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Extending local representations to global representations
By

Chandrashekhar KHARE and Dipendra PRASAD

1. Introduction

It is a theorem of Deligne (and Deligne-Serre for weight 1) that for a cuspidal
eigenform of the Hecke operators on the upper half plane which is of weight k,
the eigenvalues of the Hecke operators T, are algebraic integers a, with |a,| <
2p*~V72 In §2 of this note we pose a converse question to this, and analyse
to what extent CM forms can be used to answer it. In §3 an analogous issue
is considered in the setting of Galois representations which can be thought of
as the non-abelian analogue of the Grunwald-Wang theorem in Class Field
Theory. We may view these questions (cf. the question of §2 and Remark 4 of
§3) as asking for a kind of Chinese Remainder Theorem in the setting of auto-
morphic and Galois representations respectively. In §4 we use the cohomology
of modular curves to construct automorphic representations of PGL,(Q) with
given local component at p and unramified outside p.

2. Chinese remainder theorem for automorphic representations

The aim of this section is to pose the following question and provide an
answer to it in some very particular cases.

QUESTION. Suppose that we are given finitely many primes p,, ..., p,,
and algebraic integers o; for every i, 1 <i <r, which have the property that
o(x;)a(a;) = pk~! for some integer k > 1 and for every embedding ¢: Q » C. Then
does there exist a cusp form f of weight k which is an eigenform of all the
Hecke operators such that the Euler factor at p; of the L-series of f, for every
b1 <i<vr, is
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The recent work of Wiles and Taylor on the Shimura-Taniyama conjecture,
cf. [W] and [TW], and its subsequent refinement by Diamond, cf. [D], proves
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that all elliptic curves defined over Q which are semi-stable at 3 and 5 are
modular. Using this one may easily answer the above question in a particular
case. We state this as the following proposition.

Proposition 1. If p,, ..., p, is a finite number of primes and if for each
1 <i<r we are given a rational integer a; such that |a;| < 2p}? then there exists
a newform f of weight 2 and of level prime to the primes p; (for 1 <i<r) such
that the eigenvalue of the p;™ Hecke operator T, acting on f is a; (for 1 <i<r).
In fact one may choose f to have rational g-expansion and there exist infinitely

many such distinct newforms.

Proof. The main ingredient is the result of Wiles, Taylor and Diamond
that we have cited above. Namely by the theorem of Honda and Tate we
construct elliptic curves E; over the finite fields F, with p; elements such that
the cardinality of E;(F,) is 1 + p; — a;.  We further freely pick elliptic curves E,
defined over F; (respectively E; over Fs) with the only restriction being that if
3 (respectively 5) is one of the primes p; above, then the elliptic curve E, (respec-
tively Ez) is the same as the elliptic curve which has been selected over F,
(respectively over Fs) in the earlier line. Let E be any elliptic curve whose
reduction modulo p; is the elliptic curve E; for every i, 1 <i<r, and whose
reduction at 3 and 5 is E, and E, respectively (such an E exists by an application
of the Chinese Remainder Theorem). As E has good reduction at 3 and 5 by
construction, the work of Wiles, Taylor and Diamond implies that E is modu-
lar. Then the L-function of E is the Mellin transform of a desired newform. The
last line is easily seen to be a consequence of the construction in this proof.

When k =2 but g; are not integers, we can’t imitate the above proof even
assuming the generalised form of the Shimura-Taniyama conjecture according to
which abelian varieties with real multiplication over Q also arise as factors of
the Jacobians of the modular curves X,(N). The problem being that it is not
clear if we can lift an abelian variety with real multiplication over the finite field
F, to one over Q. There is then the problem of doing this for finitely many
primes p,, ..., p, simultaneously. We, however, don’t even know if an abelian
variety over F, can be lifted to one over Q!

We now analyse to what extent CM forms can be used to answer the
question. Here is the main result. All the numbers x; appearing in the theorem
below will have the property that a(x;)a(a;) = pf~' for some integer k > 2 and

for every embedding o: Q — C.

