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On a confluence problem for the equations of a
viscous heat-conducting gas

By

S . YA. BELOV and V . YA. BELOV

1. Introduction

T h e  one-dimensional m o tio n  o f  a  viscous poly tropic  ideal (perfect) gas is
described by the  following system of equations [1, 14]:

p (aua t 6  u  a 2 u 5 (Rp0)
(1.1)

u
at ay) ay' ay

apa 1 , a U
(1.2)

±  14P  ay =  °'

ae ae a2e (au ) 2a u
(1.3) c p (a t+  u _)  = K  a y 2  I t  ay  —  Rp0 —

a y
.

Here u, p and 0 are the velocity, density and absolute temperature, respectively—
the required characteristics of the medium; y is the  Eulerian coordinate; t is the
time; it, c„, K are  the viscosity, specific heat capacity and therm al conductivity—
positive constan ts . R is th e  universal gas constant.

The distinctive feature of the viscous gas equations is an  indeterminate type
o f  th e  whole system. T h e  continuity equation (1.2) can be treated a s  a  first
order partial differential equation with respect to p . Its characteristics are integral
curves of the  ordinary differential equation

dy
Tit = u(y,t).

I f  we formulate a n  initial-boundary value  problem f o r  th e  system then,
according to th e  boundary conditions, either th e  side boundaries o f  a  domain
of unknowns are characteristics of the continuity equation or they simulate perme-
able walls, that is the  characteristics intersect the  boundaries.

In  accordance with th e  above, boundary problems fo r the  one-dimensional
viscous gas equations can be classified into two groups: characteristic and  non-
characteristic problems. T h e  side boundaries a r e  characteristics, for instance,
when the  boundary conditions model rigid volume walls or free surfaces. The
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problems of the second group are  m ore delicate because o f  a  specific form of
the  integral laws of conservation.

F o r th e  last twenty years free boundary problems fo r  th e  one-dimensional
viscous gas equations have been intensively studied. T he  m ain  a tten tion  has
b e e n  p a id  to  the existence, uniqueness a n d  asymptotic properties of solutions
(see A . V . K azhikhov [5], [7], M . O kada [12], [13], T . N agasaw a [9 ]). After-
wards, A . S . Tersenov [19], T . N ishida [10], T . N ishida and M . Okada [11]
studied free boundary problems where the density is continuous across the inter-
face of a  gas and a vacuum.

In  this paper we consider a noncharacteristic initial-boundary value problem
for the system (1.1)—(1.3) in a dom ain, the right-hand boundary of which is fixed
a n d  simulates a  permeable w all, and the left-hand boundary is a  characteristic
curve a n d  simulates a  free  su rface  o f a  viscous com pressible fluid. The same
problem has been studied in  [3 ] fo r  th e  viscous gas equations of a barotropic
m o tio n . However, at first the  solvability o f  a  problem where a  free  boundary
a n d  a  permeable o n e  present simultaneously was proved by A. V. Kazhikhov
[6 ]  f o r  th e  generalized Burgers' equations a n d  b y  S . Y a . B e lov  [2 ] fo r the
heat-conductive case. B u t  they studied the problem modeling a  filling of a vacuum
with a  viscous compressible fluid.

The main feature of our problem  is that the characteristics of the continuity
equation go out of the domain on  the  right-hand boundary simulating a  perme-
able w a ll .  Therefore the left-hand boundary being a  characteristic has a chance
to intersect th e  right-hand o n e  a n d  w e can  get som e k ind  o f  degeneration of
the  problem.

For the model of a barotropic motion the following results have been proved
in [3]:

1. It is  possible tha t the side boundaries of the domain intersect in  a  finite
time, th a t is, the  domain is getting degenerated.

2. Some estimate fo r the  tim e of the  degeneration can be obtained.
3. There exists a  solution of the problem in  a  degenerate domain.
In  th is paper w e prove th e  same statements fo r  th e  equations o f  a  heat-

conducting gas. However, the confluence problem  f o r  a  perfect gas is more
delicate than in  the barotropic case. The m ain obstacle is  th a t the dom ain of
the  problem is unknown in the Eulerian variables as well as in the Lagrangian
o n e s . M ore  precisely, th e  free  boundary o f  th e  c o n ta c t w ith  the  vacuum  is
unknown in the Eulerian variables and it is  impossible to define the Lagrangian
im age of the permeable boundary.

T h e  p la n  o f  th e  w o rk  is  th e  sam e a s  i n  [ 3 ] .  W e  sta te  th e  problem in
se c tio n  2 . In  se c tio n  3 , w e deduce som e a  p r io r i  estim ates fo r  th e  regular
solution, which lead to results on the degeneration of a domain of unknow ns. In
section 4 we formulate the local existence theorem and prove the existence of a
final solution (see Definition 2). The auxiliary problem, which plays an important
role in  th e  proof of the local solvability, is studied in  sec tio n  5 . T h e  proof of
the local existence theorem is presented in section 6.
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Throughout the  paper, w e  u se  well-known n o ta tio n s . T hus, by  C '''( T ),
0 < k  < co, 0 <  / <  co, w e denote the  se t o f all continuous functions in  closed
domain O T  R  x R = { (x , t)  e  R 2 , t > 0} having derivatives with respect t o  x
up to  order k  inclusively and  w ith respect to  t  up to order / inclusively, which
are  continuous in  Q .  B y  C " (0 , X ), 0 <  k  < co, w e denote the B anach space
o f  functions on (0 , X )  h a v in g  d e r iv a tiv e s  u p  to  o rd e r  k  inclusively, which
are uniformly Holder continuous with exponent a e (0, 1). W e use the notation
ck+a,l+fl(Q T ) , 0 < k  < co, 0 < 1 < co, fo r the  B anach  space o f  functions o n  Q T

having derivatives with respect to  x  up to  order k  inclusively and with respect to
t  up to order / inclusively, w hich a re  uniformly Milder continuous fo r  x  with
exponent a  and  for t  with exponent 13, where a, /3 E (0, 1). The symbols HxŒ and
Hr denote the constants of uniformly Header continuity with respect t o  x  and
to  t  respectively, i.e. if  QT  = (0, X ) x  (0, T)

