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Ropes in projective space
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Juan C. MIGLIORE, Chris PETERSON and Yves PITTELOUD

Let C be a degree d non-degenerate integral curve in P". In 1983, a remark-
able paper of L. Gruson, R. Lazarsfeld, and C. Peskine showed, among other
results, that C must be (d + 2 — r)-regular [18]. Such a theorem bounding the
regularity in terms of d and r alone is not possible for non-reduced schemes. By
considering the genus as well as the degree, Gotzmann was able to obtain bounds
for the regularity of an arbitrary nonreduced one-dimensional scheme [17]. If
no conditions are placed on the genus, one can construct non-degenerate locally
Cohen-Macaulay schemes of degree two with arbitrarily high regularity. In gen-
eral, one can construct multiplicity two structures on any curve such that the
homogeneous ideal has generators in arbitrarily high degree. Multiplicity two
structures on the line are called double lines and they provide us with our first
example of a ribbon.

In 1986, the first author showed that double lines and their deficiency
modules exhibit a form of extremal behavior with respect to liaison [27]. In
1993, M. Martin-Deschamps and D. Perrin obtained several nice bounds on the
Hartshorne-Rao (or deficiency) module for an arbitrary 1-dimensional locally
Cohen-Macaulay scheme [24]. Double lines exhibit extremal behavior with re-
spect to these bounds as well. Multiplicity two structures arise naturally in
questions concerning self-linkage. Rao was able to utilize this fact to obtain
restrictions on the cohomology of rank two vector bundles on P*. Here we see
that for questions concerning both regularity and liaison, relatively simple non-
reduced schemes can provide us with quite interesting behavior.

Let C be a smooth and irreducible curve in P" with homogeneous ideal
I, and let Y be a subscheme of P" with ideal J. We will call Y an a-rope
on C if the ideal J satisfies I?cJ <l and Y is a locally Cohen-Macaulay
multiplicity o structure on C. (A general definition of a rope can be found
for instance in Chandler’s thesis, cf. [5], but it is straightforward to check
that this general definition coincides with the one given above in the case of
a smooth and irreducible curve, when everything is embedded in P".) A 2-rope
is called a ribbon.

In this paper we are interested in certain aspects of the study of ribbons
and ropes. Ferrand showed that on any smooth integral curve, there exists
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a ribbon which is subcanonical [13]. As mentioned before, Rao was able to
apply complete intersection ribbons to questions concerning the cohomology of
rank 2 vector bundles in P* [33]. Fundamental work on the scheme structure
of a ribbon was carried out by Bayer and Eisenbud in [1]. Recent work on
ribbons by Eisenbud and Harris has led to improve bounds on the degree of
sub-linebundles of the normal bundle of non-degenerate integral curves in P’
[9]. Similar questions were studied for ropes by Chandler [5]. Fong was able
to give some results relating ribbons to the degeneration of smooth curves [14].
Ribbons and ropes certainly merit further study! In this paper, we focus on
questions concerning the regularity and deficiency modules of these non-reduced
objects.

In the first section we include background information and first results.
Beginning with a smooth irreducible curve, C, in P" with homogeneous ideal I,
we choose a regular sequence, F,, ..., F,, in such a way that the ideal T =
(Fy, ..., F,) satisfies T < I and the scheme defined by T is smooth at the general
point of C. This allows for the construction of a particular exact sequence.
Using a result of Chandler, one can compute the genus of the scheme defined
by I? in terms of the degree and genus of C. By combining the aforementioned
genus calculation and exact sequence with two other exact sequences we compute
the Hilbert polynomial of (12, T). Using this result we determine

Corollary 0.1. Let C be a smooth irreducible curve with homogeneous ideal
I in P".  Every (n — k)-rope supported on C is defined, up to embedded points, by
an ideal of the form (I*, Fy,..., F,) where F,, ..., F, form a regular sequence.

This leaves open the possibility of two separate families of ropes. The
first family would consist of ropes that can be defined by ideals of the form
(I?, F, ..., F,) without having to remove embedded points. The second family
would consist of ropes which can not be defined in this way. We show that
each family is non-empty. A natural path of investigation is to find other ways
to distinguish between the two families. By showing that the embedded points
of the scheme defined by (I2, F,, ..., F,) occur precisely at the singularities of the
scheme defined by (F,..., F,) along C we determine

Corollary 0.2. Let C be a smooth irreducible curve with homogeneous ideal
I in P". Let J be the homogeneous ideal of an (n — k)-rope supported on C. J
is the saturation of an ideal of the form (I*, F,,..., F,) if and only if there exists
a regular sequence (G, ..., G,) in J such that the corresponding scheme is smooth
along C.

Associated to any locally Cohen-Macaulay curve, Y, in P" is a finite
length graded module M(Y) = @), H'(P", #(k)) over the polynomial ring S =
K[Xg,---, X,]- In the context of liaison, M(Y) is often called the deficiency or
Hartshorne-Rao module of Y. The second section is concerned with the study
of the deficiency module of a ribbon in P". Let J be the homogeneous ideal
of a ribbon supported on an arithmetically Cohen-Macaulay curve C in P? where
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C is not a complete intersection. If J contains an element which is smooth
along C then a short argument shows that J has non-trivial deficiency mod-
ule. With more work we arrive at the main theorem of section two which
describes the deficiency module of a ribbon supported on an arithmetically Cohen-
Macaulay curve, C, in P". In the special case where C is a complete intersection
in P3, we get a very clean and precise description.

Theorem 0.3. Let C be a complete intersection in P3 with ideal I = (G,, G,).
Let F = AG, + BG, be smooth along C. Let Y be the ribbon defined by (I*, F). If
deg (A)-deg (B) =0 then M(Y)=0. Otherwise

(deg (F) — deg (G,G,)) .

S
M(Y) = <(A, B, GI,T2)>

This provides a natural generalization to the case of the deficiency module
of a double line in P3 [27]. Natural questions arise as to when such ribbons
are linked to one another or to other ribbons; this second question appears to
be rather hard in general.

Given a coherent sheaf # on P, the regularity of &, reg (#), is the smallest
integer r with H'(P", #(k —i)) =0 for all k>r and i > 0. We denote by e(C)
the index of speciality of C; that is, e(C) = max {te Z|h*(S(t)) #0}. In the
third section we bound the regularity of the ideal sheaf of ropes in P". We
first show that if .# is the ideal sheaf of a one-dimensional scheme in P" then
reg (#£") < n-reg(#). If Y' is a one-dimensional subscheme of P" then we let Y
denote the union of the top dimensional components of Y. We show that
reg (Y) <reg(Y’). In the first section, every rope on a curve C is shown to be
obtained by taking the union of the top dimensional components of an ideal of
the form (I, F,,..., F,). Combining all of this, we obtain the main result of
section three.

Theorem 04. Let C be a smooth irreducible curve in P" with homogeneous
ideal I and ideal sheaf #.. Let Y be an (n — k)-rope on C with homogeneous
ideal 1y and ideal sheaf #,. Let F,, ..., F, be a regular sequence in I, such
that the scheme defined by (Fy, ..., F,) is smooth at the general point of C. Let
d; denote the degree of F,. Then we have an inequality reg (#y) < max {2 reg (),
e(C)+d;+2,d,+ - +d.— (k— 1}

For ribbons in P* we get a simpler statement.

Corollary 0.5. Let C be a smooth irreducible curve in P3 with homogeneous
ideal 1. and ideal sheaf J.. Let Y be a ribbon on C with homogeneous ideal I,
and ideal sheaf #,. Let d be the smallest degree such that there exists an F € I,
smooth at the general point of C. Then reg () < max {2 reg (S), e(C) + d + 2}.

In the special case where the ribbon lies on a smooth surface, this bound
on the regularity can be written in terms of the regularity of C, the genus of
C, and the degree and genus of the ribbon. We further note that by the result
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of [18], we can then write this bound purely in terms of the genus of C and
the degree and genus of the ribbon.

We would like to thank the referee for a tremendously careful job of
proofreading this paper. The referee made several useful suggestions which were
implemented and we feel this has improved the overall quality and consistency of
the paper.