Theorem 1. Assume that a; = o; + %; is an integer such that p; does not divide
a; for any i, 1 <i<r. Then there is a CM cuspidal eigenform f such that the
Euler factor at p; of the L-series of f is
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if and only if the quadratic imaginary fields K; = Q(\/a,~2 — 4p¥~1) are independent
of .

i Proof. We first recall that a CM modular form f = f, is associated to a
Grofencharakter 42 of a quadratic imaginary extension K of Q. This GroBen-
charakter A can be thought of as a homomorphism A: Iy(c) > C* (where Ig(c) is
the group of fractional ideals prime to ¢ where ¢ is an ideal of K) such that
for any a € O with a = 1 (mod ¢), where Oy is the ring of integers of K, A((x)) =
«°%® for some integers a, b. As f, is a modular form, one moreover has a > 0,
b >0, and ab =0. This follows for instance by comparing the Euler factor at
infinity associated to the GroBencharakter A and to a modular form (see [Mi]
for instance).

The modular form f; is an eigenform of the Hecke operators and has the
following Euler factor at primes p coprime to c:

-

1 1
(1 —Amp~) (1 — A@p~°)’
1
(I = App™>)
1
L= Am)p™

if (p)=nm

L,(f35) = < if (p) is inert

if (p) =n2

We now assume that the quadratic imaginary fields K; = Q(\/a? — 4p¥™') are
all the same, say K, and in that case we construct a GroBencharakter 1 of K
such that the associated modular form f; has the desired Euler factors at p;,
I <i<r. We first note that as k >2 and p;}aq; the prime ideal (p;) splits in
the quadratic imaginary field K = K; = Q(/a? — 4p*™!) (as one can take the
square root of a? —4pf~! in Q,,). Let (p;) = mw; be the factorisation of the
ideal (p;) in K as the product of prime ideals in K. Since a;& = pf™!, and
T, = (p;), it follows from the assumption p;}a; (possibly after replacing o; by
%;) that (¢;) = nf7", (@) = m

Let P, denote the group of principal ideals (x) with x = 1 (mod ¢). Denote
by oo the character on P, given by pgo((x)) = x*~'. (This is well defined for ¢
large enough as the group of units of K is finite; moreover, ¢ can be taken to
be coprime to any given ideal which we take to be J[(p;)) Let u, be any
extension of g to I(c). Our problem of the construction of A will be solved
as soon as we can demonstrate the existence of a GroBencharakter A which is
unramified at n; and 7 for all i, | <i<r, with A(n;) = «;, and A(T;) = &, and
whose infinity type is either (a,0) or (0,a) for some integer a > 1. From the
relation (o;) = nf™", it follows that for the desired A, A/uo(n;) and A/uy(%;) must
be roots of unity, say w;, .. Conversely if we can construct a GroBencharakter
v which is unramified at n; and 7; for all i, 1 <i<r, with v(r;) = w;, and
v(7;) = w;, then A = vy, will be the desired GroBencharakter. The existence of
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such a GroBencharakter v is a consequence of the theorem of Grunwald and
Wang, cf. [A-T], completing this part of theorem.

To prove that the fields K; must be the same for the existence of a CM
form f, it suffices to prove the following lemma.

Lemma 1. Let f be a CM form such that the Euler factor at p of the
L-series of f is [1 —a,p™* + p“ 172771 Assume that a, is an integer with pla,.
Then f arises from a Grdffencharakter on the quadratic imaginary field K =

Q(/a; — 4p*™).

