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On the irreducible very cuspidal representations I
By

Tetsuya TAKAHASHI

Introduction

Let F be a non-archimedean local field and G =GL, (F). Carayol [C] in-
troduced the notion of very cuspidal representation of the maximal compact
modulo center subgroup of G and showed the compact-induction of an irre-
ducible very cuspidal representation to G is irreducible and supercuspidal. If
the irreducible very cuspidal representation has an even level, it is monomial
i.e. induced from a one-dimensional representation. But if the level is odd, it is
not monomial and the construction of the representation is much more difficult
and complicated. We remark that such phenomena occurs whenever one con-
sider the construction of supercuspidal representation. (See e.g.[M], [B-K].)

The aim of this paper is to express the irreducible supercuspidal repre-
sentation induced from a very cuspidal representation with an odd level as a
Q-linear combinationr of monomial representations. To explain more precisely,
we use some notation. Let o be an irreducible very cuspidal representation of
ZsKs of level N. (See Definition 1.4 and 1.7.) Then the restriction of o to
KN+D/2 oontains a character ¢, (cf. Definition 1.7.) When N = 2m, the nor-
malizer of ¢, in ZKs is EXK™ where E=F (u). Thus p= Indsxm (6 + )
where 8 is an appropriate quasi-character of E*. (See Proposition 1.10.)
When N=2m —1, the normalizer of ¢, in Z;Ks is EXK”™! and the irreducible

component of Indfg:mK’m_l ¢ is not one-dimensional. Moreover if E/F is widly
ramified, the construction of the irreducible component is not easy. In [T], the
author gave the irreducible representation 946 of E*K¥~!, Our main work is to
calculate the character of 9y Let C=E*/F* (14 Pg) and C is the character
group of C. We can put

Indgr® ((082) * ¢) = Zasluser.

TeC
From the character formula of 7,6, we can calculate the multiplicity a;,. Thus
if we can calculate the inverse of the matrix M= (aa7)1,0e&, Mus is expressed as

a linear combination of monomial respresentations. We can calculate the M~}
under some assumption (See Proposition 3.7 and Theorem 3.8.)
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In section 1, we review the result of [C] and [T]. Theorem 1.8 is the
main result of [C] and Proposition 1.12 is our starting point to calculate the
character of 74, Section 2 is devoted to calculate the character of %46 In sec-
tion 3, we get the explicit from of M~'. At first, we treat the case E/F is total-

ly ramified and the ramification degree is a power of p. In this case, M™! can
be written in the simple form. But this case contains the essential part of the
calculation. For the general case, we assume there exists a uniformizer wg

such that w§ € F* (1 +Pg) where s is the ramification index of E/F. This
assumption is not essential, but it simplify the result. Theorem 3.8 is the main
theorem of this paper.

The monomial supercuspidal representation is very easy to treat. For ex-
ample, it is easy to calculate the e-factor, to give the matrix coefficient and so
on. We hope this result is useful for the calculation of the e-factor of the rep-
resentation of GL,, (F) XGL, (F).

Notation. Let F be a non-archimedean local field. We denote by O, Pp,
wr, kr and v the maximal order of F, the maximal ideal of Of, a prime ele-
ment of P, the residue field of F and the valuation of F normalized by vr(wr)
=1. We set g=p’ be the number of elements in kr. For x € R, we denote by
[x] the greatest integer <x and set e(x) =exp (2my/—1x). For integers a, b, we
denote by (a,b) the greatest common divisor of a and b. The Jacobi symbol is
denoted by (—). We fix an additive character ¢ of F whose conductor is Pr
ie. ¢ (Pr) ={1} and ¢ (Of) *{1}. Let G be a totally disconnected, locally com-

pact group. We denote by G the set of (equivalence classes of) irreducible
admissible representations of G. For a closed subgroup H of G and a repre-

sentation o of H, we denote by Ind§p (resp. ind%p) the induced (resp. the com-
pactly induced) representation of o to G. For a representation 7 of G, we de-
note by 7r|H the restriction of w to H. The n Xn zero and identity matrice are
denoted by 0, and 1, respectively. The usual matrix trace is denoted by tr.

1. Review of the very cuspidal representation

In this section, we review the results of [C] and [T]. At first we recall
some definitions in order to define very cuspidal representation.

Let F be a non-achimedean local field of residual characteristic p and G=
GL.(F). We set Vr=F" so that M, (F) =Endr (V¢) and G=Autr(Vr). Let s be
a divisor of n and put r=n/s.

Definition 1.1. Let {L:} ez be the set of Or-lattices in Vr. {Li}iez is
said to be a uniform lattice chain of period s if the following conditions hold
for alli€Z:

1. LinnCL;

2. PpLi=Liss.

3. dimkF(Li/LiH) =7r.
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Definition 1.2. Let {L;};cz be a uniform lattice chain of period s.

