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On a confluence problem for the equations of a
viscous heat-conducting gas

By

S. YA. BELov and V. YA. BELov

1. Introduction

The one-dimensional motion of a viscous polytropic ideal (perfect) gas is
described by the following system of equations [I, 14]:

p(@u 6u> _9%u_ d(Rpb)
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Here u, p and 6 are the velocity, density and absolute temperature, respectively—
the required characteristics of the medium; y is the Eulerian coordinate; ¢ is the
time; u, c,, k are the viscosity, specific heat capacity and thermal conductivity—
positive constants. R is the universal gas constant.

The distinctive feature of the viscous gas equations is an indeterminate type
of the whole system. The continuity equation (1.2) can be treated as a first
order partial differential equation with respect to p. Its characteristics are integral
curves of the ordinary differential equation
j—f = u(y, t).

If we formulate an initial-boundary value problem for the system then,
according to the boundary conditions, either the side boundaries of a domain
of unknowns are characteristics of the continuity equation or they simulate perme-
able walls, that is the characteristics intersect the boundaries.

In accordance with the above, boundary problems for the one-dimensional
viscous gas equations can be classified into two groups: characteristic and non-
characteristic problems. The side boundaries are characteristics, for instance,
when the boundary conditions model rigid volume walls or free surfaces. The
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problems of the second group are more delicate because of a specific form of
the integral laws of conservation.

For the last twenty years free boundary problems for the one-dimensional
viscous gas equations have been intensively studied. The main attention has
been paid to the existence, uniqueness and asymptotic properties of solutions
(see A. V. Kazhikhov [5], [7], M. Okada [12], [13], T. Nagasawa [9]). After-
wards, A. S. Tersenov [19], T. Nishida [10], T. Nishida and M. Okada [11]
studied free boundary problems where the density is continuous across the inter-
face of a gas and a vacuum.

In this paper we consider a noncharacteristic initial-boundary value problem
for the system (1.1)—(1.3) in a domain, the right-hand boundary of which is fixed
and simulates a permeable wall, and the left-hand boundary is a characteristic
curve and simulates a free surface of a viscous compressible fluid. The same
problem has been studied in [3] for the viscous gas equations of a barotropic
motion. However, at first the solvability of a problem where a free boundary
and a permeable one present simultaneously was proved by A. V. Kazhikhov
[6] for the generalized Burgers’ equations and by S. Ya. Belov [2] for the
heat-conductive case. But they studied the problem modeling a filling of a vacuum
with a viscous compressible fluid.

The main feature of our problem is that the characteristics of the continuity
equation go out of the domain on the right-hand boundary simulating a perme-
able wall. Therefore the left-hand boundary being a characteristic has a chance
to intersect the right-hand one and we can get some kind of degeneration of
the problem.

For the model of a barotropic motion the following results have been proved
in [3]:

1. It is possible that the side boundaries of the domain intersect in a finite
time, that is, the domain is getting degenerated.

2. Some estimate for the time of the degeneration can be obtained.

3. There exists a solution of the problem in a degenerate domain.

In this paper we prove the same statements for the equations of a heat-
conducting gas. However, the confluence problem for a perfect gas is more
delicate than in the barotropic case. The main obstacle is that the domain of
the problem is unknown in the Eulerian variables as well as in the Lagrangian
ones. More precisely, the free boundary of the contact with the vacuum is
unknown in the Eulerian variables and it is impossible to define the Lagrangian
image of the permeable boundary.

The plan of the work is the same as in [3]. We state the problem in
section 2. In section 3, we deduce some a priori estimates for the regular
solution, which lead to results on the degeneration of a domain of unknowns. In
section 4 we formulate the local existence theorem and prove the existence of a
final solution (see Definition 2). The auxiliary problem, which plays an important
role in the proof of the local solvability, is studied in section 5. The proof of
the local existence theorem is presented in section 6.
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Throughout the paper, we use well-known notations. Thus, by C*'(Q;),
0<k<oo, 0<I<oo, we denote the set of all continuous functions in closed
domain Q; < R x R* = {(x,t)e R% t > 0} having derivatives with respect to x
up to order k inclusively and with respect to t up to order I inclusively, which
are continuous in Q. By C***(0, X), 0 < k < oo, we denote the Banach space
of functions on (0, X) having derivatives up to order k inclusively, which
are uniformly Holder continuous with exponent o € (0, 1). We use the notation
Cktal*b(Q,), 0 <k < o0, 0 << oo, for the Banach space of functions on Qr
having derivatives with respect to x up to order k inclusively and with respect to
t up to order [ inclusively, which are uniformly Holder continuous for x with
exponent a and for ¢ with exponent f, where a, € (0,1). The symbols Hi and
H? denote the constants of uniformly Holder continuity with respect to x and
to t respectively, i.e. if Qr = (0, X) x (0, T)