Proof. Suppose that f arises from a GroBencharakter 4 on a quadratic
imaginary field L. Looking at the Euler factor at p attached to the L-series of
/. we find that p must split in L. Write the factorisation of (p) in L as (p) = nT.
Since the Euler factor at p of the L-series of f is [1 —a,p™ + p*'72]7", it
follows that A(m) + A(%) = a,, and A(n)A(w) = p*~'. Therefore A(m) and A(%) lie in
K. From the defining condition of a GroBencharakter, it follows that there is
an integer h > 1 such that A(n)" € L. It can be checked that a power of x + \/;1
with x, y rational, y <0, and xy # 0, is rational only if x + \/} is a rational
multiple of the third root of unity w. It follows that A(n)" is an element of K
but not of Q if p does not divide a, (we are using the condition k > 2 here). As
A(m)" lies in L, K = L.

The case when a, is a non-zero integer but pl|a, can’t be obtained by CM
forms as the next lemma shows. As the case when a, =0 can be obtained by
any GroBencharakter of any quadratic imaginary field in which (p) is inert, this
completes all the cases in which CM forms can be used.

Lemma 2. Let f be a CM form such that the Euler factor at p of the
L-series of f is [1 —a,p™ + p*'7%]7'. Assume that a, is a non-zero integer.
Then p does not divide a,.

Proof. Suppose that f arises from a GroBencharakter 4 on a quadratic
imaginary field L. Looking at the Euler factor at p attached to the L-series of
f, we find that p must split in L. Write the factorization of (p) in L as (p) = n7.
Since the Euler factor at p of the L-series of f is [1 —a,p™* + p* ' 72]7%, it
follows that A(r) + A(%) = a,, and A(m)A(T) = p*~'. If pla,, then for all integers
h> 1, p|lA(z") + A(®").

Assume without loss of generality that the infinity type of 1 is (a,0). Then
there is an integer h > 1 such that (n)" is a principal ideal generated by, say 7,
and such that

Am") = »*
and
l(ﬁh) — ,)—)a.

Therefore y + 7 is divisible by p which is obviously not possible.
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Remark 1. The weight 1 case of the question above can be completely
answered using CM forms. One simply has to take a quadratic imaginary field
in which the prime ideals (p;) split as (p;) = m;T; and construct a finite order
GroBencharakter 4 on L using the Grunwald-Wang theorem which is unramified
at the primes n; and 7;, and has the property that A(w;) = «;, and A(%;) = &; for
every i, 1 <i<r.

Remark 2. We also remark that one can ask a question related to the
question above which has a negative answer. So we may fix a totally real
algebraic integer, say «, and a positive integer N, and a prime p which does
not divide N, and then ask if there exists a cuspidal eigenform, say f, of some
weight k > 1, for the group [Iy(N), such that the eigenvalue of the pth Hecke
operator T, on f is a. Then the answer is no as the part of the Gouvea-Mazur
conjectures already proven by Coleman [Co], implies that the “slopes” of the
eigenvalues of the Atkin operator U,, acting on the space of cusp forms of all
weights, for the group [I,(Np), are discrete. Thus in particular there exists a
number ¢ in the interval (0, 1), such that there are no “slopes” in the interval
(0,¢). Then any a with the property that its p-adic valuation, with respect to
which the slopes have been measured, is in the interval (0, ¢), provides a negative
answer to the question. We see this, as if there is a f € S,(/3(N)), kK > 1, which
is an eigenvector for T,, with eigenvalue a, then at least one of the roots, which
we will call a and b, of the equation x?> — ax + p*~!, say a, has valuation in
the interval (0, ¢). But then f'(z) = f(z) — bf(pz), is an element of S,(/5(Np)), which
is an eigenvector for U,, with eigenvalue a. This contradicts the choice of &. We
refer to [Co] for the precise definition of “slopes” and more about the Gouvea-
Mazur conjecture.

Remark 3. There is by now a well-known result for automorphic representa-
tions, cf. Rogawski [Ro], that there are automorphic representations whose local
components are pre-assigned discrete series representations at finitely many places.
However, in the question above we want to construct automorphic representations
whose local components are pre-assigned unramified principal series at finitely
many finite places, and a discrete series at infinity when k > 2. It is unlikely
that this question can be handled by techniques of harmonic analysis alone, as
it is essential to specify the data which is used to define the unramified principal
series at the finitely many local places, in the situation of question 1, to be of
arithmetic kind.