1. For integers m, we set A?={fEM, (F)|[fL;CLism for all i}.

2. We set Ks={gEG|gL;= for all i} and K7 =1+ A? for positive inte-
gers m. K is a compact open subgroup of G and K¥ is a normal sub-
group of K for any m=1.

3. Let z; be an element in G such that (z5) = wrl, and Zs be a cyclic
group generated by zs.

Remark. By taking an approprite Or-basis of Ly, we can express K, zs,

A% and Al by the following matrix form :

an aiz " Qs i e
(lijeM,(@p) lf1<]
Ay G2z °'° dzs

(1.1) K= . aii€GL,(OF)
aijEMr(PF) ifi>].,
as1 Qs2 °°° (Qss
Or ].r 07 A Or
o, o0, 1, - 0,

(1.2) 2=
wFlf 07 v0r o 07
an aiz " dis \
(1_3) A= az1 dgzz °°° Qg aijEMr(@F) ?fzigj ’
ay €M, (Pr) if i>j,
ds1 As2 " dss
ain izt dis
. e lEM @ .f ,<.
(1.4) Al= da1 G2z dzs || Gij +(OF) 1 1 ].
ay €M, (Pp) if i2j,

as1 Qs2 *°" dss

Since the multiplication by wr induces a kr-isomorphism between L;/Lis,

and Liys/Livs+1 and an element of A? induces an endomorphism of L;/Lis,, we
have a natural ring homomorphism :

R:AM 11 Endy, (Li/Lis1).

i€Z/sZ

Since
(1.5) R : AYAM, (kp) #/2
and the kernel of R is A} we have a ring isomorphism &

(1.6) AYAYM, (kp) 2752,
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We use same symbol R for this isomorphism.

Lemma 1.3. Let a €AY and R (a) = (o, a1, ***, &s-1) (i EM, (k).
1. R(zsaz5") = (@51, @0, *++, As-2).
2. Let u=z"a. Then R(wi™u®) = (Bo, By, ***, Bs-1) where

Bi=Qiss—vm"** Xiami.
Proof. Since z§= wrl,, it is easily checked by the definition of R.

Now we define the very cuspidal element.

Definition 1.4. An element u €EA?/AZ*! is said to be very cuspidal if
the following conditions hold :

1. (m,s)=1.

2. If R (™) = (Bo, Br, ***, Bs-1). then the fields kr (B;) are extensions
of kr of degree 7.

We also say that an element u €M, (F) is very cuspidal of level m if u €
A” and u modA”*! is very cuspidal. The very cuspidal element has good prop-

erties as follows.

Proposition 1.5. Let u be very cuspidal of level m.
1. E=F[u] is a fild extension of F of degree n and its ramification index
over F is s.

2. EXCZsKs and Ex ﬂKszﬁé
3. ENAT=P¥ for all integers m and E* NK¢=1+P¥ for all integers m=1.
4. Let x€AL If ux—xu AT then xEE+AL

Proof. See 3.3 and 3.5 in [C].
Remark Let E be a field extension of F in M, (F) and e ramification in-

dex of E/F. An element u €E is called E/F-minimal if (vg(u).e) =1 and ks

(w7 “%*modPg) = kg.

Thus u is very cuspidal if and only if F (u) /F is a field extension of degree n
and u is F (u) /F-minimal. The notion of E/F-minimal plays an important role
in the work of Bushnell-Kutzko ([B-K]).

Now we start the representation theory of Z:Ks.

Lemma 1.6. Let I, m be integers such that m <1<2m and m=1. For u €
M, (F), we define a function ¢, on K% by

(1.7) G (1 +2) = ¢ (trux) .
Then the map u—> @y induces an isomorphism between A5'*'/AT™ and the com-
plex dual, (K?/KY)", of KT'/KE.

Proof. This follows from tr (43) =0p and tr (A5) =Pp. See 2.7 and 2.8 of
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(Cl.
We call ¢, very cuspidal if » is very cuspidal.

Definition 1.7. An admissible representation p of ZsKs is said to be
very cuspidal of level N(N=2) if the following conditions hold :

1. p is trival on K¥.
2. The restriction of p to K¥~! is decomposed into a sum of very cuspidal
characters.

Remark. Let u be a very cuspidal element of level 1—N and m= [(N+

1)/2]. Since K?/KY is an abelian group, ¢, is a character of K?. Therefore we
can replace the condition (2) of Definition 1.7 by the condition :

(2") the restriction of p to K contains a character of the form ¢, where
u is very cuspidal of level 1—N.

Theorem 1.8 (Carayol [C]). Let p be an irreducible very cuspidal repre-
sentation of ZsKs. Then the compact induction of p to G is an irreducible supercus-
pidal representation of G. Conversely any irreducible supercuspidal representation of
G whose conductor is prime to n is compactly imduced from an irreducible very cus-
pidal representation of ZsKs.

Proof. This is contained in Theorem 4.2 and Theorem 8.1 in [C].

We recall the construction of irreducible very cuspidal representation in

[T].

From now on, we fix a very cuspidal element u of level 1 —N and set E=
F(u).