LSy, 1) — f(x2, 1)

L}

Hi(f(x,1))= sup

x;,x2€(0,X) [x; — x|
o<t<T
|f(x’ tl) - f(X, tZ)l
HI(f(x, 1) = 7 .
11,12€(0,T) Ity — 5]
O<x<X

If k=1, a=p, we use notation C***(Q;) for C¥*>**%(Q,).
We also use a Sobolev space W,}'!'(Q;) and a Sobolev—Slobodetskiy space
W0, T), 0 <l <1 with the norm (see [15])

£ hwyo. 1y = I/ lIL 0.1 + (f dtj [(t-.-f)+—wf(t ) '

The standard norm of any Banach space B will be denoted by || .

2. Formulation of the problem

We consider the motion of a viscous gas in a certain region, the right-hand
boundary of which is fixed and permeable. The gas is constantly pumped out
through the permeable wall and is in contact with a vacuum on the left-hand
side. This process can be described by a solution of system (1.1)-(1.3), which
is defined in the region Q = {(y,?):t>0,z(t) < y < Y} and satisfies the following
boundary conditions:

1) w=ip(y).  p=poy O=0(y) fort=0 0<y<Y;

a0

(2.2) u=u(t)>0, @=0 for y=1Y, t>0;
i a0

2.3) “p="20  fory=z0), (>0

Hoy P~ oy
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The equation of the free boundary y = z(t) is defined by the solution of the
Cauchy problem:

(2.4) Z—i = u(z, t), z(0) = 0, t>0.
The behavior of the free boundary is the main topic of our investigation.

As mentioned above, the left-hand boundary of the domain Q is a characteris-
tic of the equation (1.2). But the characteristics go out of the domain on the
right-hand boundary because they have appropriate inclination for y =Y. We
may state a conjecture on an intersection of the side boundaries in a finite time.
However, the following example shows that the positiveness of a boundary func-
tion u; does not ensure any confluence of the boundaries. The functions

y—3%
1+t

p, =1 +07" 0yt =

b

==

u(y, t) =
are a solution of the problem (1.1)—(1.3), (2.1)-(2.4) with data

1
u, = 5(1 +81'>0  for any t > 0;

_ 1 ~ L
u0=y——§, Po=1, Hozﬁ,
over the infinite time interval. Here Y = 1.
Obviously,
t .
z(t) = — 2 and lim z(t) = —oo0.
2 t— o0

Taking into account some possibility of the degeneration of the problem, it
is worth using the following definitions.

Definition 1. Let T be a real number and T>0. We will say that the
problem has a solution on the interval [0, T] if the following conditions are valid:
1. there exists a function z(t) e C*[0, T] such that z(0) =0, z(t) < Y for t < T
and z(T) < Y;
2. there exist functions u(y, t), 8(y, t), p(y, t) in domain Q% = {(y,1):0<t < T,
z(t) < y < Y}, which have the properties:

(u,0)e C*1QNNCE@)).  peCHH(QNNCQT),

%, @EC(Q;’-) p>0, 6>0.
0x’ 0x

and satisfy equations (1.1)—(1.3) and boundary conditions (2.1)—(2.4).

Definition 2. If the problem (1.1)—(1.3), (2.1)-(2.4) has a solution on an
interval [0, T] and z(T) = Y then the solution is called a final solution.
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3. The degeneration of the domain

In this section we consider the free boundary problem (1.1)—(1.3), (2.1)—(2.4).
Suppose the problem has a solution on an interval [0, T]. It is not possible
to follow the free boundary in the Eulerian variables because we are not able
to deduce strong enough estimates for u(z(t), t). For our purpose it is worth
using the Lagrangian mass variables:

y
x=x(y,t)= j p(s, t) ds,
z(t)
(L) o .
t'=t'(y,t)=t (the prime will be omitted).

Let the notations of the desired functions be preserved. Then the functions
u(x, t), p(x,t) and 0(x,t) are a solution of the following system of differential
equations [1]

ou 0 u 0
(3.1 E=ﬂa<Pa>—a(RP9),
op du
2 it 277
(3.2) TP =0
00 o ( a0 ou\? du
(3.3) cva = xa <p5)—c> + up <$> - Rp()b;

in the domain Q; = {(x,1):0 <t < T, x € Q, = (0, a(t))}, and satisfy the initial and
boundary conditions

Y

(3.4) (u, 0, p) = (ug(x), Oy(x), po(x)) for t =0, 0<x<X= J Po(s) ds,

0

u=u,t)>0, %=O, for x = a(r), 0<t<T,
(3.5)
ﬂZ—Z—R9=%=0 for x =0, 0<t<T
Here

(3:6) uo(x) = iio(y)  Oo(x) = Bo()),  pol¥) = Po(y), if x= j y Po(s) ds.
0o

The equation x = a(t) defines the image of the “permeable” right-hand boundary
and

ait)y=X — Jt u,(t)p(a(z), )dr.

