g<s< oo,

IPzllos < cUiVzly,q + I7zll1,p) 5

3q <s<L o
G-a =7

lzllos < c(l¥zlly,q + IV2l1,,) - 4.7)

ze L3(Q)NE°(Q),

Let =0, 1, ...k k=0,1, ..., 3<qg<3, 3<p<oo. To investigate the
existence of solutions to system (2.12)-(2.14) (or to system (2.6)—(2.7)), and conse-
quently to the fully nonlinear systems (2.4), (2.5) (or (2.16)-(2.18)), it is convenient
to introduce the following functional spaces:

(1) Space for LP-estimates (see Theorem 5.1). We set

G:={o:0e W QN W2(Q)} ;
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&= {p: g HLUQ)NHLP(Q), V$ e WH29Q) N W 27(Q)) ;
U:={uw:ue HLY(Q)NHLP(Q), Fu e WHH9(Q)N W L (Q)}
Vi=U; U :={(pu): pe P,ucU};
GOU :={(0,p,u):0€ G, pe P,ue U} (4.8)
which become the Banach spaces when equipped with the norms
Il =NMisr.g + I Nerrps
e =11V lli+2,q + IV llxs2,p s
[llo =1V Nier,q + 1V Mlisr,p 3
Iy =1los 1@ Wlev=ldlle+ lully;
(o, ¢, Wllgov = llollg + Igllo + llully -

If wl;o=0 and divw|,, =0 then the equation (2.6), yields formally
divv|so = 0. Taking into account this observation and the boundary
conditions for u, ¢, v, it is convenient to introduce some auxiliary subsets:

0
<I)U*:={(qﬁ,u):qﬁedﬁ,ueU,divu:O,i’ =0,
av FXe)
49lia =0,  (W+VP)lso= 0} (4.9)
(it is a subspace of @U);
Ve ={v:ive V,divu|;o =0, 0|50 = 0} 4.10)
(it is a subspace of V),
o¢
D, =<¢:9eP A44l;0=0,"| =0 4.11)
ov FXo)
(it is a subspace of @) and
GoU, = {(0, 4, u): 6 € G, (p,u) € DU, } 4.12)

(it is a subspace of G®U). Notice that if (g, u) e dU, then v =u+
VegeV,.

(2) Spaces for estimating the decay (see Theorems 5.2, 53). Let 0 <y <
Y <Il,3<r<o. We set

G:={0:0€G,|x|’0 € L*(Q), |x|Vo € L*(Q), |x|*Vo e L"(Q)};
®:={p:ped|x|Vpe L), |x|’Vpec W' (Q)};
U:i={uuel,|xlue L*(RQ),|x|*Vue L*(Q)};
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V:i=U ®U:={(§u):pe® ueclU};
GOU :={(0,¢,u):0€G,pe®,uecU}. (4.13)
These spaces are the Banach spaces with the norms
lolic = llollg + l1xPallo, + l1XI7allo,0 + I1xI*Vallo,, ;
I¢lle = l1¢llo + I1xI7dllo. + x>, ;
lully = llully + lxlullo, o + I1xI*Fullo,q ;
Ilv="1lu: I Wleu =1l + llully;

(o, ¢, Wl gou = llolc + Dlls + llully -

Taking into account the boundary conditions, we are led to define the
following auxiliary spaces and subsets:

U, = {(qﬁ, u:ped uel, divu =0,

0
O =0, dhlua =0, + Flan = 0} @.14)
Viea
(it is a subspace of ®U);
V,:={v:veV,divvl,o =00/, =0} 4.15)
(it is a subspace of V);
o¢
D, =0:0e®, 44;0=0,—~| =0 (4.16)
ov EXo)
(it is a subspace of ®) and
GOU, = {(0, ¢, u): 6 € G, (¢, u) € DU, } 4.17)

(it is a subspace of G®U). Notice that if (¢, u)e ®U, then v =u +
VgeV,.

(3) Spaces for description of the right hand sides. We always have the right
hand sides of a particular structure which is suggested by the nature
of the nonlinearity, see (2.5), namely

F=F°+divF!

The terms in #° have their origin in the external force, while #! is
coming from the nonlinear convective term. Since the goal of the pres-
ent paper is, essentially, to estimate the contributions to the decay rate,
of the nonlinear term, we suppose, without loss of generality, that #°
has a compact support. We denote

Lo = {g: g € L3C*9(Q)NW"(Q)N W*P(Q), supp g € By (0)} (4.18)
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a set of admissible #%s. (Notice that it is not a Banach space).
Further denote

L:= A 9(Q)N W-4Q)N Wer(Q) (4.19)
a Banach space with the norm
Iz =1 lorg + 1 lg + 1 lla,p
and
L:= WHha@)n wkt-r(Q) (4.20)
a Banach space with the norm

-ly:=1" ||l+1,q + |- ||k+1,p .

Finally, we introduce
L:={g:ge L, |x|]® divg e L*(Q), |x|*)g € L*(£),
[x|V divg e LYQ)NLP(2)} . 4.21)
This is a Banach space with the norm

lglie = llgl + ll1x* div gllo, o + 11x1°gllo,
+ x|V div gllo,q + X1V div gllg,p -

(4) The coefficients in estimates. In the sequel, ¢, ¢’, ¢;, ¢; (i=1,2,...) are
positive constants dependent only of k, I, p, q, r, Ry, 092 and p,, us;
they are in particular independent of f. The constants ¢, ¢’ can have
different values even in the same formulas.

