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Ropes in projective space

By

Juan  C . MIGLIORE, Chris PETERSON and Y ves PITTELOUD

Let C be a  degree d  non-degenerate integral curve in Pr. In  1983, a  remark-
able paper o f  L . Gruson, R . Lazarsfeld, and C. Peskine showed, among other
results, that C  m ust be  (d + 2 —  r)-regular [18]. Such a  theorem bounding the
regularity in  terms of d  and r  alone is not possible for non-reduced schemes. By
considering the genus as well as the degree, Gotzmann was able to obtain bounds
for the  regularity o f  a n  arbitrary nonreduced one-dimensional scheme [ 1 7 ] .  If
no conditions are placed on  the  genus, one can construct non-degenerate locally
Cohen-Macaulay schemes of degree two with arbitrarily high regularity. In  gen-
eral, one can construct multiplicity two structures on any curve such that the
homogeneous ideal has generators in  arbitrarily high degree. M ultiplicity two
structures on the line are called double lines and  they provide u s  with our first
example o f  a  ribbon.

I n  1986, th e  f irs t au tho r show ed  tha t double  lines a n d  their deficiency
modules exhibit a  form  o f  extremal behavior w ith respect t o  liaison [ 2 7 ] .  In
1993, M. Martin-Deschamps and D . Perrin obtained several nice bounds on the
Hartshorne-Rao (o r  deficiency) m o d u le  fo r  an  a rb itra ry  1-dimensional locally
Cohen-Macaulay scheme [ 2 4 ] .  Double lines exhibit extremal behavior with re-
spec t to  these  bounds a s  w e ll .  M ultiplicity two structures arise naturally in
questions concerning self-linkage. Rao was ab le  to  u tilize  th is fac t to  obta in
restrictions on the cohomology of rank two vector bundles on  P 4 . Here we see
tha t for questions concerning both regularity and liaison, relatively simple non-
reduced schemes can provide us with quite interesting behavior.

L e t C  b e  a  sm ooth a n d  irreducible curve in  Pn with homogeneous ideal
/ , a n d  le t  Y  b e  a  subscheme o f  I"  w ith  id e a l J. W e w ill ca ll Y  a n  a- rope
o n  C  if  th e  ideal J  satisfies /2  c  J c  I  a n d  Y  is  a  locally Cohen-Macaulay
multiplicity a  s tru c tu re  o n  C .  (A  general definition o f  a  rope can be found
fo r in stance  in  Chandler's thesis, c.f. [ 5 ] ,  b u t  it is  s tra igh tfo rw ard  to  check
that this general definition coincides with the  one  given above in  the  case of
a  smooth and  irreducible curve, when everything is embedded in  13 ".) A  2-rope
is called a  ribbon.

I n  th is paper w e a re  interested in  certain  aspects of the study o f ribbons
a n d  ro p e s . Ferrand show ed that o n  any sm ooth integral curve, there exists
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a  ribbon w hich is subcanonical [13]. A s mentioned before, Rao was ab le  to
apply complete intersection ribbons to questions concerning the  cohomology of
rank 2 vector bundles in  P4 [ 3 3 ] .  Fundamental work o n  th e  scheme structure
o f  a  ribbon was carried o u t b y  Bayer and Eisenbud in  [I]. Recent work on
ribbons by Eisenbud and  H arris has led to  im prove bounds o n  th e  degree of
sub-linebundles of the  no rm al bundle o f  non-degenerate integral curves in  Pr
[9]. Similar questions were studied for ropes by Chandler [5]. Fong was able
to give some results relating ribbons to the degeneration of smooth curves [14].
Ribbons a n d  ropes certainly m erit further study! I n  th is  paper, we focus on
questions concerning the regularity and deficiency modules of these non-reduced
objects.

I n  th e  first section w e include background inform ation and first results.
Beginning with a  smooth irreducible curve, C, in  P" with homogeneous ideal /,
we choose a  regular sequence, F1 , ,  F k ,  in  such a  w ay  th a t th e  idea l T =
(F1 , ,  Fk ) satisfies T and the scheme defined by T  is sm ooth at the general
p o in t o f  C .  T his allows fo r the  construc tion  o f a  particular exact sequence.
Using a  result of Chandler, one can compute the  genus o f the  scheme defined
by /2 in  terms of the degree and genus of C .  By combining the aforementioned
genus calculation and exact sequence with two other exact sequences we compute
the Hilbert polynomial of (/2 , T). Using this result we determine

Corollary 0.1. L e t C  be  a  smooth irreducible curve with homogeneous ideal
I  in P n .  Every (n —  k)-rope supported on  C  is defined, up to embedded points, by
an  ideal of  the form (1 2 , F1 , ,  F k ) w here F1 , ,  F k f o rm  a  regular sequence.

T his leaves o p e n  th e  possibility o f  tw o separate fam ilies o f  ro p e s . The
first family would consist o f  ropes that can be defined by ideals o f  th e  form
(12  F1 , ,  F k )  without having to remove embedded poin ts. T he second family
would consist o f ropes w hich can not be defined in  th is  w a y . W e show that
each family is non-empty. A  natural path of investigation is to find other ways
to distinguish between the  two fam ilies. By showing that the  embedded points
of the scheme defined by (12 , F1 , ,  F k ) occur precisely at the singularities of the
scheme defined by (F1 , ,  F k )  along C  we determine

Corollary 0 .2 .  L e t C  be  a  smooth irreducible curve with homogeneous ideal
in  P n .  L e t  J he the homogeneous ideal of an (n —  k)-rope supported o n  C .  J

is the saturation of  an ideal of  the  form (1 2 , F1 , ,  F k )  if  and only  if  there exists
a regular sequence (G 1 , ,  G k )  in  J such that the corresponding scheme is smooth
along C.

A ssocia ted  to  any  loca lly  Cohen-Macaulay cu rve , Y , in  P n  i s  a  finite
length graded module M(Y) = @k z 111i t y (k)) over the polynomial ring S =
K [X 0 , ,  X J .  In  the  context of liaison, M(Y) is often called the deficiency or
Hartshorne-Rao m odule of Y. The second section is concerned with the  study
of the  deficiency m odule  of a  ribbon in  P " . L et J  b e  the  homogeneous ideal
of a ribbon supported on an arithmetically Cohen-Macaulay curve C in P3 where
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C  is  n o t  a  complete in tersection . If J  contains a n  element which is smooth
along C  then  a  short argum ent show s th a t  J  h a s  non-trivial deficiency mod-
ule. W i t h  m ore  w ork  w e  arrive a t  th e  m a in  theorem  of sec tion  two which
describes the deficiency module of a ribbon supported on an arithmetically Cohen-
Macaulay curve, C, in  P". In  the special case where C  is a  complete intersection
in  P3 ,  w e get a  very clean a n d  precise description.

Theorem 0.3. L et C  be a  complete intersection in P3 w ith ideal I = (G 1 , G2 ).
Let F = A G, + B G , be smooth along C . L e t Y  be the ribbon defined by (12 , F). If
deg (A) • deg (B ) = 0  then M (Y ) = O. Otherwise

M ( Y )  ( ( A ,  B, SG,,  
G 2 ) )  (deg (F) — deg (G,G 2 )) .

This provides a  natural generalization to the case of the  deficiency module
of a  double line in  P3 [ 2 7 ] .  N atural questions arise as to when such ribbons
are linked to one another o r  to other ribbons; this second question appears to
be rather hard in  general.

Given a  coherent sheaf .97  o n  P", the regularity of r e g  (Sr), is the smallest
integer r  w ith Hi (P", (k —  i)) = 0  for a ll k  > r a n d  i > O. W e  d e n o te  b y  e(C)
th e  index  o f speciality o f  C ; th a t  is , e(C) = max It E Z1/12 (fc ( t ) )  0  01. In  the
th ird  section w e bound  th e  regularity o f  th e  ideal sheaf o f  ropes in  P " . We
first show th a t if f  is  the  ideal sheaf o f  a  one-dimensional scheme in  P" then
reg (.51 ") < n • reg ( 5 ) .  If  Y ' is  a  one-dimensional subscheme of Pi ' then we let Y
denote th e  u n io n  o f  th e  to p  dimensional components o f  Y ' .  W e  show  that
reg ( Y) reg ( Y'). In  th e  first section, every rope o n  a  curve C  is shown to be
obtained by taking the union of the top dimensional components o f an  ideal of
the  form  (/2 , F1 , F k ). Com bining all o f  th is, w e  ob ta in  the  m a in  result of
section three.

Theorem 0.4. L e t C  be a  smooth irreducible curve in  P" with homogeneous
ideal I . and  ideal sheaf  f c . L e t Y  be  an  (n —  k)-rope o n  C  with homogeneous
id e al I , and  id e al sh e af  f .  L e t  F1 , ,  Fk b e  a  regular sequence i n  I ,  such
that the scheme defined by (F1 , F k )  is sm ooth at the general po in t o f  C . L e t
di denote the degree o f  Fi . Then we have an inequality reg (.51,,) max {2 reg (f c ),
e(C) + di +  2, d i + • • • + d k — (k — 1)1.

F o r ribbons in  P 3 w e  g e t a  simpler statement.

Corollary 0 .5 .  L et C  be a  smooth irreducible curve in  P3 with homogeneous
ideal

 I c
 an d  ideal sheaf  f c . L et Y  be a  ribbon on  C  with homogeneous ideal I,

and ideal sheaf  f 1 . L et d  be the sm allest degree such that there ex ists an  F
smooth at the general p o in t o f  C . Then reg ( f y max {2 reg ( l c ), e(C) + d + 21.

In  th e  special case where the  ribbon lie s  o n  a  sm ooth surface, this bound
o n  th e  regularity can be w ritten in  term s o f  th e  regularity o f  C , th e  genus of
C , and the degree and  genus of the ribbon. W e further note tha t by  the  result
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o f [1 8 ], w e can then w rite this bound purely in  term s o f  th e  genus o f  C  and
the  degree and  genus o f the  ribbon.

W e  w o u ld  lik e  to  th a n k  th e  referee f o r  a  tremendously careful jo b  o f
proofreading this p a p e r . T h e  referee made several useful suggestions which were
implemented and we feel this has improved the overall quality and consistency of
the paper.