The first integral estimate can be proved in an usual way. We sum equation
(3.1) multiplied by w =u — u; and equation (3.3), then we integrate the result
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over Q,={(x,1:0<1<t,0<x<a(r)}. After simple reductions, using the
Cauchy inequality and Gronwall’'s inequality, we can obtain the first energy
estimate:

t
(3.7 max {Iw@IIF 00 + 2¢,100) 1,0y} — 2¢, J pla(z), 1)0(a(z), t)u,(1)dt < N,,
<t<t 0
where
N, = <Iluo — 0170, + 2¢, 0106l ,0.x) + X J Iuildf> eXPJ luj|dr,
0 0

The following Kazhikhov’s representation for the function p(x,t) is also
well-known [1]:

1 X
Po(x) exp {— J‘ [uo(s) — u(s, t)]ds}
38)  plx.1)= Ko

1+ po(x)g J' 0(x, t) exp {l jx [uo(s) — u(s, t)]ds} dt
Hu Ko

0

Let us introduce the notations

M, () = max p(x,1).  M,(t) = max 6(x, 1),

xe £, x€ 2,
m,(t) = min p(x, t), my(t) = min O(x, t)
xe Q, x€ £,

and suppose that
0 < mgy < (po(x), Op(x)) < My < o© for 0 <x < X.

Using an obvious relation for the argument of the exponential function in (3.8)

r [us. 1) — uo(s)]ds

0

fx Cu(s. 1) — uy (1)]ds + f "Ly () — 1, (0)]ds + f " [0 (0) — wo(s)1ds
0 0 4]

t
< XHW(O)l yo + X f il dt + X2 uo — 1y (0)l 0. x5
0
we estimate the right-hand side of (3.8) from above and from below and obtain
the following assertion.

Lemma 1. For any t < T the following relations hold:

(3.9 M,(t) < M, exp {N,},

(3.10) m,(t) = mg exp { —N,} [1 + M:R exp {N,} f' Me(t)dr]_ ,
o)
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where
1 1a 1
N, = ;(Nl + 2X2N,2).

After that we can deduce a stronger integral estimate. Having multiplied
the equation (3.1) by w = u — u, and the equation (7.3) by (1 — 67') then inte-
grating their sum over Q, = {(x,71):0<1<10<x <a(r)}, after simple reduc-
tions, we come to the inequality

1 { u?  kpb?
3.11) S IWliE,a) + 10— In 9|IL.<9,>+” [“‘; +%—:|dxdt
Q,

1
< —JI uiwdxdt + i”“o - “1(0)”12,2(0,)()

+ 1606 — In 6yl 00, x) + Jf Rpu,dxdr.

The last term of the right-hand part of (3.11) is estimated with the help of the
Cauchy inequality so as

1 upu? t
(3.12) Rpu,dxdr < 2], 0 *dxdt + " R*MyN, exp {N,}.

v

Hence,

1 2 - 92
(3.13) EJJ; M;uxdxdt + JJ hzz" dxdt < N3 + 4;ic R2M N, exp {N,},

where
1 1 ! ’ 1
N3=X2N12 0|u1|d1:+§N1 + ”00—1“ 00“142(0')0.

Finally we can prove that p is bounded away zero. Let us consider the
inequality

(3.14)  My(1) < 0(s(r). 1) + J |0l dx
Q

t

<M 0+ m_‘(t){O(S(t) tHp(s(t), £) + R pifdx
-2 L ’ ’ 4e. ' ) g, 07 ’

Hence, the function M,(t) may be bounded from above by means of the function
m,(t). Then inequality (3.10) may be rewritten in the following way

t

(3.15) m, (1)< A +J B(t)m, ! (1)dx,

0

where
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A =mg" exp {N,},

M,R N 6?2
B(t) = #'(')10 exp {2N2}<20(a(t), Hp(a(r), t) + i j ) pg—zdx>.

Using Gronwall’s inequality, we obtain the important relation:

(3.16) m,;'(t) < A exp {J' B(‘t)dt}.

0

Consequently,

(3.17)  m,(t) = N,(t) = mg exp {—N,}

M,R 1 N, t

— 2N,}N - R? .

X exp{ e exp {2N,} I<Cu i Ta.] + e, + SucTn M,N, exp {N2}>}
O<t<t

Now we are able to estimate the function a(tf). Obviously,

a(t) = X — J p(a(x), Yu,()dr > 1;(1) = X — M, exp {N,} f luy (1) dz,
0

0

at) < Li(t)= X — J: N4 (D)u,(t)dr.
Suppose
I,(0) <0,
then
I,(0) < 0.
Let us take T* > T, > 0 such that
1,(T) =0,
I,(T*) = 0.