Lemma 1.9. Let H, be the normalizer of (n in ZsKs, i.e. Hy={gE ZK| %
=) where ¢ (x) = (g7'xg) for xEKT. Then H,=EK{?.

Proof. It follows from Proposition 1.5 (4). See 5.5 of [C].
When N is even i.e. N=2m, it is easy to treat.

Proposition 1.10. Let 6 be a quasi-character of E* such that 6 (1+x) =
Gu(1+x) for x EPE and 146 (th) =0(t) P (k) for tEE* and k EKT. Then Nyp is

a quasi-character of Hy and 0 (u;0) = Ind& nus is an irreducible every cuspidal
representation of level 2m of ZsKs. Conversely every irreducible very cuspidal vepre-
sentation of level 2m of ZsKs is written in the form o (u;0).

Proof. Obvious. See Proposition 2.1.2 of [T].

When N is odd i.e. N=2m—1, the irreducible component of Indx¥¢y is not
one-dimensional since H,=E*K?™'. The construction of the irreducible compo-

nent of Indi#¢, is treated in [T]. We need some notations and definitions to
state the result.
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Let W=AZ2"'/A? and pr (x) =z for the natural projection from A”! to W.

We denote I €Endy, W by the conjugate action of u on W i.e. 1) =uxu™'. Let
s=p't and (¢, p) =1. We note p is an odd prime since (1—N, s) =1. Set h =

tlg—1)/(q—1), J=I"EEndi; W and T=I""'+1"24 - +]+1EEndi, W.
Then T(I—1) = (I—1) T=J—1. We use the same symbols 1, J, T on the same
actions on A$/Aj, ie. I(x) =uxu™ for €AY/ AL J=I" and T=I""'+-+]+1.
The next lemma is proved in the proof of Lemma 2.2.1 of [T].

Lemma 1.11. Let x€AY Al and R (x) = (10, 71, =, Ts-1). Put u=21"" u,

and R (uo) = (@, an, ***, @s_1). Then u"su™"=x for xEAYAL is equivalent to

—_— -1 — —
Yirta-m=C;7:C™Y (=0, 1, -, s—1)
where Ci=Qivh-10-MXit -2 1-N)" " Rix 1 -

Set Wo= (J—1) ®'-V72W W= (J—1) ®'-V2TW, A%0=pr~ 1 (W,), Al =pr!
(W1). and K?°=1+A%! and K™'=1+A" Put U=F*<u"> (14Ps), L=E*

/U and X =UK?™/UK™'. We remark that L is an abelian group of order re-
latively prime to p and the conjugate action of U on X is trivial. We denote by
o the conjugate action of L on X and regard X as an F,[L] -module. For M a
subgroup of L, let 2y={xEX|o(m)x=x}. Let Xu be the L-complement in 2
of the F,[L]-module

2 Qu

McM’'cL
where the sum is over those subgroups of L which properly contain M. We de-
fine D (M) =%dimkFXM and S (M) € {£1}by
(1.8) (gP™ —S (M))/IL/M| is an integer.

Proposition 1.12. Let ¢, be a character of K7 defined by ¢, (1+x) =¢
(tru (x —x2/2)) for xEAPY and 0 be a quasi-character of E* with the property
that 6(1+x) = ¢ (trux) for x € PE.

1. There exists an irreducible representation Kupe of E*K
mined by its charater formula .

(1.9) A p (ag) =q== P90 (T S(M)) 6 (a) gu(g)

aeM

m0 which is deter-

for a€E* and gEKT,
Xy (1) =0

if 1 1s not conjugate to an element of E*K.,
2. Set Nus= lndg:fg{n;xu,a. Then N is an irreducible component of Ind%fngbu
and every irreducible representation of H, whose testriction to K7 contains ¢y is
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written in the form 1y..

3. Put 0 (u;6) = IndZs{omakiue Then o (s 60) is an irreducible very cuspidal
representation of level 2m —1 of ZKs and every irreducible very cuspidal representa-
tion of level 2m — 1 of ZKs is equivalent to some representation o (u;6) for some
very cuspidal element u of level 2—2m and quasi-character 6 of E*.

Proof. See 2.2-2.6 of [T].

2. Character formula of 7,,

In this section we compute the character formula of 7,6 which is an irre-
ducible component of Ind##*¢,. First we compute terms 2seyD (M) and [lsen
S (M) in Proposition 1.12. It gives the character formula of k..

Proposition 2.1. Fora€E™,

= D) =r(rla) (wela).H) =1) and T1S()= <—1>""“’<qu((1>_,27)-

aeM

Proof. Since AZ™'/A? is isomorphic to A%/ A} as EX-module, we may
assume m = 1. First we treat the term 2geyD (M) . From the definition of

D (M), ZaeuD (M) =%dimkpu * where X=Wo/W; and X*={x € X|a"'xa =x}.
We note (J—1) ®'~1/2 induces an L-module isomorphism between X and Ker
(J—1)/Ker (I—1). Let F, be the maximal tamely ramified extension of F in E.
By virtue of the fact EX/F*<u"> (14 Pg) =F; (1+Pg) /F* (1+Pg), we may
assume a € F*. Let vg (a) =c,a=250 and R (ao) = (Jo, ***, 8s_1). Since a EF, p'le.