5. Main theorems

Here we present the main results: Theorems 5.1 and 5.2 deal with the
linearized problem (2.6)—(2.7), or equivalently with system (2.12)—(2.14). Theorem
5.1 contains a fundamental statement about the existence and estimates of solu-
tions to this problem in Sobolev-type spaces (similar proof as presented here can
be found in Novotny, Padula [19]), while Theorem 5.2 is an existence result in
the spaces with the convenient pointwise decay. Theorem 5.3 deals with the fully
nonlinear system (2.4), (2.5), or equivalently with (2.16)—(2.18). Its proof is based
on a fixed point argument and on Theorem 5.2. Theorem 5.4 shows, that the
compressible part of the velocity field of the fully nonlinear system decays more
rapidly than the incompressible one.

Theorem 5.1 (the linearized system—solutions in L’-spaces): Let
I=0,1,..., k, k=0, 1,..., 3<q<3, p>3, Qee 3.
Let
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weV, :={wweHL(QNHALQ),
Vwe WHLQ)N WEH2(Q), div w,g = 0, w],q = 0}
and
Fel=H"QNWQNWI(Q).
Then there exists y' > 0 such that if
Iwlly <y’
then there exists a unique solution (I, o, ¢, u) of the system (2.12)—(2.14)

IHeG, (0,9, u) e GDU, , div (ew) e G,

(11, o, div (ow))) € W 9Q)N W 1-P(Q) ,
ue HLYQNHLPQ), Vue W @Qnw r(Q),
pe ALU@QNALQ), Vée W (QNW 2r(Q),
¢

d. = 0’ J—
Ivu oy so

=0, A¢lag =0, u+Ve)lse=0.

It satisfies the estimates

1Tl + (o, 6, Wllgov < 1 IF L,

Idiview)lle < 11 F g -

(5.1

(5.2)

Consequence 5.1 (of Theorem 5.1). Put v=u+ V¢. Then (o,v) is a (unique)

solution of the problem (2.6)—(2.7) and satisfies the estimate
lollg + Ivlly < e, I F 1z
Theorem 5.2 (the linearized system—solutions with the decay). Let
1=0.1,... k., k=23 .., 3i<q<3,
p>3, Qe @3, r>3, R, >0
and
weV, = {weV,,|x|we L*(Q), |x|2Pwe L™(2)}
(for the definition of V,, see Theorem 5.1). Let
F=F+divg’,
where

FOe Lyi={g: g € L3¥C*(Q)N W4(2) N W*P(R), supp g € By, (0)} ,

(5.3)
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FleL:={g:geL,|x|’divge L), |x|*g e L*(Q),
|x|V divg e LYQ)N LP(2)} .
Then there exists y' > 0 such that if
Iwlv <y’
then there exists a unique solution (I1, o, ¢, u) of the system (2.12)—(2.14)
nNeG, (0, ¢, u) e GOU,,
ie. Il, o, ¢, u satisfy, besides (5.1), also the following decay properties
|x|%(a, IT, div (ow)) € L®(£2) , x|V (o, IT, div(ow)) € L* (L),
|x|2V (0, IT, div (ow)) € L'(Q),
Ix[Vpe L*(Q), |x*Fpe W'(Q),
|x|ue L®(Q), |x|*Vue L*(Q). (5.4)
Moreover, we have the estimate
1Tl + llto, ¢ Wl gou < c2(IF°NL + 1F L) - (5.5)

Consequence 5.2 (of Theorem 5.2). Put v=u+ V¢. Then (o,v) is a (unique)
solution of the problem (2.6)—(2.7) and satisfies estimate

ol + llolly < c2(1F°E + 1F ML) - (5.6)

Theorem 5.3 (the fully nonlinear system—solutions with the decay). Let

I=1, ..., k, k=23,..., 32<gq<3,
p>3, r>3, Qe%**, Ry>0
and
feLo(<D).
ie.

fe L = L3+ 0@Q)n whi(Q)N whr(Q) and supp f€ Bg,(0).
Then there exist y, > 0 and y; > 0 (dependent of 1, k, p, r, 0Q2 and R,), such that if
1Az <
then in the set
B, = {(0,¢,u): (0, ¢, u) € GDU,, l(0, ¢, W) gou < Vo}

(see (5.1) and (5.4) or (4.8), (4.13), (4.17)), there exists a unique triplet (o, @, u) such
that

g, v=u+V¢
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satisfy the nonlinear system (2.4)—(2.5.” Moreover, we have the estimate

(o, ¢, Wl gou < c3ll flIL - (5.7)
Here c3 > 0 is a constant dependent of Ry, I, k, q, p, r and 0.

Theorem 5.4 (further decay of ¢). Let e€(0,1). Let I1€ G, (0, ¢, u) e GOU,,
with r >3/e, p>3, 3/2<q<3, k=23, ...,1=1, ..., k be a solution of the
problem (2.16)—(2.18). Then

X7V p e L*(Q),

Ix|37%4¢ = |x|>"* divv e L*(RQ). (5.8)

6. Representation formulas

In this section we list the representation formulas for the Laplace and Stokes
operators in the form convenient for the further applications. We refer the reader
to [8], Vol. I, Ch. 5 and Vol. II, Ch. 9, for more details.