(x ,, t) — f(x 2 , t)i
Hx"(f(x , t)) = sup

x 1 ,x 2 e (0,X) 1X1 —  X21 2

0<t<T

If(x, t1) - f(x, t 2)1 
t e ( f ( x ,  t)) = sup

11,t2 e(o,T) it — t 2 1f l•
0<x<X

If k  = 1, a = /3, w e use notation C ( Q T )  for 0 " - a(QT ).
W e also use a Sobolev space Wp2, 1 (Q  T ) and a Sobolev—Slobodetskiy space

T ), 0 <  / <  1  w ith the  norm (see [15])

1+IpIlf II w/o, =  f  II Lp ( 0,T )

o
( I T  dt

J

( t f (t)I1P  d r )P
o

The standard norm  of any Banach space B  will be denoted by ii • il B.

2. Formulation of the problem

We consider the m otion of a viscous gas in a certain region, the right-hand
boundary o f which is fixed and  perm eable. T he gas is constantly pum ped out
through the  permeable wall a n d  is  in  contact w ith a  vacuum  on  the  left-hand
side. T h i s  process can be described by a  solution o f  system (1.1)—(1.3), which
is defined in  the  region Q  = {(y, t): t > 0, z(t) < y  <  Y I and satisfies the following
boundary conditions:

(2.1) u = P = 0 =  (y) fo r t = 0, 0 < y < Y ;

(2.2) u = u 1 (t) > 0,
O y  

— 0 for y = t > 0;

au 00
(2.3)y

O y  
p = 

O y  
= 0 for y =  z(t), t > 0;
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The equation of the free boundary y  = z(t) is defined by the solution of the
Cauchy problem:

dz(2.4) u(z, t), z(0) = 0, t > 0.dt

The behavior of the free boundary is the m ain topic o f o u r investigation.
As mentioned above, the left-hand boundary of the domain Q is a characteris-

tic  o f the  equation (1.2). B ut the characteristics g o  o u t o f  th e  domain on the
right-hand boundary because they have appropriate inclination for y  = Y. W e
may state a conjecture on an intersection of the side boundaries in  a  finite time.
However, the following example shows tha t the positiveness o f a  boundary func-
tion  u , does not ensure any confluence of the boundaries. The functions

u(y, t) = ± ;, p(y , t) = (1 + 0', 0(y, t) =
R '

are  a  solution of the  problem (1.1)-(1.3), (2.1)-(2.4) with data

1
u  =  -

2  
(1 + 0 - 1  > 0 for any t > 0;

= 1 , =

over the infinite time in te rv a l. H ere  Y = 1.
Obviously,

z(t) = and lim z(t) =  -co .

Taking into account some possibility of the degeneration of the problem, it
is w orth using the following definitions.

Definition 1. L e t T  b e  a  real num ber and T >  0. W e w ill say  tha t the
problem has a solution on the interval 1- 0, T] if the following conditions are valid:

1. there exists a  function z(t) e C 2 [0, T ] such that z(0) = 0, z(t) <  Y for t  < T
and z(T) Y;

2. there exist functions u(y, t), 0(y, t), p(y, t) in  domain Q =  1 (y , t): 0 < t < T,
z(t) <y  < Y1, which have the properties:

(u, 0) e C 2 ' 1 (Q ) n C(Q );), p E (Q )n C (Q ),

Ou 00 -
e C(Q) p > 0, > 0.

e x  ax

and  satisfy equations (1.1)-(1.3) and  boundary conditions (2.1)-(2.4).

Definition 2. I f  th e  problem  (1.1)-(1.3), (2.1)-(2.4) h a s  a  so lu tion  on  an
interval [0, T ] and  z (T ) = Y then the solution is called a f inal solution.
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3. The degeneration of the domain

In this section we consider the free boundary problem (1.1)—(1.3), (2.1)—(2.4).
Suppose the problem has a solution on an interval [0, T ] .  It is no t possible
to follow the free boundary in  the Eulerian variables because we are not able
to deduce strong enough estimates for u(z(t), t). For our purpose it is worth
using the Lagrangian mass variables:

X = x(y, t) = p(s, t) ds,
z(t)

t' = t'(y , t) = t (the prime will be omitted).

Let the notations of the desired functions be preserved. Then the functions
u(x, t), p(x , t) and 0(x, t)  are a solution of the following system of differential
equations [1]

(3 .1 )
a u ( p ati a ( R p o ) ,

at ax a x )  a x

aPa u(3.2) at
+  p 2  

—

0x 
=  0 ,

00 0  (  00 „ au
(3.3) ci, —  K p ax)+  tip ( a

a
u
x ) 2

 —  Rpu ax

in the domain QT = { (x, t): 0 < t < T, x e 52, = (0, a(t))}, and satisfy the initial and
boundary conditions

Cr
(3.4) (u, 0, p) = (u 0(x), 0 0(x) , Po(x)) for t = 0, 0 <  x <  X  =

o
00 (s) ds,

00
u = u > 0, = 0ax for x =  a(t), 0 < t < 'T,

(3.5)
au 00,u — — R0 = — 0ex ax

for x = 0, 0  <  t <  T.