It follows from Lemma 1.11 that a € X? is equivalent to 7iyc= 0;7;0;" for 0<i
<t—1 where R(a) = (7, ***, 7s-1). By virtue of plc, it is equivalent to

7i=DiriDi*

where Di = 0i+csseo** 0i+c0i and co= (c, s). Since (Do, ***, Ds-1) =R (w5*"“%a*’®),
ke (D;) =kp (@54 mod Pg). Thus have

2.1) dimkFX“=r(a)27éT (ve(a), £) —7.

Next we consider the term [lzemS (M) . From Proposition 2.6.8 of [T],
r
MoenS M) = ("D”'(?) /TlaeuS (M). For a €E*, we set a=a modU. Let u;

be an element of OfF such that uymod (1+ Pg) generates the cyclic group kz.
We shall omit the symbol — when there is no fear of confusion. By the same
way of the proof of Proposition 2.6.8 of [T], [lseuS (M) is calculated as fol-
lows.

When 7 is odd,
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[TsM) =11 S(<uy’>)

aeM colflt
(8 /(2
t co/
Now we assume 7 is even. Let u, =u{@ V@D 1fy, o> =<u;>, [lsen

SWM) =1, If <uy, a¥°> = <u?>, ie. v (a) is even, [lgenuS M) = (—1) B@
where B(a) is the cardinality of the set :

<utg>C]
MCFx (14-Pg) /F* (14+p,) | ¥ 47 M }

dimkF(uz)XM =2 mod4

Since Q<uya>= D cupa>cmXu, we have

. 4 .
dlmkp(uz)Q<uz,a> = E( [kE - krp (uz’as/co) ] 007'_7')

=2 (26’0_1)
=2 mod 4.

Therefore B(a) is odd and [zexS (M) =—1. Hence our proposition.

We can state the character formula of &y

Crollary 2.2. For a€E* and gEKT,

A6 (ag) =q(rr(a)co—r)/2<t CO)’(_D r-—r(a)e(a) (Zu (g)

where co= (vg(a) t).

Now we start the calculation of the character of 7, = Indg:ﬁg’?t:/cu,e. It
takes many steps.

Lemma 2.3. For a€E”*,
1
Xyg (@) = ) (a) > (,b(trgu (xx®—x%) )
zela—-1)"1Wi+Wo/Wo

1

where (a—1)x=axa™'—a and x*=a Ya.

Proof. From the definition of the induced representation

Ao (@) = )y Xryp (9 ag)

geEXKsm-1/E*Ksm0
where

Anep ) if TEEXKM

(g (5) =
X 0 otherwise.

Since the support of Xx,, is contained in the conjugate class of EXK™!, 7&,‘“.0
(g~'ag) #0 is equivalent to gE1+AT*+pr ' ((a—1) 'Wi). Under this condi-
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tion, Xx,s(97'ag) =Xx, () ula~'gag™"). Put g=1+=x. Then
¢ula'gag™) = ¢<tm ((x—x+ (x*)%—2%) —%‘(xz'f' (x%) 2 —xx"—x%)) )

= gb(tr%u (22 —x%) )

This implies our lemma.
We set

(2.2) Ala)

> ¢ (tr%u (xx%—x%) )

re(a-1)"1W1+Wo/Wo

Now we have only to compute A(a) for a EE*. We remark
E*/F*(14Pg) =F; (14+Pg) /F*(1+Pg) X F*<u*> (1+Pg) /F*(1+Pg).
First we calculate A (a) for a EF}.

Lemma 2.4. For a€F} (1+Pg),
2

A (a) = p<05(a).t>rr(a)

(p'+1)

Proof. Since (a—1) Wi+ Wo=Ker (a—1) + W,, A (@) =|Ker (a—1) + W,
/Wsl. From (2.1), we have dimg, (Ker (@—1) NKer J—1)) =1%dimkFKer (a—

1). Since Wo= (J—1) ®"V2W=Ker J—1) ?*V”2 we get our lemma.
Proposition 2.5. For a= (u*)'a;, (@, p') =p’ and a,€EFF (1+Pg),

A (a> =qrr(a1)(uE(a1),t)(p’—1)(%)&)fc
where p*=q and

(2.3) G= > ¢<trk5/k,-%u wimD (—1) (p:+1)/zxz>.

I€kp

Proof. First we treat the case a= (u*)? (=0, -+, I—1). Then(a—1) €
End, A7/ AT) is (P —1) = (=1 " Thus @ —1) ‘W, + W, =
Im (J—1) ®'~1=2"/2T From the definition of /A (a), we have

1
Al(h ) = ( =01 () — - >
(@")?) xexmu—nw‘—1—2P§27/1m<1-1><ﬂ’-1)/2¢ tru (@] (x) =] (x)x) ).
Define an alternating from <, > on W by

(2.4) <x, y>=tr%u (xy —yx).