1) Representation formulas for u and I1

From the Stokes problem (2.12) we have for any locally smooth weak solution
(1T, u) (weak solution means here a solution in the sense of distributions such
that IT e LYQ) and Vu e L%Q) with some g €(2/3,3)) and for the rhs. & sat-
isfying the hypothesis of Theorem 5.2 about the decay, the following formulas
(cf. Finn [4] or Galdi [8], Vol. I, Ch. 5 and Vol. II, Ch. 9):

Representation formulas for u

u(x) = —L U(x — y) F(y)dy

+ LQ {pv- [V, (x — ) u(y) — V,u(y) %(x — y)]

+ H(y)%(x — y) v — P(x — y)u(y)- v} dS, . 6.1)
Considering & in the form
F=F°+divF! (6.2)

we have in particular from (6.1), (6.2)

7 (6,4,u)eB, and IT=0 + (2u, + ;) div (6v)(e G) obviously satisfy the nonlinear system (2.16)—
(2.18) and we have, besides (5.7), also the estimate

Mg <cslflz-
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u(x) = —J U(x — y) FOy)dy + L F'(y):V,U(x — y)dy
Q

+ LQ v [V (x — y) u(y) — Vu(y)-U(x — y)]

+ (YU = y) v = Px = yu(y) v - v-FUy) U(x —y)}dS,. (6.3)

We recall that here and in the sequel, we use the Einstein summation convention
over the repeated indices. We have denoted by %; the vector field (%;,, %;,, U;3)
a%j(x b))
—

and by #'(x):V,%(x — y) the product &} y

Differentiating (6.1) and

taking into account (6.2), we get

Veiu(x) = —J Vial(x —y) FOy)dy + f v, (x — y)-div #'(y)dy
(o]

Q2
+ fm {mv- [V (x — y) u(y) — V,u(»)\V U(x — y)]

+ ()W U(x — y)-v — V. P(x — y)u(y)-v} dS, . (6.4)
We thus have by (6.2), (6.4) the following result

u(x) = M2(x) + 4L(x) + °(x) . xeQ,

Vou(x) = MEx) + A (x) + ENx), xeQ, (6.5)

where
M) = —J veanx — y)- Fo)dy, a=0, 1, (6.6)

Q
HAx) = J F () :V,a(x — y) dy,
Q
N (x) = f v, (x —y)-div#(y) dy, 6.7
Q
and

& (x) = L) {uv-[V,%(x — y) u(y) — Vyu(y) U(x — y)]
+ (YU (x — y)-v—P(x — pu(y)v—v-F'(y)Ux—y)}ds,,
&) (x) = LQ {u vV (x — y)-u(y) — Vu(y)V U(x — y)]

+ ()W, U(x — y)-v — V. P(x — y)u(y)-v} dS, . (6.8)
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Representation formulas for IT

Put

Wi(x) = —L”Il(x -y Fydy, Px)= Lﬁ’(x -y Fydy.

Then

—p, AW + VP = F.

Therefore (2.12) and (6.1) yield (recall (3.3),, i.e. u, 4, %(x — y) = —V.P(x — y) for

x #y and (3.2),, ie. (x —y) =V E(x —y) for x # y).

V. I(x) = V,P(x) - J Veluv-[7,20x — y) u(y) — Fyu(y) 2(x — y)]

aQ
+ H(y)P(x — y)-v}dS,.
We thus get, for # in the form (6.2), in particular
M(x) = MY(x) + NP(x) + EYx), xeQ,
VII(x) = My(x) + Vj(x)+ ERx),  xeL,
VII(x) = MH(x)+ A (x)+ ER(x), xeQ.

Here

Jf/"h(x)=—J iP(x —y)- F°y)dy, a=01,
Q

A (%) = JQ P(x — y)-div F'(y)dy .,

M%) = j Px =y, div F' () dy,
Q

N (x) = L V.P(x — y)-div#'(y)dy,
(in (6.10),, we have denoted by 'the vector field (#}, %3, #3})) and
Eulx) = —Lg{uw [7,2(x — y)-u(y) — Vyu(y) 2(x — y)]
+ H(y)P(x — y) v} dS,,
Ehlx) = —Jm {pyv- 7V, 2(x — y)-uly) — Ku(nV2ix — y)]

+ H()WP(x — y) v + vP(x —y)-div F ()} dS,,

(6.9)

(6.10)
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& (x) = —J {7V, 2(x — y)-uly) — Vuly)VZ(x — y)]
a0

+ H(y)V . P(x — y)-v}dS,. 6.11)
2) Representation formulas for ¢

For a locally smooth weak solution (weak means here a solution satisfying
the variational formulation and being such that V¢ e LY(2) for some g e (3/2, 3))
of the problem

Az =g =divg,, go € 6L (D),

we can write

z(x) = L E(x — y)g(y) dy + LQ vz, E(x — y) = V,z(y»)E(x — y)1dS, ,

and for its gradients

Vez(x) = L Ve€(x — y)g(y)dy + LQ v [z V6 (x — y) = Vz(p)V 6 (x — y)] dS,;
Vez(x) = L VZE(x — y)g(y) dy

+ LQ v [z V28 (x — y) = V,z()V2E(x — y)] dS,;
Viz(x) = JQ ViE(x — y)V,g(y) dy

+ LQ (v 2P P28 (x —y) = Vz(0V2E(x — )] —vW2E(x — y)g(y)} dS, .
(6.12)

