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On the irreducible very cuspidal representations II

By

Tetsuya TAKAHASHI

Introduction

Let F  be a  non-archimedean local field and G = GLn (F ). Carayol [C] in-
troduced the  notion  of very cuspidal representation of the maximal compact
modulo center subgroup o f G  and  showed the com pact-induction of an irre-
ducible very cuspidal representation to G  is irreducible and  supercuspidal. If
the  irreducible very cuspidal representation has an  even level, it is monomial
i.e. induced from a  one-dimensional representation. But if the level is odd, it is
not monomial and the construction of the representation is much more difficult
and  complicated. W e remark that such phenomena occurs whenever one con-
sider the construction of supercuspidal representation. (See e.g.[M], [B-K].)

T he aim of th is  p a p e r  is  to  express the  irreducible supercuspidal repre-
sentation induced from a  very cuspidal representation w ith an  odd level as a
Q-linear combination of monomial representations. To explain more precisely,
w e use some notation. Let p be an  irreducible very cuspidal representation of
Z s Ks  o f  level N . (See Definition 1 .4  a n d  1 .7 . )  T hen the  restric tion  o f p  to
K N+ "  contains a  character Ou  (cf. D efinition 1 .7 .)  W hen N = 2m, the  nor-
malizer o f O . in  ZsKs is  ExKT where E = F (u) . T hus p = (0 • Ou)
w h ere  O  is  a n  appropria te  quasi-character o f  E x .  (See Proposition 1.10.)
When N = 2m - 1, the  normalizer of 07, in  ZsKs is ExKT - 1  a n d  th e  irreducible

E x

component o f Ind
Kr i

Er (,bu  is not one-dim ensional. M oreover if E/F is  widly
ramified, the construction of the irreducible component is not easy. In  [T], the
author gave the irreducible representation 7 ,e  of ExICT - 1 . Our main work is to
calculate the  character o f riu,64. Let C=Ex/Fx (1 +P E )  and C' is  the  character
group of C. W e can put

IndVc r  (  (0 0 2 )  •  O.) akr1114,6 T.

TE Z.

From the  character formula of 72,6 , we can calculate the multiplicity aAr .  Thus
if we can calculate the inverse of the matrix M = is expressed as
a  linear combination o f monomial respresentations. W e can calculate the  W I

under some assumption (See Proposition 3 .7  and Theorem 3.8 .)
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In  section 1, w e review  the  resu lt o f  [C ] a n d  [T ] . T heorem  1 .8  is  the
main result of [C ] and Proposition 1.12 is our starting  point to calculate the
character of 1 , e .  Section 2 is devoted to calculate the character of r).,6. In sec-
tion 3, we get the explicit from of A t  first, we treat the case E / F  is total-
ly ramified and the ramification degree is a power of p .  In  th is  case, M - 1  can
be w ritten in the simple form. But th is case contains the essential part of the
calculation. F o r  th e  general case, w e  assume there  ex ists  a uniformizer E
such  tha t re l E  Fx  (1 + P E ) where s  is  the ram ification index of E / F .  This
assumption is not essential, but it simplify the result. Theorem  3.8 is the main
theorem of this paper.

T he monomial supercuspidal representation is very easy to treat. For ex-
ample, it is easy to calculate the s-factor, to give the matrix coefficient and so
on. W e hope this result is useful for the calculation of the s-factor of the rep-
resentation of G I., (F) X GL (F).

Notation. Let F  be a non-archimedean local field. W e denote by OF,PF,
toF, k F and V F  the m axim al o rder of F, the  maximal ideal o f  OF, a prim e ele-
ment of P F , the residue field of F and the valuation of F normalized by vF(cdF)

1. W e set q =p f  be the  number of elements in le F . F or x G R , we denote by
[x] the greatest integer_x and set e ()  = e x p  (2 7 ,/ -1 .0 . For integers a, b, we
denote by (a,b) the greatest common divisor of a and b. The Jacobi symbol is
denoted by (— ) . W e fix an additive character (./, of F  whose conductor is PF
i.e. 4)(PF) = {1 } and 4)(0F) # (1). L et G be a  totally disconnected, locally com-
pact group. W e denote by th e  s e t  o f  (equivalence c la sse s  o f)  irreducible
admissible representations of G. F o r  a  closed subgroup H o f G an d  a  repre-
sentation p of H, we denote by Indfho (resp. incifho) the induced (resp. the com-
pactly induced) representation of p  to G. F o r a  representation IT o f  G, we de-
note by 71H the restriction of R. to  H. The n X n  zero and identity matrice are
denoted by On and ln respectively. The usual matrix trace is denoted by tr.

1. Review of the very cuspidal representation

In  th is  section, w e review  the  results o f  [C ] an d  [T ] . A t first we recall
some definitions in order to define very cuspidal representation.

Let F be a non-achimedean local field of residual characteristic p and G=
(F). We se t VF=  Fn so  tha t M n(F)=-EndF(V F) and G=A utE(V E). Let s be

a divisor of n and put r=n /s .

Definition 1.1. Let {L,) fEz be  th e  se t o f  OF - la ttices in  V F .  {Li} IE Z  is
said  to  be a  uniform lattice chain of period s  if  the  following conditions hold
for all i E Z :

1. L +1 C L .
2. PFLi=Li+s.
3. dimk F  (L i/L i + i ) =r.



/ a n
a n

\ r,

a12

a22 a2s
a ii
a

Mr (OF)

E GLY (OF)

E M r  ( P p )

if i <1* }

if i > j,
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-s2

l r
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lr
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TX) F l r Or Or

(1.1) Ks=

(1 .2)
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Definition 1.2. Let {Li}iez be a  uniform lattice chain of period s.
1. For integers m, we set A'sn =  E M n (F )I fL ic L t+ m  for all
2. W e set K s = {g E G igL ,= for all and K's" =1 ± A T  for positive inte-

gers m .  K s i s  a compact open subgroup of G and les'i is  a  normal sub-
group of lf, for any 1.

3 . Let zs b e  an  element in  G su c h  th a t (zs) s =  teFlly, and Z s b e  a  cyclic
group generated by zs .