Since <x, J74>=<({J—1)x, 2>, we get
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A(uh)?) = > P(<(J—1)x, x>)
relm(J-1 P'=1-260/27 /1my-1) #}-1)72

relm—1 PH1-200/27 /im(j—1) (1+1-209/2
j
< (J=1)"(x+y), xty>).
relm(J-1)P+1-280/2/1m(j-1) (PI-1)/2

In this expression,

QK=Y +y), 2+y>) =0 (< T=1)"2x>) o J—1D %y, y>)
P J=1)%, y>+<(J—1)"y, x>).

We prepare two lemmas.
Lemma 2.6. For y EIm (J—1) #**1-2"72,
Q<=1 y>) =1
Proof. By the map y+> (J—1) P17 (e~ 1y),
(A%/AY) /Im (= 1) P~ = Im (1) @272 1 (= 1) #'-2

as kr [E*] -module. For ko€&Im J—1), {ko, U= 1) ko **+, U—1)?%ko} is a basis
of (A% AY /Im (J—1)?* as Ker J—1) -module. Thus y € Im (J— 1) #+1-2"72
can be written in the form

pl-2
y=wp t(J—1) P25 a, (J— 1) ke (@uEKer (—1)).
u=0
Thus it suffices to say < @2 'z, J—1) %o, w¥ 22 (J—1) %> =0 for 21,2, €
Ker J—1). Since (2—2m, s) =1,
(25) ywz‘n—lzwgn~ll(s—l)/2y
for y EAY. Thus we have:

<wi‘n_131 U_l)ako,wz‘n-IZZ U'—l)bk0>
=< Oern-lzl (_]—1) b ([_].)a+bko, wi‘n_lzzko

=tr%uw%(m—l) (I(s—-l)/zzl . I(s—l)/Z (_]—l) [)I(s—l)/z U’_ l) (a+b)k0 . ZOkO
_szo . I(s—l)/Zz1 . I(s—l)/2 (_]—l) bI(s—l)/Z (/_ ]) (a+b)k0) .

We can take ko satisfying R (k) = (1, 0, *>+, 0,). Then IV « ko=0 for
@ E€Z since (s—1)/2+ha%x0 mod s. Thus we get <®wF 21 (—1) %o, W% 'z,
(J—1) %> =0.

Lemma 2.7. For y € (J—1)®*+1=22W qnd x € (J—1)P+1-22TW,

(<=1, y>+<x, —1)?Py>)=1
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Proof. Put C=<({—1), y>+<x, §—1)y>, x=wF'(7—1)
(p'+1—2p1)/2Tx' and y= CUZ!_,I (I_l) (p‘H—pr)/Zy" Then

C—- <wm—1 ([—P/+1 (]_1) (p’+l)/2Tx’ w}Eﬂ—l (,_1) (Pl+l—2ﬁi)/2>
=<wlfBYJ—1)""Ty, w2 'y’ >

where B= (J=?+1) (—J1) #*+1-272 1t follows from (2) that
c= tr%uwz‘”’ D (B (J— 1) P=P TS D72y — [S=D/2 B (J— 1) =0Ty’

1 ” ’
=tr§uwi~("' Dy B[(s 1)/2(, 1 P’ D’+1k

where 2’ =x"ko for " € kg and R (ko) = (1,, 0,, -*+, 0,). Since we can write y =
2020, (J—1) ke where a, kg, it suffices to say

tr%uw%(m 1) //akaBI(s l)/Z(_j-l) ([ 1)1;1 p1+1+vk __0

This follows from I“ 2%, + k=0 for a€EZ.

Now we go back to the proof of Proposition 2.5. From the above two lem-
mas, we have

AG») =g > P(<U=D*%x>).

relm(j—D W'=1=200/21 /imj—1) (P +1-2p))/2

. I__1—2p5 I —2ps . . .
Since Im (J — 1) @'-1=280727 [y (J — 1) #'+1-209/2 g one-dimensional kg-vector
space,

A (u,hp‘) =qﬂt(p1—1) Z (/) ( < w&n—l (I_ 1) (pj—”Txko, wz‘n—l (/_ 1) (p’+1—2p’)/2Txk0>)

x€kp

where ko€ A? satisfying ko€ Im (J—1). By the same argument in the proof of
the above two lemmas, we can easily show
< CUm l(] 1) (pl-1-— 2#’)/2Txk0 wm 1 (]_,1) (N—l—Zﬂi)/ZTxkO>

=tr%um%m—l (_ 1) (p‘+lﬁ/2x2 (I(S—l)/Zjl)"—(ﬂ’+l)/2 (1_ 1) i)'—p"Tko . kO) .