The formulas (6.12) still hold for g, “sufficiently regular” and having “sufficient”
decay at infinity; the decay |x|*g, € L*(Q), |x|? div g, € L*(Q), |x|*¥ div g, € L¥(R),
which we use in this paper, largely satisfies this requirement. Applying formulas
(6.12) to problem (2.14), we get

Ved(x) = V4 (x) + &;(x), xeQ,
V2(x) = NE(x) + EF(x), xef,
Ved(x) = AP(x) + 6 (x), xeR (6.13)

where
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~

Ny (x) = -1, Ve6(x — y)div(ow)(y) dy,
NEx) = — :2 ViE(x — y)div (ow)(y) dy,
NP(x) = — :2 V2E(x — y)V, div (ow)(y) dy (6.14)
and U
8y(x) = jm v gV E(x — y) — VgV E(x — y)]1dS, ;
&5 (x) = :m v-[pWPF2E(x — y) — V80V 2E(x — y)1dS, ;
&;(x) = Pag v [V V2E(x — y) — Vg0V E(x — y))

J

+ wW2E(x — y)div (ow)(y)] dS, . (6.15)

7. Auxiliary linear problems

In this section we recall mostly well-known theorems concerning the solvabil-
ity of the Neumann and Dirichlet problems for the Laplace operator, the Stokes
problem and the transport equation in exterior domains. These results are used
in Section 8, in the proof of the existence of solutions of the linearized systems
(2.6)—(2.7) and (2.12)-(2.14).

Consider in 2 a Neumann problem

Ap =g in 2,
0

| =y, Vg -0 as |x| - oo . (7.1)
0vlag

This problem, in Sobolev spaces, was studied e.g. by Simader [25], Simader and
Sohr [27]. For our purpose, we need the following version of existence statement:

Lemma 7.1 (Neumann problem for the Laplace operator).
(a) Let 1 <t< oo, Qe%? and

V=0, e @) NLE®) (r' - ﬁ) .

Then there exists a unique solution of the problem (7.1)
peHL(Q), VeWw (@)
satisfying the estimate

Vol < clgly,c + llgllo,) - (7.2)
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(b) Let 3<q<3,3<p<o0,1=01,...kk=0,1,.., 2% and
g € (HLT(@Q)* NHALP (Q)* N Whi(Q) N Whr(Q),
Y e W@ N w0 p(9Q) . (7.3)

Then there exists just one solution ¢ of the problem (7.1)
pe HLIAQNHALY(Q), Ve WHIQ)N Wrp(Q) (7.4)
which satisfies the estimate

”V¢”l+1,q + ||V¢||k+l,p < C(lgl*,q + |g|*,p + ”g"l.q + “g”k,p

+ W lis1-gy.q. 00 + W lkr1=yp), p,0)- (7.5)
Next consider the homogeneous Dirichlet problem for the Laplacian:
40 =g, Olu=0, O©-0 as|x[>o0o. (7.6)

For our purpose, we need a theorem about the regularity of solutions

Lemma 7.2 (Dirichlet problem for the Laplace operator). Let 3 <gq < 3,
3<p<0,l=0,... k, k=0, ..., Qe €¢**? and

ge HH@QNH Q) NWH(Q)N W P(Q). (1.7
Then there exists a unique solution @ of the problem (7.6)
O cH Q) NHSQ), Ve e wHtaQ)n wet-r(Q) (7.8)

which satisfies the estimate

IVOlir1.q + 1V Olisr,p < cllgl-1.g + 191-1.p + lglliq + llglli.,)- (7.9)

Next problem to be investigated is the Stokes problem:
—wmdu+VIl=g in Q,
divu=nh in Q,
Ulyo=1, u—0, I1-0 as |x| - oo . (7.10)

In exterior domains, it was studied by many authors, recall e.g. Maremonti and
Solonnikov [13], Galdi and Simader [9], and the exhausting monograph of Galdi
[8]. We have in particular

Lemma 7.3 (Dirichlet problem for the Stokes operator).
(a) Let 3<t<3, Qe%¥? and
YeWUnaQ), geHMMQ), heL(Q).
Then there exists a unique solution of the problem (7.10)

ue HL'(Q), Hel(Q)
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satisfying the estimate
Vullo,. + 1Mo, < c(gl-1,c + W li-qm.00 + Ihllo,) . (7-11)
(b) Let 3<q<3,3<p<oo,[=0,...k k=0,..., Qe6*** and
h

0, geHAMQNW-QNW-r(Q),
W e Wit2-Uagoyn Wkt2-Uin-r(5Q)
Then there exists a unique solution (I1,u) of the problem (7.10)
ue HY(QNHAYP(Q),  Vue W@ N W r(Q),
e WHhaQ)Nn wkt-r(Q) (7.12)
which satisfies the estimate
17ullisng + 1Pullrp + 1T lisg + [Tl
<cllgl-1,g +19l-1,p + Iglli,q + 19k,
+ Wi+ 2-yana, 00 + 1 lks2-ypy,p, 00) - (7.13)
The last axuiliary problem to be considered is the transport equation
o+diviwew)=g in Q, W v|0=0) (7.14)
We have, cf. Novotny [17], Theorems 5.6, and 7.1 and 7.2:
Lemma 7.4 (transport equation).
(a) Let 1<q<3,3<p<ow,I=0,..kk=0,.. Q%" and
weV={we HLYQNHLP(Q), Pw' e WIHq@)n WHr(Q)),
wvlae=0,
ge Wi N wkhr(Q) . (7.15)
Then there exists y > 0 such that if
Iwlly <
then there exists a unique solution w of (7.14)
we W@ N wktr(Q),
div (w'w) e W' Q)N W HLP(Q)
which satisfies the estimate
lolis1,q + ol + 1div (W)l 41,4 + [1div (W O)sr,p