Here

(3.6) u0 (x) = 00(x) = 60(Y), Po(x) = if x = 130 (s) ds.
Jo

The equation x =  a(t) defines the image of the "permeable" right-hand boundary
and

a(t) =X  —  f t u i (t)p(a(t), r)dr.
o

(L)

The first integral estimate can be proved in an usual w a y . We sum equation
(3.1) multiplied by w = u —  u 1 a n d  equation (3.3), then we integrate the result
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o v e r  Q, = {(x, -r): 0 <  t  <  t ,  0 < x < a(r)}. A fter sim p le  reductions, using the
Cauchy inequality and G ronw all's inequality, we can obtain th e  first energy
estimate:

t(3.7) max { w(T)111.2(Do + 
2c„110(T)11L,(ar)} — 2c, p(a(T), r)9(a(r), t)u i (r)dt

0 <r <t 0

where

N1 = Iluo — ui(0 )Ili 2 (( o,x) + 2c„11
.

0 0111.,(0,x) + X u d t  expj i' 1 0 luildr,
o

T h e  following Kazhikhov's representation fo r  th e  function p(x, t) is also
well-known [1]:

(3.8) p(x, t) =
Po (X) exP {1  i x  [u o (s) — u(s, W as}

1-1o

  

1 + po (x) J .  0(x, r) exp { 1 [ u 0 (s) — u(s, r)]ds} dr
o o

•

L et us introduce the notations

M (t) =  max p(x, t),
X E  T2,

( t)  =  min p(x, t),
E  I?,

=  max 0(x, (),
E

m 0(t) =  min 0(x, t)
S E  T2,

and suppose that

0 < /no ( p o (x), 00 (x)) M o  < oo for 0 <  x  <  X.

Using an obvious relation for the argument of the exponential function in (3.8)

[u(s, t) — uo (s)]ds
Jo

[u(s, t) — u i (t)]ds +  f {u 1 (t) — u i (Onds + f [14 1 (0) — uo (s)]ds
Jo

Xillw(011 2 (s2,) + X f t( I T X -111u0  — u1(0)11L2(o,x),

we estimate the  right-hand side of (3.8) from above and from below and obtain
the  following assertion.

L em m a 1. For any t <  T  the following relations hold:

(3.9) M0(t) Mo  exp {N2 },

11/ 10  R(3.10) m ( t )  mo exp { — N2 }[1 + exP iN21 f
o  

M o(T)dr] 1
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where

1
N2 = — (N1 2X1N11).

After that we can deduce a  stronger integral estimate. Having multiplied
the equation (3.1) by w = u —  u ,  and the equation (7.3) by (1 — 0-1 ) then inte-
grating their sum over Q i = { (x , T): 0 < < t, 0 < x < a(t)}, after simple reduc-
tions, we come to the inequality

1(3.11) + O — In 011",,) + i f
ppu! KA ?

+[
„

axat0 0 2

(2‘

1< —f u', w dxdr + -
2

11140 — ui (0 )1Ii2(o, x).2,

+ 1100 — ln 00 4 2 (o , ) + Rpuxdxdr.
Q'

The last term of the right-hand part of (3.11) is estimated with the help of the
Cauchy inequality so as

(3.12)
i f

R pu x dxclt < 2f f " i t !  dxd-c + t1 2 2 1140 N, exp IN,I.
0

Hence,

(3.13) 1 "II!  dx dt +
(2,

dxdt < N+ tR 2 M0N1 IN21,
0 x — 3 exP024 t i c ,

where

N3 = XIN I / 114', dT
0

1
+ 

2
-N1 + — ln 0 0111.2(0,x).

Finally we can prove that p  is bounded away zero. Let us consider the
inequality

(3.14) WO < 0(s(t), t) + f 1 0 x 1 dx
Q,

< 2

1

+ mp
- 1 (t){0(s(t), t)p(s(t), t) + 4

1

_ 2 dx}
or U

Hence, the function M o (t) may be bounded from above by means of the function
inp (t). Then inequality (3.10) may be rewritten in the following way

(3.15) m1 (t) < A + J B(r)mp-1(t)d-r,

where
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A = mo
- 1  exp {N2 1,

M ,R N, f  peB(t) = exp {2N2 } (20(a(t), t)p(a(t), t) +
Pm° 2 c ,  ‘2, 0 2  

dx ).

Using Gronwall's inequality, we obtain the important relation:

(3.16) Mp 1 (0 A exp B(t)d}.

Consequently,

(3 .17) m (t) > N4 (t) = mo exP 1 — N21

MoR 
e x p  1 2 N 2 1 N 1  (  

1  N3   t

,  R 2 1140 N1 exp IN2 1)}.
tuno ci, min lu l l • 2kc, ▪ 8pcjic

0< r< t

Now we are able to estim ate the function a(t). Obviously,

a(t) = X  —  f P(a(T), T)U ( T ) C i t  1 1 ( t )  =  X  M 0 eX P {N2 } f0 0

a(t) 1 2 (t) = X  — N4 (t)u 1 (T)dt.
Jo

12 (0o) < 0,

i i (Go) < 0 .

L et us take  T * > T*  > 0  such that

I1 (T )  = 0,

12 (T*) = 0.