Remark. By taking an  approprite OF - basis of Lo, we can express Ks, zs,
A.̀ ,' and .,LG by the following matrix form

/ a ii
-12 ais

an  a22 a25

as2

/ a n  a 12

a22

\
a s i  a 52 ass

aii E Mr (O F )  if i

a ii EN11,-(PF) if i > j,

a i j e  Mr  (O F )  if i < j

a iiE M r(PF ) if

(1.3)

(1 .4)

\-s l ass

a's \
a2s

Since the multiplication b y  coF induces a  kF-isomorphism between Li/L1+1
and Li+s/Li+s-Ei and an element of A's). induces an  endomorphism of Li/Li-Fi, we
have a natural ring homomorphism

R : H Endk F (L i/L i + i ).
E V S Z

Since

(1.5) R : AVA1--oM r (kF)
1 / s Z

and the kernel of R is A l w e have a ring isomorphism

(1.6) Ao/ A l, m r (k F )z isz .
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We use same symbol R for th is  isomorphism.

Lemma 1 .3 .  Let a eA (
s
) and R (a) = (ao, as-i) (aic Mr (kF) ).

1. R (z s az.T1) = (as_i, ao, a s -2 ) .

2. Let u = esna. Then R (to i m u s ) (So, 13 1, ••', 13s-i) where

Proof. Since 4=  toF in , it is easily checked by the definition of R.

Now we define the very cuspidal element.

Definition 1.4. A n element u E AT/Ar l  is  sa id  to  be  very  cusp ida l if
the following conditions hold

1. (m, s )  =1.
2. If R ( w in e ) =  (jeo, 13 1, 135- 1) , then the fields kF (S t) are extensions

of kF of degree r.

W e also say that an  element u E Mn (F ) is very cuspidal of level m if U G

A'sn and u modAr l is very cuspidal. The very cuspidal element has good prop-
erties as follows.

Proposition 1 .5 .  Let u  be very cuspidal of level In.
1. E = F [u] is a f ild  extension of F  of  degree n  and its ramification index

over F is s.
2. E x  CZsKs and E x  n K s= (0'•
3. E n A 'sn =Pin  for all integers m and r  fl icsn = 1 + P r for all integers 1.
4. Let xEA l

s . If  ux — x u c A r" .1 . then x EE - Fil l
s

+ 1 .

Proof. See 3.3 and 3.5 in  [C].

Remark Let E  be a field extension of F  in  Mn (F) and e ramification in-
dex of E / F .  A n element u EE is called E/F-minimal i f  (vE (u) ,e) = 1 and kF

( T y l E ( u)uemodPE) = kE.
Thus u is very cuspidal if and only if F (u) /F i s  a field extension of degree n
and u is F (u)/F-minimal. The notion of E/F-minimal plays an important role
in the work of Bushnell - Kutzko ([B-K]).

Now we start the representation theory of ZsKs.

Lemma 1 .6 .  L et l, m  be integers such that m and For u E

Mn (F), we define a function çhi, on KT by

(1.7) u (1+ x) = (trux) .
Then the map u — •(Pu induces an isomorphism between A.71 + '1A S'n + i  and the com-

plex dual, (K.7116) ^ , of KT 1K's-

Proof. This follows from tr (.Às) )  =OF and tr (/11) =P F . See 2.7 and 2.8 of
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W e call Ou  very cuspidal if u  is very cuspidal.

Definition 1 .7 .  A n adm issible representation p  o f  Z s K s  is  s a id  to  b e
very cuspidal of level N 2) if the following conditions hold

1. p is  trival on K. .
2. The restriction of p to K '  is decomposed into a  sum of very cuspidal

characters.

R em ark . Let u  be a very cuspidal element of level 1—N and m =  [ (N +
1)/2]. Since K7/./C.';' is  an abelian group, Ou is  a  character of K .  Therefore we
can replace the condition (2) of Definition 1.7  by the condition

(2 ') the restriction of p to K's" contains a  character of the form gb,,, where
u  is very cuspidal of level 1— N.

Theorem 1.8 (Carayol [C]) . Let p  be an irreducible very cuspidal repre-
sentation of Z s Ks . Then the compact induction of p to G is an irreducible supercus-
pidal representation of G. Conversely any irreducible supercuspidal representation of
G whose conductor is prime to n is compactly induced from an irreducible very cus-
pidal representation of Z s Ks .

Proof. This is contained in Theorem 4 .2  and Theorem 8 .1  in  [C].

W e recall the construction of irreducible very cuspidal representation in
[1 ]

From now on, we fix a  very cuspidal element u of level 1 — N and set E=-
F(u).

Lemma 1 .9 .  Let Hu be the normalizer of Ou in Z sKs , i.e. Hu =  (gc ZsKslOig4
-= (/) u) where Of(x)= (P u (g - i xg) for x EK'sn . Then flu =E x K I, 7121 .

Proof. It follows from Proposition 1.5  (4). See 5.5  o f  [C].

When N is even i.e. N=2m, it is easy to treat.

Proposition 1 .1 0 . Let 0 be a quasi-character of E x  such that 0 (1 +x) =
Ou(1 - 1-  x) for x EPP and 7 )u ,0  ( tk )  = 0 (t) (k) for t E Ex and k eK'sn. Then 17.,8 is
a quasi-character of 1-1,4 and u (u;0) =lncifilK snu ,6 is an irreducible every cuspidal
representation of level 2m of ZsK s. Conversely every irreducible very cuspidal repre-
sentation of level 2m of ZsKs is written in the fo r m  (u;0)

Proof. Obvious. See Proposition 2 .1 .2  o f  [T].

When N is odd i.e. N= 2m -1 , the  irreducible component of IndiPPOu is not
one-dimensional since H,4 =ExK 1. The construction of the irreducible compo-
nent of Indi

K,4 4 , is  trea ted  in  [T ]. W e need some notations and definitions to
state the result.
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Let W =A V A T  and pr(x )=.t for the natural projection from A's'  to  W.
We denote /EEnd kF W by the conjugate action of u on W i.e. /(-x- ) =uxu - i . Let
s = Pt and  (t, p) =1. W e note p is  an odd prime since  (1 — N , s) =-* 1. Set h =--
t (qr  — 1) I  (q — 1) , J= I h E EndkF W  and T = • • • + 1 + 1   Endk  F  W.
Then T (I - 1) = (i 1) T  =J-1 . We use the same symbols I, J, T on the same
actions on AVA1, i.e. I (x) =uxu - 1 for x E A V A I,J=/ h  and
The next lemma is proved in the proof of Lemma 2.2.1 of [1 ] .