< c(lgllivr,q + 1glk+1,p) - (7.16)
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(b) Furthermore, we have
do e H9(QNH Q)
and the validity of the estimates
40|y s < c(l4g]-y, + Wy l0l1.),
4 div W)y, < c(ldglr, + IWilylol),  s=g p. (117
If I>1 and k > 1, then moreover it holds
dw e WHEHQ N W Lr(Q)
and
ldwlli-y 4 + 1dwli-y,,
< c{lldglli-y,q + 149li-1,, + Wy (l0ll41,4 + ll@llisr,,)}
4 div(wo)l,—y,, + 14 div(wo)l,-,,,
< c{lldglli-1.q + 14gli-1.p + IW Iy (@l 11,4 + llOllisr,,)} - (7-18)

Lemma 7.5 (transport equation—the decay). Let 1 <r<oo, 1<q<3,
3<p<0,1=0,...kk=1,...,Q2e6"*? and w' €V, i.e. it satisfies the assump-
tions (7.15),_, of the previous lemma and the further assumptions

|x|w' e L®(Q), |x|2Pw’ e L*(Q).
Let g satisfy assumptions of (7.15); of the previous lemma and
|x|%g € L*(Q), |x|Vg e L*(Q), |x|2Vg e L"(£) .
Then there exists y > 0 such that if
wlly <y
then the solution w of problem (7.14), which is guaranteed by Theorem 7.4, i.e.
we WHhi@Q)n wktr(Q) |
div (w'w) e W 9(Q)Nn wrt-r(Q)
satisfies, besides (7.16)—(7.18), also the estimates
NxP@llo,0 + N1XIP @00 + 1x[2Fal,,
< c(llx*gllo,w + I1xI17gllo, + Il1XI*Pgllo,,) .
x1? div (W'@)llo, o + [lXIV div(W ®)llo, o, + [[x]?7 div(ww)ll,,,
< c(llxI’gllo. e + 11xI7gllo, + I1x1*7gllo,,) - (7.19)

Proof. Take w the solution guaranteed by Lemma 7.4. Consider (7.14) and
V (7.14) in the form
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o=—Vow —wlw-+g,

Vo=—Vow —aV-w —Fw-Vo—FVol-w —olPV-w +Vg. (1.20)
Multiplying the first equation by |x|> and the second by |x|, we get estimates
1xPwllo 0 < c{11XI7@ 0, o0 I1XIW 0,0 + X170l 0,0l Lt + 1210, } -
lx[Pllo,o < c{1V2@lgoll1XIW 0,0 + I1XIF oo I 1XIFW o, 0 + I11X[7gllo, w0} -

The last two inequalities, when added, yield for |w|y “small enough”
HxlPollo,o + IxPwle,o < c{l1xIPgllo,w + I1x7llo,x} (7.21)
and consequently
Hx17 diviw' o)l o, + [l1xI* div (w'o)lo, o < c{ll1XIPgllo, + IlXI*gllo,c} - (7.22)

Multiplying (7.20), scalarly by |Fw|""*Vw|x|?*" and integrating over 2, we obtain

1
lxP*Palls,, < —rj w' -V [Pol x| dx
[0}

(

— ‘[ w' -Vw — Vol -w): |Fol~2Fw|x|?" dx
Q
— f oPV-w Vol " Po|x|* dx + f Vg - lVo| 2Fw|x|* dx
Q Q

~ | —

. x
J divw'|[Fo| | x|? dx + { w—|Folx]*! dx
Q Q | x|

— f Fw Vo — Vol -w)-|[Fol 2Fw|x|* dx
Q

—j VV-w - |Pol *Pw|x|* dx+J Vg [Pl *Po|x|* dx
Q Q

< c{wlellllxPPoly, + l1xPollo,ol IxIPVo 15,1 + 11xI27g 6.} -

This estimate and estimate (7.22) yield, for ||w'|y sufficiently small, the estimate
(7.19). Lemma 7.5 is thus proved.

8. Proof of Theorems 5.1 and 5.2—the linearized system

One version of proof of Theorem 5.1 was given in Novotny, Padula [19].
We repeat it here briefly only for the sake of completeness. The proof of Theo-
rem 5.2 is based on Theorem 5.1 and on the representation formulas (see Section
6). For the sake of simplicity, we use the abbreviated notion for the function
spaces (G, @, U, L,G, ®, U, L,...) introduced in Section 4, formulas (4.8)—(4.21).
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Proof of Theorem 5.1. We show that the map £ (see (2.8)) is a contraction
in the space @ for arbitrary we V, “sufficiently small”.
Lemma 7.3 (b) applied to problem (2.9) yields the estimate

lully + 1llg < {NF N + 1V Eles2-ypp.ont < cUIF N+ €10} B.1)

(Here we have used the Gagliardo inequality about the traces and the inequality
IVEN+2-1jara.00 < IV Elks2-1/p).p, 00 Which holds due to the compactness of 02
and the relations [ < k, g < p.) Taking the div of the equation (2.9),, we get

Al = divF
hence we find
HIL =41\ -y, + A, + kAT -y g + Kl ATy g < | F I . (8.2)