1. Background and first results

Throughout the paper, S will denote the polynomial ring K[X,,..., X,],
where K is an algebraically closed field of characteristic zero. If we start with
a gp-primary ideal I then the ideal I? might fail to be g-primary. However,
the highest dimensional component in a primary decomposition of I? will be
g@-primary. In fact, the highest dimensional components in any two primary
decompositions of 12 will agree. This well-defined component is known as the
symbolic square of I and is given the special symbol I'®. More generally we
can define the symbolic n™ power, I, of I as the unique g-primary component
in a primary decomposition of I". If I is the ideal of a reduced curve, C, in
P" then I™ defines a locally Cohen-Macaulay scheme supported on C. It is a
somewhat surprising fact that for such an I, I” can be readily computed via
the formula I™ = annihilator (Ext""!(I", S)) [11]. This has been implemented as
a script in the computer algebra system Macaulay [3]. Unless otherwise stated,
in what follows we will assume I is a prime ideal defining a smooth curve C
in P". For such an ideal, I = I" (where I" denotes the saturation of I"). This
means essentially that I" picks up no non-irrelevant embedded primes. According
to Zariski’s main lemma on holomorphic functions (cf. [10], [37]), I™ is the
largest ideal all of whose elements vanish to order at least n on C.

We are interested in finding an expression for the Hilbert polynomial of an
ideal of the form (I% F,, F,, ..., F,). We will assume that F,, F,, ..., F, form
a regular sequence in I and that the scheme defined by (Fy,..., F) is smooth
at the general point of C. We proceed via several lemmata. Our first lemma
enables us to give several formulations to the same problem. This will prove
useful both for explicit computations and for future insight. The second lemma
sets the stage for a key exact sequence. The third lemma provides us with the
final ingredient necessary for our calculation.

Lemma 1.1. Let @ be the homogeneous ideal of an irreducible variety X in
P". Let F,, ..., F, be a regular sequence in ¢ and denote by Y the complete
intersection defined by the F,. The following are equivalent:

a) Y is smooth at a general point of X.

b) the local ring S,/(Fy,..., F,)S,, is regular.

) Fi¢p? F¢(phF)Y, ..., K@ Fi,....F_)".
Where the “1V” denotes the g-primary component of the corresponding ideal.

Proof. We have that Y is smooth at the general point of X if and only
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if the k x k-minors of the Jacobian matrix (0/0x;Fj) do not all vanish identically
on X. This is the case if and only if these minors are not all contained in the
ideal . By the Jacobian criterion for smoothness (cf. [25] Theorem 30.3), this
occurs if and only if the ring S,/(F,, ..., F,)S,, is regular (as the ground field is
algebraically closed). This establishes the equivalence between a) and b).

The ring S,, is a regular local ring, hence condition b) is equivalent to the
fact that the F,, ..., F, are part of a regular system of parameters of the maximal
ideal @S, of S, [25] (we write F; for the image of F; in S,). This, in turn, is
equivalent to the following condition:

F1¢502Sg.)’ F2¢(502’ FZ)SAJ’ AR Fk¢(6027 Fla”"Fk—l)Sp .

Now to conclude the proof, use the fact that given an ideal J with a primary
decomposition J = QNQ,N---NQ,, where Q is g-primary and g is not an em-
bedded prime, one has the equality Q = JS,NS.

Lemma 1.2. Let I be the ideal of a smooth irreducible curve in P". Let
F,, ..., F, be a regular sequence in I, such that the complete intersection defined
by the F, is smooth at the general point of C. Let d; = deg (F;). Then the map

@I(—d) > PN(F,, ..., F)
that sends (Gy,...,G) to Y. G;F; is a surjection.

Proof. The given map is certainly well defined. We will show that if G,
..., G, are forms such that Y GF; e I% then each of the G; has to be in I, and
this will establish Lemma 1.2. Let P be a general point of C. We can differen-
tiate the relation

Y GFel?
and evaluate the differentiated expression at P. For each j, we obtain

0 =Y. 6/0x,G(P)F{(P) + G{P)0/dx;F(P) = ¥, G{(P)3/0x;F(P).

The first equality follows from the expression being an element of I?. The
second equality follows from the F, being elements of I. Now, as the complete
intersection defined by the F; is smooth at P, we have that the rank of the
matrix (0/0x;Fy(P)) is k. This implies that the only solution to the system
(3.:0/0x;F(P)G(P) =0, j =0,...,n) is the zero solution. In other words, we have
G,(P) =0 for each i. As this is true for a general point of C, this implies that
G; eI for each i. This concludes the proof of Lemma 1.2.

Corollary 1.3. Let T =(F,, F,,..., F,). We have an exact sequence

0— /\h(@is(_di)) - /\k_1 (@i S(—=d))—-— /\2 (@is(_di))

S@E(—d)->1*’NT-0.
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Proof. Note that the image of ¢ is in (), I(—d;); then look at the Koszul
relations on the map from @;I(—d;) to I’°NT.

Let Y be a nonsingular subvariety of a nonsingular variety X. Let .# denote
the ideal sheaf of Y in X. Recall that the normal sheaf A7, of Y in X
is defined by Ayyx = Hom, (F/I% Ox). Nyy is a locally free sheaf on Y. If
Y = C is a smooth irreducible curve and X = P" then A¢,p. will be locally free
of rank n — 1. Let J be the homogeneous ideal of a locally Cohen-Macaulay
scheme, D, supported on C. If J satisfies > = J = [ then D is the embedding
of a rope on C. If the degree of D is a times the degree of C then D is the
embedding of an a-rope on C. Associated with any a-rope on C embedded in
P" is a rank o — | locally free subsheaf, E, of A¢p.. In the special case a =2
we call D a ribbon on C. In the thesis of Chandler [S] we find an expression
relating the genus of this a-rope to the genus of the underlying curve and the
degree and rank of E. The scheme defined by I? is an n-rope on C corresponding
to E = A p.. This formula allows us to determine the genus of the scheme
defined by I

Lemma 14. Let C be a smooth curve in P" with homongeneous ideal I,
degree deg(C) and genus g. The genus of the scheme defined by I* is G =
(n+1)(deg(C)+g—1)+g.

Proof. From [5] the genus of the scheme defined by I? is G=
degree (A ¢pn) — n-(1 —g) + 1. Letting w. denote the canonical sheaf of C, we
have we = wpn ® /"' A¢pn [20]. Considering degrees of both sides we get
2g — 2 = degree (A¢p) — (n + 1)-deg (C). We rewrite this expression to obtain
degree (A pn) = 29 — 2 + (n + 1)-deg (C). Plug degree (A¢,p») into the above ex-
pression for G to yield the desired result.

Again assume that [ is a prime ideal defining a smooth curve C in P". As
mentioned above, we are interested in schemes defined by ideals of the form
(I?, F,, F,,..., F). The F, are chosen as in Lemma 1.2. One would expect that
for “small” k such an expression would lead to a nonreduced scheme supported
on C. This becomes more clear when one considers that I < (I%, F,, F,, ..., F,) <
I. To help understand this scheme, we compute the Hilbert polynomial of
(1%, F,, F,, ..., F,) in terms of the Hilbert polynomial of I and the degrees of the F,.

Theorem 1.5. Let I be the homogeneous ideal of a smooth irreducible curve
C in P". Let deg(C) denote the degree of C. Let g denote the genus of C.
Assume F,, ..., F, form a regular sequence and the scheme defined by T =
(Fy,.... E) is smooth at the general point of C. Let d; denote the degree
of F,.. The Hilbert polynomial of (I* F,,...,F,) is H(t) = ((n — k)-deg (C))t —
[n+1=Y%d) (deg(C)) +(n+2—k)(g—1)+ 1]+ 1.

Proof. We have three exact sequences
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) 0-I*PNT->IP@®T->I1*+T-0
2) 0 N(@S(—d) > > N(@DS(—d) > DI(—d) > I*NT -0
3) 0o N@@S(—d) == N(DS(—d) > DS(—d) > T -0

Assume ¢ > 0. From the three exact sequences we have
dim (S/(I? + T)), = dim (8/I?), + dim (S/T), — dim (S/(I* N T)),
= dim (S/I?), — dim (T), — dim (I>* N T),

= dim (§/I?), — }; dim (S/I),
= [ndeg (C)t — ((n + 1)(deg (C)+ g — 1)+ g) + 1]

— [} i (deg(O)(t —d;) —g + )]
= (n — k)deg (C)t + 1
—[n+1=Yd)deg(C))+(n+2—k(g—1)+1]

For large t, dim (S/(I?> + T), = H(t) so we conclude that the Hilbert polynomial
of (I%, T) is as predicted.