3. Chinese remainder theorem for Galois representations

Here is the non-abelian version of the Grunwald-Wang theorem, and is the
Galois theoretic analogue of the question of §2 for weight 1.

Proposition 2. Suppose that we are given semi-simple matrices A,, ..., A, in
GL(n, C) such that the eigenvalues of A; are roots of unity. Then there is a
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continuous irreducible representation ®@: Gal (Q/Q) — GL(n, C) which is unramified
at the primes p; such that the conjugacy class of the image of the Frobenius at
p; under the representation @ contains A; for every i, 1 <i<r.

Proof. We consider a degree n extension K of Q in which all the primes
pi» i=1, ..., r, split. Write the prime factorisation of p; in the ring of integers
of K as p; =p;;...p;, where the p;’s are prime ideals of the ring of integers of

K. Let the eigenvalues of the matrix A; be w;forj=1, ..., nand i=1, ...,
r and where the w;’s are roots of unity. We further fix an auxiliary prime p
which splits in K as p=p,...p, and fix some roots of unity g;, j=1, ..., n,

with the further constraint that the os are mutually distinct. Then by the
Grunwald-Wang theorem we can construct a finite order GroBencharakter y of
K which is unramified at all the primes p; (resp. p;s) and such that y(p;) = ;j
(resp. x(p;)=o0j) for j=1,...,nand i=1, ..., r. We consider y by class-field
theory as a character of the Galois group Gal (K/K) and induce it to get a
representation, which we denote by ®, of Gal (Q/Q). We see by construction
that this @ is a representation of the type claimed in the theorem (for instance
it’s irreducibility follows by our choice of the auxiliary prime p and the condition
that the ¢s as above are mutually distinct).

Remark 4. We can ask more generally for the existence of a representation
of Gal(Q/Q) with given restriction to the decomposition groups Gal (Q,/Q,)
which takes values in a finite subgroup G = GL(n, C) for finitely many primes
p. Or in another context we may ask for a version of the Chinese Remainder
Theorem for /-adic Galois representations—this would be the analogue on the
side of Galois representations of the question of §2 for weights >2.

We deal with a particular situation suggested by Remark 4. In the following
proposition, we have fixed embeddings of Q in Q, for every prime p; we will
abuse notation to include the prime at infinity also in the following proposition.

Proposition 3. Let G =S,, and suppose we are given p;: Gal (C)p_,/Qpi)—>G
for 1 <i<r. Then there exists p: Gal (Q/Q) — G such that the restriction of p

to Gal(Q,, /Q,,) is conjugate in G to p; for every i.

Proof. Let G; denote the image in G of Gal ((_)m/Qm) under p;. Let X be
the set X = {1,2,...,n} on which S,, and therefore every G;, operates. Write
X = ]_L,Xa_,., a disjoint union, such that every X, ; is invariant under G;, and G;
operates transitively on the set X, If n,; denotes the cardinality of X, ;, let
G,,; denote the image of G; in the symmetric group S, . Therefore we have
maps 7, ;: G;— G, ;. and n;: G; - [],G,.;.