The form of the Lagrangian transformation (L) and the estimates (3.9), (3.17)
allow us to write the following relations:

(3.18) M texp {—N,}a(t) < Y — z(t) < N; Y (T)a(e).
Therefore, if T < T, then a(T) = lim a(t) > 0 and, hence, z(T) = lim z(t) <Y.
t-T-0 t=T-0
If z2(Ty= lim z(t) <Y then a(T)= lim a(t) >0 and, hence, T < T*.
1=T-0 t-T-0

We have thus proved:

Theorem 1. Suppose the functions iy, po, 0y, u, > 0 are sufficiently smooth
and:
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0<m<(py 0) <M< o0,

(3.19) J |ujldt < 0.

0o

Let the data satisfy one of the additional conditions

i) mexp {—N,}

® MR 1 N,
- N

X L CXP{ um exp {2N2} l(c,, min |u,| + 2kc,
O<s<t
t

+ ITSciMNl exp {Nz})}ul(t)dt > X
ii) M exp {N,} J lu,(t)|dt < X.
0

Then in the case i) there exist such constants T, >0 and T* > 0 that

l. if 0<T< T, then the problem (1.1)—(1.3), (2.1)-(2.4) has no final solution
on the interval [0, T];

2. if T > T* then the problem has no solution on the interval [0, T].

In the case ii), the problem has no final solution at all.

Remark 1. The condition ii) can be made more delicate if we use a more
exact estimate for p from above (see [1], pp. 49-50).

4. The existence of a final solution

Our goal in this section is to prove the existence of a final solution to the
problem (1.1)-(1.3), (2.1)-(2.4). As mentioned above, a striking obstacle is that
the domain of definition is unknown in the Eulerian variables as well as in the
Lagrangian ones. However, if we prove both the existence of a solution locally
in time and some a priori estimates, we will be able to obtain the final solution
using a standard continuation method.

The local existence theorem, which will be proved in section 6, has the
following formulation.

Theorem 2. Let
Po € C'*%0,Y), iy, O, C2*4(0, Y),
u, € C**3(0, T), u, >0 T>00<a<l,
0 < mo < (Bo(y). fo(1) < Mo < <o,
and the following compatibility conditions be valid

u(0) = i(Y),  piip(0) = Rpg(0)8p(0),  G4(0) = Go(Y) =0
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ui(0) = —ido(Y)iig(Y) + upe (Y)iig(Y) — RO(Y) — Rpo(Y)5o(Y)B,(Y).

Then the problem (1.1)—(1.3), (2.1)-(2.4) has a solution on some interval [0, T,],
where T, € (0, T), such that:

u, 0 C** Q). peCHHQL), AT <Y

We are able to deduce the same a priori estimates for a solution of the
problem (1.1)—(1.3), (2.1)—(2.4) as for a solution of the auxiliary problem (section

5). The estimates are dependent on the data of the problem and min (Y — z(¢)).
0<t<T

They guarantee that any extension may be impossible only if z(t) becomes equal
to Y.

Let the conditions of Theorem 2 for any T > 0 and conditions (3.19), i) be
satisfied. In this case we have proved the degeneration of the domain of un-
knowns. The existence of a solution in the degenerate domain is proved in the
following way.

We choose the sequence {z,} which tends to Y. Let z, = Y(l — %) n> 1.
On n™'" step the solution is produced over the time interval [0, T,], where
z(T,) = z,, but z(t) < z, for t < T,. Such a moment exists without fail. Otherwise
the a priori estimates ensure the extension of the solution over any time interval,
but it is impossible (Theorem 1).

We have a non-decreasing sequence {T,}, which is bounded from above:
T, < T* n> 1. Consequently, there exists value T, = lim T, and the function

z(t) is defined over the open time interval [0, T}).
Obviously,

4.1) lim z(T,) = Y.

We state that z(t) can be determined over the closed time interval [0, T;]
and z(T;) = Y. Really, we see that
4.2) N4(T) > Ny(T;) >0 for T<T,.
Hence, because of (3.18), (4.1), (4.2) there exists
lim a(T,) = 0.

n—o
However, the function a(t) is monotone. Therefore there exists

lim a(r) = 0.
1~T;-0

Then the relations (3.18) and (4.2) ensure that there exists

Iim z(t)=Y.

1= T;-0

and we take z(T;) = lim z(1)=Y.
’ t=>T;=0
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We have thus proved

Theorem 3. Suppose that the conditions of Theorem 2 are valid for any
T > 0 and the data satisfy (3.19) and i). Then there exists a final solution to the
problem (1.1)-(1.3), (2.1)—(2.4), which has properties:

u, 0e C**=1*3(QY ), peC'™(Qr,-),  for any & 0<e<T,.
Here [0, T;] is the time interval of the final solution.