Remark 1.6. Let C be a smooth irreducible arithmetically Cohen-Macaulay
curve in P3 with homogeneous ideal I and ideal sheaf .#. We have I?> = [?
(cf. [31]) and H'(P3, #(k)) = O for all k. Pick an element F € I with F ¢ I'®. Let
d be the degree of F. By Corollary 1.3 we have an isomorphism I? N (F) ~ I(—d).
Consider the first exact sequence in the proof of Theorem 1.5. Using the iso-
morphism 12N (F) ~ I(—d), we write this sequence as

0->I(—d)-»IP@®(F)> 1>+ (F)—>0.

If we sheafify and consider the long exact sequence in cohomology then we can
conclude that I? + (F) is saturated.

Let J = (% F,,..., F). From the Hilbert polynomial we see that J defines
a multiplicity n — k structure on C. The scheme defined by J may have em-
bedded points or J may fail to be saturated. By saturating J and removing
embedded points we get a new ideal J'. J' is the homogeneous ideal of a locally
Cohen-Macaulay multiplicity n — k structure on C. Since we have [’ J =1
the scheme defined by J' is an (n — k)-rope on C. A natural question is whether
every (n — k)-rope on a given curve C in P" arises by the method above. That
is, given a smooth curve C in P" with homogeneous ideal I, can the homogeneous
ideal of every (n — k)-rope supported on C be obtained by starting with an ideal
J=(U%F,,...,F,) and then saturating and removing embedded points? This is
answered by the following corollary.

Corollary 1.7. If C is a smooth irreducible curve in P" and I is the homoge-
neous ideal of C then every (n — k)-rope supported on C is defined by an ideal
of the form (I%, F,,..., F) up to embedded points.
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Proof. Let J be the homogeneous ideal of an (n — k)-rope supported on
C. We have I?’cJc I If k>0 then J # I'® so there is an element F, € J
with F; ¢ I'®. By Lemma 1.1, the scheme defined by F, is smooth at the general
point of C. By Theorem 1.5 the scheme defined by (I2, F,) has degree (n — 1)-
deg (C). If k> 1 then J # (I, F,)™ (where the “!” denotes the I-primary part
of the corresponding ideal) so there is an element F, e J with F, ¢ (I, F,)". By
Lemma 1.1, the scheme defined by (F,, F,) is smooth at the general point of
C. F,, F, form a regular sequence so by Theorem 1.5 the scheme defined by
(I?, F,, F,) has degree (n — 2)-deg (C). Continuing in this manner we can pick
F, F,, ..., F, satisfying the conditions of part ¢) of Lemma 1.1. Note that at
each step, we have to choose the F; in sufficiently high degrees in order to
guarantee that (F,..., F;) form a regular sequence. Using Theorem 1.5, the
scheme defined by (I, F,,..., F,) has degree (n — k)-deg(C). Since (I F,,...,
F,) = J and since both ideals define schemes with the same degree we know the
schemes differ at most by lower dimensional components. This is equivalent to
saying that the (n — k)-rope, J, is defined by the ideal (I% F,,...,F,) up to
embedded points.

We now want to give two examples of ribbons in P* (i.e. 2-ropes in P3). If
the scheme defined by (I2, F) is already locally Cohen-Macaulay then (I2, F)
defines a ribbon (without having to remove embedded points). A somewhat
trivial example is given by considering the scheme defined by J = (x2, y) in
k[w, x, y,z]. It is clear that J defines a locally Cohen-Macaulay scheme of
degree two supported on the line defined by (x, y) and is thus a ribbon. We
can write J = (x%, xy, y2, y) = ((x, )%, y). It is a natural question to ask if the
homogeneous ideal of every ribbon can be obtained by saturating an ideal of
the form (I%, F). We answer this question by recalling a well-known example
of a set-theoretic complete intersection [30], [22] which also turns out to be
self-linked [33].

Example 1.8. Let C denote the twisted cubic curve embedded in P? with
homogeneous ideal I = (x?> — wy, xy — wz, 2 — xz). C is a curve of degree 3
and genus 0. Consider the saturated ideal J = (x> — wy, y* — 2xyz + wz?). One
can check that the radical of J is I and that J defines a scheme with degree 6
and genus 4. Since J is a complete intersection, we have automatically that the
scheme defined by J is locally Cohen-Macaulay. We conclude that J defines a
ribbon on C. Does there exist an F € J such that J is the saturation of (I%, F)?
Let d denote the degree of F. By Theorem 1.5, we can solve for d in terms
of the genus of C, the degree of C, and the genus of the scheme defined by
J. We find that d must equal 5/3. In conclusion, J is not the saturation of
an ideal of the form (I%, F). See also Examples 2.3 and 2.10.

Judging from the example of ribbons, it appears that (n — k)-ropes in P"
can be put into two families, those that are defined by ideals of the form
(I?, F,, ..., F,) and those that are not defined by such ideals. One is led to the
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question, is there a special property shared by the (n — k)-ropes in one family
but not shared by the (n — k)-ropes in the other family? The answer is yes. We
give one such property via the following proposition.

Proposition 1.9. Let [ be the ideal of a smooth and irreducible curve C in
P". Let F,, ..., F, be a regular sequence in I, such that the complete intersection
X they define is smooth at a general point of C. Then the non-irrelevant embedded
primes of the ideal (I?, F,, ..., F,) are precisely the singularities of X along C.

Proof. Let P be a point on C, say in the affine piece xo #0. Let R = Opn p
be the local ring of P" at P (i.e. the homogeneous localization Sp) and let f;
denote the image of F;/x3°®*?) in R. Note that X is smooth at P if and only
if the local ring R/(f;,..., f,) is a regular local ring. By assumption, the local
ring O¢c p of C is a regular local ring. In other words, we have

Ocp = R/(uy, ..., u,4),

where u,, ..., u,_, is part of a regular system of parameters u,, ..., u, of the
regular local ring R. Let Y denote the scheme defined by the ideal (I, F,, ..., F,).
We will denote by g the ideal (u,,...,u,_;). Note that the local ring Oy p =
R/(pz’ fl» ’ﬁc)

Note that P is an embedded point of (I, F) if and only if the local ring
Oy p has depth O (to see this, localize the primary decomposition of (I Fi, ..., F)
at P). Note also that the assumption that the complete intersection X is smooth
at the general point of C implies that the elements f, ..., f, are part of a
regular system of parameters of the local ring R,, (use the Jacobian criterion for
smoothness, and argue as in Lemma 1.1). In particular the classes of the f; in
@/p? are linearly independent.

Assume first that the ring R = R/(f},..., fi) is regular. Let p denote the
image of g in R. Since the quotient R'/g is regular (it is simply R/p), we
deduce that p is generated by a subset of a regular parameter system of the
regular ring R'. In particular g is generated by a regular sequence. This implies
that the ring R/@? is a Cohen-Macaulay ring (cf. for instance [25], exercise
17.4), and in particular it is unmixed. The first implication is now clear, as
R/p* = RIp* fis .-, fo)

For the second implication, assuming that the ring R’ is not a regular local
ring, we want to show that u, is a zero divisor in the ring R/(9?, f;,..., f;). This
in turn would imply that u, lies in an associated prime of this latter ring. But
any associated prime containing u, has to be the maximal ideal m = (uy, ..., u,),
and the second implication will follow.

If R’ is not a regular ring, we have that the classes of the f; are not linearly
independent in m/m?.  In other words, we have an expression

Z‘ﬁgi € m2 s

where not all the g; are in m. As the classes of the f; are linearly independent
in gp/p? we can rewrite the above expression as
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2 Sigi =g+ 4, (*)

where ¢ #0 and ¢’ is in @2 To conclude the proof, we have to show that
qg¢ (9% fi,..., fi) (as this will imply that u, is a zero divisor in the ring
R/(&’Z’ fl, AR ﬁc))

But this is clear, since an expression g =Y f;h; + h’, with h’ € g2, combined
with the expression (x), would give

Zfi(gi —uh) e p?,

which is forbidden, as the classes of the f; are linearly independent in /2. This
concludes the proof of Proposition 1.9.

Corollary 1.10. Let J be the homogeneous ideal of an (n — k)-rope supported
on a smooth irreducible curve C in P". Let I be the homogeneous ideal of C. J
is the saturation of an ideal of the form (I*, F,,..., F,) where F,, ..., F, form a
reqular sequence if and only if there exists a regular sequence in J of length k
such that the scheme defined by this regular sequence is smooth along C.