1. Background and first results

Throughout the  paper, S  w ill denote the polynom ial ring K [X 0 , X„],
where K  is  a n  algebraically closed field of characteristic z e r o . I f  we start with
a g3-prim ary ideal I  then  th e  ideal /2 m ig h t  fa il to  b e  p -p r im ary . However,
th e  highest dimensional component in  a  primary decomposition o f  /2  w ill b e
p -p r im ary . In  fa c t, th e  highest dimensional components in  any two prim ary
decompositions of /2  w ill ag ree . T h is  well-defined component is known as the
symbolic square of I  a n d  is given th e  special symbol /( 2 ) . M ore generally we
can define the symbolic nth pow er, 1°1 ) ,  of I  as the unique g3-primary component
in  a  primary decomposition o f  I'. If  I  is  th e  ideal o f  a  reduced curve, C , in
13 "  then 1( n )  defines a  locally Cohen-Macaulay scheme supported o n  C .  I t  is  a
somewhat surprising fact that fo r such a n  I ,  PP° can be readily com puted via
the formula I ( n ) = annihilator (E x t"  (I", S)) [ 1 1 ] .  This has been implemented as
a script in the computer algebra system Macaulay [3]. Unless otherwise stated,
in  what follows we will assume I  is  a  p rim e  ideal defining a  sm ooth curve C
in  P " . F or such an  ideal, 1(n ) =  In (where I" denotes the saturation of I"). This
means essentially that I" picks up no non-irrelevant embedded p rim e s . According
to  Zariski's m ain lem m a o n  holomorphic functions (cf. [1 0 ], [3 7 ]) , I ( n)  i s  the
largest ideal all of whose elem ents vanish to order at least n  o n  C.

W e are interested in  finding an expression for the Hilbert polynomial of an
ideal o f the  form (12 , F1 , F2 , ..., F,J. W e w ill assume th a t  F1 ,  F 2 ,  .  ,  F k  form
a  regular sequence in  I  a n d  th a t the  scheme defined by (F1 , F , )  is smooth
a t  the  general po in t of C .  W e proceed via several lem m ata. O ur first lemma
enables u s  to give several formulations t o  the  sam e prob lem . This will prove
useful both for explicit computations and for future insight. The second lemma
sets the stage for a key exact sequence. The third lemma provides us w ith the
final ingredient necessary for our calculation.

Lemma 1.1. L e t  p  be the homogeneous ideal o f  an  irreducible variety  X  in
13 ". L et F 1 , F ,  be  a  regular sequence in  0  an d  denote  by  Y  the complete
intersection def ined by  the Fi . T h e  following are  equivalent:

a) Y is sm ooth at a general point of  X.
b) the local ring S ,/(F1 , , is regular.
c) F ,  p ( 2 ) ,  F2 0 (p 2 , F1 )( 1 ) , F k  (p 2 , F1 ,

W here the " ( 1 ) "  denotes the  0-prim ary  com ponent o f  the  corresponding ideal.

P ro o f .  W e have th a t  Y  is sm ooth  a t the  general po in t o f X  if  and  only
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if the k  x k-minors of the Jacobian matrix (Olex i Fi )  do  not all vanish identically
on  X .  This is the case if and only if these minors are not all contained in the
ideal ka. By the Jacobian criterion for smoothness (cf. [2 5 ] Theorem 30.3), this
occurs if and  only if the ring S 3 /(F1 , F , ) , S 0  is regular (as the  ground field is
algebraically closed). This establishes the  equivalence between a ) and  b).

The ring So  i s  a  regular local ring, hence condition b) is equivalent to the
fact that the F1 , F k  are part of a regular system of parameters of the maximal
ideal pS o  o f  So  [ 2 5 ]  (we write Fi fo r the  im age of Fi i n  Sr,). This, in  turn, is
equivalent to the  following condition:

F1 Et 0 2 S, F2 Et (p 2 , F2 )S ,, F k  (p 2 , F1 , ...,

Now to conclude th e  proof, use the fact that given a n  ideal J  w ith a  primary
decomposition J = Q nQ , n • • • n Qt , where Q is  p-prim ary a n d  so is  no t an  em-
bedded prime, one has the  equality Q = JS ,  n S.

L em m a 1.2. L e t I  b e  the  ideal o f  a  sm ooth irreducible curve in  P ". Let
F1 , F k  be a  regular sequence in  I , such that the complete intersection defined
by the Fi is smooth at the general point of  C . L et d i = deg (Fi ). Then the map

(D I (— d i ) /2 n (F . . . ,

that sends (G1 , G „ )  to  IG ,F , is a surjection.

Pro o f . The given m ap is certainly well defined. W e will show th a t if  G1 ,
G, are forms such that Gi Fi c / 2 ,  then each of the G. h a s  to  b e  in  I ,  and

this will establish Lemma 1.2. Let P be a  general point of C .  We can differen-
tiate the relation

EG.F, c / 2

and evaluate the  differentiated expression a t  P .  F o r  each j ,  we obtain

0 = E elOxi Gi (P)Fi (P) + G1(P)010x i F1(P)= E Gi (P)Olexi Fi (P).

T h e  first equality follow s from  the expression being  a n  elem ent o f  /2 . The
second equality follows from the Fi being elements of I. N ow , as the  complete
intersection defined by th e  Fi is  s m o o th  a t  P , w e have th a t  th e  ra n k  of the
m atrix  (010x1Fi (P)) i s  k. T h is  im p lie s  tha t th e  o n ly  so lu tion  t o  th e  system
(E i a I ax i F i (P)G i (P) = 0 , j = 0, „., n) is the zero  solution. In  other words, we have
Gi (P)= 0 for each i. As th is is true fo r a  general point of C, this implies that
G. e I  for each i. This concludes the  proof o f Lem m a 1.2.

Corollary 1.3. L e t T = (F1 , F2 , ..., F,). W e have an ex act sequence

0  Ak (0 , S(— di )) Ak - i s( — dm —> • • • —> A2 (0, s( — d i ))

10 i 1(— d i ) —■ 12 n T .
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P ro o f . N ote th a t the image of  q  i s  in  0, /(—  di ); then look a t  the  Koszul
relations on the m ap from  O i l( —d1) t o  /2 fl T

Let Y be a  nonsingular subvariety of a nonsingular variety X .  Let it denote
th e  ideal sheaf o f  Y  in  X .  R ecall tha t th e  n o rm a l sheaf .A' ofo f  Y  in  X
is defined by .yry ix  =  f(vyy/e c

(5 / 5 2 , e x ). A ry  a  i s  a  locally free sheaf o n  Y  I f
Y = C  is a  smooth irreducible curve and  X  = P" then Arc i p„ will be locally free
of rank  n — 1. L et J  b e  th e  homogeneous ideal o f  a  locally Cohen-Macaulay
scheme, D, supported o n  C .  If  J  satisfies /2 g  J  I  then  D  is  the  embedding
o f  a  rope o n  C . I f  th e  degree o f D  is  a  tim es the  degree o f  C  then D  is  the
embedding o f  an  cc-rope o n  C .  Associated with any a-rope o n  C  embedded in
P" is  a  rank  a — 1 locally free subsheaf, E , of ../Ifc i p„. In  th e  special case a  = 2
we call D  a  ribbon o n  C .  In  th e  thesis of Chandler [ 5 ]  we find an expression
relating the  genus o f th is a-rope to  the  genus o f the  underlying curve and the
degree and rank of E .  The scheme defined by /2 is  an n-rope on C corresponding
to  E = A rc  i p „. This form ula allows u s  to determ ine th e  genus o f  th e  scheme
defined by /2 .

Lemma 1.4. L e t C  b e  a  sm ooth curve in  P" w ith hom ongeneous ideal I,
degree deg (C ) and genus g. T h e  genus o f  the schem e def ined by  1 2  i s  G  =
(n + 1)• (deg (C) + g — 1) + g.

P ro o f . F r o m  [ 5 ]  t h e  g e n u s  o f  t h e  sc h e m e  d e f in e d  b y  /2 i s  G =
degree (S . p „)  —  n • (1 — g) + 1. Letting (p c denote  the canonical sheaf o f C . we
have (pc wr- ® A n - 1  Arc'''. [ 2 0 ] .  Considering degrees o f  both  sides w e get
2g — 2 = degree (.il(c o ,,,) — (n + 1)• deg ( C ) .  W e rewrite th is  expression to obtain
degree (X — ) =  2g — 2 + (n + 1) • deg (C). Plug degree (./Ifc i p„) into the above ex-
pression for G  to yield the  desired result.

Again assume tha t I  is  a prim e ideal defining a  smooth curve C in  Pi'. As
mentioned above, we a re  interested in  schemes defined by ideals o f  th e  form
(12 , F,, F2, ,  Fk ). The Fi a re  chosen as in  Lemma 1 .2 .  One would expect that
for "small" k  such an expression would lead to a  nonreduced scheme supported
on C .  This becomes more clear when one considers that /2 g (/ 2 , F1 , F2 , ..., Fk )
I. T o help  understand  th is schem e, w e com pute  the H ilbert polynom ial of
(12 , F1 , F2 , ..., Fk ) in terms of the Hilbert polynomial of I and the degrees of the

Theorem 1.5. Let I  be the homogeneous ideal o f a  smooth irreducible curve
C  in  P " . L e t deg (C) denote the degree o f  C .  L e t  g  denote the genus of C .
Assume F1 , F k  f o rm  a  regular sequence and the schem e def ined by  T  =
(F1 , Fk ) is  sm o o th  at  the general p o in t  o f  C .  L e t  di d e n o te  the degree
o f F i . The H ilbert po lynom ia l o f (12 , F1 , , Fk )  is H(t) = ((n —  k)• deg (C))t —
[(n + 1 — Ek, di )• (deg (C)) + (n + 2 —  k) • (g — 1) + 1] + 1.