(Here xk,=0 if s =0 and ;=1 otherwise.)
Lemma 7.4 (a) together with (8.1), applied to (2.10), furnishes

lollg + lIdivew)lg < ci {II# Iz + 1<l o} (8.3)
and Lemma 7.4 (b) together with (8.2) yields, in particular,
1div (ew)[ < c{IF i + Iwlyllolle} - (8.4)
Finally, Lemma 7.1 applied to (2.11) gives
I4llo < c{ldiv(ow)l, , + [div (ow)l, , + [Idiv (aW)lo 4 + [div (ow)llo, ,
+ |7 div (aw)l;,, + IV div (ow)l4. -} (8.5)

Estimating the first four terms as the nonlinear quadratic terms (with the help
of the definition of |-|,, norm, by the Holder inequality and the Sobolev
imbedding theorems), and the last two terms by Lemma 7.2 (recall that
div (ow)|;,0 = 0, i.e. it is enough to put in Lemma 7.2 @ = div (ow)), we obtain

I4llo < c{1div (ew)[ + llollglwly} < 2 {IF Iz + lloligliwly} - (8.6)

Estimates (8.3), (8.4) and (8.6) imply

I4lle < 3 {IF L+ 1Ellalwly} (8.7)

Which yields (recall that &% is a linear operator) a contraction in & provided
¢y wlly < 1; consequently, there exists a fixed point & = ¢ of %

Estimates (5.2) and (5.3) follow from (8.7), (8.1), (8.3) written in the fixed
point. Proof of Theorem 5.1 is thus complete.

Proof of Theorem 5.2. We take a solution guaranteed by Theorem 5.1 and
estimate the decay at infinity by using the representation formulas (see Section 6).
The proof is devided into several steps. In the first step, we derive estimates
for (11, u, ) at finite distances. In the second step, we estimate the decay of
the integrals with the compact support, i.e. those integrals in the representation
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formulas which contain #° and the integrals over the boundary. Third step is
devoted to the decay properties containing contributions of #'; this part is

]

divided into four substeps: (3a) estimates of u and Fu, (3b) estimates of I1, VII,
(3c) estimates of o, Vo, (3d) estimates of ¢, V¢, V24, V34, (3e) conclusions.

(1) Estimates at the finite distances
For a fixed R > 1, sufficiently large, we have
x[tllo, 00,0, + 11X1*VUll0, 0, 2 < CR* (It 0, 0, @ + [Vttll0, 0, 0) < €' IF £,
X2 Mo, w, 00 + 11XV llo, w0, 0, + I1XI?V o, o,
< ¢R?*(1 + (meas Q)| |4 < ' | F |Ij s
X1V @llo, w0, 00 + 11XI2V2@1 1, 0, < cR* (1 + (meas Qp)'")|plz < | F ;. (88)

(In (8.8), we have used estimates (5.2) and Sobolev imbeddings of the type
W(Q) c €/(Q), provided (s — j)t > 3; this requires to take k > 2.

(2) Estimates of the terms containing F° and the estimates of the boundary
integrals. Set m = meas (supp #°). We find for R sufficiently large (e.g. such
that supp #° < Bgj) and r > 3:

x| Ao, o, 0n + 11X i1, o, x < em|F g0 < ' | F O,

X2t G0, o, o + W1X|M blor ox + I1xI2M Yllo,p, ox

1/r
sc<m+(f |x|_’dx) >|§°’°lgyo£c’||37°||,:. 8.9
Qg

As far as the boundary integrals are concerned, we have (see (6.8), (6.11), (6.15)):
1XIE2 0,0, ox + 11X12E 0,0, o2 < €l i + [T g0 + | F | 40)
<%+ 17 ML)
11X1E 0,0, 0r + 11XIE7ll0, 0, 0x + [1X[E7 ll0.r, 08 < c(lulgr + [Hlgo + | F*41)
<c(IZ°% + I L),
NXIE4 N0, ox + 11X12EF 0.1, ox + [1X1*E7 1o, 0n
< c(|lr + Idiv (aw)lgo) < ' (IF° L + IF ML) - (8.10)
(3) Estimates of the integrals containing F'
(3a) Estimates of u, Vu
We have by Lemma 3.2 (see (6.7))
X140, < 11x12F o, 0 (8.11)

and by Lemma 3.1
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Hx1ZA o, < cClixI* div F g, + IXIPF Mo, a) - (8.12)
Representation (6.5) together with (8.8);, (8.9),, (8.10),, (8.11) and (8.12), gives
lxlullo, + I1x1?Pullo, o < c(IF %Nz + 1F L) - (8.13)
(3b) Estimates of II, VII
We have by Lemma 3.1 (see (6.10))
Hx2A o, 0 < CNXIPF o, + 11XI° div F o, ) ; (8.14)
by Lemma 3.2
x| At llo,w < c(llx|P div F o, + [lxIV div F o, ,) (8.15)
and by Lemma 3.3
1x2A 5 o, < clllx? divFl,,, r>3. (8.16)
Representation (6.9) together with (8.8),, (8.9),, (8.10), and (8.14)—(8.16), gives
X120, + X[V Hllo, + X2V o, < c(I#° + IF ). (8.17)
(3c) Estimates of o, Vo
Applying Lemma 7.5 to problem (2.10), one has
lx1%6llo,0 + X170, o + I1xI*Fallo, < c(IF %Nz + IF L) (8.18)
and consequently
I1x1? div (oW)llo, 0 + [l X[V div (6W)llo, & + Il|x[*V div (6w)]o,,
<c(IZ°z + 1F ) (8.19)
provided |w]y is “sufficiently small”.
(3d) Estimates of V¢, V¢, V3¢