Proof. Assume there exists such a regular sequence. Let V denote this
sequence. By Proposition 1.9 we know that (I?, V) is free of non-irrelevant
embedded points. The definition of a rope tells us immediately that J has no
embedded points and that J has degree (n — k)-deg (C). By Theorem 1.5 we
know that the degree of the scheme defined by (I% V) is (n — k)-deg(C). By
the choice of V we have an inclusion (I%, V) = J. Since the degree of the scheme
defined by J and the degree of the scheme defined by (I2, V) are the same and
since neither of them has any embedded points, they must agree up to an
irrelevant component. By assumption, J is saturated so J is the saturation of
1% V).

Conversely, assume J is the saturation of (I% F,,..., F,) where F,, ..., F,
form a regular sequence. We first claim that the scheme defined by (Fi,..., F,)
is smooth at the general point of C.

Let i be an integer with 0 <i < k (when i = 1, set (Fy, ..., F;_;) = (0) in what
follows) and suppose that (F,, ..., F;_;) is smooth at the general point of C (this
is trivially the case, when i = 1), while (Fy, ..., F;) is singular all along C. Then
we have, by Lemma 1.1, that F, e (I%, F,, ..., F;_;)'" (the ideal of the corresponding
n—i+1 rope). Using a few times the identity (I3 F,..., ;)" =((I* F,,...,
Fi_))", F;)V, we would then have that J is equal to the ideal (I, F,,..., F_,,
Fy,.... F)V (with the obvious modification in case i = 1), the ideal of at least
an (n — k + 1) rope; contradiction.

The claim is now obvious from the above observation, and the converse
follows from Proposition 1.9.

We would like to present the following example, suggested by the referee,
which shows the necessity of the assumption that F,, ..., F, form a regular
sequence in Corollary 1.10.
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Example 1.11. Let I =(G,, G,, G3, G,) be a homogeneous ideal defining a
smooth irreducible complete intersection curve C in P°. Assume further that
deg (G,) = deg (G,) = deg (G;) = deg (G,) > 2. Let H,, H, be linear forms which
are S/I-regular. The polynomials F, = H,G, — H,G,, F, = H,G, — H,G;, F; =
H,G, — H,G, do not form a regular sequence but the scheme they define is
smooth along C. The saturation J of (I, F,, F,, F;) defines a ribbon, but it can
be shown that J cannot contain any length three regular sequence smooth along
C.

We can actually improve on Proposition 1.9 by giving a decomposition of
the saturated ideal (I2, F)™.

Proposition 1.12. Let I be the ideal of a smooth curve in P3. Let F be
a form in S not in 1'¥. Let J denote the I-primary component in the ideal (I*, F)
(the “ribbon part”). Let J(F) denote the ideal (0F/0x,, ..., 0F/0x3). There is a
decomposition

(1%, Fy™ = J0(L, J(F)P).

Proof. To prove the proposition it is enough to show that for each point
P of C, we have an equality

(12» F)(P) = J(P) nd, J(F))(ZP)

of the homogeneous localizations.

If F is smooth at P, then the claim is obvious, thanks to Proposition 1.9,
so we can assume that P is a singular point for F. We denote by R the local
ring of P3 at P. As in the proof of Proposition 1.9, we consider a system of
parameters u, v, w of the maximal ideal of R such that u, v are generators of
the ideal Ip), and we denote by f, the image in R of F/x§**" (we assume again
that P lies in the affine piece x, # 0).

As fis in I, we can write f = ug, + vg,. We define the integer s as follows:

s = min {ord,, (g,), ord,, (g2)} ,

where g; denotes the class of g; in the ring R/(u, v) (i.e. the local ring of C at
P) and ord,, denotes the valuation induced by the class of w in this ring. As
P is a singular point for F, we have that s > 0, and we can thus write g; = w'g;
modulo (u,v). We set f' =ug; +vg,. Note that by subtracting from f an
element of (u, v)?, we can assume that one of the g/, say ¢}, is a unit in R. Tt
follows from the proof of Proposition 1.9 that ideal (u?, uv, v, f*) is (u, v)-primary,
as by construction, f' ¢ (u, v, w)2.

Now, let D,, D,, D,, be an R-basis of the module of derivations Der, (R, R)
corresponding to the system of parameters u, v, w (i.e. such that D, (u) = 1, D,(v) =
D,(w) =0 etc.). We have that (I, J(F))s) = (u, v, D,(f), D,(f), D,,(f)). As D,(f)e
g, + w,v), D(f)eg, + (u,v), and D,(f)€ (u,v), we conclude that

(I, J(F))py = (u, v, g1, g2) = (u, v, w’)

since g7 is a unit).
1



262 Juan C. Migliore, Chris Peterson and Yves Pitteloud

We will now show the following equality which will conclude the proof (as
the ideal (u?, uv, v2, f') is (u, v)-primary):

CrLamM:  (u?, uv, 02, f) = (u?, uv, v2, f')N (u, v, w*)?2 .

The claim follows easily from the fact that u, v, w* is a regular sequence, as follows.
The inclusion “<” is obvious. For the other inclusion, consider g of the
form hf’ + g, with g in (4, v)%, and assume that g is also in (u, v, w*)?, hence of

the form w'h’ + q’, with ¢’ in (u,v)>. We obtain an equality
u(gih + q,) + v(g2h + q3) = w*h’

where the ¢; are in (u,v). As u, v, w* form a regular sequence, we have gih +
q, = vry + wr, for some elements r; and r,. As g] is a unit in R, we can assume
that h = ury + vr; + w'r,, and finally, we obtain

g=rowf +ruf +rwf +gq
= (rowf" + rtf + q+ W —ryf) +ryf € WP uv, 0% f).
This concludes the proof.

It is interesting to note that every ribbon on a line in P? is defined by an
ideal of the form (I%, F) [19], [27] (for a converse statement see [12]). In
Example 1.8 we saw that in general, not every ribbon could be defined by an
ideal of this form. Perhaps every ribbon on a complete intersection can be
defined by an ideal of the form (I% F). The following example shows that this
is not the case.

Example 1.13. Let J = (w?, wx, x2, wy — xz). J defines a ribbon on the line
L = (w, x). Pick a general element in J of degree three, call it T. Define a new
ideal CI = (w? T). CI will be a complete intersection contained in J. Using
the complete intersection CI, we can link J to a new scheme J' of degree 4 and
genus 0. Using the complete intersection (w, T) we can link L to a conic. Let
I denote the homogeneous ideal of this conic. The operation of linkage preserves
the property of being locally Cohen-Macaulay [30]. The radical of J' is I so
by the above remarks J' defines a ribbon on the conic defined by I. Using
Theorem 1.5 we can determine that if J' is the saturation of an ideal of the
form (I?, F) then F must have degree 5/2. We conclude that the scheme defined
by J' cannot be defined by an ideal of the form (I F).

2. The deficiency module of a ribbon on a smooth curve in P"

Recall that, for any (possibly nonreduced) curve Y < P", the deficiency module
M(Y) is defined by

M(Y)= @ H'(P", # (k).

ke Z
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If Y is locally Cohen-Macaulay and equidimensional, this is a graded S-module
of finite length, and it measures the failure of Y to be arithmetically Cohen-
Macaulay. (This, and other properties, give it the name “deficiency module.” It
is very important in Liaison Theory, especially for curves in P3, and in this
context it is sometimes also called the Hartshorne-Rao module of Y. See [29]
for more details about these modules and their submodules, and about Liaison
Theory, which we will use below.)

In this section we are interested in studying the deficiency module of a
ribbon Y supported on a smooth curve C in P". We will always denote by I
the saturated homogeneous ideal of C. Interestingly enough, our techniques are
best suited to give the deficiency module of a ribbon (i.e. multiplicity two struc-
ture), even though we have set up the theory for higher multiplicity structures.
Our idea is to show how to link the ribbon to a union of two curves and to
express the deficiency module, accordingly, as the quotient of two ideals.

We assume throughout this section that Y is supported on a smooth curve
C in P". We will be able to give the “cleanest” answer in the case of a ribbon
in P3 whose homogeneous ideal is of the form (I% F) supported on a complete
intersection curve: in this case we get that the deficiency module is a shift of
the quotient ring of a certain complete intersection of height 4, and that Y is
directly linked to the disjoint union of two complete intersections (see Theorem
2.8). (Recall from §1 that not all ribbons have a saturated ideal of this form,
even on a complete intersection curve, except when C is a line.) Applying our
results gets progressively more difficult as n grows.