P ro o f . W e have three exact sequences
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1) 0 ,/ 2 n T , ./ 2 0  T - 4 12 +
2) 0 —* A k( s ( - d i) ) - - - - A 2 ( e s ( - c / 1 ) ) - * ( D 1 ( - n T  0
3) 0  —*AI' (C)S( —di )) —*••• A 2  (C)S(— d i ))--÷ CIS(— d i ) —> T

Assume t  »  0. From the  three exact sequences we have

dim (S/(12  + T )), = dim (S// 2 )1 +  dim (S/T), — dim (S/(12 fl T)),

= dim (S// 2 )1 — dim (T), — dim (12 n T),

= dim (S// 2 )1 — dim (S//),_ d ,
= En deg (C)t — ((n + 1)(deg (C) + g —

— (deg (C)(t —  di ) — g + 1)]

= (n — k) deg (C)t + 1

—[(n + 1 — Ed i )(deg  (C)) + (n + 2 — k)(g — 1) + 1]

For large t ,  dim (S/(12 +  T ), = H(t) so we conclude that the Hilbert polynomial
of (12 , T ) is  a s  predicted.

Remark 1 . 6 .  Let C  be a  smooth irreducible arithmetically Cohen-Macaulay
curve in  P 3 with homogeneous ideal I  a n d  ideal sheaf 5 .  We have 1 2 =  1( 2 )

(cf. [31]) and 1/1 (P3 , 5(k )) = 0 for all k. Pick an element F c I  with F  1( 2 ) . Let
d be the degree of F .  By Corollary 1.3 we have an isomorphism /2n (F) I ( —  d).
Consider the  first exact sequence in  th e  proof of Theorem 1.5. Using the  iso-
morphism 1 2 n (F) I(—  d), we write this sequence as

0 — * I(— d) 1 2 0  (F )  1 2 + (
F )  0

If we sheafify and consider the long exact sequence in  cohomology then we can
conclude that 12 + (F) is saturated.

Let J = (1 2 , F1 , Fk ). From the Hilbert polynomial we see that J  defines
a  multiplicity n —  k structure  on C .  T he scheme defined by J  may have em-
bedded po in ts  o r J  m ay fail to be saturated. By saturating J  a n d  removing
embedded points we get a  new ideal J'.  J ' is the homogeneous ideal of a  locally
Cohen-Macaulay multiplicity n —  k s tru c tu re  o n  C . Since we have 12 J '  g  I
the scheme defined by J ' is an  (n — k)-rope on  C .  A natural question is whether
every (n — k)-rope o n  a  given curve C  in  P" arises by the  method above. That
is, given a  smooth curve C in r  with homogeneous ideal I , can the homogeneous
ideal of every (n — k)-rope supported o n  C  be obtained by starting with an  ideal
J = (1 2 , F1 , Fk )  a n d  then saturating and  removing embedded points? This is
answered by the  following corollary.

Corollary 1 . 7 .  I f  C  is a  smooth irreducible curve in P" and 1 is the homoge-
neous ideal of  C then every  (n —  k)-rope supported o n  C  is def ined by  an  ideal
o f  the form (1 2 , F1 , Fk ) up to em bedded points.

11 + 91+ 1 ]
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P ro o f . L et J  b e  th e  homogeneous ideal o f  a n  (n — k)-rope supported on
C .  W e have /2 OE J  I. If k > 0  then  J  1 ( 2 )  s o  th e re  is  a n  element F i  e J
with F, (t P 2 ) . By Lemma 1.1, the scheme defined by F, is smooth at the general
point of C .  By Theorem 1.5 the  scheme defined by (12 , F1 )  has degree (n — 1)-
deg (C). If k > 1 then J  ( 1 2 , F i

)u ) (where the "( 1 ) "  denotes the /-primary part
of the corresponding ideal) so there is an  element F2 e J with F2 0 (12 , F e .  By
Lem m a 1.1, th e  scheme defined by (F1 , F2 )  is  sm o o th  a t th e  general point of
C .  F 1 , F 2  form a  regular sequence so by Theorem 1.5 th e  scheme defined by
(12 , F1 , F2 )  has degree (n — 2)• deg (C). Continuing in  this manner we can pick
F1 , F2 , ... , Fk  satisfying the conditions of part c) o f Lemma 1.1. N ote that at
each step, w e  have to  choose  th e  Fi i n  sufficiently high degrees in  order to
guarantee that (F1 , Fk )  form  a  regular sequence. U sing Theorem  1.5, the
scheme defined by (12 , F1 , ,  F k )  has degree (n — k)• deg (C). Since (/2 , F1 , ...,
Fk ) c  J  and since both ideals define schemes with the same degree we know the
schemes differ at most by lower dimensional components. This is equivalent to
say ing  tha t th e  (n — k)-rope, J , is  de fined  by  th e  ideal (12 , F1 , F k ) u p  to
embedded points.

We now want to give two examples of ribbons in  P3 (i.e. 2-ropes in P3 ). If
th e  schem e defined by (/2 , F ) is already locally  Cohen-Macaulay then  (12 , F)
defines a  ribbon (w ithout having to rem ove em bedded p o in ts ) . A  somewhat
trivial exam ple is given by considering th e  schem e defined by J = (x 2 , y )  in
k[w, x, y, z]. I t  is  c le a r  th a t  J  defines a  locally Cohen-Macaulay scheme of
degree two supported o n  th e  line defined by (x, y )  and  is  th u s  a  ribbon. W e
can w rite J = (x 2 , xy, y2 , y) = ((x, y) 2 , y). I t  i s  a  natural question to  a sk  if the
homogeneous ideal o f every ribbon can be obtained by saturating a n  ideal of
the  form (/2 , F). W e answ er this question by recalling a  well-known example
o f  a  set-theoretic complete intersection [3 0 ] , [2 2 ] w hich also  turns o u t  to  be
self-linked [33].

Example 1.8. L et C  denote the  twisted cubic curve embedded in  P3 w ith
homogeneous ideal / = (x 2  — wy, x)) — wz, y2  —  xz). C  i s  a  curve o f  degree 3
and genus 0. Consider the saturated ideal J = (x 2 — wy, y 3 — 2xyz + wz 2 ). One
can check tha t the radical of J  is  / and tha t J  defines a  scheme with degree 6
and genus 4. Since J  is a  complete intersection, we have automatically that the
scheme defined by J  is locally Cohen-M acaulay. W e conclude that J defines a
ribbon o n  C .  Does there exist an  F e J such that J  is the saturation of (/2 , F)?
L et d  denote th e  degree o f  F .  By Theorem 1.5, w e can solve fo r d  in  terms
o f the  genus o f  C , th e  degree o f  C , a n d  th e  genus o f  th e  scheme defined by
J. W e find that d  m ust equal 5/3. In conclusion, J  is  n o t  the saturation of
an  ideal of the form (/2 , F). See also Exam ples 2.3 and  2.10.

Judging from  the  example o f  ribbons, it appears that (n — k)-ropes in  P"
c a n  b e  p u t  in to  tw o  fam ilies, those  tha t a re  defined by ideals o f  the form
(/2 , F1 , F k )  and those that are  not defined by such ideals. O ne is led  to  the
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question, is there a  special property shared by the (n — k)-ropes in one family
but not shared by the (n — k)-ropes in the other family? The answer is yes. We
give one such property via  the  following proposition.

Proposition 1.9. L et I  be  the ideal o f  a  smooth and irreducible curve C  in
P. L e t  F1 , F „  be a regular sequence in I ,  such that the complete intersection
X  they define is smooth at a general p o in t o f  C . Then the non-irrelevant embedded
prim es of  the ideal (12 , F1 , F k )  are precisely the singularities o f  X  along C.

P ro o f . Let P be a point on C, say in the affine piece x , 0  O. Let R =
be the  local ring  of 1: "  a t  P  (i.e. the  homogeneous localization So i l  and let
denote the image of F,/xgeg ( F o  in  R . N ote that X  is smooth at P  if  and  only
if the local ring RAfi , f c )  is  a  regular lo c a l r in g . By assumption, the local
ring O c , ,  o f  C  is  a  regular lo c a l r in g . In  other words, we have

p R/(u i , ...,u n _,),

where u 1 , u„_, is  p a r t  o f  a  regular system o f parameters u 1 , u„ of the
regular local ring R .  Let Y denote the scheme defined by the ideal (12 , F1 , ..., Fk ).
We will denote by p  th e  ideal (u1 , , un _i ). N ote  that the  local ring  (9 y
RA0 2 , i i ).

N ote  that P  is  a n  embedded poin t of (12 , F) if  a n d  only if the local ring
has depth 0 (to see this, localize the primary decomposition of (12 , F1 , ,

at P). Note also that the assumption that the complete intersection X  is smooth
a t  th e  general p o in t o f  C  implies that th e  elements f 1 , f„  a re  p a r t o f  a
regular system of parameters of the local ring R , (use the Jacobian criterion for
smoothness, and argue as in  Lemma 1.1). In  particular the classes of the fi in
0 /0 2  a r e  linearly independent.

Assume first that the  ring  R' = R/(fl , f k )  is  regu lar. L et p  denote the
im age of p  in  R'. Since the quotient R i p  is regular (it is sim ply R/p), we
deduce that rd is generated by a  subset o f  a  regular parameter system of the
regular ring R'. In particular p is generated by a  regular sequence. This implies
that th e  r in g  Ry- 32  i s  a Cohen-M acaulay ring (cf. for instance [25], exercise
17.4), a n d  in  particular it is unm ixed. T he  first implication is now  clear, as
R7P 2  R / ( 0 2 , fk ).

For the second implication, assuming that the ring R ' is not a  regular local
ring, we want to show that un is a zero divisor in the ring R/(p 2 , f k ) .  This
in  turn would imply that un lie s  in  an  associated prime of this latter ring. But
any associated prime containing u„ has to be the maximal ideal m = (u 1 , un ),
and the second implication will follow.

If R' is not a  regular ring, we have that the classes of the f , are not linearly
independent in m/m 2 . I n  other words, we have an expression

E ITI 2

where not all the g, a re  in  in. As the classes of the f ,  are linearly independent
in  p/p 2 , we can rewrite the above expression as
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=- un q + , (*)

where q 0  a n d  q ' is  i n  ka2 . To conclude th e  proof, w e have t o  show  that
q  (so 2 , f 1 , , fk )  ( a s  th is  w ill im p ly  th a t un i s  a  z e r o  d ivisor in  th e  r in g
RA0 2 , fk )).

But this is clear, since an expression q = E f i hi + h ', with h' e p 2 ,  combined
with the expression (*), would give

fi(gi - 6 0 2

which is forbidden, as the classes of the f  are linearly independent in  0/ W .  This
concludes the  proof of Proposition 1.9.