We have by Lemma 3.2 applied to (6.14), (notice that ||x|> div (ow)]o o <
%1261l 0, 0P W0 + [1XIWllo, o 11X 760, o)

XA o, < cliwllvll(o, ¢ Wl cou ; (8.20)

by Lemma 3.3 (see (6.14),) (notice that |[x|* div (aw),,, < I1x1%6llo,x IFWIlo,, +
Wleol1X12P 010,00 17Wll0., < [1xI27wllo. o 11X 2o, < cllIx[*Pwllo, ). we obtain

1x12A E o, < clwlvli(o, ¢, Wl cou ; (8:21)
by Lemma 3.3, see (6.14); and (8.19) (i.e. |[|x|*F div (ow)|,., is bounded),
HxPPAZ o, < c(IZ°1E + 17 L) - (8.22)

Representation formulas (6.13) and (8.20)—(8.22) together with (8.8); and (8.10),
yield
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X1V @llo. w0 + I1xI272@lly, < c(IF°z + IF L+ Iwlvi(o, 4 Wlcev)  (823)
and, in particular, by the imbedding W!"(Q) = €°(Q), also,
11x1272¢llo,0 < cIF°l + IF L+ [Wllvli(o, ¢, Wl cou) (8.24)
(3e) Conclusion
Estimates (5.2), (8.13), (8.17), (8.18) and (8.23) yield
1l + (o, 6. Wl gov < cIF g + IIF 1L + IWllvl(o, 4, Wl gav) (825

which yields estimate (5.5) (and as a consequence (5.6)), for [w|y sufficiently
small. Theorem 5.2 is thus proved.

9. Proof of Theorem 5.3—the fully nonlinear system

We show that the nonlinear operator 4, formally defined by (2.15) has the
following properties:
(i) Tt is well defined on a closed ball

B, = {(0,¢.u) e GOU,, |(0. . W)l gou < Yo} ©.1)

of the space G®U, provided y, is sufficiently small.

(ii) It maps B, into itself provided y, and y, are sufficiently small (recall
that y, is the bound for | f |z, i.e. |fllz <7y)

(iii) Denote by G', @', U/, L’ the Banach space G, @, U, L, respectively
with I — 1 and k — 1 instead of I, k (/ > 1,k >1). Then put

X:={(c.¢u):0€GCG . ge® uecl'}, 9.2)
It is a Banach space with norm

(o, ¢, wllx = llolle: + Bllo + llully: -

Obviously B, = X is a closed subset in X. The operator A" is a
contraction in B, in the topology of X, provided y, and y, are suffi-
ciently small.
As a consequence, .4~ possesses a fixed point, say (o, ¢, u). The corresponding
o and v = u + V¢ satisfy the fully nonlinear system (2.4), (2.5).

Proof of (i), (ii). Set
F = F° + div F', w=z+VE,
F°=( +1)f, Fl=—(1+10w®w. 9.3)
We easily find, for (z, &, z) € By:
IFliz < c(lf 1z + 1 & Dl eou)
IFl <elflz,  IF'L<cl & 2)lgeu 94
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withr>3,3<g<3, p>3and/=1,...,k k=12 .2 Theorem 52 applied
to system (2.12)—(2.14) with F = F(t, w) yields estimate

(o, . Wl cou < c(If Iz + Iz, & DG ou) - 9.5)
This yields existence of y, and y, such that
A'B, =B, provided [|f|i <7y, -

Proof of (iii). Let (o4, ¢y, u,), (o, ¢, u) be solutions of problem (2.12)—(2.14)
corresponding to # = F(t,,w, =z, + V¢,) and & = F(r, w = z + V), respective-
ly, where (t, £y, z1), (1, ¢, z) € B, . We want to prove that 4" is a contraction, i.e.

[A (4, 15 2y) — A (0, & D) x < Rll(ry, &y zy) — (1, & 2 x (9.6)

with a 0 <h < 1 (provided y, and y, are sufficiently small).
Denote T=1—1,,6=0—0,,(=¢—¢,, 9p=0¢—¢,, Z=z—2z,, i=u—
u, F= F(ty,w))—F(t,w), w, =z, + V&, w=z+ VE  We calculate

1Flz < c{llflz + (5 & Dlgou + IT1. &L z)llga) IE E D). 9.7

Writing system (2.12)—(2.14) for the differences, we get

—wdi+ VIl =F,
divi=0,
ilog=Vlog, dlx) T(x)>0  as x| > o0, (9.8)
G + (2u, + p,) div (6w) = IT — 2u, + p,) div (o, W),

-0 as |x| — o0, 9.9)

A¢ = —div (Gw) — div (o, W),
o4

5569:0, >0 as |x|> 0. (9.10)
Applying to equation (9.8) Lemma 7.3, we get estimate
Il + 1 Tlg < c(IFlz + 1616 - ©.11)
Taking the divergence of equation (9.8), we get
AT = div F
hence

ML = (AT, + |ATT\- , + sy | AT g g + Koy 1ATT 5., < || Fz

(for the definition of x,, see (8.2)). Lemma 7.4 (a), (b) together with (9.11) and

# Condition /> 1 is required when estimating ||x|V div Flllg,q
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the previous estimate, applied to (9.9) yields
166 + lldiv @W)llg- < c(IFllz + [dllo + lloy (Il o + 12l 0))  (9.12)
and
14 div @w)[ < c(IFllz + Wy loyll6 + 181gIwlv) . (9.13)

After this, Lemma 7.1 applied to (9.10) furnishes by the similar reasoning as that
one in formulas (8.5)-(8.7)

18lle < c(IFlz + IWlly-loyllG + 1616 Iwllv) . (9.14)
Estimates (9.11), (9.12), (9.14) yield finally (for y,, y, “sufficiently small”)
lally + 18llo + 16l < calvo + y)Zlw + 1€l + 1El) . (9.15)
The last inequality yields the contraction in B, for the operator .4, provided
calyo +y)<1.