L em m a  1 .1 1 . Let xEAV P1,1 and R (x) = (To, Pu,t u=4 - N  uo
and R (u o ) = (ao, a1, •••, a3 _1). Then u hxu - h =- --x for xeA V A l

s  is equivalent to

C t r i C- 1  ( i  =0, 1, •••, s

where Ci=a,±(h-1)o-Aoai+(h-2)(1-N )  - ai+o- nnai

Set Wo = (J -
1) ( 1 - 1 ) ( b 1 - 2 T w ,A '° p r ( w 0 )

(W1). and K ° =1 -F A'sn 'l  and K'sn'1 = 1 ± A .  Put U=Fx <u h  > (1+ PE) L =Ex

/U and X  = U f a "  UKT' l . W e rem ark that L  is  an abelian group of order re-
latively prime to p and the conjugate action of U on X  is  trivial. We denote by
o. the  conjugate action of L  on X  and regard X  as an F, [L] -module. For M  a
subgroup of L, let pm =  {x EXIa(m )x=x}. Let Xm be the L-complement in QM
of the F 0 [L] -module

E  QM
McM'cL

where the sum is over those subgroups of L  which properly contain M. We de-

fine D  (M ) -1z dim k FX m and S (M) E {±1}by

(1 . 8) (q")— S (M ))/IL /M I is an integer.

Proposition 1 .1 2 . Let (T)„ be a character of K'sn 'l  defined by 0„ (1 +x) =
(tris (x — x2 /2)) for x E A T "  and 0 be a quasi-character of .Ex with the property
that 0 (1 -  F x) = ( tru x )  for x  P 'En

1. There exists an irreducible representation icu,e o f  E x ICs
n '° •which is deter-

mined by its charater formula

(1.9)X . „  0 (ag) =q m) ( fi s  (m) ) 0 (a ) ç
-b-u (g )

aOM

fo r a  E r and gEK 'sn'i ;

xx.,,(r) =0
if r is not conjugate to an element of EX K .

2. Set 17 u ,8 =  In d EE ic: K s ni3O1 Ku,e. Then nu,o is an irreducible component of IndK
I I?4,,

and every irreducible representation of I I  whose restriction to KT contains Ou  is
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written in the form 77.,e.
3 . Pu t cr (u; = In d z

Es„Ki cs,n,o tc„,8 T hen a (u  ; 0 ) is  an  irreducible very cuspidal
representation of level 2m - 1 of Z sK s and every irreducible very cuspidal representa-
tion of  level 2m — 1 of  Z sK s is equivalent to some representation o• (u; 0) f or some
very cuspidal element u  of level 2  2 n i and quasi-character 0 of Ex.

Proof . See 2.2 - 2 .6  o f  [T ].

2. Character formula of 77.,0

In th is section we compute the character formula of i , w hich is an  irre-
ducible component of Ind 0 .  First w e com pute term s Ea eMD (M )  a n d  n ab f
S (M ) in Proposition 1.12. It gives the character formula of tcu,o.

Proposition 2 . 1 .  For a e  ,

E D (M) = r (r (a) (v E (a) ,t) — 1 ) an d  ri s (m) = (-1)
( a ) (  t /  ( v E

q( a ) ,  t ) )  •aeM

Proof. Since i l 1 /A T  is isom orphic to  A V A i
s
. a s  Ex-module, we may

assume m  =  1. F irs t  w e  tre a t  th e  te rm  ZaEmD (M) .  F rom  th e  definition of

D (M ), E a E M D  (M) = —
2
1  dimk F X° where X = 1411 and Xa = fx G X icr i z a  =  .

W e n o te  (I - 1) (P1- 1 ) / 2  induces an L-module isomorphism between X  and  Ker
(J -  1) /Ker 1 ). Let F, be the maximal tamely ramified extension of F  in E.
By virtue of the fact Ex /Fx  <u h > (1±PE) (1 + PE )/F x  (1+ PE ), we may
assume a E Fx. Let vE (a) = c,a = z c

s a o and R (ao) = (do, "•, Os - i) . Since a eF t ,

It follows from Lemma 1 .11  that a EXa is equivalent to r i l-c = diro5ï l  fo r  0
<t 1 where R (a) =  (To, •", Ts - i ) .  By virtue of pi lc, it is equivalent to

Tf D f r iD  1. 1

where Di= 51-1-cs/c0"•51+c5, and co= ( c ,  s ) .  Since (Do, •••, D5_1) =R  (re
i c / c o a s / c o ) ,

IzE(D,)=1eE(to -i " " a s / c °  mod PE). Thus have

(2.1) dim icFr= r(a)2 )
r  ( v E (a ) ,  t) — r.r

Next we consider the  te rn i ll a ,gmS (M ) . From  Proposition 2 .6 .8  o f  [T]

v‘tS (M) = (— 1) r - 1 / (m) . For a  G E ', w e  set a7=a modU. Let ui

be an  element of ek< such  that u i mod (1 + PE) generates the  cyclic group 14.
W e shall omit the symbol —  w hen there is no fear of confusion. By the  same
way of the proof of Proposition 2 .6 .8  o f  [T ] ,  HaeMS (M )  is calculated a s  fol-
lows.

When r  is odd,

aeM



XE (a-1) -1 W1+ Wo/ Wo

where (a - 1)x=axa 1 —  a and xa=a - i xa.

Xnu ,0 (a) =Xx,,, e  (a) 0(tr—lu2 —xax)
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11 s (m) = S (< 14 ,1,14/  > )
aeM

(g) r  f _q_\ r
) C o)

= q .Now we assume r is even. Let u2 u  iq r -1 )  1 1 2 - 1 ) If <u 2, au " >  < u i >  ,  ' L E M

S  (M )  =  1 .  If <u2, a t
1

c 0
>  = <u 2 > , i.e. r (a )  is  e v e n , HaEmS (M) = (— 1) B ( a )

where B (a ) is the cardinality of the set

fm c .FT (1+PE)/r ( l + PE)
< u 2, a  > c m

dimk042)Xm-== 2 mod4 •

Since .0--<u2,a> =  9  <u2,a>cmXm, we have

ditrikF(u2)Q<I42,a> [k E  k F  0 4 2 ,a s / c 9  co r—r)

= 2 (2c0- 1)
-=:2 mod 4.

Therefore B (a ) is odd and  Haems (m) = --1. Hence our proposition.

W e can state the character formula of /cu.°.

Crollary 2.2. For aE.Ex and g e K r l ,

x x t o  (a g )  = e r (a )c o - r )/ 2 (

 

— 1 ) r - r ( a ) 0  (a) Ç-b-u(g)

 

where co =  (vE (a),t).

N ow  w e sta rt th e  calculation o f  th e  character o f  77.14,e = In e E lF ° 1 u ,o . It
takes many steps.