Corollary 1 .1 0 .  L e t J be the homogeneous ideal of  an (n - k )-rope supported
on a smooth irreducible curve C in P " . L et I  b e  the homogeneous ideal o f  C .  J
is the saturation o f  an  ideal of  the form (1 2 , F1 , ,  F , i ) w here F1 , ,  F ,  f o r m  a
regular sequence if  and  only  i f  there ex ists a  regular sequence in  J o f  length k
such that the schem e def ined by  this regular sequence is sm ooth along C.

P ro o f . Assume there exists such a  regular sequence. L e t  V  denote this
sequence. B y Proposition 1.9 w e  k n o w  th a t (P , V ) i s  f re e  o f  non-irrelevant
embedded p o in ts . T h e  definition o f  a  rope tells us immediately that J  has no
embedded po in ts and  th a t  J  has degree (n - k) • deg (C). By Theorem 1.5 we
know  that th e  degree o f  th e  scheme defined by (1 2 , V ) is  (n - k )• deg (C). By
the choice of V  we have an inclusion (/ 2 , V ) g J. Since the degree of the scheme
defined by J  and the degree of the scheme defined by (/ 2 , V ) are  the same and
since neither o f  them  has any  em bedded points, they  m u st a g re e  u p  to  an
irrelevant component. By assumption, J  is saturated so J  is  the saturation of
(/ 2 , V).

Conversely, assume J  is  the saturation of (/ 2 , F1 , , Fk )  where F1 , , F,
form a  regular sequence. W e first claim  that the scheme defined by (F1 , , Fk )
is sm ooth at the general poin t of C.

Let i be an  integer with 0<  i < k  (when i = 1, set (F1 , , Fi _1 ) = (0) in what
follows) and suppose that (F1 , , F ) is sm ooth at the general point of C  (this
is triv ially  the case, w hen i = 1), while (F1 , , Fi )  is singular all along C .  Then
we have, by Lemma 1.1, that Fi e (1 2 , F1 , , Fi _1 )( 1 )  (the ideal of the corresponding
n  -  i  + 1 rope). U sing  a  few  tim es th e  identity (12 , F1 , , )Fi (1) _ ( ( f 2, F 1 ,

Fiy, ), w e w ould then have tha t J  is  eq u a l to  th e  ideal (12 , F1 , , F,_,,
Fi + 1 , , Fk )( 1 )  (w ith the  obvious modification in case i = 1), the ideal of at least
an  (n k  +  1 )  rope; contradiction.

T he  claim  is now  obvious from  th e  above observation, and the converse
follows from Proposition 1.9.

W e w ould like to present the  following example, suggested by the  referee,
which show s the necessity o f  th e  assum ption that F1 , F „  form  a  regular
sequence in  Corollary 1.10.
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Example 1.11. L et I = (G 1 , G2, G,, G4 )  be a  homogeneous ideal defining a
smooth irreducible complete intersection curve C  in  P 5 . Assume further that
deg (G1 ) = deg (G2 ) deg (G,) = deg (G4 ) 2. Let 1-11 , H2 be linear forms which
are  S //-regular. T he polynomials F, = H ,G , — H2 G2, F2 = H i G2 — H2G3, F, =
H,G, — H 2 G4  d o  not form a  regular sequence b u t  th e  scheme they define is
smooth along C .  The saturation J  of (12 , F1 , F2, F3) defines a  ribbon, bu t it can
be shown that J  cannot contain any length three regular sequence smooth along
C.

We can actually improve on Proposition 1.9 by giving a  decomposition of
the  saturated ideal (12 , F) t .

Proposition 1 .1 2 . L e t I  b e  the  ideal o f  a  sm ooth curve in  P 3 . L e t  F  be
a form  in S  not in I ( 2 ) . L e t J denote the I-primary component in the ideal (1 2 , F)
(the "ribbon p art") . L e t J(F)  denote the  ideal (OF/Ox o , ,  O F /ax 3 ). T h e re  i s  a
decomposition

0  Frat J n ((I, J(F)) ( 2 ) ) .

Pro o f . To prove the proposition it is enough to show that for each point
P  o f C , we have an equality

(12 , F)(p) = f(p) n (I, J(F)) (
2p)

of the  homogeneous localizations.
If  F  is smooth at P , then the  claim is obvious, thanks to Proposition 1.9,

so we can assume that P  is a  singular point for F .  We denote by R  the local
ring of P 3 a t  P .  A s in  th e  proof of Proposition 1.9, we consider a  system of
parameters u, v , w of the m axim al ideal of R  such that u , v  a re  generators of
the ideal /(,), and we denote by f ,  the image in R  of F/xgeg( F ) (we assume again
that P  lies in the affine piece x o  0 0).

As f  is in I, we can write f  = ug, + v g 2 . We define the integer s as follows:

s = min { ord w (4, ), ord w, (g2 )}

where gi denotes the  class of gi in  th e  r in g  R/(u, v) (i.e. the  local ring  of C  at
P) and ord w  denotes th e  valuation induced by the  class o f w in  this ring . A s
P  is a  singular point for F, we have that s > 0, and we can thus write g i w s g ;
modulo (u, v). W e se t f ' = u g  + v g .  N o t e  that by subtracting from f  an
element of (u, v) 2 ,  we can assume that one of the g ,  say g ,  is a  u n it  in  R .  It
follows from the proof of Proposition 1.9 that ideal (u2 , uv, v2 , f ')  is (u, v)-primary,
a s  by construction, f ' ( u ,  v ,  w)2 .

Now, let Du , D,,, D„,, be an R-basis of the module of derivations Der, (R, R)
corresponding to the system of parameters u, v, w (i.e. such that Du (u) = 1, D u (v) =
Du (w) = 0 etc.). W e  have that (I, J(F)) ( ,,) = (u, v, Du (f), D y (f ), A y ( f ) ) .  As Du (f ) e
g, + (u, v), D u (f ) e g 2 + (u, v ), and D ( f )  e (u, v), we conclude that

(I, J(F)) ( ,,) = (u, v, a i '  g 2 ) = (u, v, WS)

(since g is a unit).
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W e will now show the following equality which will conclude the proof (as
the  ideal (u2 , uv, v2 , f ')  is  (u, v)-primary):

CLAIM: (U 2 ,  UV , V2, f ) = (u 2 , uv, v2 , f ' )  (1(u, y, ws) 2 .

The claim follows easily from the fact that u, v, WS is a regular sequence, as follows.
The inclusion " a "  i s  o b v io u s .  F o r  th e  o ther inclusion, consider g  of the

form hf ' + g, with g in  (u, y) 2 , and assum e tha t g  is a lso  in  (u, v, ws) 2 ,  hence of
the form  w sh + g', w ith g ' in  (u, 0 2 . W e obtain a n  equality

u(g,h + g 1 ) + v (gh + g 3 ) = wsh'

where the  gi a re  in  (u, 0. A s u, y , w s form a  regular sequence, we have g h  +
g, = vr, + w sr2 for some elements r,  and r2 . As g', is a  unit in  R , we can assume
tha t h = uro  + v r, + wsr2 ,  and  finally, we obtain

g = ro uf ' + r i v f ' + r 2 w sf ' + g

= (ro uf ' + r i v f ' + g + r2 wsf' — r2 f )  + r 2  f e (u 2 , uv, v 2 , f) .

This concludes the  proof.

It is interesting to note that every ribbon o n  a  line in  P 3 is defined by an
ideal o f  th e  fo rm  (12 , F )  [1 9 ], [2 7 ] (for a  converse  statem ent see [12]). In
Example 1.8 w e saw  that in  general, not every ribbon could be defined by an
ideal o f  th is  f o rm . Perhaps every ribbon o n  a  complete intersection can be
defined by an  ideal of the form (12 , F). The following example shows that this
is  n o t the case.

Example 1 .1 3 . Let J = (w 2 , wx, x 2 , wy —  xz). J  defines a  ribbon on the line
L = (w, x). Pick a  general element in J  of degree three, call it T  Define a  new
ideal CI = (w 2 , T). C I  w ill be  a  complete intersection contained in  J. Using
the complete intersection CI, we can link J  to  a  new scheme J ' of degree 4  and
genus 0. Using the complete intersection (w, T) we can link L  to  a  con ic . L e t
I  denote the homogeneous ideal of this con ic . T he  operation of linkage preserves
the  property o f being locally Cohen-Macaulay [ 3 0 ] .  The radical of J ' is  I  so
b y  th e  above rem arks J '  defines a  ribbon o n  th e  conic defined by I. Using
Theorem  1.5 w e can determ ine that if  J '  is  the  sa tu ra tion  o f an  ideal of the
form (/2 , F) then F must have degree 5/2. W e conclude that the scheme defined
by J ' cannot be defined by a n  ideal o f the  form (12 , F).

2. The deficiency module of a ribbon on  a  smooth curve in  P"

Recall that, for any (possibly nonreduced) curve Y c  P", the deficiency module
M(Y) is defined by

M(Y) = e 1/1 (P"„iy (k)) .
l e  Z
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If Y  is locally Cohen-Macaulay and  equidimensional, th is is  a  graded S-module
o f finite length, a n d  it m easures th e  failure o f  Y  to be arithmetically Cohen-
M acaulay. (This, and other properties, give it the name "deficiency m odu le ."  It
is  very  im portant in  L iaison Theory, especially fo r  curves in  P3 ,  a n d  in  this
context it is som etim es also called the  Hartshorne - R ao module o f  Y  See [29]
for more details about these modules and their submodules, and about Liaison
Theory, which we will use below.)

I n  th is  section w e  a re  interested in  studying th e  deficiency m odule of a
ribbon Y supported o n  a  smooth curve C  in  P " . W e will always denote by /
the saturated homogeneous ideal o f  C .  Interestingly enough, our techniques are
best suited to give the deficiency m odule of a ribbon (i.e. multiplicity two struc-
ture), even though we have set u p  the  theory for higher multiplicity structures.
O ur id ea  is  to  show how  to  link  the  ribbon  to  a  u n io n  o f  two curves a n d  to
express the deficiency module, accordingly, as the quotient of two ideals.