We begin with a simple observation, in the case where C is an arithmetically
Cohen-Macaulay curve in P3, other than a complete intersection. (See Theorem
2.8 for the case of a complete intersection in P3.)

Lemma 2.1. Let C be any smooth arithmetically Cohen-Macaulay curve in
P3, other than a complete intersection, with saturated homogeneous ideal 1. Let
Y be a scheme defined by the saturation of the ideal (I, F), where F el is not
in I'Y. Then Y is not arithmetically Cohen-Macaulay.

Proof. Of course if F has a singular point somewhere on C we already
know this from Proposition 1.9 since then Y has an embedded point. Let
d = deg (F). We have the exact sequence

0= I(—d)»I’®(F)->(U?% F)-0.

We know (cf. for instance [31]) that the scheme Z defined by the ideal I? is
not arithmetically Cohen-Macaulay (but it is saturated). Hence we have an
injection 0 # M(Z) = M(Y) so we are finished.

Remark 2.2. Of course it is not true that every ribbon is non-arithmetically
Cohen-Macaulay, not even every ribbon supported on a non-arithmetically Cohen-
Macaulay curve. A self-linked non-arithmetically Cohen-Macaulay curve gives
rise to a counterexample (and such curves exist—see [33]). However, if C is
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any smooth curve in P" other than a complete intersection (and we will discuss
the complete intersection case below), we conjecture that if Y is any ribbon whose
homogeneous ideal is the saturation of (I, F,..., F,_;), where (F,, ..., F,_,) is a
regular sequence defining a complete intersection variety which is smooth around
C, then Y is not arithmetically Cohen-Macaulay.

This is at least true if some of the degrees of the F; are sufficiently large. We
have an exact sequence

0->1*N(Fy,...,F, ) > IP®(F,,...,F,_,) > I* +(F,,...,F,_,) = 0.

Let d; =deg (F;,) for each i. It follows from the discussion in §1 that, if we
denote by # the sheafification of I?N(Fy,..., F,_,), then H'(#(1)) = M(C),_,, &
@ M(C),y, , and H(F(1) = HX(S(t — d})) @ ® H(Se(t — d,_,)). For large
d; it is impossible that this latter vector space can inject into H2(#Z(t)) for every
t, since the latter vector space can be made non-zero in arbitrarily large degree
by taking at least one of the d; large.

It is known that not all smooth curves are self-linked (i.e. admit a ribbon
which is a complete intersection), and it is an open question whether every
smooth curve C admits a non-reduced structure of higher multiplicity which is
a complete intersection (i.e. C is a set-theoretic complete intersection). It would
also be interesting to know which smooth curves admit ribbons (or, for that
matter, any non-reduced structures) which are arithmetically Cohen-Macaulay.
This is the sort of question which started our investigation.

Example 2.3. This example is evidence for the conjecture mentioned above,
at least in P3. Let C be a twisted cubic curve in P3. (See also Example 2.10
below.) The ideal of C is generated by three quadrics, so C is an “almost
complete intersection” but not a complete intersection. Consider the ideal (I%, F)
where F €I has degree 2. If F is smooth then one can check that the ribbon
Y thus obtained is of type (4,2) on the smooth quadric F, and hence is not
arithmetically Cohen-Macaulay. (Its deficiency module is one-dimensional, oc-
curring in degree 2). The degree and arithmetic genus of Y are 6 and 3,
respectively.

On the other hand, if F is a quadric cone then the ideal (I? F) defines a
curve of multiplicity two on C with an embedded point, and when the embedded
point is removed we obtain a ribbon of degree 6 and arithmetic genus 4, which
one can show is hence a complete intersection. This helps to explain how
Example 2.2 of [30] is obtained. (Note that C necessarily passes through the
singular point P of F since otherwise projection from P to P? projects the cubic
C to a conic.)

Let C be a smooth curve in P" with saturated homogeneous ideal I =
(G4, ..., G) (k = n—1), and assume that deg (G,) < deg (G,) < ‘- < deg(G,). Note
that since C is integral, all of the G; are irreducible.

Now let Y be a ribbon supported on C, and let F,, ..., F,_,ely, be a
regular sequence satisfying
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Fi¢I1? F,¢(I*F)V, ..., F,_,¢(I? F,,...,F,_3)¥

as in Lemma 1.1. Recall from §1 that (I3 F,,..., F,_,) defines Y as a scheme,
after removing any embedded points of Y which may arise (at the singularities
of F on C). Our strategy will be to find M(Y) by linking Y using the complete
intersection (G;G;j, Fy, ..., F,_,) (explained below) and finding the deficiency mod-
ule of the residual

Now, suppose C is a complete intersection, I = (G, ..., G,_;), and assume
that F,, ..., F,_, are part of a minimal generating set for I, say for instance
F,=G;foralll1 <i<n—2. Then (I%4F,,...,F,_,)=(G~,, F,,...,F,_,) is again
a complete intersection, and hence Y is arithmetically Cohen-Macaulay. (Note
that none of the generators can have singular points anywhere on C since C is
smooth.) (See also Theorem 2.8.)

So we may assume that either C is not a complete intersection or else at
least one of the F; is not part of a minimal generating set for I. Either way,
we can find two polynomials, G; and G; in I, satisfying the following conditions:

(@ (Fy,...,F,_,,G) and (F,, ..., F,_,, G;) are regular sequences;

(b) these regular sequences link C to residual curves C; and C; respectively,
each of which has no component in common with C; and

(¢ C; and C; have no common component.

If we want to make the residual to Y be as “nice” as possible, it is best to
choose G; and G; as small as possible.

By definition of liaison, the saturated ideals of C; and C; are given by

IC,» = [(Gi’ Fl’ ""Fn—Z):IC]
ch = [(Gj’ Fl’ ey FH_Z):IC] .

Lemma 24. Y is directly linked (geometrically) to C;UC; by the complete
intersection (G;G;, Fy, ..., F,_,).

Proof. Let X be the complete intersection scheme defined by (G;G;, Fy, ...,
F,_,). Set-theoretically, X = CUC,UC,. We have observed that there is no
component in common to any two of C, C; and C;, and all components have
height n — 1. Now consider the primary decomposition of (G.G;, F,, ..., F,_,).
We can group some primary components together if necessary and get that

(GG, Fyv oo Fyy) = I, NI, NIy

where Y is a locally Cohen Macaulay, equidimensional curve supported on C,
and one easily computes that the degree of Y is equal to twice the degree of
C. Hence Y is a ribbon. But then both Y and Y are components of X, which
is pure-dimensional, and Y and Y have the same degree and support. Hence
Y=Y

As a result we have our first description of M(Y), thanks to the well-known
invariance of the deficiency module under liaison (up to shifts and duals), first
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proved by Hartshorne for curves in P* (cf. [32]) and proved more generally by
Schenzel and subsequently by others (cf. [35], [28], [7]). For a graded S-module
M of finite length, we denote by MY its K-dual. Under the assumptions of
Lemma 2.4, we have the following corollary.

Corollary 2.5.
M(Y) = M(CUC) (1 + 1 —d — d, — d))
(where d; = deg (G), d; = deg (G;) and d = deg (F,) + deg (F,) + - + deg (F,_,)).

Our next goal is to understand this module better in the case where C is
an arithmetically Cohen-Macaulay curve. We will prove:

Theorem 2.6. Let C = P" be a smooth arithmetically Cohen-Macaulay curve
and let I = I be the saturated ideal of C, with deg(G,) < deg (G,) < -+ < deg (G,).
Let G; and G; be chosen as above, with d; = deg (G;), d; = deg (G;). Let Y be a
ribbon supported on C and let (Fy,..., F,_,) be a regular sequence in Iy defining
a complete intersection which is smooth at the general point of C. Let d=
Y deg(F). Let C; and C; be the residuals to C under the complete intersections
(G, Fy,...,F,_;) and (G}, F,, ..., F,_;) respectively. C; and C; have no common
component. Let X be the zeroscheme defined by the scheme-theoretic intersection
of C; and Cj; the saturated ideal Iy of X is the saturation of I, + Ic,. Then

I
() MY)'n+1—d—d —d)=MCUC)=_ X
IC; + ch
(i) deg(X) = p,(C;UC;) — po(C;) — po(C;) + 1 (where as usual p, is the arith-
metic genus).