Lemma 2 .3 .  For a E Ex ,

Proof. From the definition of the induced representation

X.,6(a) E xxu,e(g -  ag)
geExKsm -1 /E..Ken.0

where

if xE.Ex.K1,'"
otherwise.

Since the support of x„ is contained in  the  conjugate class of ExIC',

(g - l a g )  * 0  is equivalent to g E  +Nsn'° +Pr- 1  ( (a — 1) - 1 Wi). Under this condi-
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tion, x x u ,o (g - l ag) = xxu ,e (a) Ou(a - 1  gag - 1 ) . Put g=1+x. Then

Ou (a- 1 gag - 1 )  =  (tru 
( ( x _ x a +  ( x 2 )  a  x a x ) ( x 2 +  (x a )  2 _ x x a  x a x )  )

Now we have only to compute A (a ) for a e E x . We remark

Ex/Fx (1 -  - PE) (1+PE) /F x  (1+ PE) x F x  Gu h > (1+ PE) /F x  (1+ PE)

First we calculate A (a ) for a E  .

Lemma 2.4. For a E.F7 (1+PE) ,

A (a) = 2 p(v E (a),t)rr(a)

(p1+1)

Proof. Since (a — 1) - 1 Wi+ Wo= Ker (a - 1) + Wo, A (a) = IKer (a - 1) + Wo

Wol. F ro m  (2.1), we have dimkF (Ker (a —1) fl Ker (J - 1)) = 1 -
p i dimkF Ker (a —

1). Since Wo= (1 -
1 ) ( p l - U / 2 -

VV
= Ker (j - 1) (1' 1 +1 2 , we get our lemma.

Proposition 2.5. For a=  (uh ) iai, (i, pi ) =pi and ai EPt` (1 +PE),

A  (a
) ,o rr( a i) ( v E ( a i) , t ) ( p i– i) ( i /P 1 ) 1 .p G

where pt  = q and

1 „„,.42( i.) ( -1) (pi+D /2x 2) .G = 0(tr kEikF-2-14 m-—E
z ek E

Proof. F irst w e  trea t the case a = (u h ) P i ( j  =  0, •••, 1 —  1) . Then (a — 1) e
EndkF  (AT - ' /A T) i s  (r  — 1) = (j(j —  i )  .  T h u s  ( a  —  1) -

114/1=
Tm (j - 1) (PI

-
1

-
2" T .  F r o m  the definition of A (a), we have

1
A ( (a h ) P i ) = (tr-2-u (xJ- Pi  (X ) — J – P I  (X ) X )).

se lm (1 -1 ) (P1 - 1 - 2 Pi V 2 T /Im (1-1) (pi–o/2

Define an alternating from < , >  on W by

1(2.4) <x, y > =trTt (xy — yx)

Since <x, r i x > = < (J- 1) x, x> , we get

=0(tr -
2
-1u (xxa— xax)).

This implies our lemma.
W e set

(2.2) A (a) = 0(tr-44, (xxa— e x )) .2se (a-1) -1 W1+ We/ Wo

(2.3)
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A ( (0 )v ) = (< x>)
xeIm (J-1) (PL - 1 - 2 P' ) /2 T/Im(j-1) (P 1-1)/2

xelm (1-1) (p1+1 - 2 P ) 1 2 T/Im(J-1) ( P1 1 - 1 - 2 p, ) / 2

0< (T-i)P'(x-f-y), x + y > ) .
xeimu-n (P1-1-1-2 P-0 /2/Imu-n(p 1- 1 )/2

In this expression,

(i)(<(J - 1) P 1 (x+y ) ,x +y >)=0 (<(J - 1)Pjx ,x >)0(J-1)P l y, y > )
( < (J - 1)P'x, y > <  ( J - 1)Piy , x > ).

We prepare two lemmas.

Lemma 2.6. For y E J (J— 
1 )  ( p 1 + 1 - 2 P i ) / 2 ,

( P ( <  ( J - 1 ) P ',  > )  = 1 .

P r o o f .  By the map (j -
1 )  ( p 1 + 1 - 2 P )/ 2  (

0 . " : 2 - 1 y )

(A VA 1) /IM P 1 - 1  = Irri (.1 1) (PL F1-211))/2 1) (P 1-1)12

as kF [ E x ]  -module. For ko(tIm (j - 1), 40, (J- 1) k o , «•, ( j —  1 ) ' 2 k0} is a  basis
o f  (AVA1) /Im (J - 1 ) P '- 1  a s  Ker (J - 1 ) -module. Thus y E  1m ( j - 1) (P1+1-2p)/2
can be written in the form

Y
 P 2rat'in- 1 y— i) (p1+1 - 2 p, ) , 2  z., a, (f —1) 0k0 (a, E Ker ( j - 1 ) ) .

u=0

Thus it suffices to say < tv r iz i  (J_1 ) a k o , 
t o 0 E i

 1 2 2  
(J

 1 )  b k o >  =  0  for z1,z2
Ker (J-1). Since (2 - 2m, s) =1 ,

(2 .5) y  yfri  — = p-Ips-1)/2y

for y e2A.. Thus we have

< Y-1) 0 k0, 1z2 (j - 1 )  bko>
=  < 11j -1) h (J_ 1) a+bk o,r E n – lz 2 k 0

_ t r
 l u  itn-1) y(s-nn z i ps-1)/2 (_ j -1) b J(s-1)/2 1) (a+b)k o z o k o
2

— z 2k 0 • Ps - 1)/251 j ( s -1)/2 ( j
-

l )
bp s - 1 )/ 2

 (J _ 1 )  (a+b)k

We can take ko satisfying R (k o )  = (1 r , Or, ••• , Or) .  Then P - 1 )/ 2J0 k0 • ko= 0 for
a e Z since (s —1) / 2+ ha S  0 mod s. Thus we get< tbir i zi. (J - 1) a k o , te En – I .Z2
(J- 1) b lz0> = O.