Since JF-@HD/2 (J— 1) P = FAT V20 gng T=[""14--+]+1, it suffices
to say that the number of the solutions to the equation :

(s—=1)/24n(@p'—1)/2—up’) +v=0mod s (1<pu<p'70<v<h—1)

is 1 modp. It is easy to see that the number of the solutions is [h/s]p'~/+ 1.

Hence we get our proposition for the case a =u"?”.

Next we treat the case a =u""* where (ip) =1. By the same argument as
above, we have
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A (a) =¢]'2'W_UExelm(/—n<ﬂ’+1-2ﬁ’>/2r/|m(1—1)‘P‘+1-2P”/2¢’(< (./i" 1) p’x, x>)

i-1 }
=q""" ) 3 e tmy—n P 126020 iy @1+ 1-20072 TL (K J ¥ (J—1) P, £>)
a=0

=MD 3 fﬁlgb(‘;‘truw?'*"z”’)/zxz)

TEkEj=0

rzt(p/-—l) Z gb(—truw!"“ 2p3)/2 2)

rekp

S\ f
By virtue of the fact i mod p is square in F, is equivalent to (;—)) =1 (g=p),
we get
A (a) —_ <i.>fq72t(pf—1) Z ¢<ltl.uw?‘+l—2ﬁj)/2x2>.
p I€kp 2

We treat the general case a =a; (u") ? where a; € F¥ (1 + Pg) . Then
(a=1)'Wi+Wo/ Wo=Ker (a;—1) N (J¥—1) 'W:/Ker (ai—1) N Wo. Thus we
have only to substitute Ker (a;—1) for W. From Lemma 2.4 and the calcula-
tion for the case a € <u”">, we get

A(a) qrr(al)(vb-(al) D (pie 1)(_1&) Z gb(—truw!'“ —2p9)/2 2>
p r€kp
Hence our proposition.

Here we state the character formula of 7,,.

Theorem 2.8. Let 1,6 be the irreducible representation of EXK™™! as in Lem-
ma 1.12. The character formula of Ny is given by

grrr@ep@.or-n (1) r—r(a)(t BN >'9 (@) ¢ (tru (g—1))

Xnyq(ag) = if aEFX (1+Pg)

rra)w Hp -1 r—ra 'L_/‘i d r —
g27r@ep@0p- (1) <)( ; ><t (vE(a)'t)>Gﬁ(a)(/)(tru(g 1))
if a€E*—F/ (1+Pg)

\

where Fy is a maximal tamely ramified extension of F in E, a=a, (u")'€E*, 0, €
th (1 +PE) , gEKQ”, 7((1) — [kE : kp(wE"E("’/("E(“)'s}aS/(”E(“)'S’ mod PE)]. (’L, pl) =pi
(721) and the Gauss sum G is defined by

(2.6) G= 2 (ﬁ(trkE/kF*‘lz‘uth(m D (= 1)("'+1)/2x2)>

I€kp

and x,,u'; (9) =0 if g is not conjugate to an element of E*K?.
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3. An expression of 7., as a linear combination of monomial repre-
sentations

We fix quasi-character 6 of E* satisfying 6 (1+x) =¢ (trg/rux) for x € P
and put C=E*/F*(1+Pg). Let 6+ ¢, be a quasi-character of E*K? defined

by (6« ¢,) (t(1+x)) =0(t) ¢ (trux) for tEE* and x EA?. In section 2, we get
the character formula of 7, From this formula, we can write

xgm-1
Indggrr ((0®2) * ) = Zaiclusor

teC

where a:r€Z. Put
M= (a)r) l.re@eMld (Z)

Our aim in this section is to compute M and M™%

Lemma 3.1. Let the notation be as above. For A, T€ a

TTZA(r (z271) (x)

zel

r
Lytrmwg@,0pi- 1)(7___9___>
where (42 t/ (ve(x), t)

if x€FF (1+Pg)

Al = qzr(r(x)(uE(.t) HEP-D-D ()7 - r(z)(t_/ﬂy(W(Tg(W)rG
E\x),

if x=x, (") ' €E*—F*(1+Pg)
L €FF (1+Ps), gEKT, (i, ) =p' G 21)

where Fy is a maximal tamely ramified extension of F in E.
Proof. From the definition of a;; and Frobenius reciprocity law, we have

ar=<(0®1) - ¢u,xnu’9®,|pxs'”>£*xs'"

= . -1
—Vol (E"KQ"/F") j;sxxsnt/pxx”uﬂ@r(g) ((6®2) Qbu) (g )dg

_vol (F*(1+Pg) K2/F*) 5

vol (EXK?/F*) gEE*KI*/F*(1+PR)K*

]—TEC )Z(x )

Now we assume t=7=1. Then C=E*/F*0§ =Z/p'Z, C={A|A; (wg) =
e(i/p"), 0<i<p'} and

Xnyper (@) ((0©R) « @) (g71)

w172 if x€F* (14Pg)

q
Al )={ /)
' qf”-‘<’—/’fi)fc if x€ wiF* (1+Pg)
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where (i, p) =p’, 1< <1—1L
Lemma 3.2. Put aij=aa. Then

(3.1) ;}q’(GZéﬂ—c(i—j)B (0)p=c+¢?"*V"2 =G if f even
v (=)
_1__ pl-cli=N=1, c(i—j) [ —1 iy pr+D/2) -
o (Gq pe ( b )Go+q > if f odd
where (i—j, p') =p", G as in (2.6),
]
3.2 Go=2(%)e
(3.2) =2(4)etw/s)
and
) = [ for ¢=0

g** —q*" for ¢ >0.