W e assume throughout this section th a t  Y is supported o n  a  smooth curve
C  in  P " . W e will be able to give the "cleanest" answer in  the  case  of a  ribbon
in  P ' whose homogeneous ideal is of the form (12 , F) supported o n  a  complete
intersection curve: in  th is  case w e  ge t tha t th e  deficiency m odule is  a  shift of
the quotient ring  of a  certa in  complete intersection of height 4 , a n d  th a t  Y  is
directly linked to the disjoint union of two complete intersections (see Theorem
2.8). (Recall from §1  tha t no t a ll ribbons h av e  a  saturated ideal o f th is form,
even o n  a  complete intersection curve, except when C  is  a  l in e .)  Applying our
results gets progressively m ore difficult a s  n  grows.

We begin with a simple observation, in the case where C  is an  arithmetically
Cohen-Macaulay curve in  P3 , other than a  complete intersection. (See Theorem
2.8 for the  case of a  complete intersection in P3 .)

Lemma 2.1. L e t C  be any  sm ooth arithm etically  Cohen-M acaulay curve in
P3 ,  other than a  complete intersection, w ith saturated hom ogeneous ideal I. Let
Y  be  a  schem e def ined by  the saturation of  the ideal (1 2 , F), w here F e / is not
in P l .  T h e n  Y  is not arithm etically  Cohen-Macaulay.

P ro o f . O f course  if F  h a s  a  singular po in t somewhere o n  C  we already
know  th is  from  Proposition  1.9 s in ce  th en  Y  h a s  a n  em bedded p o in t. L e t
d = deg (F). W e have the exact sequence

0 I (—  d )  - 4  2  0  ( F )  ( 1 2,

W e know (cf. for instance [31 ]) th a t th e  scheme Z  defined by the  ideal /2 is
not arithm etically Cohen-M acaulay (but it  is  sa tu ra te d ) . H e n c e  w e  have an
injection 0  M(Z) M( Y) so  w e are  finished.

Remark 2.2. Of course it is not true that every ribbon is non-arithmetically
Cohen-Macaulay, not even every ribbon supported on  a  non-arithmetically Cohen-
M acaulay curve. A  self-linked non-arithmetically Cohen-Macaulay curve gives
rise  to  a  counterexam ple (and such curves exist see [ 3 3 ] ) .  However, i f  C  is
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any smooth curve in  P" other than a  complete intersection (and we will discuss
the complete intersection case below), we conjecture that if  Y  is any ribbon whose
homogeneous ideal is the saturation of  (II, F i , F n _2 ),  where (F 1 , F „ _ 2 )  is  a
regular sequence defining a  complete intersection variety  which is sm ooth around
C, then Y  is not arithm etically  Cohen-Macaulay.

This is at least true if some of the degrees of the Fi are  sufficiently large. We
have an exact sequence

0  1 2  n (Fi , • • • , Fn-2) —' / 2 C' (Fi , • F n - 2 )  12 (F i , F n _ 2 ) —> 0 .

L et d, =  deg (Fi )  fo r each  i. It follow s from  the discussion in  § 1 tha t, if  we
denote by the  sheafification of 1 2 n (F i , ,  then 111 (f ( t ) )  M (C ),_ , , i

• • • 0  M (C ),_„„  and H 2 (/ (t)) H 2 (f c (t — d 1 ))  • • • H 2 (.1tc (t —  d„_,)). For large
d.  is impossible that this latter vector space can inject into H 2 (f j ( t ) )  for every
t, since the latter vector space can be made non-zero in arbitrarily large degree
by taking at least one  of the  d, large.

It is know n that not all sm ooth curves a re  self-linked (i.e. adm it a  ribbon
w hich  is  a  complete intersection), and i t  i s  an  open  question  whether every
smooth curve C  admits a  non-reduced structure of higher multiplicity which is
a  complete intersection (i.e. C  is  a  set-theoretic complete intersection). It would
also be interesting to know  w hich sm ooth curves adm it ribbons (o r, fo r that
m atter, any non-reduced structures) which a re  arithmetically Cohen-Macaulay.
This is  the sort of question which started our investigation.

Example 2.3. This example is evidence for the conjecture mentioned above,
at least in  P 3 . L et C  be  a  twisted cubic curve in  P 3 . (See also Example 2.10
below .) T h e  ideal o f  C  is genera ted  by  three  quadrics, so  C  i s  a n  "almost
complete intersection" but not a  complete intersection. Consider the ideal (12 , F)
where F e 1 has degree 2. If  F  is sm ooth then one can check th a t the  ribbon
Y  thus obta ined  is o f type  (4 ,2 ) o n  th e  sm ooth quadric F , a n d  hence is not
arithmetically Cohen-M acaulay. (Its deficiency module is one-dimensional, oc-
curring i n  degree 2). T h e  degree a n d  arithm etic genus o f  Y  a r e  6  a n d  3,
respectively.

O n  th e  other hand, if F  is  a  quadric cone then the  ideal (12 , F ) defines a
curve of multiplicity two on  C  with an embedded point, and when the embedded
point is removed we obtain a  ribbon of degree 6  and arithmetic genus 4 , which
o n e  c a n  show  is  h en ce  a  complete in tersection. This helps to  explain how
Example 2 .2  o f  [ 3 0 ]  is  ob ta ined . (N o te  tha t C  necessarily passes through the
singular point P  of F  since otherwise projection from P  to  P 2 projects the cubic
C  to  a conic.)

L e t C  b e  a  sm ooth curve in  P" with saturated hom ogeneous ideal / =
(G1 , ,  G k ) (k > n — 1), and assume that deg (G1 ) deg (G2 ) < • • • deg (G,). Note
that since C  is integral, all o f the  G, are  irreducible.

N ow  le t  Y  b e  a  ribbon supported o n  C , and let F 1 . .... F .2  e  i y  b e  a
regular sequence satisfying
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F, 0 1( 2 ) , F, 0 (1 2 , F1 )( 1 ) , ..., F„_ 2 0 (1( 2 ) , F,, F _ 3 )( 1 )

as in  Lemma 1.1. Recall from § 1  that (12 , F1 , , F,,_,) defines Y  as a  scheme,
after removing any embedded points of Y  which may arise (at th e  singularities
of F  o n  C). O ur strategy will be to find M(Y) by linking Y using the complete
intersection (Gi Gi , F1 , ,  F „ _ 2 ) (explained below) and finding the deficiency mod-
ule of the  residual.

Now, suppose C  is  a  complete intersection, / =  (G 1 . . . . . G_ 1 ), and assum e
that F1 ,  . . . ,  F n _2 a re  p a r t o f  a  m in im a l generating se t  fo r  / , say for instance
Fi = G i for all 1 < i <  n — 2. Then (12 , F,, ,  F „ _ 2 ) = (G _ 1 F i , F i,_,) is again
a  complete intersection, and hence Y is arithmetically Cohen-M acaulay. (Note
that none of the generators can have singular points anywhere o n  C  since C  is
smooth.) (See also Theorem 2.8.)

So we may assume that either C  is not a  complete intersection or else at
least one  o f the  Fi is no t part of a  m inim al generating set for I . E ith er way,
we can find two polynomials, G. and  Gi  in  /c , satisfying the following conditions:

(a) (F1 , ..., Fn _ 2, Gi )  and  (F 1 , G)  a r e  regular sequences;
(b) these regular sequences link C  to residual curves Ci a n d  Ci  respectively,

each of which has n o  component in  common with C ; and
(c) C i a n d  ci  h a v e  n o  common component.

If  we want to make th e  residual to Y  be a s  "nice" as possible, it is best to
choose G. a n d  Gi  a s  small as possible.

By definition of liaison, the saturated ideals of C i a n d  Ci  a r e  given by

= [(G 1, F1 , , F,,_2 ):

= [(Gd, F 1 , . • • , 4 -2 ): lc] •

Lemma 2.4. Y  is directly  linked (geom etrically ) to Ci U Ci  b y  the complete
intersection (Gi Gi , F1 , Fn _2 ).

P ro o f . Let X  be the  complete intersection scheme defined by (Gi Gi , F1 .....
F n - 2 ) •  Set-theoretically, X = C U C 1 U C 2 .  W e have observed that there is no
component in  common to any two o f C , Ci a n d  cp  a n d  all components have
height n — 1. Now consider th e  primary decomposition o f  (Gi Gi , F1 , 
We can group some primary components together if necessary and  get that

(G1 GJ , F 1 . . . . .F n _2 ) = I c î flI c j fl I

where Y is  a  locally Cohen Macaulay, equidimensional curve supported o n  C,
and  one  easily computes that th e  degree o f  Y is equal to twice the  degree of
C .  Hence Y is a  ribbon. But then both Y  and Y  are components of X , which
is pure-dimensional, and  Y  and  Y  have  the  same degree a n d  su p p o r t. Hence
y=

A s a result we have our first description of M(Y), thanks to the well-known
invariance of the deficiency module under liaison (up to shifts a n d  duals), first
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proved by Hartshorne for curves in  P 3 (cf. [32]) and proved m ore generally by
Schenzel and subsequently by others (cf. [35], [28], [7]). F o r  a  graded S-module
M  o f  fin ite  length , w e denote  by  A //' its K -dual. U nder th e  assumptions of
Lemma 2.4, we have the following corollary.

Corollary 2.5.

M (Y )  M (C i U Gi nn + 1 —  d — d.  d i )

(where d i = deg (G1) , d  = deg (Gd ) and d = deg (F1 ) + deg (F2 ) + • • • + deg (F„_,)).

O ur next goal is to  understand this module better in  the  case  where C  is
a n  arithmetically Cohen-Macaulay curve. W e w ill prove:

Theorem 2.6. L e t  C  r  be a smooth arithmetically Cohen-Macaulay curve
and let I  = l c  be  the saturated ideal of  C, with deg (G1 ) deg (G2 ) •  •  •  deg (Gk ).
Let G. an d  Gi  be chosen as  above, w ith d, = deg (GO, d = deg (Ga ). L e t Y  be  a
ribbon supported on C  and let (F 1 , ..., F„_,) be a  regular sequence in  I y  defining
a  com plete intersection w hich is sm ooth  at th e  general p o in t  o f  C . L e t  d  =
E deg (Fi ). Let C . an d  ci  b e  the residuals to C under the complete intersections
(G1, F1 ..... F 2 ) and  (G »  F „ _ 2 )  respectiv ely . C, an d  c; hav e no common
com ponent. L e t X  be the zeroscheme defined by the scheme-theoretic intersection
of C. an d  ci ; the saturated  ideal I o f  X  is  the saturation of  I .  I t .. T h e n

(i) M(Y )v (n + 1 — d — di — di ) M ( C i U Ci )
lc, +

(ii) deg (X ) = p a (C,U cf ) - pa (ci ) - pa (c;) + -1 (where as usual p the arith-
metic genus).