Lemma 2.7. For y e  (J -1 ) (P' P ' ) /2 147 and x E  (J-1 ) (P1+1- 2 P) ) /2 TW,

(I) (< (J-1)P'x, y > + < x ,  ( J - 1 ) 'y > )  = 1
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Proof. P u t C =  < ( j — 1)P'x, y > < x , —  1)P'y > , =  1 1 ) r 1 —  1 )
(PE+1 - 2 P"1 2 Tx' and —

 =  tor 1 (j -1 ) (p1 -1 -1 -2 pi i i 2 v . Then

C= <w2i, -1 (j '+ 1) (j - 1 )  , p , , , , ,Tx% t e r -1  ( — 1) (p1+1-2pi)/2>

=  < ter - 'B —  1) Pt - PI Tx' ,  ter - iy '>

where B = ( j '+  1 )  (—  J- 1 ) (1" 1 - 2 P i ) / 2 . It follows from (2 ) that

1
C = tr -

2
u  

2 ( n- 1 )  (B  —  1) P l - Pi T I ( s- 1 ) / 2 x' y' — I (s - 1 ) / 2 y 'B  (j — 1) Pi -  - P'Tx'

1=tr -

2
u.corn - "x"y'BI`s - 1 ) / 2  (j —  1)Pl - Pi+Ik0

where x' =x "k o fo r x" E k E  arid R (k o)  = Or, ••• , Or ) . Since we can write y =-
EtL-02 a,(j - 1) y ko where aE k E , it suffices to say

1tr-

2
ptcokm- 1 ) x"a,..koB/( s- 1 ) / 2  ( — j - i )  ( j — 1) P I - P I + 1 + k 0  O.

This follows from /(8 _ ) / 2j 0 k0 • k0 =0 for a EZ.

Now we go back to the proof of Proposition 2.5. From the above two lem-
mas, we have

A (u h P ') = e 2 " P ' - ' )c p ( <  ( j 1 ) ix , x >) .
..rEllno-1)(P' - - 1 - 2 P')/2 rilin(r-1)(P1+1 - 2 P')/2

Since Tm (I — 1) ('" - - 1 - 2 " 12 T  Im — 1) 
( P t i - 1 - 2 P i ) / 2

 is one-dim ensional kE- vector
space,

A (uhP') = q 't (P'- ' ) Eçli ( < (j— 1) ( P i - 1 )  T xko, re r l  (j —  1) (P4 1 - 2 P"T x k 0 > )
xekE

where ko EA,c,' satisfying ko EE Im (j - 1 ) .  By the  same argum ent in the proof of
the above two lemmas, we can easily show

<tE n-i (j - 1) ( p 1 - 1 - 2 p , ) / 2

7'Xko, Ctl 'En - 1  (j - 1) ( P 1 - 1 - 2 P i ) / 2 TXko>

1) P I - P i T ko k0 ) •
1 2 m - 1  — 1 )  (P+11/2x 2 Ws-1)/2 j0 , -(Pl+1)/2 _=tr -

2
,14 td E

Since JP
1-(P 1+"/2 1) E r 1)p1-1)/2-up■ and T  = I h - l + • • • + 1+ 1, it suffices

to say that the number of the solutions to the equation

(s — 1) / 2+h ((p i  — 1)/2 — up') +1)--= 0 mod s  (1

is  1 modp. It is  easy  to  see  tha t the  number of the solutions i s  [h/s]p l -  +1 .
Hence we get our proposition for the case a u " ' .

Next we treat the case a = 0  w here  ( i,p )  =1 . By the  same argument as
above, we have



= q r 2 t(P' - 1 )  E I10( -

2
t r u o i l 1+1 - 2 " 12x 2)

XE k Ej =0

— ,,r 2 t(P1- 1 )  E  d i (  1
 t r u  ip1-4-1-20)/2ix 2) .

2xEkE
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A (a) q r 2 f ( P i - 1 ) E x e lm (J-1 ) (Pl +1 - 2 0 ) / 2 T/In1(J-114 1+1 - 2 P/ V 2 (/) <  (r/1 )  P x, x > )

z-, xE1m(1-1)(P1 - 1 - 1 - 2 P')/2 T/Imu-i)(P`+1 - 2 P')/2 ri i ,  ( < J a P ix > )
a=0

By virtue of the fact i  mod p  is  square in F p  is equivalent to (—) (g=p f),

we get

1A (a) = (— ) f

qr" (P ' I ) E  0 ( -
2

tru ralP 1 + 1 - 2 P') / 2 x2 ).
kE

W e trea t the  general case a = a i  (u " ) i P i  w h e re  a i  E  P- 7  (1 +  PE) .  Then
(a — i) - '147  Wo/Wo=Ker (a i

 — 1 ) n - 1 ) -  Wi/Ker (a i
 — 1) n 1470 . Thus we

have only to substitute Ker (ai — 1) for W. From Lemma 2 .4  and the calcula-
tion for the case a E <u h > ,  we get

A  ( a )  = I
rr(a1)(vE (a l) , i ) (P i-1 ) ( i ) f

(p t r u
 p + 1 -2 0 )/ 2 x 2) .1 

XE k E 2
Hence our proposition.

Here we state the character formula of

Theorem 2 . 8 .  L et 71,,,e be the irreducible representation of E x  K 1 as  in  Lem-
m a 1.12. The character formula of r),1,0 is given by

1-y r(r(a)(1 ,E(a),i)P 1-1) ( - 1 )  r - r ( a )  
(v E (a) , t))r 0  (a) (/) (tru (g — 1))

if  aeFT (1±PE )
1

qe(r(a)(vE(a),t)Pj-1) ( - 1 ) r - r ( a ) ( i l i f

p (u;q
(a

)  t  rG  (a) 0 (tru (g -1 ))

X71„,0(ag) -=

if a e r (1 +PE)

where F i is  a m ax im al tamely ramified extension of F  in  E, a= ai(u h ) i E E ',  a 1 E

.F7 (1 + P E )  ,  g  E K

,

s n ,  r  ( a )  =  [ k E  :  k F  ( t y i
vE (a)/(vE (a), )a s/(vE (a), ) m o d PR)] , (i, p i ) = p1

(.1• 1) and the Gauss sum  G is defined by

1 , 2 c m - 1 )  _  1 ) (y+1)/2x 2 ))G = (,b(trkE/ k iz ,l t  LuE
sek E

and x , u , o (g ) =0  if  g is not conjugate to an element of EX K.

(2 .6 )
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3 .  An expression of 72.,0 as a linear combination of monomial repre-
sentations

W e fix quasi-character 0 of E x sa tisfy ing  0 (1+x ) =0  (trE/Eux) for x
and put C=.E x /F x  (i + P ) .  L e t  0 • Ou  b e  a  quasi-character of E x lan  defined
b y  (0 • 0u ) (t (1+x)) = 0 (0 0  (trux) for t E.Ex and x E A T. In section 2, we get
the character formula of nu,,. From this formula, we can write

Indni$  1 ( (0 0 2) • 0u) =  Zat.irn u,6
reC

where ctÂr e Z . Put

M = (Z )

Our aim in this section is to compute M and M- 1 .