Remark 2. If the condition ii) is valid then Theorem 2 and the a priori
estimates ensure that a solution exists over any time interval [0, T].

5. The auxiliary problem

Let
a(t)e C'*3(0, T), for some T >0,
and

(5 1) a(O) = X9 a’(o) = _uO(X)pO(X)’
' a(t) = x, > 0, O<my < —a(t) <M, <

for any 0<t< T
We denote by P, the following problem in a domain with a known right-hand
boundary:

du d( ou 0
(52) a #6_x<p a) - E(RPG),
ap ou
5.3 — 2=
(53) a TP A 0,
00 J( o0 ou\? ou
4 — =K—\p— —) - —
(54) “ar = "ox (p 6x> tup <6x> R"Bax
in Q5 ={(x,1):0<t<T xe =(0a()}
(5.5) (u, 0, p) = (ug(x), B(x), po(x)) for t=0,0<x<X,
00
u=u,t)>0, 5;=0, for x=a(t), 0 <t <T,
(5.6)
0 00
pt —RO=""2=0 forx=00<t<T
O0x 0x

We suppose that the functions u,, i, 0y, Po (see (3.6)) satisfy the conditions
of Theorem 2.

The local solvability of the problem (5.2)—(5.6) is proved in a way presented
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in [17], [18]. We have to deduce global a priori estimates to extend a local
solution over the whole time interval [0, T]. The estimates also help to prove
the local solvability of the main problem and to extend a local solution over
some time interval [0, T;]

First of all, we should note that estimates similar to (3.7), (3.9), (3.13), (3.17)
are also valid for a solution of the auxiliary problem (5.2)—(5.6).

More precisely, we have:

Lemma 2.
(5.7 omaxr {“u(t)”Lz(Qam) + ||9(t)“L,(Qau,)} <cy,
<<
(5.8) G <plxt)<c;, (x,0)eQF,

where positive constants ¢;, i =1, 2, 3, are only dependent on the given functions
Uy, Uy, Po, 0o and T.

We now prove that 0(x, t) is bounded away from zero.
Lemma 3. There exists a constant m > 0 such that
(5.9) my(t) = m
for any te [0, T].

Proof. Using an idea of A. V. Kazhikhov we multiply (5.4) by —672 to
obtain the following equation for w = 67 !:

ow d( dw R?
(5.10 E=Ka<p$>+f+@p,

where

_upfou R\ 2kp (06
f(X,t)——gf<& ﬂ0> P \ax)

Now we multiply (5.10) by 2pw??~! and integrate with respect to x over

(0, a(t)). Since f(x,t) <0, using the Holder inequality and (5.8) we get:

d
i o)L, 0.0 < ¢s-

Then,
oL, ,0.x < ||CU(0)||L2,,<0.X) + ¢st.
Passing to the limit as p — oo, we see
lw®ll 0,0 < 0O L o0,x) + Cot-
and

0(x, t) > (mg' + ceT) ' =m >0, 0<x<l|, 0<t<T
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It follows from (3.13), (5.8), (5.9) that

(5.11) ” <a“> dxdt + ” (ao)zdxdt<c7,
oF T 0

It would be observed that estimates (5.7)-(5.9), (5.11) are independent of a
function a(t). It is enough to have a smooth function with the property a'(t) < 0.
Using a simple inequality

1 \ 30\ i
O(x, t) — a0 Jo 0(s, t)ds < a(t)i(JQ (&) dx)

(5.12) JT M,(t)2dt < cg.

0

we deduce

We are in position to prove the final integral estimates.

Lemma 4.

a0 ou\? o*u\?> [ou\?
(5.13) Orrslragxr L <—x> dx + JJ [(F) + (E) ]dxdt < ¢y,
a(t 2
s g [ (O o [ [ ¢ () ot e
o<t<T Jo 0 ot
a(t) ap
o 0 e L (5

Proof. Using the translation u = w + u, into equations (5.2), (5.3), (5.4) and
differentiating the second equation, written in the form

dlnp ow

a . P

with respect to x, we obtain the system

ow a( ow dlnp
y _ ’
(5.16) i "ax< 6x> Ly P
d(dlnp a( ow
17 0y =
17 6t( 0x ) 0x<p 6x>’
00 o ( 06 ow
1 —=Kk—|p=— — —-—.
(>.18) “a~ “ox (” 6x> Mlad <6x> aax
. . 0 6w Inp
We multiply equation (5.16) by — p 0x and equation (5.17) by x and then

we integrate their sum over Qf = {(x,7):0 <t <t 0<x <a(r)}. After simple
reductions we see
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o ) oo o 20
S{EER T T
L J‘a(r) T Ew < )dxdr + J J‘ﬂ(r) ( gp> 66x <p(;w> dxdr
-5 JO J:(r) p? (g:) dxdr.