The existence of a (unique) fixed point of 4" in B, thus follows from the standard
Banach contraction principle. This fixed point (say (g, ¢, u)) determines the solu-
tion (o, v) of the nonlinear problem (2.4), (2.5)

o, v=u+V¢.

The estimate (5.7) follows from (9.5) written in the fixed point. Theorem 5.3 is
thus proved.

10. Proof of Theorem 5.4—further decay of V¢
Let us set in the representation formulas of Section 6
F=(1+o0f, Fl=-(1+0)(v®v),
w=uv, T=0, where (6, v =u+ V¢)e G x V is a solution of problem (2.4), (2.5)
guaranteed by Theorem 5.3. Integrating by parts in (6.14);, we get

Ny (x) = —L) VZE(x—y) (ov)(y)dy — f V.€(x —y)ov-v)(y)dS,

o9
which yields by (6.13),
Vh(x) = N4 (x) + €, (x)

where

N (x) = —JQ (v)(y) F2E(x — y) dy

E4(x) = —LQ V&(x — y)(ov-v)(y) dS, + &; .
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We therefore find (see Lemma 3.3)
x>~V ¢ e L"(Q), r>3/.
Recall that (see Theorem 5.3)
|x|*"*V%¢ e L"(2), r>3Je.

The assertion (5.8), follows thus by the imbedding W' < €°(Q) applied to the
function |x|2"¢F¢.

The proof of (5.8), is not so straightforward. First, we have to calculate
the decay of V2T, F*$ and V?u, V3u. We have, by differentiating (6.5),, (6.9),
and (6.13)

VAI(x) = ME(x) + N E(x) + EX(X), x€Q —supp F°,
Viu(x) = ME(x) + V2 (x) + EX(x), x€Q,
V3u(x) = M3 (x) + ¥3(x) + EX(x), x€Q — supp #°,
Pig = NE) + EHX).  xeQ, (10.1)

where

//l%(x)=f VEP(x —y) - FOy) dy, x€Q —supp F°,
Q2
ME(x) = —J Vi (x —y) F°y)dy, xeQ,
Q

//l,?(x)=—f V3U(x — y)- FOy) dy , xe —supp #°,

Q

N i(x) = J V.2(x — y)V, div #'(y) dy,
Q
N2(x) = —f V2 (x — y)-div #'(y) dy
Q
N2(x) = —f V2U(x — y)V, div (F')(y) dy
Q

Hx) = — f Vi€(x — y)V} div (ov)(y) dy
Q
ébi"l = Vxéplll ’ t”@uz = Vxéaul s

E=V.E + J w2 (x — y)-div #'(y) dS, ,

R

& =V 6 + f W2E(x — y)V, div (ov)(y) dS, . (10.2)
a0
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Formulas (10.1) and (10.2) yield, for
(0,9, u)e B, = GOU,

the following estimates:

|x|27¢F%u e L' (), r>3/.
Recall that (see Theorem 5.3)

|x|>"V3¢ € L"(2), r>3/e,
therefore

[x|2"*F%v e L"(Q), r>3/e.
Now, |x|?"*V divF'e L’(). Therefore

|x|>" V2 Ile L (), r>3/e.
Next we get from the transport equation (2.18)°

[x|2"*F%6 e L"(Q), r> 3/,

|x|272* div (ov) € L"(Q) , r>3/¢.

After this, we deduce from (10.1); (the reader verifies that |x|>~*F div F' e L"(Q))

|x|>~F3uel (), r>3
and by (10.1), also

|x|>"¢V2ITe L'(Q), r>3/e.
From (10.1),

|x|2"*F*p e L"(Q), r>3/e
(see Lemma 3.3) and as a consequence

|x|2"F3v e L"(Q), r> 3.
Now we find, again from the transport equation (2.18).°

Ix|>"*V%c e L"(2), r>3/c.
After this, we obtain

|x|37¢ div (ov) e W' (Q), r>3/e.

9 This requires some explication: Differentiating (7.20), (with w’ = v, @ = 0, we obtain an transport
equation for V26 (we put all terms containing derivatives of ¢ in the order less then 2 to the
rhs. of it). One easily verifies that |x|°”* (r.hs.) (where a states firstly for 2 and then for 3)
belongs to L7(Q). Therefore, multiplying this equation scalarly by |x|"*™?|F2a|""2/?¢ and integrat-
ing over ©, we obtain, after some standard manipulations, the desired result. See Novotny [17],
Theorems 5.7 and 5.8 for details.
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The last estimate yields by (2.17) and the well known Sobolev imbedding theorems,
the estimates (5.8),. Theorem 5.4 is thus proved.
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