Lemma 3 .1 .  Let the notation be as above. For A, vEC,

1 
aA = i  , E A  (x) (T2 - 1 ) (x)

r x e c

q2-
1 r (r (x)(vE(x),t)P 1- 1 )

t/ (vE(x), t) I
q 

if  x e n  (1 - 1- PE)
Jr(rcrnvE(x),n(2pi-1)-1) (_ i) r -r (x) ( 1/ Pi ) f  

P (t7 (vE (x), t) 1
if  x=x 1 (vh ) i EE x — F x (1 - f- PE)

x l E F  (1 - 1- PE), g e le r , (i, p')

where F t is  a maximal tamel_y ramified extension of F in E.

Pro o f . From the definition of aÂ, and Frobenius reciprocity law, we have

a,1, = < (0 (8)2) ' Ou,Xnu ,0 0 ,1E-Kr ›E 'K i n

1 
Xy 8 0 , ( g )  

( ( & ® A )
A )  •  O tt) (g - 1 ) dg

V 01 (E x Psn  F x )  f E'Kr /F.

vol (F x (1 +PE)KT/P)
g Xnuo r ( g) ((e ® /1 ) • Sbu) (9- 1 )vol (Ex.KT/Fx) geE.K; n  /F'(1+PE)Ifr

= IL-11 sZ.cA  ( x )  ( x )  ( x - 1 )  •

Now we assume t =r= 1. Then C =Ex  /Fxag (rdE) =
e(i/ p0 , 0 <pi) and

where

A  (x) = G

[9
(P 1 -1 )/ 2

if xEFx (1H- PE)

1 q P  1  ( i  )  f  G  if xete lE Fx (1+PE)
A (x) =
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where (i, p i) =pi 1 1.

Lemma 3 . 2 .  Put Then

(3.1)
( c ) p l - c  + o

( p 1 + 1 ) / 2 _  G e l )

p ig
ai;

if f  even

1 cci-D(  (i— i) /Pc(i P ) Go-Fq /2)P f  odd

where (i — j ,  p') =pc" - D, G as in (2.6),

(3 .2 ) Go= aE l ( flp ) e  (alp)

and
for c  =0

B (c) I
°
q P c  q l " - 1  for c >O.

Proof. From the definition of a„, we have

-1
(3.3) aii= Y P q (a 'P l)-1 (a '/(a

P
' P '

f (a) +q 1 2
\a=1

If f  is even, then

1p t
a ,,= (G E q(a'P')e ( (j —i)a/p9 - 1- q( P 1 + 1 ) / 2 — GqP )

p i q a=1
pfrc

(G E B  (c) E e — i)/fa /P 1) - Fq ( P 1 + 1 / 2 — GqP)
plqc o a = 1
11

=  ( G  EB (Op' H-q (P+" / 2 — GqP )̀
c=l-co-i)

Now we assume f  is odd. It follows from (3 .3 )  that

a u .=   1   (G PEI 1
61,,,,po (a/ (a, p') ) e (( a/p1) + q (PI+1)/2 Gq PI)

P i g a-1 P

1  (G rE-1. q p c (a )e ( ( j_ i)a / p i-c )± q (p i+ i2 _ G q p ,)
p'qk kc.0 aez/pi-ez). P

= ( G ( ± q P c  E  ( ,)e  ( ( j —  a/ pf -c)) +q 1/2)
p q c=o aezipl-cz P

where (± ) = 0 if pla. We can easily show

a
E  (--4e ((j — i)a1P - c) = 0

aezipi-rz
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i f  (i — j p') #p' - - c - 1. Therefore we get our lemma.

In  o rd e r  to  caluulate the  inverse  o f the  m atrix M  = (ad) ,  we introduce
some matrices. For 0 we define the matrices Ra , S# EM pi(Z ) by

/ l e l e

(3.4) R„= ... ) , S a =
\lpu

c i i

Cp t- g i Cpt-upt-g /
where cd =   1 p u . T he matrix M  is  a  linear combination of Ra  a n d  Sa (0

(c.t__./). The next lemma enables us to calculate .71/ - '.

Lemma 3 .3  For
1. Ra R p ' - v R , if /t <
2. R0 Su =S„R 0 =0.
3. F o r t,

{
o if p # 1.)

S„S, =  /  — 1\ i_ 
u

 _, ,
) 1 34 b R p +I— R u )  i f  I I ' v-P

Proof. They are obvious except .S. ,= ( p
l )P1_ 1 pRa + i _R a . Let

S=( P - ) )

and

/1 1 1

R =
1 1 • 1

• • • e Mp (Z).

\  1 1 ••• 1

In  order to  show S 2„= (  (pRa+i R a ) , it suffices to see S 2 = ( 1 ) (p1„

— R). It follows from

E
\

(x — a) (x b )   ) =
.r.zipz

if a b.

Now we can obtain the explicit form of

Proposition 3 .4 .  Let ad be a s in  Lemma 3.2 and M = (ad) E M p l  (Z)  .  If f
is even,



j=1
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(0 (1514-1-2pfron G )  R o ( q p _ p i - i _  1 )

p v i+ i)/20
, 1

1 =1( P 9 P ) 'G G

and if is odd,

1m -1 = R o +E Si.pte l- i) /2 i=o (pq P ) i - i - i GG0

(See (2 .6 ) ,(3 .2 )  for the definition of Gauss sum s G and G and Go.)

Proo f . First we assume f  is even. It follows from ( 3 .1 )  that

M =a0R 0+ Ea 1R,
i= 1

G  
w h e r e  a 0

(
q

p i- t
— q

pi--,-1
)  f o r  1 < /  a n d  a i = G .= -

1

-
(,,

p 
-(P1+1)/2_at-1),

p tqi q

Put M'— n=013iR i. Then by v itu re  of Lemma 3 .3 ,  we have

M IIT= E + E
i=0 i<j

Thus the condition M M '=1p/ is equivalent to

(at_i+figi_i+a1 4 1 - i+i)  =0  for 1 . _i </

a ig i = 1.

Solving these equations with respect to f3i , we get

1[31 =—
a,

48i =  a i  

This gives the desired formula of for the case f  even.
Now assume f  is odd. B y ( 3 .1 ) ,  we have

1-1
M =aR 0 + Eris,

i=0
(pi-u/2

a n d  7., =  
(-1 )q1-'-iG G 0 w h e r e  a  Put 11/1' = bR o + WiE f : Ri. It follows= p  / 40 1-/

from Lemma 3 .3

mm' -- --abp1R0+ 12 (PR,+i—Ri)
r=0

Putting MAT = RI, we can show
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1) 1 
1 1

=
 p  pr

f o r  1< i <t —1
Tr- i

b= ( — 1 )1 p pa

Hence we get our proposition.