P ro o f . Notice that since Ci a n d  c; are each directly linked to C, and since
the property of being arithmetically Cohen-Macaulay is preserved under liaison,
it follows that M(C i ) = M(C i ) = O . C onsider the exact sequence

0 —> n e + .
Sheafifying and  taking cohomology we get

ic,C) lc,M ( C i  u -0 o (1)
7

Ici
+

so (i) follows immediately from this and  Corollary 2.5.
Recall that M(C, U q ) has fin ite  length . H ence fo r  t  »  0  w e  can  use the

exact sequence (1) to get that

— H(C, U C»  t ) +  H(C,, t) + H(Ci , t) = H(X , t)
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and this last term is exactly deg (X ) .  But for t  »  0, the Hilbert function is equal
to  the H ilbert polynom ial. By a  degree consideration, the coefficients of t  will
cancel ou t, so w e have only to consider the constant te rm s . This says that

Pa(C iU  q )  — pa(ci) — pa(ci ) ± I =  deg (X ) ,

as desired.

Remark 2.7. Recall that if curves C  and  C ' are directly linked in  P" by  a
complete intersection of hypersurfaces of degrees a 1 , a 2 , a n _ ,  with a  = I a 1,
then their degrees and  arithmetic genera are  related by

1
pa (C) — pa (C) = —

2

(a — n — 1)(deg (C') — deg (C)) .

In  o u r case, suppose th a t the  complete intersection defined by (F1 , ,  F „ _ , )  is
sm ooth along all o f  C .  If  w e assume know n the  degree a n d  arithmetic genus
of the original curve C , w e have a form ula for the arithmetic genus o f  Y  (see
§1). H e n c e  u s in g  th e  above formula w e can com pute th e  arithmetic genus of
Ci U Ç and  a lso  that of C i and  Ç , so  w e can  take  deg  (X ) a s  known.

There is one situation in which both parts of Theorem 2.6 take a  very nice
fo rm . That is, we now assume tha t C  is  a  complete intersection in P3 defined
b y  th e  ideal I  = (G 1 , G2 )  a n d  th a t  F  is sm ooth  along C  (hence th e  saturated
ideal I y  i s  o f the  form /,, = (1 2 , F); see Remark 1.6).

Theorem 2.8. L e t C  be the complete intersection in P3 o f  G , an d  G2, with
d, = deg (G,), d 2  = deg (G2 ). L e t F = AG, + BG 2  b e  a  form o f  degree d  which
is smooth along C  and le t Y  be the ribbon with saturated ideal (12 , F). Then

(i) If  d < d 2  then Y  is arithmetically Cohen-Macaulay. Hence from now on
assume that d > d 2 .

(ii) / c , =  (B, G,), jc 2 =  (A, G2 ); that is, both C , and C2 are complete intersec-
tions.

(iii) C , and C2 are disjoint.
S

 ( d d 2 ) .(iv) M(Y)
(A, B, G 1 , G2))

 
—  d ,  —

(y) deg (Y) = 2d 1d2 , p a (Y) = (4 — d)(d 1 d2 ) + 2d 1 d2 (d 1 + d 2  — 4) + 1.

P roo f. First, if F  is a  scalar multiple of G , then a s  above (12 , F) = (G 1 , GI)
and Y is a  complete intersection. Hence it is arithmetically Cohen-M acaulay. If
F = AG, (deg (A ) > 0) then  F  is not smooth everywhere o n  C .  So now  assume
that d = d 2 . Then B  is a  scalar and C , is the em pty curve. H ence Y is linked
by (G1 G2 , F) to  the arithmetically Cohen-Macaulay curve C2, s o  Y is arithmeti-
cally Cohen-Macaulay, as claimed.

So now  w e assume tha t d >  d 2 . As noted above, since F  is smooth along
C , it fo llow s tha t I, =  (11, F). Part (ii) is  a n  easy exercise. For (iii), suppose
tha t C , a n d  C 2 m eet a t a  p o in t P .  Such a  P  lies on  b o th  G , a n d  G2, hence
o n  C .  W e now  show tha t th is  is  impossible.
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Because C  is sm ooth a n d  C  is  the  complete intersection of G , a n d  G2 ,  it
follows that G , and  G2  a r e  n o t tangent a t an y  p o in t . O n  th e  other hand, the
poin ts w here C  a n d  Ci m e e t  (i 1, 2) a re  p o in ts  w here F  and G .  a r e  tan-
gen t. H ence  C , a n d  C 2  cannot m eet a t any  po in t o f C .  Therefore they are
disjoint as claimed.

Part (iv) follows from Theorem 2.6(i) together with the fact that the saturation
of l c ,  +  Ic 2 i s  the  whole ring S. Then use (ii) of the current theorem and the
fact that S/(A, B, G1 , G2 ) is self-dual after a shift of deg (A) + deg (B) + d l  + d 2  —
4. Part (v) is  a n  easy computation using Theorem 1.5.

Remark 2.9. The simplest case where Theorem 2.8 applies is when C  is  a
line, and Y is a  so-called "double line." This situation was studied, for example,
in  [19 ] and  in  [27]. The latter paper, in  particular, described the liaison class
o f a  d o u b le  lin e . The first step, finding the  deficiency module, w as done in  a
much m ore complicated way than what we have done here.

However, one could take a  sim ilar approach from  that starting point and
ask for a description of the set of ribbons in  the  liaison class o f a  given ribbon
Y  supported o n  a  complete in tersection  C . T he f irs t s tep  is  to  note th a t  the
complete intersection (Gf, GI) links Y  to  another ribbon Y ' also supported on
C , a n d  having th e  sam e genus (see Rem ark 2.7). T his is  true  even  if  F  has
singular p o in ts  o n  C ; however, we continue to  restric t ourselves to  the case
where F  is smooth along C so we can apply Theorem 2.8.

B ut are all ribbons in  this liaison class supported o n  C ?  In  [27], it was
shown that as long as deg (A) > 1, any double line in  th e  same liaison class as
Y is supported on the same line as that of Y. Indeed, with our present knowledge
that is not surprising: in  th a t case w e have deg (G1 ) = deg (G2 ) =  1 so w e can
recover the  complete intersection (G 1 , G2 )  from  th e  deficiency module by iden-
tifying the two-dimensional component of degree one in the complete intersection
(A, B, G1 , G2 )  defining the module.

However, now we a re  expanding our search for any  ribbon in the liaison
class. O ur obse rva tion  is that this problem  does not have as simple a solution
now , even if  w e w ere to restrict ourselves to ribbons supported o n  complete
intersections. Indeed, one  h as  o n ly  to  observe th a t  the  un ion  C, U C2 is also
linked, via the complete intersection (AB, F), to  a  ribbon supported on the com-
plete intersection (A, B).

A nd in  fac t, th is is no t surprising  from  a  study o f  th e  m o d u le . Indeed,
we have the relation deg (A) + deg (G1 ) = deg (B) + deg (G2 ), bu t there is nothing
there that distinguishes the complete intersection (G 1 , G2 ). In  fa c t , n o te  tha t the
union of complete intersection curves given by (A, Gi )n(B , G2 )  (for example) has
the  same module, so by Rao's theorem  ([32]) it is in  th e  same liaison class.

A lthough Theorem  2.8 is th e  "cleanest" result i n  th is  section, something
similar can be done for any smooth arithmetically Cohen-Macaulay curve when
F  is  sm ooth . (W e a lso  w ant to  assume th a t C  a n d  C ' meet transversally; this
can be done by taking G 1 a n d  G2 of larger degree if necessary.) The point is
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that in  order to hope to get a  handle on the deficiency module it is necessary
to first describe X  exactly. W e illustrate the idea with a simple example.

Example 2 .1 0 .  L et C  b e  a  twisted cubic curve in  P 3 a n d  le t  F  b e  a
sufficiently general surface of degree d  which is smooth in  a  neighborhood of
C .  Consider the ribbon Y with saturated ideal (12 , F). Let G , and G2 be general
elements of I  of degree 2. Then (G1 , G2 ) links C to a line C ' meeting C transver-
sa lly  i n  tw o distinct points P ,  and P 2 . A ls o ,  (G1 , F) and (G2 , F) link C  to
arithmetically Cohen-Macaulay curves C , and  C2 respectively, both o f degree
2d — 3 and arithmetic genus (d — 2)(d — 3). Also, (G1 G2 , F) links Y  to  C, U C2
as above.

Hence Theorem 2.6 applies (with d, = d 2 = 2) and we know that the de-
ficiency module of Y is K-dual to

Ix
+ 1c2

(after shifting). But what is X ?  Observe that G , and G2 are each smooth along
C, and they are transverse along C  except at the two points where C  meets the
line C', where they are tangent. Hence by generality, F  is not tangent to both
G , and G2 anywhere on C .  It follows as above that C , and C2 meet only away
from C .  So  C, (1 C2 is precisely the intersection of the three surfaces G1 ,  G2
and F  away from C , i.e . it is the intersection of F  with the line C ', away from
the points P , and P2 . H e n c e  X  is a set of d — 2 points on a line (and thus a
complete intersection with two of its generators being linear).

For instance, if d = 2 then Ix  = S, C 1 U C2 is a set of skew lines, and M(Y)
K(— d) (where K is  the base field). If d = 3 then Y is linked to the union C, U C2
of two twisted cubics meeting in one point. The deficiency module is  3-dimen-
sional in  each of degrees 1 and 2. (Compare with [26], where the liaison class
of a smooth rational sextic curve, whose deficiency module has the same dimen-
sion in the same degrees a s  C1 U C2, is studied.)