Proof. From the definition of aj;, we have

' _L rd (@ ph—1 a/(a, 2') 4 o (pi-1)72
(33) a,j—pl<a§1q ( p > Gly—x(a) +qp )

If f is even, then

pl-c

( ﬁ—: apl)e ]"1)(1/})') +q(p'+1)/2_qu'>
!
Z ( )Ze( ~_1 pa/p (p‘+1)/2_qul>

=5l

]' <G Z B(C)p! C+q(ﬁl+l)/2 Gq >
P(] c=l-cli—j)

Now we assume f is odd. It follows from (3.3) that

aij plq(G 21 @ pn<a/(a ) (G—1)a/p") +q<pt+1>/2_qu,)

e=0 aczpienx P

pq( (Zl > q"”(g)e((j—i)a/p"”)-Fq("“’/z—Gq"')

J‘( (Zq”‘ = (%)e((j—i)a/p"‘))+q“"“’/2>

P q c=0 gez/pi-Cz

where <%) =0 if pla. We can easily show

S (%)elG=ialp= =

aez/pl-¢z
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if (i—jp") #p'~c"1. Therefore we get our lemma.

In order to caluulate the inverse of the matrix M = (a;;), we introduce
some matrices. For 0< <1, we define the matrices R,, S,€EM, (Z) by

lpﬂ ce lpu C11 v Clpl—u
(3.4) RIJZ vee  see cee 'Su_—_
1p” see 1pu Cpl_ul s C’l_ﬂﬁl"ﬂ

where ¢;; = (g]_) 1,#. The matrix M is a linear combination of R, and S, (0

p

<u<1). The next lemma enables us to calculate M.

Lemma 3.3 For 0<py,v<l,
1. RyR,=p'"R, if u<v.
2. ROSa=SﬂR0=O.
3. For u, v<i,
0 if uF v

SuSu=13(—
! (‘})‘l)f’lnu_l(pRuH_Ru) if p=v.

Proof. They are obvious except SZ= (_Tl)p"”‘l(PRuH—Rﬂ). Let

5=((5)) o

and
1 1 1
L . Y]
1 1 - 1
In order to show SZ= <—_;)l>p"" (bRu+1—R,) , it suffices to see S2= <__p_1> (1,

—R). It follows from

5 ( (x—a) (x—b) )____1

reZ/pZ P
if a#b.
Now we can obtain the explicit form of M.

Proposition 3.4. Let a;; be as in Lemma 3.2 and M= (ay;) EMu(Z) . If f
1S even,
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1 —q(q(m+1—2pl~l)/2_c) _1_1 ( pl_pi-l_l) _1_
M= plg® G Ro Ei e G R+ GRI
and if is odd,
Mi=—Ll R4S 4 g
plq(p’—l)/z 0 = (pqp) =166, i-

(See (2.6).(3.2) for the definition of Gauss sums G and G and Go.)

Proof. First we assume f is even. It follows from (3.1) that
M=aoRo+§a,-R,-
where ao=;}~q~(q“"+“/2—6q‘°m), a;=p—f‘i;(q”_‘—q"'i") for 1 <i<! and a,;=G.
Put M= 2.}_oBiR:. Then by viture of Lemma 3.3, we have

MM'= 3 (Bt~ + T (aiB+ B p'~) R
i=0 i

i<j

Thus the condition MM’ =1, is equivalent to

pa-iBi-it 207 (auiviBi-it aisifizivg) =0 for 1<i<y
j=1

aBi=1.
Solving these equations with respect to S3;, we get
1
b=
aA
Bi=— '

(X2 o) (225 ay )

This gives the desired formula of M~! for the case f even.
Now assume f is odd. By (3.1), we have

-1
M=aR0+ Zr,'Si
i=0

(p1-1)/2 —_— I-i—-1
where a=—q~];,— and 7;= (—pl—>g—pl—g@ Put M'=bR,+ 2/Z60:R;. It follows
] g,

from Lemma 3.3
=i — )
MM =abp'Ro+ Zr,-éi(—'%)p"‘“‘ (PRi+1—R)).
i=0

Putting MM’ =R, we can show
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b= (=Y) 1

P/ Pri—1
Sio=-T0 for 1<i<i—1
Prr-1
— (=1 1000
b ( b ) pa -’

Hence we get our proposition.