Now we get rid of the assumption t =r= 1. To save the space, we put

, d
a  (a) = ̀ i

g — 1
'

for dir. If the exact sequence

1- - .14 /k ; — •C - - •E x /F x 01 — .1

does not split, the calculation of a i ; is very complicated. Here we assume the
exact sequence splits. It is equivalent to that there exists a  uniformizer tops, of
F t such tha te t

F t =F . This assumption holds if  (t,a (r)) =1. Under this assump-
tion,

Cf= <u o > x  <Ù j >  X  <u h >
=Z / a ( r) Z x Z / tZ x Z / p 1Z.

For 0 i  < a  (r) s, take j 1, i2, i3 such that i = sii + P iz+  i3, < a  (i), O  i 2 < t
and 0  i 3 <p`. Define an element À E by

(3 .5 ) Ai (utot/Fiii") = e (ii/a (r)) e (i3/6 e (i3/P i ) .

Then C'=- - {A i0< a  (r)p i t).

Lemma 3 . 5 .  Put au= aA,21 and take i i , 1 2 , 1 3 , 1 1 , 1 2 , 1 3  such that i = si i +p t i,
+i 3 , J Si+P li2d- i3, 0 < a  (r), 0 j2 <t  and 0 i 3 <191. If f  is even

1 
( 3 . 6 )  a u =  , E  E

a 0.)p't d"Id '

1 1 ) r - d - t a  (d/d') E  E  r(te'd"+1)/2
w " I

"

tt(i4//w"),,t (d'/d") (G E F r i d " ,w " ( C ' ) P 1 - c '  + O r w ' ' d '
,(pin.) _ G g rw"a"pi)

and if is odd,

(3.7)  1au= E E E E 1 ( 1 ) r _d,,( ta(r/d') 
w'a W O  

f i l e d " i d •
 LI,w"Ite qr(w”d"1-1)/2

(w ' /w " ) (d'/d") (GGoqrai''d"P1-c-3pc( ( i3 — i 3 )  PC ) +.71rw"(pi+141")
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where (i3 p') =pc, (j2 -1 2 , t) = w, d = [k F (u t,'") : kF ,] , G (resp. G0) as in
( 2 .6 )  (resp. (3 .2 )) , tt is the Miibius function and

Fd (x ) ,d (y )(c )  = f
C7 r 2 w(y)/d(x)) pc _  ( q r 2 w(y)/d(x))19C - 1

Proof. It follows from the definition of a i, that

a: •=  , 1,a )  e (( i i — ii)x/a ( r ) )  ie ( ( j2 — i2)Y/t) A  ( u ô t4 i( u h ) z )e ((i3 — i3)z/P 1)
a (r)p ltx=i y=1 z=1

if z = pi

r (rw (y )(2Pc-1)-d(x  y )) (,Z  b i )   f

2,1(x,y) ( - 1 ) r - ( r / d ( x , y ) ) ( -  ( t_.7_1vV )  r

G

otherwise

where w (y ) = (y , t) and d ( x, y) = r / r (uttt4t) . Since kE=kF ( m-2usmodpE)

and tx/ fFi E F , r(uto.4,) =  [kE kF ( tt) ] . T h u s  d (x , y ) is independent of y. Put d

(x) =d (x, 0) = [kF (ut) kF] and

(3 . 8) B (d (x), w (y)) = (14 tolt.,(u h) z) e((j 3 —i3 )z/p').
z=1

By the same argument in the proof of Lemma 3.2, we can show

1 
(3.9) B (d (x) , w(y)) = ( 1)r- (r/d (x))

(r 2w(y)12d(x))+ (r /2)

r2w(y )(pi+or 2 ( w ( y ) p l \
(G  E  Fd(x ),w (y )(C ')Pl-ce +q2 d ( x ) d(x) )

cr=t-c

when f  is even and

(3.10) B(d (x), w (y)) =
1 ( r- (r/d (x ) ) ( )

(r2 w(y)/2d(x))+(r/2) t/W  (y)

( G G
0e2tocop1-c-vd(x,pc((i3—i3) /pc ) ,  r 2 w (y )(p i+ o )q 2d(x)

when f  is odd. By MObius inversion formula, we have

a  = 1 a ) e ( ( i i  — 0 x /a  ( r ) (x )) E  e((j2—i2)y/t))
a (r) pit x=i y ew ' Z/ tZ
a(r)

= E e (r) E (d (x)) t/w'

where 
(d (x )) = E B (d (x) ,w") /w")

r 2 w(y)/d (x) for c 0

for c >0

A (uf, b:* ( u h ) z )

In the above expression,

q 2d (x,y)
( — 1) r- (r/d (x,y)) (  q  ){ r(rw (y )pl-d(x ,y )) 

t/w (y) I
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( ,u  is  the IM b iu s  function.) U sing M nious inversion formula once again, we
have

1 
aii=

B (r/ d" , w") a (rid') t
 ( w

,

/ t v
„

) t t  ( d i  d " )  .„  , E E E E
a ( r ) P1  ried"Id" ww"*"d

Hence our lemma.

A s in the case t = r=  1, we define some matrices to calculate the inverse of
M =  (a5). F o r  integers a , b  such that alb, we define matrices R a ,b ,S a ,b E M b (Z )
by

la la  \

(3.11) R a ,b
=

 (•  •  • • • • • • • , Sa,b
—

• • •

l a l a  / \C ki
a

C b ba a

w here  c ii=  ) lpa. Put

( 3 .1 2 )  R d,w,c = Ra(d)a(r) R  w ,1  R p c ,p 1  S  a ,w,c
=

 R a(d),a(r) R w , t S pc,pi

for dir, w it and 0._<c_/. The next lemma is proved in the same way as Lemma
3.3.

Lemma 3 .6 .  For d,d'ir,w,w'it and
a (r)a ( (d, d')) t (w, 

1. Rd,,,cRe a (d )a  (d )w w ' (d,d'),(w,w'),c•

2 • R d ,w ,oS e,, , ,, =Sd',w',cR  d,w,0
=

 0.
3 .  For c ,c '< l,

S ,c' —

{ 0( —p l ) p l _c _1 a (r) a ((d, d')) t (w, w') 
a (d) a (d ')ww '

if  c * c'

ipircd,d , ),(w,w , i,a+1. — R(d.a , ),(w ,a),c) i f  c =c
, .