3. Bounds on the regularity

Recall that, given a  coherent sheaf <*-7 o n  I " ,  the Castelnuovo-Mumford
regularity reg (97 ) is the smallest integer r with H t (P", .F(k —  i)) = 0 for a ll k  > r
and i > O. O n the other hand, given an  ideal I  in  S  (or more generally any
S-module), the regularity reg (I) is the smallest integer r with Tor i (I, K)1+  = 0 for
all j >  r. Given an ideal I  in  S , with corresponding ideal sheaf 5  on P", there
is an equality (compare [8])

reg (I) = max {reg (5), n(/)}

where n(/), the saturation degree, is the smallest integer where I  and its saturation
agree in all degrees > r. In this section, we will give a  bound on the regularity
of the ideal sheaf o f  a  rope in  P " . W e start w ith an  algebraic result, whose
proof is similar to that of Theorem 2.6 of [15].
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L em m a 3.1 . L e t  J  S  be an  ideal with dim (S /J)= 1, w here dim stands for
the K rull dim ension, and let JI" 1 denote  the  saturation  o f  J"• Given an  ideal K
with J" K  c  J 1"1,, there is an  inequality

reg (K) n -  reg (J).

P ro o f . Throughout the proof, we will denote by L a  linear form in S  which
is a non-zero divisor in  S /Jm . (T h is  implies that the multiplication b y  L  is  an
injection (S/K); —>(S/K); + ,  for all j  big enough, as the saturation of K  i s  P I ) .  I t
follows from [2], Theorem 1.10, that reg (K ) is  the  smallest integer j  such that
the multiplication b y  L  induces an surjection (S/K); _, ( S / K ) ;  a n d  a n  isomor-
phism (S/K); —>(S/K); „.i .

CLAIM A :  F o r  j  >  n•reg (J), the multiplication b y  L  induces a surjection
(S/Jn)i _i  — >(S/J".

We will prove CLAIM A  by  induction on n, the case n = 1 being trivial (the
proof goes as the  proof o f Lemma 2.3 in  [1 5 ]) . L e t F  be  a n  element of Si ;  as
j  > reg (J), we can write F = LF' + G, with F' in S i _ , and  G in We can write
G = EF i Gi w here  th e  F i a re  m in im al generators o f J. In particular, w e have
that deg  (G )  (n  —  1) reg (J) , a n d  hence, by the induction hypothesis, each G.
can be put in  the  form LG; + H i , where H i i s  in  J" - l . Putting all this together
yields an expression of the form F = LF" + G', w ith G ' in  J", which is precisely
what is needed to establish CLAIM A.

CLAIM B: For j  >  n•reg (J), the multiplication b y  L  induces an injection
(S/Jn)i  ( S / Jn ) i + i .

The proof of CLAIM B is similar to the  proof of Theorem 2.6 in [15], but
w e w ill sketch it  h e re  fo r  th e  convenience o f  th e  re a d e r . T h e  proof goes by
induction on n, the case n = 1  being again trivial. L e t  F  be in  Si  such  tha t LF
is in J"; we want to show that F itself must be in J". By the induction hypothesis,
F is in Jn - 1 , and so we can write F = EF i H i , where the Fi are minimal generators
for Jn - l • O n the  other hand , as LF is  in  J", we can write LF = EF i Gi where
the G. a r e  in  J. Thus, w e obtain the following relation amongst the  Fi ,

E (LHi — Gi )Fi = 0.

In  other words, if  we consider the free S-m odule F with basis elements ei

corresponding to the m inim al generators Fi o f  J" - 1 ,  w e have th a t the  element
E (LHi — Gi )e, is  a syzygy; we can thus write this syzygy in  the  form E k ,i Pk ak i ei

where the elements E i a ,e i are m inim al generators for the module of syzygies.
By the induction hypothesis and  CLAIM A, reg ( J n - 1

)  (n — 1) reg (J). This
implies, after a short computation, that w e have deg (P; ) > reg (J). We can thus
write Pi  =  LQi  + G; w ith  G.;  in  J.

Fixing i  we get

L(H, — E ai i Q; ) = G i + E ai1 G1 E J.
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A s the  degree o f  H i —  E ai ,Q , is reg (J), w e deduce that H ii s
also in  J,  and  w e have that

F  =  E Hi Fi = (H i —  ai i Qi ) F i

is  in  Jr' which proves CLAIM B.
To conclude th e  proof o f  Lemma 3.1, given j > n• reg (J), we consider the

following diagram, w here all the vertical m aps denote the multiplication b y  L,
and  where the horizontal m aps are  the  obvious surjections:

(s/r ) ; _i - (S/K)1 _, (S/JEn)_i

  

a'

(SIK); ( S I J E n 1 ) ;

IR'
- (S/K)i + i ( S I J I n I ) j + 1

By CLAIMS A  and B, we know that a  is onto and that fl is an isom orphism . An
obvious diagram chasing (using the fact that for large j ,  all the horizontal maps
are isomorphisms) shows that a ' is injective and that /3' is an isom orphism . This
proves Lemma 3.1.

A n interesting consequence of Lemma 3.1 is  the  following proposition.

Proposition 3.2. Let 5  b e  the ideal sheaf o f  a  1-dimensional subscheme of
P"• Then  there is  an  inequality

reg (.f " ) n• reg (5) .

P ro o f .  L et I  b e  the  saturated ideal in  S  corresponding to the  ideal sheaf
I ,  and let P I deno te  the saturation of the ideal In. (N ote  tha t if I  is  the ideal
of a local complete intersection curve, then PI is the n-th symbolic pow er). We
have equalities

reg (5 ) =  reg (I) a n d  re g  (5 " ) =  reg (P I) .

L et L  b e  a  linear form  in  S , n o n  ze ro  divisor in  S// 1"1. W e have  then
equalities

regs  (I) = reg,/,  ((I, L )/L ) a n d  regs  (P I)  = reg, /,  (gin ] , L)/L) .

D enote by J  the  ideal (I, L )/ L . W e have then the inclusions

JnL ) / L J1n1 .

The theorem follows now from Lemma 3.1.
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Remark 3 .3 .  The bounds in Proposition 3.2 and Lemma 3.1 are sometimes
sharp: consider any ideal / w ith  a  linear resolution; we have then  a n  obvious
inequality reg (/n) > n • reg (/), which shows that L em m a 3.1  c a n  b e  sharp; the
case  of a  curve with a  linear resolution, and  whose powers a re  saturated (such
as the  twisted cubic in  P 3 ) shows th a t Proposition 3.2 can  a lso  be  sharp.

W e can also have sharpness in the case of a non linear resolution, as shown
in  th e  following example. Consider 2 3  general p o in ts  in  P2 ,  w ith  ideal /  in
S = k [x , y, z]. As the points are general, we have that reg (/ ) =  7 . As the mini-
mal resolution conjecture is true for points in P2 [1 6 ] , [2 3 ] , w e know  that / is
generated by forms of degree 6 (as 3 .dimk (/6 ) d i m k (17 )). A necessary condition
fo r /2  to  b e  1 3 -re g u la r  is  to  have  an  equality dim k (S//2 )1 3  =  69, since this is
the multiplicity of the corresponding scheme. On the other hand, by [21] Propo-
sition 3.6.1, w e know  tha t dim k (S//2 )"  =  7 0 .  Hence, Lemma 3.1  is  sh a rp  in
tha t c a se . A s  23 general points in  P2 a r e  th e  hyperplane section of a  smooth
arithmetically Cohen-Macaulay curve in  P 3 [ 6 ] ,  and  as the  square  o f the  ideal
o f  an  arithmetically Cohen-Macaulay curve in  P 3 is  sa tu ra ted  b y  [31 ], we can
also  obta in  a n  example where Proposition 3 .2  is  sh a rp  in  th e  ca se  o f  a  n o n
linear resolution.

O n the  other hand, Theorem 1 of [3 6 ] and Proposition 1 of [4 ]  show that
our bounds a re  n o t sh a rp  in  the  case  w here all th e  generators a re  in  degree
m uch lower than the  regularity (in many complete intersections, for instance).

Compare also [3 4 ], where related questions are studied.

Consider now, after these algebraic preliminaries, a  sm ooth and  irreducible
curve C  in  P" w ith saturated ideal / , a n d  corresponding  ideal sheaf J. W e
w a n t to  use Proposition 3 .2  to  g ive  a  bound  o n  th e  regularity o f  a  ro p e  Y,
in  P", supported o n  C .  Recall that such a  Y  can alw ays be obtained by re-
moving possible embedded points to  a  scheme defined by a n  ideal o f the  form
(12 , F1 , F k )  where th e  Fi a r e  a  regular sequence in  /, such  tha t the  singular
locus of the complete intersection they define, does not contain the curve C .  Our
approach w ill be to  first find a  bound o n  th e  regularity o f  such schemes, and
then to show that the regularity cannot increase by removing embedded points.

Recall that for a  curve C , we define the index of speciality to be the integer
e(C) = max It E Z1112 (.5c (t)) 0 1 .  Note that e(C) reg (5 ,)  — 3  so we could also
w rite  th e  following results i n  term s o f  reg  (5 ,) instead o f  e ( C ) .  T his would,
however, give weaker statements.

Proposition 3.4. L e t I  b e  the  ideal o f  a  smooth and  irreducible curve C  in
P  an d  le t  ,9" be  the corresponding sheaf o f  ideals. L et F1 , ,  F ,  be a  regular
sequence of  form s in I  o f  degree d 1 , d k  respectiv ely . A ssume that C  is not
contained in  th e  singular lo c u s  o f  th e  com plete intersection X  def ined by  the
Fi . Denote by  Y  the schem e def ined by  the  ideal (12 , F1 , F k ). There is then
an  inequality

reg max 12 reg (f ), e(C) + d i + 2 , d i  + • • • + dk — (k 1)1
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In the discussion that follows, we wish to emphasize the case of ribbons supported
on curves in P3 , as the results take a simpler form in this context. Hence before
proving Proposition 3.4, we will state a s  a  corollary what happens in P3 .

Corollary 3 .5 .  L e t I  b e  the  ideal o f  a  sm ooth and  irreducible curve in  P3

and le t f  be  the corresponding sheaf  o f  ideals. L e t F  be  a  f orm  o f  degree d
w hich does not contain C  in  its singular locus. T here is an  inequality

reg ((/ 27 F ) )  max {2 reg (5), e(C) + d + 2} .