Proof. Notice that since C; and C; are each directly linked to C, and since
the property of being arithmetically Cohen-Macaulay is preserved under liaison,
it follows that M(C;) = M(C;) = 0. Consider the exact sequence

OAICinICj_)IC,-@ICj—)IC,- + ICJ_>0‘
Sheafifying and taking cohomology we get

O*Iciuc,—’Ici@lc,-“’lx—’M(CiUCj)—'O (1)
N 7
e, + I,
7 N
0 0

so (i) follows immediately from this and Corollary 2.5.
Recall that M(C;UC;) has finite length. Hence for ¢ >0 we can use the
exact sequence (1) to get that

—H(C,UC;, 1) + H(C,, 1) + H(C;, 1) = H(X, 1)
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and this last term is exactly deg (X). But for ¢ > 0, the Hilbert function is equal
to the Hilbert polynomial. By a degree consideration, the coefficients of ¢ will
cancel out, so we have only to consider the constant terms. This says that

P(CiUC)) — pa(C) — pu(C)) + 1 = deg (X)),
as desired.

Remark 2.7. Recall that if curves C and C’ are directly linked in P" by a
complete intersection of hypersurfaces of degrees a,, a,, ..., a,_; with a =) a;,
then their degrees and arithmetic genera are related by

1
P(C') — p(C) = 5la—n—1)(deg(C) — deg (C)).
In our case, suppose that the complete intersection defined by (F,,..., F,_,) is
smooth along all of C. If we assume known the degree and arithmetic genus
of the original curve C, we have a formula for the arithmetic genus of Y (see
§1). Hence using the above formula we can compute the arithmetic genus of

G UGC; and also that of C; and C;, so we can take deg(X) as known.

There is one situation in which both parts of Theorem 2.6 take a very nice
form. That is, we now assume that C is a complete intersection in P> defined
by the ideal I =(G,, G,) and that F is smooth along C (hence the saturated
ideal I, is of the form I, = (I%, F); see Remark 1.6).

Theorem 2.8. Let C be the complete intersection in P* of G, and G,, with
d; = deg(G,), d, = deg(G,). Let F = AG, + BG, be a form of degree d which
is smooth along C and let Y be the ribbon with saturated ideal (1>, F). Then

() If d <d, then Y is arithmetically Cohen-Macaulay. Hence from now on
assume that d > d,.

(i) I, = (B, Gy), Ic, = (A, G,); that is, both C; and C, are complete intersec-
tions.

(i) C, and C, are disjoint.

(iv) M(Y)= (W) d—d, —dy).
(v) deg(Y) = 2d,d,, p(Y) = (4 — d)(dd,) + 2d,dy(d; + dy — &) + 1.

Proof. First, if F is a scalar multiple of G, then as above (I?, F) = (G,, G3)
and Y is a complete intersection. Hence it is arithmetically Cohen-Macaulay. If
F = AG,(deg (4) > 0) then F is not smooth everywhere on C. So now assume
that d = d,. Then B is a scalar and C, is the empty curve. Hence Y is linked
by (G,G,, F) to the arithmetically Cohen-Macaulay curve C,, so Y is arithmeti-
cally Cohen-Macaulay, as claimed.

So now we assume that d > d,. As noted above, since F is smooth along
C, it follows that Iy = (I, F). Part (ii) is an easy exercise. For (iii), suppose
that C; and C, meet at a point P. Such a P lies on both G, and G,, hence
on C. We now show that this is impossible.
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Because C is smooth and C is the complete intersection of G, and G,, it
follows that G, and G, are not tangent at any point. On the other hand, the
points where C and C; meet (i =1,2) are points where F and G; are tan-
gent. Hence C, and C, cannot meet at any point of C. Therefore they are
disjoint as claimed.

Part (iv) follows from Theorem 2.6(i) together with the fact that the saturation
of I, + I, is the whole ring S. Then use (ii) of the current theorem and the
fact that S/(A, B, G,, G,) is self-dual after a shift of deg (A4) + deg (B) +d, + d, —
4. Part (v) is an easy computation using Theorem 1.5.

Remark 2.9. The simplest case where Theorem 2.8 applies is when C is a
line, and Y is a so-called “double line.” This situation was studied, for example,
in [19] and in [27]. The latter paper, in particular, described the liaison class
of a double line. The first step, finding the deficiency module, was done in a
much more complicated way than what we have done here.

However, one could take a similar approach from that starting point and
ask for a description of the set of ribbons in the liaison class of a given ribbon
Y supported on a complete intersection C. The first step is to note that the
complete intersection (G, G3) links Y to another ribbon Y’ also supported on
C, and having the same genus (see Remark 2.7). This is true even if F has
singular points on C; however, we continue to restrict ourselves to the case
where F is smooth along C so we can apply Theorem 2.8.

But are all ribbons in this liaison class supported on C? In [27], it was
shown that as long as deg(A4) > 1, any double line in the same liaison class as
Y is supported on the same line as that of Y. Indeed, with our present knowledge
that is not surprising: in that case we have deg(G,) =deg(G,) =1 so we can
recover the complete intersection (G, G,) from the deficiency module by iden-
tifying the two-dimensional component of degree one in the complete intersection
(4, B, G, G,) defining the module.

However, now we are expanding our search for any ribbon in the liaison
class. Our observation is that this problem does not have as simple a solution
now, even if we were to restrict ourselves to ribbons supported on complete
intersections. Indeed, one has only to observe that the union C,UC, is also
linked, via the complete intersection (4B, F), to a ribbon supported on the com-
plete intersection (A4, B).

And in fact, this is not surprising from a study of the module. Indeed,
we have the relation deg (A4) + deg (G,) = deg (B) + deg (G,), but there is nothing
there that distinguishes the complete intersection (G,, G,). In fact, note that the
union of complete intersection curves given by (4, G;)N(B, G,) (for example) has
the same module, so by Rao’s theorem ([32]) it is in the same liaison class.

Although Theorem 2.8 is the “cleanest” result in this section, something
similar can be done for any smooth arithmetically Cohen-Macaulay curve when
F is smooth. (We also want to assume that C and C' meet transversally; this
can be done by taking G, and G, of larger degree if necessary.) The point is
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that in order to hope to get a handle on the deficiency module it is necessary
to first describe X exactly. We illustrate the idea with a simple example.

Example 2.10. Let C be a twisted cubic curve in P? and let F be a
sufficiently general surface of degree d which is smooth in a neighborhood of
C. Consider the ribbon Y with saturated ideal (I%, F). Let G, and G, be general
elements of I of degree 2. Then (G,, G,) links C to a line C' meeting C transver-
sally in two distinct points P, and P,. Also, (G, F) and (G,, F) link C to
arithmetically Cohen-Macaulay curves C, and C, respectively, both of degree
2d — 3 and arithmetic genus (d — 2)(d — 3). Also, (G,G,, F) links Y to C,UC,
as above.

Hence Theorem 2.6 applies (with d, =d, = 2) and we know that the de-
ficiency module of Y is K-dual to

Iy
IC| + ICZ

(after shifting). But what is X? Observe that G; and G, are each smooth along
C, and they are transverse along C except at the two points where C meets the
line C’, where they are tangent. Hence by generality, F is not tangent to both
G, and G, anywhere on C. It follows as above that C, and C, meet only away
from C. So C,NC, is precisely the intersection of the three surfaces G, G,
and F away from C, i.e. it is the intersection of F with the line C’, away from
the points P, and P,. Hence X is a set of d — 2 points on a line (and thus a
complete intersection with two of its generators being linear).

For instance, if d = 2 then I, =S, C,UC, is a set of skew lines, and M(Y) =~
K(—d) (where K is the base field). If d =3 then Y is linked to the union C,UC,
of two twisted cubics meeting in one point. The deficiency module is 3-dimen-
sional in each of degrees 1 and 2. (Compare with [26], where the liaison class
of a smooth rational sextic curve, whose deficiency module has the same dimen-
sion in the same degrees as C,UC,, is studied.)