By Lemma 3.5 and Lemma 3.6, we can caluculate M -1 .

Proposition 3 .7 .  Let a ,, be as in Lemma 3 .5  and M =  (au ) eM icl ( Z. Let
G, Go be Gauss sums defined in  (2 .6 ) , (3 .2 ) . Put a (d) = (q d  — 1) / (q - 1) for dir.

(1) If f  is  esen ,

itr1=EEEd3d,w,cRd,w,c
dir wit c=0

where [3d,,,,,c  are d eterm in in ed  inductively by the following relations

1i3r,t,1 =



1 /1 E
5 " =  g(d, w) \ p (u1g; It

—EE E r d " , w " a d ' , w ' )
d'Ir d"Ir w "it

wIwr It ( d " ,d ')= d  (w " ,V )= w
d'w'*dw

E rd",w",05d',w ',0
d " lr w"It

(d",d )=d (w",w')=w
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1 
13d,w,c= f (d, w,

where

d id 'ir
w'It

c<c'<1
d'w'c'*dwc

Ced",w ",c"Pd ',w 'x '
d"Ir w"It c"< I

(d",d')=d (w",w')=-w (Pc'',Pc')=Pc

f (d, w, = 1( - 1 ) r - ( r / d y r tP l id w ) - ( r 1 2 )

( _ i ) r - ( r / d ) G q (rtpt - cidw)-(rt/2dw)-(r/2))

if c =0

if c >0'

and

ad, w,0=
a (d)w 
a (r)p i t dE,171wr E,if,qr (d'w1'+1)/2

1) r-d , ( ci rd' I P 14- 1) — G p rd 'w , p 1 - 1 )

1-e(rfild'),tt(t/ww')

a (d)wpc 1 
ad,w,c

E rr - d , G e d , u /p c it (p i-c -e )
a ( r » ' t  e r qr (d ' U/1- 1)/2 \

ii(r/dd') pd (t/ww')

for c >0.
(2) If f  is odd,

1-1

M- 1 =  E E 5 d ,w R d ,w ,0 +  EE E  5d,w,cSd,w,c
dir wit dIrwItc=0

& Jo , 5d,w,c are determinined inductively by the following relations

5 r ,1 ,1 - 1

, -

 ( -

1 1) r - ( 1   1  ) 
\ t )  GG0

1 ( 1E E E 7 d " ,w " ,c 5 d , ,w , ,c

( \1,2 wiw'11 (d",d')=d
w"Itg d, w, 0 (w",w')=w

—E  E
did'Ir d "Ir w"It rd ",w ",c-15d ',w ',c-1

(d",d')=d (w",w ')=w
d'w'*dw

where

g (d, c \ =  ( 1 )  r - r l d G G  ' r 2 t P ' - C - 1 / d W P I

) P \-4-) 04

q

r(rt+dw)/2dw

g w )  =  —1) r - r / d ( Q )

'1

,r(rtPi-div)/2dw
,1D 

a (d )wGG0 — 1 ) E  E
a (r)tp' - ` P c r iw i -if,

where
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q
r d ' w ' P ' 1 - c - 1 - r ( d ' w '  + 1 ) / 2

it (r/ dd') g (t/ wul)

and

_  a (d)w ( - 1) E  E  ( p i  d c f )  p ( t I w w ' ) .rd,w  —  a  (r ) t( r
t  Wr

Proof. First w e assume f  is even. By virtue of Lemma 3.5, we can show

dirwitc=0

Put M '=  E d Ir E w ItE ie=0Pd,w,cRd,w,c• It follows from Lemma 3.6 that

N M =  E  E E  a (r) a (d)twp i - c " 
a d '',w '',c "Pd ' ,c'•dir d "jr w"It

(pcP,PP)1,..-pc a (d ')a  (d  )w 'w 'wit witwiit (d -,e)= do<ci<1 c'<c

Thus by putting M M ' l ,  w e  have only to  show tha t the coefficient of Sdo,c
equals to

f ( d, w, = E
z a  ( r )  tpi-c

a (d')u,'

Since

a (r)tp' - c 
a  ( d ' ) w

, ad ,= -  E  E E
c"

d' w'

f (r/ d", t/w" , 1 —  c") g (r/ dd") g(t /ww")

it follows from the Mbbius inversion formula. It is obvious that f (d , w , c)  * 0.
Therefore we get the proposition for the case f  even.

Now assume f  is odd. Using Lemma 3.5 and Lemma 3.6, we can prove the
proposition by the same way as in the case f  even.

W e state the main result of th is paper.

Theorem 3 .8 .  Let u  be a very cuspidal element of level 2 —  2m (cf. Defini-
tion 1 .4 ), E = F  (u.), 0  be a quasi-character of  E  such that 0  (1 +  x ) =  (tr ux)
for x E ll. D e f ine  a quasi-character 0. O. of E x  Kr: b y  (0 .0 u ) (tk) = 0 (t)(P u (k) for
t G E ' and kE KT . W e assume that there ex ists a uniformiser I:6F, of F t such that
tt4 ,E F  where F t is  a maximal tamely ramified extension of F  in E. Let 0  0
where AE (E x /Fx (I +PE) ) -  is def ined in  (3.5). Set a (d ) =  (ad  — 1) I  (q — 1) for
dir. For 0 <a (r)tp ', take i 1 , i 2 , i 3 such that i = tp 'ii+ p li2+ i3, 0 <a (r),
< t and 0 <p'. Put w (i) =  (i2 ,t) , pc" ' (13,13`) and d (i) = [kF (149
where uo is  a generator of 4. When f  is  e v e n  (q  p 0 ,  pu t
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71" (U, =
0_i<a(r)tP ,

Pdo ,cindi.K r (ei Ou)
c< c(i)

where P d x , c  is as in Proposition 3.7 and when f is odd, put

7r(tt , = E A
o s i< a ( r ) t p i  d [ d ( t )  ( u d ,w +  (

i 3 I P: (i) )5a ,w ,c)irld i.K ri ( 0 i  • Ou)
wItu(i)

where 5d,w,(3d,,,,,c are as in Proposition 3 . 7.
Then 71* ( u ,6 )  is an  irreducible supercuspidal representation of  G and every

irreducible supercuspidal representation whose restriction on KT contains Ou is writ-
ten in the form r (u,O) for some BEE'.

Proof. It follow s from  Theorem  1 .8 , Proposition 1 .12  and Proposition
3.7.
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