Let us note that the integral
t 2
INECC SN
0 ax x=a(r)

ow
o

is negative and

_ O0x '
1
x=a(t) x=a,(t)

Therefore, using the Cauchy inequality with ¢, we can estimate the right-hand
side of (5.19) so as to obtain:

a ow\? dln p\? tfao 9 [ ow
sao [P oG+ (50) Joven ][5 05) | one
a(r) 6 1 2 t
< clzl: J M,(1)? j Ii—;;p] dxdt + L Omix( )
0 <x<a(t,
a(t)
+ j max J ( ) dxdr]
0 0<x<a(r)

By an embedding inequality we see
aw p ow
ax Pox

o o))
(” 0x L,(0,a) 0% || L, 0.0

Combining (5.20), (5.21) and using the Cauchy inequality with ¢ and (5.8),
(5.11), (5.12), we have

2

ow
pa dt

(5.21) max

0 <x<a(t)

L,(0,qa)

z() < C+ f' A(t)z(t)dr,

0

at) ow\? (d1np)? L9 ow) P
o= [ oG+ (R0 Jooen [ [552) [oce

0<C=const, A@t)>0, A(t)eL,(0,T).

where

and
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Thanks to Gronwall’s inequality, the representation for w(x, t) and equations
(5.2), (5.3), we obtain the desired relations for u(x, t) and p(x, t).

00 . .
pa—x> and integrate over Q7. Using

the same arguments as for (5.19)—(5.20) we deduce integral estimate (5.14).

0
We now multiply equation (5.18) by a(

Finally, we have to estimate the Holder constants for a solution because
the local solvability of the auxiliary problem is established in space of Hoélder
continuous functions.

Lemma 5. For any solution of the auxiliary problem
(5.22) 1o llct 2 < €1-
Proof. The inequality is obtained by means of straightforward calculations

0
using (5.15) and the imbedding inequality (5.21) rewritten for 6_lt)

Remark 3. It would be observed that m, N and ¢;, i=7, ..., 11, 13, are
solely dependent on the problem data and the values x,, M, in (5.1).

For our further considerations it is important to have the exact representation

0
for the partial derivative % Using relation (3.8), we see
(5.23)
ap , - 1
a(x, 1) = po(x)po(x)” " p(x, 1) + ;[“o(x) —u(x, )]p(x, 1)

t x -1
— Bp(x, t)(l + 5 f Po(x)0(x, T) exp {5 f Lug(s) — u(s, t)]ds} dr)
1 It 1

0 0

! a0
XJ [po(x)0(x, ) + polx) 5 (X, 7)
o X

t gpo(xw(x, ) (t0(x) — ulx, )] exp {% j " Luo(s) — uls. r)]ds} i,
[4]

Lemma 6. If the data of the auxiliary problem satisfy the conditions of
Theorem 2 then for any solution the following estimates are valid

llu(x, )2+ -3ay + llulx, Olic=13gs + 10X, Dllcrisge < C1a-
where c,, is dependent on the data of the problem and values T, x,, m;, M,

lallct 4. 1)-

Proof. We use the Schauder estimates for a solution of a linear parabolic
equation. We can rewrite equation (5.2) and the boundary conditions for u(x, t)
in the following form
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d 0’ 0
= A0+ Bk 05+ Filx ),
(5.29) s
w0 = uole),  ulal) =@, 50,0 = ¥
where
0 d(Rp0 R
A,(% 1) = pp(x, 1), By(x, 1) = “a—i("’ 1), Fi(x,t)=— (ap L =000,
X u

Obviously, 4,(x,t) is a continuous and bounded function, and
1By (x, Ol 09 + 1F1(x, OllL 08 < €15

Using the Schauder estimates [15], we have

(5.25) flu(x, t)“wi“«m <cie(l + ||0|x=o||w4‘3(o, )-

We can also rewrite equation (5.4) in a similar form

00 0%0 a0
5 = Az(x, t)a72‘ + Bz(x, t)a + Fz(x, t),
(5.26) 2 )
0
0(x, 0) = 0,(x), 5(0, 1) = 532(“([)’ )=0,
where

K K 0 ou\> R du
A0 ="px 0 Bx=2Pxn Fxy=2(%) e
¢, ¢, 0x ¢, \0x ¢, Ox

% )
CO(Q7)

The second inequality (5.27) is obtained with the help of (5.13) and inequality

The Schauder estimates give

ou

ox

(5.27) HONW%"(Q';) <cpq(l + ||F2”L4(Q"T)) < 017<1 +

0
(5.21) rewritten for —Lf.
Ox

By embedding theorem ([8], p. 80) W/2''(Q%) C'*#3(Q%) and
(5.28) lu(x, t)llc+4se < Crallulx, Olwz s,
(5.29) 16(x, ) llct+% 53 < C18 10(x, t)llwz1gs)-