The form of the Lagrangian transformation (L) and the estimates (3.9), (3.17)
allow u s  to  w rite  the  following relations:

(3.18) M-1 exp { — N2 } a(t) Y — z(t) N  4
- 1  (T)a(t).

Therefore, if  T  < T* th e n  a(T ) = lim  a(t)  > 0  and, hence, z (T )  = lirn  z(t) < Y.

If z (T ) = lim  z (t)  < Y then a(T ) = lim  a(t)  > 0  and, hence, T < T*.

W e have thus proved:

Theorem 1. Suppose the functions fi,, 130 , 5 0 , u , > 0  are sufficiently smooth

x exp

Suppose

then

and:
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0  <  m  (A) , 60 ) M < co,

c.

J0

L et the data satisfy  one of  the additional conditions

i) m exp { —N2 }

X f exp
MR

 e x p  1 2 N 2 1 1 ■ 1 1  
( 1  N 3

0
tu n 

cy min 114 1 1 2Kc,

+ 
1 6 c ,

MN, exp {N2 } )} u,(t)dt > X

ii) M exp IN2 1 1141 (0  dt <X .

Then in the case i) there ex ist such constants T„, > 0  and T* > 0  that
1. if  0 < T < 1 ', then the problem (1.1)—(1.3), (2.1)—(2.4) has no final solution

on the interval [0, T];
2. if T >  T *  then the problem  has no solution on the interval [0, T].
In  the case ii), the problem  has no f inal solution a t  all.

Remark 1. The condition ii) can be made more delicate if  we use a more
exact estimate for p  from above (see [1 ], pp. 49-50).

4 .  The existence of a final solution

O ur goal in  this section is to prove the existence of a final solution to the
problem (1.1)—(1.3), (2.1)—(2.4). A s mentioned above, a  striking obstacle is that
the domain of definition is unknown in the Eulerian variables as well as in the
Lagrangian ones. However, if we prove both the existence of a solution locally
in  time and some a priori estimates, we will be able to obtain the final solution
using a standard continuation method.

The local existence theorem, which will be proved in  sec tio n  6 , has the
following formulation.

Theorem 2. Let

'/30 Y), fio e C 2 ( 0 ,  Y ),

u, C l + /(0, T), u, > 0 T  > 0, 0 < a <1,

O < m0 00(.0, 0(y)) m o  <

and the following compatibility conditions be valid

u,(0) = tu-4(0) = R/30 (0)60 (0), k (0) = k (Y ) = 0

(3.19) Iuj d t  < co.
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u'i(0 ) =  - Ci0( 17 )ii- o(Y )+ Yt30-1 (17)/7 (Y ) - Rk,(Y ) - R i3i)(Y)fiant)0( 17).

Then th e  problem (1.1)-(1.3), (2.1)-(2.4) has a so lu tio n  o n  some interval [0, T1],
where T, c (0, T ), such that:

u, O n C 2 + " 1+ 1(Q ). p c C 1 + 2 (V i '.1 ), z (T i) < Y

W e are  ab le  to  deduce  th e  sam e a  p r io r i estimates for a  solution of the
problem (1.1)-(1.3), (2.1)-(2.4) as for a solution of the auxiliary problem (section
5). T h e  estimates are dependent on the data of the problem a n d  m in  (Y  -  Z (t)) .

(T) t.çT
They guarantee that any extension m ay be impossible only if z(t) becomes equal
t o  Y

Let the conditions of Theorem 2 for any  T > 0  and conditions (3.19), i) be
satisfied. I n  th is case w e have proved the  degeneration o f  th e  dom ain o f  un-
k n o w n s. The existence of a solution in the degenerate domain is proved in the
following way.

We choose the sequence {z„} which tends t o  Y .  Let z„ =  Y  1  
2

1

n  
, n > 1.(

O n  n
_th s t e p  the  so lu tion  is  p roduced  over th e  tim e interval [0 , T J ,  where

z(Tn ) = z n , but z(t) <  zn  for t  < Tn . Such a moment exists without fail. Otherwise
the a priori estimates ensure the extension of the solution over any time interval,
b u t it  is  impossible (Theorem 1).

W e  h a v e  a  non-decreasing sequence { T } , which is bounded from above:
T„ <  T*, n >  1. C onsequently , there  exists value TT =  iim T„ a n d  th e  function

n—, co

Z(t) is defined over the  open time interval [0, Ti ).
Obviously,

(4.1) lim  z(Tn )  = Y.

W e sta te  tha t z (t) can be determ ined over th e  closed time interval [0, Ti -]
and z (T1 ) =  Y. R eally , w e  see  tha t

(4.2) N 4(T )> N 4 ('T1 ) > 0 fo r  T <

Hence, because of (3.18), (4.1), (4.2) there exists

lim  a(Tn ) = 0.

However, the  function a(t) is  m onotone . Therefore there exists

lim  a(t) = 0.
t-T f -o

Then the relations (3.18) and (4.2) ensure that there exists

lim  z(t) ---- Y.
/-T f -c)

and  we take z(TT)  =  l i m  z(t) =  Y.
/-Tr-o
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W e have thus proved

Theorem 3. Suppose that the conditions of  Theorem 2  are  valid f o r any
T >  0  and the data satisfy (3.19) and i). Then there exists a f inal solution to the
problem (1.1)—(1.3), (2.1)—(2.4), which has properties:

u, 0 E C2 + a ' 1 + 1 02 1; f p  E  C l + Œ(K _ , ) , f o r any c ,  0 <  E Tr .

Here [0, Tf ]  is the  time interval of  the f inal solution.