Proof  of  Proposition 3.4. We start with the following elementary observa-
tion, which we will use tacitly throughout the argument: given a short exact
sequence of sheaves on Pn,

o — > '  — > — > "  - - >  o,
there is an  inequality

reg (..°7") max {reg (F), s(F») — 1}

where s(g7 ') denotes the smallest integer r  with H i (Pn, — i)) = 0 for all k r
and i > 2. This follows at once by looking at the long exact sequence induced
in  cohomology.

Consider the exact sequence

0 —> /2 n (Fi , , Fk ) —> 12  0  (F ,, F,)-+ (1 2 , F,)—> 0 .

Sheafifying this sequence, we obtain a  first inequality

reg (S i ) max {reg (5 2 ), reg (f , ) ,  s(f) — 1}

where f  denotes the sheafification of the ideal 12 CI (F1 , , F,).
As the Fi form  a  regular sequence, we have

reg ( i x ) = d, + • • • + — (k — 1) .

Next, we can use the sheafification of the exact sequence of Corollary 1.3

0 —> 0( — d1 — • • • — dk ) —> • • • —> e  f(—  di ) —* f —* 0 ,

and obtain the following inequality:

s ( f )  max {s(5) + di , d i  + • • + d, — (k — l)} .

W e have that s(J) —  3 is  ju st the index of speciality e (C ) and hence the two
inequalities above give u s a  new inequality

reg (5,,) max {reg (5 2 ), e(C) + di + 2, d, + • • • + d, — (k — 1)} .

Proposition 3 .4  follows now from th e  inequality reg (5 2 ) < 2 • reg (5 )  of
Proposition 3.2.

Example 3.6. Let / be the homogeneous ideal of a twisted cubic curve, C,
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in P ' .  Let f ic  be the associated ideal sheaf. It is easy to check that e(C) = — 1.
Pick a  form F E I such that the associated hypersurface is smooth along C .  Let
D  be the  scheme defined by (/2 , F) and le t J D  be the associated ideal sheaf. If
F  has degree 2 then J D  has regularity 4. If  F  has degree d > 2 then J D  has
regularity d  + 1 .  This shows that Proposition 3.4 and Corollary 3.5 are in some
instances sharp, and that th e  sharpness can be achieved by either o f  th e  two
possibilities for the max.

We can now state and prove our bound on the regularity of a rope in P".

Theorem 3 .7 .  L e t C  b e  a  smooth and irreducible curve in  P " w ith ideal I
and ideal sheaf  5 and let Y  be an (n —  k)-rope on C. L et F 1 , be a regular
sequence of  f orm s o f  degree d . I .  A ssume that C  is  no t con tained  in the
singular locus of  the complete intersection def ined by  the Fi . T here is then an
inequality

reg (J )  m a x  {2 reg (J), e(C) + d, + 2, dl + • • + d, — (k — 1)}.

We also state the  corresponding result for ribbons in  P3 .

Corollary 3.8. L e t C  be  a  smooth and irreducible curve in  P 3 w ith  ideal I
and  ideal sheaf  5  an d  le t Y  be  a  ribbon o n  C .  L e t  d  b e  the  smallest degree
such the ideal o f  Y  contains a f o rm  F o f  degree d  w hich does not contain C in
its singular locus. Then

reg (S r ) max {2 reg (5), e(C) + d + 2} .

Proof  o f  Theorem 3.7. Let F 1. . . . . F k  b e  a s  in  th e  statement of Theorem
3.7. By Corollary 1.7, we have that Y can be obtained by removing possible
embedded points from the  scheme defined by the ideal (12 , F1 , F k ). Theorem
3.7 follows now from Proposition 3.4 together with Lemma 3.9 below.

Lemma 3 .9 .  Let Y ' b e  a 1-dimensional subscheme of  P" (possibly with em-
bedded o r isolated points). L e t  Y  be the union of  the top-dimensional components
o f  Y '.  Then

reg (Y) reg (Y') .

Pro o f . Consider a  primary decomposition of /r , and collect terms if neces-
sary so that I.  = /y f l J where J  is  a  saturated ideal whose associated primes
a l l  have height n. L e t Z  b e  th e  zeroscheme defined by J ,  so  J  = I  ( J  is
saturated).

L e t Z ' b e  th e  scheme defined by th e  ideal I, + I .  N o t e  that Z ' i s  a
0-dimensional subscheme of Pn w ith  Z ' c  Z .  The exact sequence of S-modules

o l y n i y l y  +  1

induces an exact sequence of sheaves

0 fir ,fiy 0 .fiz , f i z , —■ 0. (*)
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We will show that
a) 11'(P, J( ( ) )  = 0 implies 111 ( P ,  f y (t)) = 0 for every t  and
b) H 2 (P", f ( t ) )  =  0 implies H 2 (P", f ( t ) )  = 0 for every t,

and this will prove Lemma 3.9.
Using the long exact cohomology sequence induced from the exact sequence

(*) we get

H 2 (Pn, f(t)) — > H 2 (P , .iy (t)) H 2 (Pn, f ( t ) )  1 / 2 (P ,  f (t ) )  -

Since both Z  and  Z ' are  0 dimensional, we get a surjection

H 2 (P ,, J r (t)) —> H2 (P", f(t)) —* 0

which establishes CLAIM b).
Consider now the exact sequence

H i  (Pm, .5-
1,40) 1/1 (13 ", f(t)) (P", .5 ( t ) ) •-f z ( t ) )  •

Since Z ' is  a  subscheme of Z , we have an exact sequence of sheaves

0 —+ Jorz  — 4
z • f z . — >0

where f z -i z  is supported o n  Z .  T his in  turn induces the exact sequence

111 (P", Jtz (t))—  H' (P", JAW -4 O .

This exact sequence, together with the exact sequence (**), establishes CLAIM a):
if 11'(P", ,sfy ,(t)) = 0, we get an injection

0 -4 (P", .f(t)) C.) 11 1 (P", .-f ( t ) ) 11'(P", '-fz#1)

which can only occur if 1-11 (P", .f(t)) = O.

Remark 3.10. Lemma 3.9 a n d  its proof rem ain valid i f  w e replace Y'
b y an y  positive dimensional subscheme o f  P " with embedded components of
dimensions at most 0.

Remark 3.11. L e t  C  b e  a  smooth curve i n  P "  a n d  Y  a n  (n — 1)-rope
supported o n  C .  I f  there exists a  hypersurface containing Y  which is smooth
along C  then we can bound th e  regularity o f  .fy i n  terms o f  th e  regularity
of f c , the degree and genus of C, and the genus o f Y. Let d  denote the degree
of the  above mentioned hypersurface, Gc  t h e  genus o f  C, D c  t h e  degree o f  C,
and Gy  th e  genus o f  Y. B y T heorem  1.5 and Corollary 1.10, Gy  = (n + 1 — d)•
Dc  (n + 1) • (Gc  —  1) ± 1 so d = n + 1 + ((n + 1)• G c  — Gy  —  n)/D. Use Theorem
3.7 to obtain reg (Jr)  {2 reg (Jc ), e(C) + d + max {2 reg (5 c ), e(C) + n +
3 + ((n + 1)Gc  — Gy  — n )/ D }. If we note that e(C) reg (.54c ) — 3 and reg ( lc ) <
Dc  — n + 2 [18] then we obtain



< max {2Dc  — 2n + 4, Dc  + 1 +
(n + 1)Gc  — Gy — n}
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(n + 1)Gc  — Gy — n}reg f y m a x  {2 reg (5c ), e(C)+ n + 3 +
Dc

< max {2 reg (S
c

c ), reg (.54
(n + 1)G — — n}

c ) + n +
Pc

(The last inequality comes from the m ain theorem of [18].)
Furthermore, let C be a  smooth curve in P" and Y an (n — k)-rope supported

on C .  Assume that there exists a  regular sequence F1 . ..., F„ defining a complete
intersection scheme which contains Y  and  is sm ooth  along C .  O rder F1 , ...,
Fk such that deg (F1 ) > • • • deg (Fk ). If  deg (F1) + deg (F2 ) > 2 reg (Se ) + 1 and
deg (F2 ) > reg ( S e )  then from  Theorem  1.5, Corollary 1.10, and  Theorem 3.7 we
conclude that

r e g  (A )  ( n  +  2  —  k ) ( 1  +
G

c
 —1'  G y —1
Dc  D c  •

Remark 3 .1 2 . A s we mentioned before, the  bounds given in  Theorem 3.7
are sometimes sh a rp . O n  th e  other hand, we would now like to give an example
of an obvious situation where the bounds have no chance of being sharp . This
w ill happen because Proposition 3.2 is  n o t  sh a rp , in  th e  c a se  o f  a  b ig  gap
between the largest degree of a minimal generator of 1 and  the  regularity of 5
(compare Remark 3.3).

L et C  P3 b e  a  smooth complete intersection of surfaces of degree a  and
b, with a < b. Let / = /c  b e  the homogeneous ideal o f C .  L et Y  be a  ribbon
defined (up to embedded points) b y  the  ideal (12 , F). N o te  th a t  reg (/) = a +
b — 1. A minimal free resolution for /2 is

0 —)S( — 2a — b)(:)S(—a — 2b)—+S(-2a)()S(—a — b)( -)  S ( -2 b )  1 2 —> 0

(cf. [31]), hence reg (5 2 ) = 2b + a — 1 . So already there is a  gap and for small
d  Theorem 3.7 has no chance to  b e  sha rp . In  fac t, under the  assumption that
d = b + 1, one can check th a t reg (S r ) = reg (5 2 ) = reg (J) + b.

W e w ould also like to poin t ou t that it w ould be nice to  derive a  bound
o n  th e  degree di in  t h e  statement o f Theorem 3.7, say  in  term s o f  th e  genus
and degree of the curve and  the  rope.

Example 3 .13 . W e give a n  easy example o f  Lemma 3.9. L e t Y ' b e  the
scheme in P 3 defined by / = (w, x2 , xy). Y' is a  line with an embedded p o in t. I f
we remove th e  embedded po in t then  w e  ge t th e  lin e  Y  defined by th e  ideal
/y = (w, x). It is  easy  to  check tha t the  regularity of the  ideal sheaf o f Y ' is  2
and the  regularity o f the  ideal sheaf o f Y  is  I.
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