3. Bounds on the regularity

Recall that, given a coherent sheaf &% on P", the Castelnuovo-Mumford
regularity reg (%) is the smallest integer r with H!(P", #(k —i)) =0 for all k> r
and i>0. On the other hand, given an ideal I in S (or more generally any
S-module), the regularity reg (I) is the smallest integer r with Tor;(/,K);; = 0 for
all j >r. Given an ideal I in S, with corresponding ideal sheaf # on P", there
is an equality (compare [8])

reg (I) = max {reg (.#), n(I)}

where n(I), the saturation degree, is the smallest integer where I and its saturation
agree in all degrees > r. In this section, we will give a bound on the regularity
of the ideal sheaf of a rope in P". We start with an algebraic result, whose
proof is similar to that of Theorem 2.6 of [15].
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Lemma 3.1. Let J = S be an ideal with dim (S/J) = 1, where dim stands for
the Krull dimension, and let J™ denote the saturation of J". Given an ideal K
with J" < K = J™,.there is an inequality

reg (K) < n-reg(J).

Proof. Throughout the proof, we will denote by L a linear form in S which
is a non-zero divisor in S/J". (This implies that the multiplication by L is an
injection (S/K); = (S/K);, for all j big enough, as the saturation of K is J™). It
follows from [2], Theorem 1.10, that reg(K) is the smallest integer j such that
the multiplication by L induces an surjection (S/K);_, —(§/K); and an isomor-
phism ($/K); = (S/K);4,.

Cramm A: For j> n-reg(J), the multiplication by L induces a surjection
(S/I")1 = (S/I™.

We will prove CLAIM A by induction on n, the case n = 1 being trivial (the
proof goes as the proof of Lemma 2.3 in [15]). Let F be an element of S ;5 as
Jj = reg(J), we can write F = LF' + G, with F'in S;_, and G in J.. We can write
G = Y F;G; where the F; are minimal generators of J. In particular, we have
that deg(G;) > (n — 1) reg(J), and hence, by the induction hypothesis, each G;
can be put in the form LG} + H; where H; is in J"~!. Putting all this together
yields an expression of the form F = LF” + G', with G’ in J", which is precisely
what is needed to establish CLAIM A.

CramM B: For j> n-reg(J), the multiplication by L induces an injection
(S/I"); = (S/T")y1.

The proof of CLalM B is similar to the proof of Theorem 2.6 in [15], but
we will sketch it here for the convenience of the reader. The proof goes by
induction on n, the case n = 1 being again trivial. Let F be in S; such that LF
is in J"; we want to show that F itself must be in J". By the induction hypothesis,
Fisin J"™', and so we can write F =) F,H,, where the F; are minimal generators
for J""1. On the other hand, as LF is in J", we can write LF = ZF,.Gi where
the G; are in J. Thus, we obtain the following relation amongst the F;,

S (LH, — G)F, = 0.

In other words, if we consider the free S-module F with basis elements e;
corresponding to the minimal generators F; of J" !, we have that the element
Y (LH; — G)e; is a syzygy; we can thus write this syzygy in the form Y i.i Page;
where the elements ) ; a;;e; are minimal generators for the module of syzygies.

By the induction hypothesis and CLAM A, reg (J" ') < (n — 1)reg(J). This
implies, after a short computation, that we have deg (P) > reg (J). We can thus
write P,= LQ; + G; with G} in J.

Fixing i we get

14(1'1l - Z aj,QJ) = G,' + Z aﬁGj’ € J .
j J
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As the degree of H;— ) a;Q; is >reg(J), we deduce that H; —Y,;a;0; is
also in J, and we have that

F =ZH:‘F1’=Z<Hi _ZainJ')Fi

is in J" which proves CLAIM B.

To conclude the proof of Lemma 3.1, given j > n-reg(J), we consider the
following diagram, where all the vertical maps denote the multiplication by L,
and where the horizontal maps are the obvious surjections:

(8" —— /K)oy —— (S™);y

a a

(8", —— (S/K); —— (S/I™);

J

B B’

! ! !
(S/J")j+1 — (S/K)j+l —_— (S/J["])j+l'

By CrAamMs A and B, we know that « is onto and that f is an isomorphism. An
obvious diagram chasing (using the fact that for large j, all the horizontal maps
are isomorphisms) shows that o is injective and that f' is an isomorphism. This
proves Lemma 3.1.

An interesting consequence of Lemma 3.1 is the following proposition.

Proposition 3.2. Let .# be the ideal sheaf of a 1-dimensional subscheme of
P". Then there is an inequality

reg (£") < n-reg (¥).

Proof. Let I be the saturated ideal in S corresponding to the ideal sheaf
#, and let I'™ denote the saturation of the ideal I". (Note that if I is the ideal
of a local complete intersection curve, then I is the n-th symbolic power). We
have equalities

reg (#) =reg(I) and reg(#") =reg(I™).

Let L be a linear form in S, non zero divisor in S/I™. We have then
equalities

regs (I) = regg;, (I, L)/L) and reggs (I') = regg,, (I, L)/L).
Denote by J the ideal (I, L)/L. We have then the inclusions
Jre (™ L)L < Jin

The theorem follows now from Lemma 3.1.
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Remark 3.3. The bounds in Proposition 3.2 and Lemma 3.1 are sometimes
sharp: consider any ideal I with a linear resolution; we have then an obvious
inequality reg (I") > n-reg (I), which shows that Lemma 3.1 can be sharp; the
case of a curve with a linear resolution, and whose powers are saturated (such
as the twisted cubic in P?) shows that Proposition 3.2 can also be sharp.

We can also have sharpness in the case of a non linear resolution, as shown
in the following example. Consider 23 general points in P2 with ideal I in
S = k[x, y,z]. As the points are general, we have that reg (I) = 7. As the mini-
mal resolution conjecture is true for points in P2 [16], [23], we know that I is
generated by forms of degree 6 (as 3-dim, (I¢) > dim, (I;)). A necessary condition
for I? to be 13-regular is to have an equality dim, (S/I%),5 = 69, since this is
the multiplicity of the corresponding scheme. On the other hand, by [21] Propo-
sition 3.6.1, we know that dim,(S/I?);; = 70. Hence, Lemma 3.1 is sharp in
that case. As 23 general points in P? are the hyperplane section of a smooth
arithmetically Cohen-Macaulay curve in P* [6], and as the square of the ideal
of an arithmetically Cohen-Macaulay curve in P? is saturated by [31], we can
also obtain an example where Proposition 3.2 is sharp in the case of a non
linear resolution.

On the other hand, Theorem 1 of [36] and Proposition 1 of [4] show that
our bounds are not sharp in the case where all the generators are in degree
much lower than the regularity (in many complete intersections, for instance).

Compare also [34], where related questions are studied.

Consider now, after these algebraic preliminaries, a smooth and irreducible
curve C in P" with saturated ideal I, and corresponding ideal sheaf #. We
want to use Proposition 3.2 to give a bound on the regularity of a rope Y,
in P", supported on C. Recall that such a Y can always be obtained by re-
moving possible embedded points to a scheme defined by an ideal of the form
(I* F,,..., F,) where the F;, are a regular sequence in I, such that the singular
locus of the complete intersection they define, does not contain the curve C. Our
approach will be to first find a bound on the regularity of such schemes, and
then to show that the regularity cannot increase by removing embedded points.

Recall that for a curve C, we define the index of speciality to be the integer
e(C) = max {t € Z|h*(F:(t)) # 0}. Note that ¢(C) < reg (#) — 3 so we could also
write the following results in terms of reg (%) instead of e(C). This would,
however, give weaker statements.

Proposition 3.4. Let I be the ideal of a smooth and irreducible curve C in
P" and let F be the corresponding sheaf of ideals. Let F,, ..., F, be a regular
sequence of forms in I of degree d,, ..., d, respectively. Assume that C is not
contained in the singular locus of the complete intersection X defined by the
F,. Denote by Y the scheme defined by the ideal (I*, F,,..., F,). There is then
an inequality

reg #y <max {2reg (#),e(C)+d; +2,d, + - +d, —(k—1)}.
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In the discussion that follows, we wish to emphasize the case of ribbons supported
on curves in P3, as the results take a simpler form in this context. Hence before
proving Proposition 3.4, we will state as a corollary what happens in P>.

Corollary 3.5. Let I be the ideal of a smooth and irreducible curve in P?
and let # be the corresponding sheaf of ideals. Let F be a form of degree d
which does not contain C in its singular locus. There is an inequality

~

reg ((I%, F)) < max {2 reg (), e(C) + d + 2} .

Proof of Proposition 3.4. We start with the following elementary observa-
tion, which we will use tacitly throughout the argument: given a short exact
sequence of sheaves on P”,

0-F >F >F"-0,
there is an inequality
reg (#") < max {reg (¥),s(¥') — 1},

where s(#') denotes the smallest integer r with H{(P", #'(k — i)) = 0 for all k > r
and i > 2. This follows at once by looking at the long exact sequence induced
in cohomology.