Remark 2. If the condition ii) is va lid  then  T heorem  2  and  the  a  priori
estimates ensure that a  solution exists over any time interval [0, T].

5 .  The auxiliary problem

Let

a(t) e C 1+ 1(0, T), for som e T >  0,

and

a(0) = X, a'(0) = —u o (X)p o (X),
(5.1)

a(t) x o  > 0, 0<  m , —a'(t) M ,  <  co

for any 0 <  t <  T
We denote by Pa the  following problem in a domain with a  known right-hand

boundary:

(5.2)
a u  p  0  ( 19 att) 0 ( R p m ,

at ax a x )  a x

aP 2  au(5.3)
et 

+  p  —

0X 
=  0 ,

a0 a (
pp

a0 aU 2 au
(5.4) — K p  ) ax

)
+  ( Rp0ax a x  ax

in  12°1 . = { (X , t): O G  t T, x E ,Q, = (0, a(t))},

(5.5) (u, 0, p) = (u o (x), 00 (x), po (x)) for t = 0, 0  <  x  <  X,

u = u i (t) > 0,
ao = 0 for x  =  a(t), 0 < t < T,
ax

(5.6)
au 00

p — RO — = 0 for x  =  0 , 0  <  t <  'T.
ax

W e suppose that the functions u 1 , it o , 00 , p o  (see (3.6)) satisfy the conditions
of Theorem 2.

The local solvability of the problem (5.2)—(5.6) is proved in  a  way presented
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in  [17 ], [18 ]. W e have to deduce global a  priori estim ates to extend a  local
solution over the whole time interval [0, T ] .  The estimates also help to prove
the local solvability o f the  m ain  problem a n d  to  extend a  local solution over
some time interval [0, Tf ].

First of all, we should note that estimates similar to (3.7), (3.9), (3.13), (3.17)
are  also valid for a  solution of the auxiliary problem (5.2)-(5.6).

M ore precisely, we have:

Lemma 2.

(5.7) m ax Ou(t)11,2 ( 0 ° ,0  +  0(t)11" 4 0 1 c1 ,
0<t<T

(5.8) C2 p(x, t) C3, (X, G

where positive constants c  i  =  1, 2, 3, are  only dependent on the given functions
141 , u o , po , 00 and T .

W e now  prove that 0(x, t) is bounded away from zero.

Lemma 3. There exists a constant m > 0 such that

(5.9) me(t) m

f o r any t G [0, T].

P roo f. Using a n  idea  o f A . V . Kazhikhov we multiply (5.4) b y  - 0 - 2  t o
obtain the following equation for co =

Ow(  O w )  f  R 2

(5.10)
at IC OX aX) + j  +  4p p '

where

up ( au R 21cp (  00y
f(x, t) =

02  O x ) 03 V x )

N ow  w e m ultiply (5.10) b y  2pco2 P- 1  a n d  integrate w ith respect t o  x  over
(0, a(t)). Since f(x, t) 0, using the  Holder inequality and  (5.8) we get:

d
—
d t

da)(04„(o,x) Cs.

Then,

(0 (t)IL2„(o,.70 110 -40 1111.2„(0,.,0 + c 5 t.

Passing to the  lim it a s  p co, we see

11( 0 (011 L,(0, X) 11(0(0)111.,(0 , C 6 t .

and

0(x, t) ( m 0
- 1  +  c o T) i =  > 0, 0 < X  <  1, 0 < t < T.
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It follows from (3.13), (5.8), (5.9) that

Ou 2 O 2
(5.11) dxdt + fiQ . ( c )  d x d t  c 7 ,

Q T T

It would be observed that estim ates (5.7)–(5.9), (5.11) are  independent of a
function a(t). It is enough to have a smooth function with the property a'(t) _ 0.

Using a simple inequality

1
0(s t)ds < a(t)1(1 ( 1 2 dx) 10(x, t)

a(t) Q, X

we deduce

(5.12) 1140(t)2dt c8 .
CT

W e are in position to  prove  the final integral estimates.

Lemma 4.

(5.13) m a x  
Ca(t)Gau

xy dx + f f  [Cu 2 )2 + Cu)2 ] dxdt _<_ c9,
0 . t . T  

o
Q ; 0 X at

axf a
o

( t )(5.14) max ( 12 dx + i f  [ ( a: 8
2

 2  ±  
a°

 2  d x d t  
(:). 1' (n 1UX - Ot

 d xd t cll.(5.15) m ax f '`)[( ') 2 +CP)2 ]dx+ff CP) 2,„ at (2; e X atCi..5_t• T o

Proof . Using the translation u = w + u 1 into equations (5.2), (5.3), (5.4) and
differentiating the second equation, written in  th e  form

0 In p Ow
P— ,Ot Ox

with respect to  x, w e obtain the  system

Ow â (O w ln p
(5.16)   = P 'YPY uOt ex Ox Ox

(01n 0  (  Ow)
(5.17)

at\ Ox ) Ox V  0 4 '

aoa  (  ao Ow
(5.18)

cy et K  Ox
 p

-

0x) - F  " 0.x) R P ° Ox •

0 Ow ln p
We multiply equation (5.16) by — (p — ) and equation (5.17) by  and then

Ox O x Ox
w e integrate their sum  over ■271 =  {(x, t): 0 < r  <  t, 0 < x < a(r)}. After simple
reductions we see
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Belov
a (t) aw 2

(5.19) a ( v )1i n  P ) 21dxf [p ( aw ) 2 + ( a + r dxdr[ax(p a x )12 0a x ax 0j0
\ 2 a In pylrt [ tI v P±4-ia +  l ajr/P(ax ) +  2 0 4  a ) (itx  2j 0 L at a x x=aco

± j ot f oa ( ' ) aax (p a
a

w
x )dxdr + j't

oR ( p +ûa
aPx ) a

a
x (p aw

x )dxdr

1 r t f a (r) p 2 0 1 3
 dx dr.