In our case W2'(Q%) = Wﬁ({x =0} x (0,1)). Hence, it follows from (5.25), (5.28),

(5.27) that
ou |z >
coQ%) .

ox

(5.30) lux, Dl 5031 < €10 <1 +
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Using the Cauchy inequality and the obvious imbedding C%'%(Q"T) < C%04%) we
deduce from (5.30)

lux, D)lle s < C20-
Therefore, (5.27), (5.29) imply
[160(x, t)llct %505y < C21-
Then representation (5.23) helps to obtain the following relation

op
ox

8.5, a < €22,
C™2(Q7)

where B = min {%, a}.
Hence, equations (5.24), (5.26) have the coefficients with the properties:

[ Ai(x, Dl c*hog + 1 Bilx, D)l c#S0sy + I1Fi(x, Ollcrb0s) < €23, i=1,2

The Schauder estimates for the Holder continuity constants of a solution of
a linear parabolic equation [16] give

(5.31) luCx, D)llc2-51+%0g) + 16(x, Dllc2++4gg) < 24,

If f = a, then we have the desired estimates. If § < a, then we use representation
(5.23) again.
We see, from (5.23), (5.31) and (5.3), that

(532) ||P(x, t)"CH“'H%(Q‘;) < Cy3.

Therefore, we can repeat the relation (5.31) with f replaced by a. Moreover,
from (5.23) and (5.3), we deduce the desired estimate for p:

p(x, Dllcr+aos) < Caq-

The lemma has been proved.

6. Local existence

In this section we prove Theorem 2. The local solution to (1.1)—(1.3), (2.1)-
(2.4) will be constructed using the Lagrangian formulation of the problem. The
existence of a solution over a time interval (0, T;) will be established by means
of the Tikhonov-Schauder fixed point theorem, which we recall for easy reference:

Theorem 4 [4, p. 221]. Let # be a compact convex set of a Banach space
# and let & be a continuous mapping of M into itself. Then ¥ has a fixed
point, that is, f = f for some fe M.

For our purpose, # = C'[0, T ], where T, will be chosen in the sequel. The
set .# is determined in the following way:
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M = {a(t) € C'3[0, T, J: a(0) = X, a'(0) = —up(X)po(X),
a(t) = xo, 0 <my < —a'(t) < My < o, |lall¢ 40,7,y < M, }

It is clear that .# is convex and closed in 4. Moreover, according to Ascoli’s
theorem, .# is precompact in 4.

Consider now the map & defined on .# in the following way. Let a,€ .#.
We can formulate the auxiliary Problem P, . If u(x,t), p(x,t) is its classical
solution, then

t

a,(t) = Laglt) = X — f 3 (1)p(ao(2). 7)dx.

0
Obviously,
a,(0) = X,
ay(t) = —uy(p(ao(). 1), a'(0) = —uo(X)po(X),
ai(ty) — ay(ty) = —ui(tMplao(ty), t) |t — |

— uy () HE(p(x, D) ag(t**)2[t, — 1,2

— u, (1) HE(p(x, )]ty — 1,2,

where 0 <t, <t, < T, and t*, t** e[t 1t,]

Let us take x, = $X. According to the a priori estimates for the auxiliary
problem, the bounds for p(x,t) are only determined by the data of the problem
and T,. Using the bounds for p(x,t) if T; =1, we can choose values for m,
and M,. Therefore, we can establish bounds for Hx%(p(x, t)) and H,%(p(x, 1))
because of (5.22). Hence, if we take M, large enough and T, small enough, we
get that a,(¢) satisfies the relations required in the definition of the set .#. Thus,
the operator ¢ is a mapping of ./ into itself.

Finally, we only need to verify that ¥ is continuous on ./ in the norm of
the space 4.

Let elements of sequence {a,}, n > 2, belong to .# and

a, = a in C'[0, T;].

Because .# is closed in C'[0, T,], we have ae.#. We consider the auxiliary
problems. The functions u,, p, and u, p are solutions of Problem P, and
Problem P, respectively.
Using simple transformations
X

6.1) X = =1, (n>2),
all

we obtain problems formulated in the fixed domain:

ou, x4, du, 0 du, 0
K [l'l

= 340 P —(Rp,0,),
ot a, 0x, alodx, p"(")xl oxl( Pu)

n
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op, Xx,a, 8p,, 1 26u,, -0
ot a, 6x1 a, Pn ox x,
00, x,a, 06 ou, 1 6u,,
o _ T e _ R 0,—
“F " a, ox, 6x1< P, ( > PR
in 0, ={(x,,0:0<x;, <1,0<t<T}
u, = ug(x,X), Pu = Po(x,X), 0, = Oy(x,X) for t=0,0<x,<1;
a0,
u, = u,(t) >0, x=0 for x, =1, 0<t<T,.
1
1Py Ouy 00,
— Rp,0, = = fi =0,0<t<T.
a, axl Py axl or X, 1

Problem P, is transformed in the same way.