Consider the exact sequence

0->I’N(Fy,.... K)»T*®(F,,..., KF)>U*F,,..., F)—>0.
Sheafifying this sequence, we obtain a first inequality
reg (fy) < max {reg (#?), reg ($x), s(#) — 1},

where ¢ denotes the sheafification of the ideal I*N(F,,..., F,).
As the F; form a regular sequence, we have

reg(Sy)=d, + - +d,—(k—1).
Next, we can use the sheafification of the exact sequence of Corollary 1.3
0->0(—dy — —d)> " >PI(—d)—> # -0,
and obtain the following inequality:
s(#) <max {s(f) +d..d, + - +d, — (k—1)}.

We have that s(#) — 3 is just the index of speciality e(C) and hence the two
inequalities above give us a new inequality

reg (Fy) < max {reg (#?),e(C) +d; + 2,d; + -+ +d, — (k — 1)} .

Proposition 3.4 follows now from the inequality reg(#2) <2 -reg(#) of
Proposition 3.2.

Example 3.6. Let I be the homogeneous ideal of a twisted cubic curve, C,
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in P2, Let 4 be the associated ideal sheaf. It is easy to check that ¢(C) = —1.
Pick a form F €I such that the associated hypersurface is smooth along C. Let
D be the scheme defined by (I% F) and let .#, be the associated ideal sheaf If
F has degree 2 then .#, has regularity 4. If F has degree d > 2 then %, has
regularity d + 1. This shows that Proposition 3.4 and Corollary 3.5 are in some
instances sharp, and that the sharpness can be achieved by either of the two
possibilities for the max.

We can now state and prove our bound on the regularity of a rope in P".

Theorem 3.7. Let C be a smooth and irreducible curve in P" with ideal I
and ideal sheaf 4 and let Y be an (n — k)-rope on C. Let F,, ..., F, be a regular
sequence of forms of degree d; in Iy. Assume that C is not contained in the
singular locus of the complete intersection defined by the F,. There is then an
inequality

reg (Fy) < max {2reg(f), e(C) +d; + 2,d, + - +d, — (k— 1)} .
We also state the corresponding result for ribbons in P3.

Corollary 3.8. Let C be a smooth and irreducible curve in P* with ideal I
and ideal sheaf $ and let Y be a ribbon on C. Let d be the smallest degree
such the ideal of Y contains a form F of degree d which does not contain C in
its singular locus. Then

reg (Fy) < max {2 reg (#), e(C) +d + 2} .

Proof of Theorem 3.7. Let F,, ..., F, be as in the statement of Theorem
3.7. By Corollary 1.7, we have that Y can be obtained by removing possible
embedded points from the scheme defined by the ideal (12, Fy,..., F,). Theorem
3.7 follows now from Proposition 3.4 together with Lemma 3.9 below.

Lemma 3.9. Let Y' be a 1-dimensional subscheme of P" (possibly with em-
bedded or isolated points). Let Y be the union of the top-dimensional components
of Y. Then

reg (Y) <reg(Y’).

Proof. Consider a primary decomposition of Iy., and collect terms if neces-
sary so that I,, =1I,NJ where J is a saturated ideal whose associated primes
all have height n. Let Z be the zeroscheme defined by J, so J =1, (J is
saturated).

Let Z' be the scheme defined by the ideal I, + I,. Note that Z' is a
0-dimensional subscheme of P" with Z' < Z. The exact sequence of S-modules

O-I,Nl,->1,®Il,->1,+1,-0
induces an exact sequence of sheaves

04 5 DSF5H -5 —0. (*)
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We will show that

a) H'(P", #,.(t)) = 0 implies H'(P", #(t)) =0 for every t and

b) H*(P", %,.(t)) = 0 implies H*(P", #(t)) = 0 for every t,
and this will prove Lemma 3.9.

Using the long exact cohomology sequence induced from the exact sequence
(*) we get

HA(P", 4y.(1)) > H*(P", Jy(1)) @ H*(P", Z5(1)) > H*(P", #2.(1)) .
Since both Z and Z' are 0 dimensional, we get a surjection
H*(P", #y.(1)) > H*(P", 4y(t)) =0,

which establishes CLAIM D).
Consider now the exact sequence

H'(P", $y.(1)) > H' (P, 5,(1)) ® H'(P", (1)) » H'(P", F,.(1)) . (%*)
Since Z' is a subscheme of Z, we have an exact sequence of sheaves
055~ Iy > Ip =0,
where .4, is supported on Z. This in turn induces the exact sequence
H'(P", S5(t)) » H' (P", #.(1)) > 0.

This exact sequence, together with the exact sequence (xx), establishes CLAIM a):
if H'(P", #.(t)) =0, we get an injection

0— H'(P", 4,(1)) ® H' (P, 4,(t)) = H'(P", #7.(1)) ,
which can only occur if H!'(P", #(1)) = 0.

Remark 3.10. Lemma 3.9 and its proof remain valid if we replace Y’
by any positive dimensional subscheme of P" with embedded components of
dimensions at most 0.

Remark 3.11. Let C be a smooth curve in P" and Y an (n— 1)-rope
supported on C. If there exists a hypersurface containing Y which is smooth
along C then we can bound the regularity of %, in terms of the regularity
of 4., the degree and genus of C, and the genus of Y. Let d denote the degree
of the above mentioned hypersurface, G. the genus of C, D, the degree of C,
and G, the genus of Y. By Theorem 1.5 and Corollary 1.10, Gy =(n+ 1 —d)-
De+(n+ 1) (Gc—1)+1sod=n+1+((n+ 1):Gc — Gy — n)/D¢. Use Theorem
3.7 to obtain reg (fy) < max {2 reg (%), e(C) + d + 2} < max {2 reg (%), e(C) + n +
34+ ((n + 1)Ge — Gy — n)/Dc}.  If we note that e(C) < reg (F:) — 3 and reg (#) <
D —n+ 2 [18] then we obtain
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n+ 1)Ge— Gy —n
Dc

reg 4, < max {2 reg (#), e(C) +n+ 3 +

< max {2 reg (4c). reg (J) + n + (n+1)Ge — Gy — n}

Dc

Smax{2DC—2n+4’DC+1+(n+l)Gc—Gy—n}

Dc

(The last inequality comes from the main theorem of [18].)

Furthermore, let C be a smooth curve in P* and Y an (n — k)-rope supported
on C. Assume that there exists a regular sequence F,, ..., F, defining a complete
intersection scheme which contains Y and is smooth along C. Order F,, ...,
F, such that deg (F,) > --- > deg (F,). If deg(F,)+ deg(F,)>2reg(#)+ 1 and
deg (F,) > reg (#-) then from Theorem 1.5, Corollary 1.10, and Theorem 3.7 we
conclude that

reg(fy)s(n+2—k)<l+GC—1>—GY_1.
C

D D¢

Remark 3.12. As we mentioned before, the bounds given in Theorem 3.7
are sometimes sharp. On the other hand, we would now like to give an example
of an obvious situation where the bounds have no chance of being sharp. This
will happen because Proposition 3.2 is not sharp, in the case of a big gap
between the largest degree of a minimal generator of I and the regularity of .#
(compare Remark 3.3).

Let C = P? be a smooth complete intersection of surfaces of degree a and
b, with a <b. Let I = I be the homogeneous ideal of C. Let Y be a ribbon
defined (up to embedded points) by the ideal (I, F). Note that reg(l) = a +
b— 1. A minimal free resolution for I? is

0-8(—2a—b)®DS(—a—2b)>S(—2a)DS(—a—-b)®S(—2b)>1>-0

(cf. [31]), hence reg (#2)=2b +a— 1. So already there is a gap and for small
d Theorem 3.7 has no chance to be sharp. In fact, under the assumption that
d=b + 1, one can check that reg (%) = reg (#2) = reg (#) + b.

We would also like to point out that it would be nice to derive a bound
on the degree d; in the statement of Theorem 3.7, say in terms of the genus
and degree of the curve and the rope.

Example 3.13. We give an easy example of Lemma 39. Let Y' be the
scheme in P3 defined by I = (w, x2, xy). Y’ is a line with an embedded point. If
we remove the embedded point then we get the line Y defined by the ideal
I, = (w, x). It is easy to check that the regularity of the ideal sheaf of Y’ is 2
and the regularity of the ideal sheaf of Y is 1.
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