2joJo ax
L et us note tha t the  integral

f to [ a' (r)(

a i n  6 2 1

ax
is negative and

Ow— —a'
x=a(t) ax

aw
at

&t
x=a(t)

x= a i(t

Therefore, using the C auchy inequality with c , w e can estim ate the  right-hand
side of (5.19) so  a s  to obtain:

(5.20) 2 a ln p 2

f:(t)CP(aawx) ±( ax )1dx+, 
f f a(t) (pLw)12 dxdr
o o ax a x

< c 12 [i + mew-,  I 0 
) [a l n  p12 

dxdr + f  maxax o 0 • x . a(T)

aw 
2 drax

f  max
o • x c l ( T )

aw
ax

f  car) p  (1 2 t i .
dxdax

  

By a n  embedding inequality we see

(5.21) max
O

Ow
P ax

aw
ax L2 (0 , a)

a (
ax 

aw)
ax L2(0,a)

aw
ax

      

Combining (5.20), (5.21) a n d  using the Cauchy inequality with e  a n d  (5.8),
(5.11), (5.12), we have

z(t) C + A(r)z(r)dr,
JO

z(t) =1')[19( 3 1 2 ± ( ' P)21dx +

wct coo Fa (  a 
)i dx dr

2
ax ax Jo Jo L ax  ax

where

and

0 < C = const, A(t)> 0, A(t) G L1 (0, T).
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Thanks to Gronwall's inequality, the representation for w(x, t) and equations
(5.2), (5.3), w e obtain the  desired relations for u(x, t) and  p(x, t).

00
We now multiply equation (5.18) b y  

0

  (p —  and integrate over T .  Using
ex ax

the  same arguments as for (5.19)-(5.20) we deduce integral estimate (5.14).

Finally, we have to  estim ate th e  Holder constants for a  solution because
the local solvability o f  th e  auxiliary problem is established in  space o f Holder
continuous functions.

Lemma 5. For any  solution o f  the auxiliary problem

(5.22) P ilc1,102q.) c 13

Pro o f . The inequality is obtained by means of straightforward calculations

using (5.15) and  the  imbedding inequality (5.21) rewritten for 
Op

.
at

Remark 3. It w ould be observed that m, N  and  ci , i = 7, ... , 11. 13, are
solely dependent o n  th e  problem data and the values xo ,  M , in  (5.1).

For our further considerations it is important to  have the exact representation
ap

for the partial derivative . Using relation (3.8), we see
(3x

(5.23)
Op 

(x, t) = pMx)Po(x) - 1 P(x, t) + 
1

Eu0 (x) — u(x, (nP(x, t)
ax l i

R R
P(x, t) (l + — po (x)0(x, r) exp {—R  r x u — u(s, -c)]ds} dr)

P  o o

00
x D 'o ( x ) 0 ( x ,  t) + po (x)— (x, t)

Jo ax

+  P 0 (x)0(x, t)(u o (x) — u(x, exp x [u0 (s) — u(s, r)]ds} ctr,
o

Lemma 6. If the data  o f  the aux iliary  problem  satisfy  the conditions of
Theorem 2  then fo r  any  solution the following estimates are valid

)11c2— (Q
)

, -1 7t t) 11,2+..i+102 ,0  + t)11,,.(0,) C14.

where c 1 4  is dependent on the data of the problem  and v alues T, x o , m i , M 1 ,
110 11c''(o, T )•

P ro o f . W e use the Schauder estimates fo r a  so lu tion  o f a  linear parabolic
equation. W e can rewrite equation (5.2) and the boundary conditions for u(x, t)
in  the  following form
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aua 2 U au
a t  

=  A
l

(x, t) 
a x 2  

+ B i (x, + Fi (x, t),

(5.24)
au

u(x, 0) = uo (x), u(a(t), t) = u l (t),
a

(0, t) = W(t),x

where

A „(x, t) = pp(x, t), 1 3 1 (x , t) =p 
p

(x, t), F,(x, t) —  —
a ( R p ( 9 )

, W (t) = —

R

t).
ax ax

Obviously, /11 (x, t) is  a  continuous and bounded function, and

1113 1(x, 011L,(0) 11F1(x, L 4 ( 0 ) C15*

Using the Schauder estimates [15], we have

(5.25) 11u(x, 01113/. 1(0) C16(
1
 ± 11 0 1x=olif v4 i(O,T)).

W e can also rewrite equation (5.4) in  a  similar form

00 a20 ao
A 2 (x, + B2 (x, t)— + F2 (x, t),at ax2 ax

(5.26)

where

a at)to, 0) = 00 (4 ° (0, t) = — (a(t), t) = 0,
ax ax

p u y oa
A 2 (x, t) = — P(x,

K a a R u
B2 (x, t) = — —(x, t), F2 (x, t) = —

c, cv ax cv ax ) cv
P  ax .