It is clear that

PLa,(t)=X — Jl u,(1)p,(0, t)dr,
0

La(t) = X — j[
0

(6.2)

where u,, p,. 0, and u, p, 6 are solutions of the transformed problems.

Let

w,

n

=u

n

Then the functions w,,

ow, x.a,0w, p 0 (p,0u,
ot a, 0x, a, ox, \a, 0x,
0
NN
a, Ox,\a
dv, x4, 0v, 1 ow, Xyly
ot a, 0x, a, axl a,
0o, x,a,09, Kk 0 a0,
ot a, 0x, a?ox, p,.gl

—u,

u, (t)p(0, t)dr,

@, =0, 0.

v,, @, satisfy the following equations:

0
Rp,0, — P + Rp())

a ox,

0x,

u ow, [ ou, N Ju N 11\ ou\?
a2 ox,\ox, 0x, K a2 a?)\ox,
R d i, | 1 0
pnon ~u" - 0‘1 -\ Rpg_u
n Xy 0x, a, a 0x,
xya, xya’\ d0
a, a )ox,

{

Rp()) N <x,a,l _xa
a, a
0\, (1 _1)0

Pox,) T "\az ~ a?) ox, p

615
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We multiply the equations by w,, v, and &, respectively and then integrate
their sum over (0, 1) x (0, ¢). After using the following relations:

x,a, Of 'a “a, (',
f f —fdxldr— .[02 l“=1d1+_[02_a,, . f*dx,dt
t 1
> —le f f*dx,dv  for any fe CY(Q,)NC(Q,),
0Jo
t 1
u 0 (p, Ou, p Ou
LR [t -~ —+R d
L L a, 0x, (a 0x, Rp.0r a ox, + p0>w,,dx1 !
JJ [R(p p,,)0 —R Cba (&—&)%aw"]dxldr
X, a, a X
! HPn— P aun aan 6w
— dx,d
+L L a,| a 0x,0x, a\dx, Xidt
t ou 2 1
< Nalf <1 + max ——"‘ )f [(p, — p)* + ®?]dx,dt
0 0<x, <1 0x1 0
0
+ N, max |a,(t) — a(t)| +<£1 —”02>J J < w> dx,dz,
0<t<T,
1
f J‘ lgK(———)dx dt<N, J J (p,—p)dx, dT+32J j <6w> dx,dr,
0Jo @ Ox \p p,
,u Wy 6_u ?D,dxdt < N, ( max )
o a; axl 0x, 0x1 :

2

+ max
0<x,<1

ou

0x,

ull

0x,

0<x;<1

xj (Ddxldt+s3fj <6w>dxd1:
ou
—— d
J J; a (pn na peax >¢ndx1 T

t 1 a 2
<N, f <1+ max )J [(p, — +¢3]dxldz+s4jf <W> dx, dr,
*Jo 0<x, <1 5X1 0 Jo \0x,
tfl g 0 a0, 00
—_ @&,dx,d
Jo 0 af ax1<p"‘93‘1 5 > e

¢ a6, ke, [° 0P,
<N, max |-— Y — 2dxdt+<e ——JJ ( >dxdr
’L 0<x, <1 5x1‘ Jo (P = pYdx, X2 0Jo \0x, !

. HCy KCy .
and taking €, + &, + &3 + &, < Xz e5 < %7 we obtain

(6.3) Z(t) < Nsla, — allcio,r,) + j A(t)Z(t)d
0
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where

Z@ = Jl W2 + (p, — p)* + B} ]dx,,

and
A(t) > 0, A(t)e L,(0, Ty).

Then Gronwall’s inequality ensures that

1
J [ou(x1, 8) — p(xy, )1%dx; < Nylla, — allcipo, 1,95
o

where N, is only dependent on the problem data and constants determining the
set M.

Thus, p, converges to p in L,(Q,).

Taking into account the estimate (5.22) for a solution of the auxiliary prob-
lem, we have

Pullci@,) < Ns,

where N; is independent of n.
Therefore, from Ascoli’s theorem, the sequence {p,} is precompact in C(Q,)
and we have stronger convergence:

p,—p  in C(Q,)
Hence,
pu(l, ) > p(1, 1) in C[O, T ],
and, according to (6.2),
Ya, - Za in C'[0, T,].

That is, the operator & is continuous on . in the norm of 4.
We have established the existence of a fixed point for operator . Any
fixed point determines a solution to the problem (3.1)-(3.5) ((1.1)—(1.3), (2.1)-(2.4)).
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