Let K; be the fixed field of the kernel of p; so that K; is a Galois extension
of Q,, whose Galois group is canonically isomorphic to G;. Let K, ; denote the
extension of Q,, contained in K; which corresponds to the surjection =, ;: G; —» G, ;.
As 7;: G;— [ |, G,.; is an injection, the compositum of K, ; is K;. Let H, ;= G, ;
denote the subgroup of G, ; which is the stabiliser of an element (which will be
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arbitrarily chosen) of the set X,; Let L,; be the subfield of K,; fixed by
H,;. The degree of L,; over Q, is n,;. Let f,; denote an irreducible monic
polynomial over Q,, of degree n, ; one of whose roots generate L, ;. We assume,
as we may, that the polynomials f,; are distinct for distinct «. Then K, ; will
be the splitting field of f,;, and K; will be the splitting field of the degree n
polynomial f; =[], f,.; which has no multiple roots. Now let f be a polynomial
over Q which approximates f; well enough so that the roots of f generate the
field extension K; of Q, and such that there is a matching of the roots of f
with those of f; over K; such that the action of Gal ((_)p.«/Qp.«) on the roots of
f and f; is the same after this identification. This is possible by an extension
of Krasner’s lemma which does this when f; is irreducible. For the general case
we claim that any monic polynomial f which is near enough to f; also has
factorisation f =[] f, with deg f, = deg f,;, f, irreducible monic and near to
Jui- For this it is enough to check that the mapping which takes the n-tuple
consisting of the coefficients of f, to the n-tuple consisting of the coefficients of
S is an open mapping. Because of the open mapping theorem for Qj, it suffices
to prove that the jacobian of such a mapping is non-zero at the point defined
by f,: This is a simple consequence of the well-known fact that the mapping
(xy,...s x,) > (s4,..., 8,) where s; is the i-th elementary symmetric function has
non-zero jacobian at any point (x,,..., x,) with x; # x, if | # k. This completes
the proof of the claim from which we deduce that the roots of f; and f generate
the same field. Now using the roots of the degree n equation f, we get the
desired map p: Gal (Q/Q) — S, whose restriction to Gal (Q,,/Q,,) is conjugate in
S, to p; for every i

Remark 5. We don’t know if the Proposition above is true even for G = 4,

Remark 6. The problem of extending local representations to a global one
is much subtler than the problem of constructing extensions of global fields with
given local extensions. This is evident even in the case of a global cyclic exten-
sion in which case when the local field extension is unramified extension of the
same degree, the local representation will be the additional data specifying which
generator of the cyclic group the Frobenius corresponds to.

4. Cohomology of modular curves

In this section we use the cohomology of modular curves to find cuspidal
automorphic representations of PGL(2) over Q which are holomorphic discrete
series of weight 2, are ramified only at the prime p, and have a fixed vector for
the congruence subgroup I'(p). A similar treatment can be made for higher
weight and higher ramification. For related issues, the reader may consult [H],
[CW] and [Y].

We begin by recalling the representation theory of SL(2, F,). The principal
series representations Ps(y) of SL(2, F,) are parametrized by non-trivial characters
x: Ff - C*. We have Ps(y,) = Ps(y,) if and only if x, = x,, or x; = x3'. If
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x # 1, but y* =1, then the principal series representation Ps(y) splits into two
irreducible representations P* and P~ of dimensions (p + 1)/2. The discrete
series representations Ds(y) of SL(2, F,) are parametrized by non-trivial characters
x of N, the norm one subgroup of F}, y: N C*. We have Ds(x,) = Ds(x,)
if and only if y; = x,, or x; = x;'. If y # 1, but > = 1, then the discrete series
representation Ds(y) splits into two irreducible representations D* and D~ of
dimensions (p — 1)/2. Besides the representations listed above, there is the trivial
representation and the Steinberg.

The following lemma about action of finite groups on algebraic curves can
be proved using a triangulation of the curve compatible with the group action.
We will not give details of the simple proof (see also [CW]).

Lemma 3. Let G be a finite group acting faithfully on an algebraic curve
X. Let Y= X/G be the quotient curve. Let y(X)=2— H'(X,C) be the Euler
characteristic of X thought of as an element of the Grothendieck group of represen-
tations of G. For any subgroup H of G, let r(G/H) denote the representation of
G on functions on G/H; let r(G) denote the regular representation of G. Let
x(Y) =2 — HY(Y) denote a virtual vector space with trivial G action. Then we have

21(X) = r(G)® (Y) = X [r(G) — r(G/H)]

H

where the subgroups H in the summation above are the stabilisers of the fixed
points of the action of G on X, taking only one stabiliser out of a G-orbit of
fixed points.