The Schauder estimates give

  

(5.27) 11011wi.L(Q1) c17 (1 + V2111,4(0)) C 1 7  1  ±
au
ax

  

The second inequality (5.27) is obtained w ith the help of (5.13) and inequality

(5.21) rewritten for —
au

ax •
By embedding theorem ([8], p. 80) IV4

2 '' (Q1.) c + 1.14(12,.) and

(5.28) 11u(x, 011c' -' 14. 02,1) c1811u(x, 011141. 1(0) ,

(5.29) 110(x, 011c1+ (.27-C18 11 0 (X, Wi•

In our case W4.2 .1 (Q1-) W44 ({x = 0} x (0, t)). Hence, it follows from (5.25), (5.28),
(5.27) that

au
ax(5.30) 11u(x, 011c' e19 1 +
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Using the Cauchy inequality and  the  obvious imbedding Ci•i(V1.) OE C° (•24-) we
deduce from (5.30)

1114(X1 t) M CI4 ( 2 4 . ) C2 0 .

Therefore, (5.27), (5.29) imply

II 0(x, t) Mc' '1, (27.) czi

Then representation (5.23) helps to obtain the  following relation

C22,
CP . 2 (0 )

where /3 = min {I, al.
Hence, equations (5.24), (5.26) have the coefficients w ith the  properties:

Ai(x, c''1(Q1) + II Bi (x, cfl.1(0) + 11Fi(x, 011e4 (0) f23, i = 1, 2

The Schauder estimates for the  Holder continuity constants of a solution of
a  linear parabolic equation [16] give

(5.31) 11/4I-x, t/lIc2""+1(0) + 110(x, t)11c2*fi.i * ( Q )
-  C 2 4 ,

If fi = a, then we have the desired estimates. If fi <Œ , then we use representation
(5.23) again.

W e see, from (5.23), (5.31) and  (5.3), that

(5.32) P(x, t)lIc1" C23.

Therefore, we can repeat the relation (5.31) w ith  fl replaced by a. Moreover,
from (5.23) and  (5.3), we deduce the desired estimate for p:

PIx, C24.

The lemma has been proved.

6. Local existence

In  this section we prove Theorem 2 . The local solution to  (1.1)—(1.3), (2.1)—
(2.4) will be constructed using the  Lagrangian formulation of the p ro b lem . The
existence of a solution over a  time interval (0, T1 ) will be established by means
of the Tikhonov-Schauder fixed point theorem, which we recall for easy reference:

Theorem 4  [4, p. 221]. L e t  d l be a com pact convex set of  a B anach space
A  and let be  a  continuous mapping o f  d i in to  itse lf . T h en  .9 )  h as  a  fixed
point, that is, .29f  = f  f o r som e  f  e

For our purpose, 4  = [0, T J, where T , will be chosen in the seq u e l. The
set is determined in  th e  following way:

Op
ax
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= la(t) e + 4 0 , T1 ]: a(0) = X , a' (0) = — u,(X )p,(X ),

a(t) x , ,  0 < m , — a' (t) M ,  <  o o , M21

It is c lear tha t ,&  is convex and closed in Moreover, according to Ascoli's
theorem , Al is precompact in  31.

Consider now the m ap y  defined on A l in the following w a y . L e t a , e
W e can form ulate th e  auxiliary Problem Pa .. I f  u(x, t) , p(x, t )  is its classical
solution, then

a1(t) = Y a 0 (t) = X  — u i (t)p(a o (T), t)dr.
Jo

Obviously,

a,(0) = X,

a(t) = —  u,(t)p(a 0 (t), t), a' (0) = — u 0 (X )p,(X ),

a'1 (t 2 ) — di (t ,) = — u'i (t*)p(a0 (t 2 ), t 2 )1t 2  — t

— u 1 (t 1 )Hx 4(p(x , tf la(t**)Ilt 2  — t 1

— u 1 (t 1 )41(p(x, t))1t 2  — t 1

where 0 < t ,  < t 2 <  T , and  t*, t** E [t 1 , t2 ].
L et us take x , = X . A c c o rd in g  to  the a  priori estimates for the auxiliary

problem, the bounds for p(x , t) are only determined by the data  of the problem
a n d  T1 . Using th e  bounds fo r p(x, t )  i f  T, 1 ,  w e can choose values for m,
a n d  M 1 . Therefore, w e can establish bounds fo r  LI x l(p(x , t)) a n d  1-1,1(p(x, t))
because of (5.22). Hence, if we take M-, large enough a n d  T , small enough, we
get that a i (t) satisfies the relations required in the definition of the set A l. T hus,
the  operator i s  a  mapping of . // into itself.

Finally, we only need to verify that is continuous o n  .1/ in  the norm  of
the  space A'.

L et elements o f sequence { u„}, n > 2 , b e lo n g  to  If and

a„ —> a in  C i [0, T, ].

Because Al is closed in  C 1 [0, T1 ],  w e have a  e  f é .  W e consider the  auxiliary
prob lem s. T h e  functions u„, p„ a n d  u , p  a re  so lu tio n s  o f  Problem P0 ,  and
Problem P, respectively.

Using simple transformations

(6.1) t =  r , > 2),

we obtain problems formulated in  the  fixed domain:

Ou„ x,a„ Otr„ y  0 Ou
n12 (P„ (Rp„ 0„),al a,, O x , a„ 0x, Ox, a„ Ox,
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p„ x i a„ ap„ 1 2 a li t, 0
at an ax, ±  a n

p " ax i

aen x 1a 00,, K  a ( p n aen

)  

(au)2 + 1 R p n On
a t i n

c y  at a„ ax , a, a a x , ax,

in  Q1 = { (x 1 , t): 0 < x, < 1, 0 < t < 7",}

un = u 0 (x 1 X), p„ = p o (x,X ), 0„ -= 00 (x 1 X) for t = 0, 0 < x 1 < 1;

un = u l (t) > 0,
aen

for x, =  1, 0 <  t < T1 .

pp„ aun ae Rp„0„ — — 0 for x, = 0, 0  t T1 .
ax, axi

Problem Pa  is transform ed in  th e  same way.
It is clear that

Y a(t) = X  — u i (r)p,(0, t)d-c,

(6.2)

Y a(t) = X  — t 1 (t)p(0, t)dr,
Jo

where u„, p„, 0„ and  u, p , 0  are solutions of the transformed problems.
Let

W „ = U „ —  U ,

1 1
v„ = — — On = On —0.

P. P

Then the functions wn , u n , 0 „  satisfy the  following equations:

awn )( I an awn —nt t  a Pn auflp  au
Rp„0„ + R p0)at a„ ax , a„ ax i a „ ax 1a  ax

i

+
( p  p )   0   ( p au R p o )  + (x i d  x i a' au

a„ a) ax l a ax, an a  ) ax  '1
avn) ( I an avn1  awn ( x l an x i a' a I  

+  
1 1 au

at a,, a x , an ax , a,, a ax , p ) \ a na  ax ,'

aon x i a„aon  K  a  ( 30, _ p  ae) ±  i „  (1 1 )   a  (  ae 
at

_ Pn P22 aan a x , a„ x , ax
ia x t a„ a

2  
a
x, ax,)

± p aw„ ( au „ ±  au ) + p ( 1 1 ) (   au Y
a,, 3x 1 \3X 1a x , ) a,,2 a2 ) V x 1 )

R I  p o n au„ p o  au) (  1 1) auR p o

a„ ax, ax ,) ci„ a) ax,

x x 30
a„ a  ) ax ,•



r
, /4 a w n  o u n , u

 o ndx i dt ,  N,3

Jo  Jo  a 2  a x ,  "ax , + max
0x, o

2

+  max
o<xi <i

au,,

0x,
au
ax,
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We multiply the equations by w„, v„ and On respectively and then integrate
their sum  over (0, 1) x (0, t). After using the following relations:

t f i  x i a n ,  af a,,' an' 1' 1

f  d x i dT = —  —  f  2 d t  + f2 dx 1 d t1x,-_io  o  a,, a x ,2 a „ 0  Lan  0

— N i  
t

f  2 dx i dt for any f  c l (Qi)n c(01),

"  Y  a  P " au " R p  0 , ,  P   au

0 a n e x , a n axi
„ a a x i + R p 0 )w n dx i d t

= —  r 1  Lt R (p —  p„)0 a w n  — Rp,,0 awn +  e-" — P " au " awn  d
o  0  a. Oxi " Oxi a „  a  ax i ax i

1

t  f i  t i  [p n  p  an,: a wn p ( aw n  )2 1
+ dx cit10 0 a„ a ax, Ox .A 0x ,

f tN, i1  +  m a x  au" 21 [(p„ — p) 2 + 0„2 ]dx i dt .

0 (3, x ,< 1 . ax l 0

+  N 2  m a x  1 a„(t) — a(t)I +  e i
l 2 c 2 r  1  a W n  2  dx  dr0<t < T , X 2 0  0  ° x 1 1 '

, r i i  , . ( ii )
d x , c l i _  N E ,f , 1 t 1 awn  2

 dx  dr ,o  o  
( p,,

— P
) 2  d x

1
d

T

+

C2
1

0 J 0  an ax P. 0  0  ax,

f

TO 0

t 1 (awnyX j.  0„2 dx i dr + e 3   dx dr
„, „

11
[ au,,a UR

0  j a,, ax,ox, ax i)O ndx id t

f (a w  ) 2au„ 2 1  u p n  p)2 On2RIXiCIT E 4  f 0  0  a x :
< ft ( I  ±  max dxidt,ax, 0

i
t r i K   a  (  00,,a eP. p 0„dx d1 t
0 J o  cd ax, ax i a x i

< max
5 0

00„
ax,

2  f 1
(pn P ) 2 d x i d t  (Es f t  1 Cony2 

0 X 2  0  0  a x l  dxidt,

  

ktc2 K c 2and taking Ei E2 E 3  E4 < X 2  5 X 2  
we obtain' 

(6.3) Z(t) N3 a ,  — (Oct°, T t ] A  1Z " d__(-c,_ ,r,-r,
0
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where

Z(t ) = 4 + ( p„  - )9 )2 +  0 .2 idx
o

and

A(t) > 0, A(t) e L 1 (0, 71).

Then Gronwall's inequality ensures that

[P,(x1,t) - - P(x1,Ordx1<N4Man —  M ci[°, T i ] ,

o

where N 4  is only dependent on the problem data and constants determining the
set d i.

Thus, pn converges to  p  in  L 2 (Q1 ).
Taking into account the estimate (5.22) for a solution of the auxiliary prob-

lem, we have

111).11c1(Q1) N5,

where N , is independent of n.
Therefore, from Ascoli's theorem, the sequence p} is precom pact in  C (• ,)

and w e have stronger convergence:

P. —■ P in  C(Q1).

Hence,

p„(1, p(1, t) in  C[0,

and, according to (6.2), 

Ya in  C l  [0, Ti ].

That is, the operator 2' is continuous on d i  in the norm of .4.
W e have established the existence of a fixed point for operator _V'. Any

fixed point determines a solution to the problem (3.1)—(3.5) ((1.1)—(1.3), (2.1)—(2.4)).
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