We will apply this lemma in the case when X = X(p) is the compactification
of H/I'(p) on which G = SL(2, F,)/+1 acts faithfully. In this case Y = P!, and
the only points of P! above which the action of G on X(p) has fixed points
correspond to the points i, w, co on the extended upper-half plane. The stabiliser
of i is the subgroup H(i) generated by

0 1
s(i)=<_1 0),

the stabiliser of w is the subgroup H(w) generated by

0 1
w-(", ")

and the stabiliser of oo is the subgroup H(oo) generated by

11
s(o0) = <0 1>.

r(G/H) = ¥ dim (V) V,
14

As,

the calculation of dim (V) for irreducible representations V of G will give the
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representation r(G/H). This can be obtained from the character table of SL(2, F,).
The results depend on the congruence of p modulo 12, as the condition for the
elements i and w to be diagonalisable in SL(2, F,) depends on this congruence.

We state the results only for p= +1 mod 12.

Proposition 4. If p= —1 (mod 12), then

11 — 11
H'(X,C) =" - Y Ps(x) + 7 —TDs()+2 Y. Ds()+2 ¥ Ds(z)
X X x()=1 x(w)=1
p+1 p—11 . _ p+1+12a _
_ _ptt 1 D
st =Pt + ) =D + D7)

Here the summation is over only those y which give rise to distinct Ps(y) (or,
Ds(x)); a =1 if the unique quadratic character of N takes the value 1 on i, and
a =0 otherwise, so a=1 if p= —1mod 24 and zero otherwise.

Proposition 5. If p=1 (mod 12), then

—1 —1
H'(X, €)= 2= % Ps() + "= ¥ Ds() - 2 Ps()—2 Y. Ps(p)
X X x(—1)=1 x(w)=1
p— 13 p— 25 + - pP— 1 + —
6 St T (PT + P) —1—2—(D + D7),

where again the summation is over only those y which give rise to distinct Ps(x)
(or, Ds(y)).

Remark 7. All the representations of SL(2, F,) have their characters defined
over R except for P*, P~, D*, D™ in the case when p=3mod4. Since
H'(X(p), C) = H°(X(p), 2") ® H°(X(p), 2'), knowing the SL(2,F,)/+1 module
structure of H'(X(p), C) lets us deduce the SL(2,F,)/+1 module structure of
HO(X(p), Q') except that we will be able to determine only the sum of multi-
plicities of P*, P~, and the sum of multiplicities of D*, D~. See Casselman
[Ca, page 122] for the decomposition of H°(X(p), 2') in the case p = 11 which
is in accordance with our Proposition 4.

Let X(p)* = X(p) Xsr@2. ¥, PGL(2, F,). Clearly, X(p)* is a disjoint union of
two copies of X(p), and the representation of PGL(2, F,) on H°(X(p)?, @') or
on H'(X(p), C) is the induction from SL(2, F,)/+1 to PGL(2, F,) of SL(2, F,)/+1
module H°(X(p), 2') or H(X(p), C). This allows us to calculate H°(X®, Q') as
PGL(2, F,) module from the results obtained above. The results obtained above
can be summarised in the following theorem.

Theorem 2. For p > 23, the representations of the adele group PGL(2, A)
appearing in the discrete spectrum of L*(PGL(2, Q\PGL(2, A)) with the discrete
series D, at the infinite place, unramified outside p, and at p having a vector
invariant under I'(p) are finitely many, and their local component at p is any
possible representation of PGL(2,Q,) with a vector invariant under I'(p) except
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that in the principal series case, the inducing character may have to be altered by
an unramified character.

We end by remarking that we believe the questions raised in this note are
more interesting than the fragmentary answers that we can provide and it is
partly our intention in writing this note to draw attention to the questions raised
here.
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