Now we get rid of the assumption t=7=1. To save the space, we put

d__
Yt §

for d|r. If the exact sequence
1—ki/kf—~C—E*[F*03—1

does not split, the calculation of a;; is very complicated. Here we assume the
exact sequence splits. It is equivalent to that there exists a uniformizer wp, of
F, such tha w§,=F. This assumption holds if (ta(r)) =1. Under this assump-
tion,

C= <up> X <wp,> X <ut>
=Z/a (" ZX Z/tZX Z/p'Z.

For 0<i<a (r)s, take i1, 12, i3 such that i =siy+pliz+1; 056, <a (i), 0<i, <t
and 0<4;<p". Define an element A,;€C by

(3.5) Ai (Mownlth) =e(i1/a (7) ) e(is/t) € (is/P').
Then C={1,J0<i<a (r)p't}.

Lemma 3.5. Put a;;=az and take 1y, iz, 13, j1, j2, §3 such that i=si;+p'i,
+is, j=sj1 2t 051;;<a (r), 0<dy, 12<t and 0<is, j3<p' If f is even

1 1 _ertald/d’)
3.6 = 2 (=T 7
(3.6) aij a (”)Pltgm' o 1,;%0 w i g7 W HD2 (=1 w

!
u (w,/w”)ﬂ (d,/d n) (G Z Fr/d”,w" (C’)pl-c’+q%rw”d”(pl+l) __quw”d”p‘)

¢'=l-c

and if 1s odd,

(3.7 aw=——+% T X Zm(-l)""(%w)%)—

- 1
a (7)p t%lwd"ld’%‘uﬂwulw,q

pw'/w") p(d’/d") (GGoq'"’"d"”H—'P’<—]‘—L( .3—;3) / ) +q%rw"w+vd")
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where (i3 =743, p') =15, (o= 7o t) =w, d = [kr Wd7) > kel, G (resp. Go) as in
(2.6) (resp. (3.2)), p is the Mobius function and

quw(y)/d(.r) or c =0
Faow.aw (C) = , . , . f .
(qr w(u)/d(.r))i’ — (qr w(y)/d(.r))p‘ f01’ C>0
Proof It follows from the definition of a;; that
ai;= a(r) Ze (ji—iDx/a(®)) Ze((]z_lz)y/t) ZA (uF ¥k, ") ?) e((ja—is) 2/p")
In the above expression
y [ 7
%M(_l)r—(wd(z,y))(t/_wq(__> if z=p’
L h\z) —
A ook, (u")?) 7wy @pe—1 —d(@,y))
q 2d(x,y)

( 1)7 (r/d(.tu))(z/ 2, P

p ) (%:q(y) )rG

otherwise
(y, t) and d (x, y) =7/ (ufw}¥,) . Since kg =kr (0¥ modPg)
and whEF, r uSwh,) = ke © kr W) ]. Thus d (x, y) is independent of y. Put d
(x) =d (x,0) = [kru}) : kr] and

where w (y) =

2m2$

(3.8) Bldk),wly))= ﬁéA (¥, (")) e((j3—is)2/p").

By the same argument in the proof of Lemma 3.2, we can show

1
(3 * 9) B (d (x) » W (y) ) = q(rzw(y)/Zd(.t))Hr/Z) (_

1)7—(r/d(z))

rlw(y)(Q‘H)
, 2d(x)
c’'=l-c

]
(G ,Z Faowwa (C/) . +(1

r2(wy)p!
Gy i )
when f is even and

(3.10) B(d(x), w 1

)= g w D -

r—(r/d(x))
(=1 <t7w (y) )
<GGoqr2w(y)p'-C~l/d(z)pc<

(ja—is) /p°

72w (pI+1)
b >+q 2d(z) >

when f is odd. By Mobius inversion formula, we have

a(r)
aij=

Ze((n—h)x/a 7)) (2 Cuw (d (x))
a(f)P

>~ d (x ,Z e((j2—iz)y/t)
f_l (ji—ia/a(r)) 2 Cuw(d (x))t/w

—Iw
where

Cw ldx)) = Z1 Bd &) w)pw/w).
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(¢ is the Mobius function.) Using Mobious inversion formula once again, we
have

=l s v 5 5 B W)aW/d)t) oy a)a).

! g r w'
a (r)p t%ld’d ’|d iIW'w lw’

Hence our lemma.

As in the case t=r=1, we define some matrices to calculate the inverse of
M= (a;;). For integers a, b such that alb, we define matrices Rg.5Sas €M, (Z)
by

b
la “ee la C11 CIE

(3.11) Raps=| " =+ =+ |, Sap=
IR | by eee bb
1, a Cal ¢

where ¢;;= (l—;L)lpa. Put

(3.12) Ruwe=Ra@.a ORut ®Rpept  Sawe=Raw,ar ORut Spept

for d|r, w|t and 0<¢ <. The next lemma is proved in the same way as Lemma
3.3.

Lemma 3.6. For dd'|lrww|t and 0<c<e'<1,

d,d))tw, w)p™
1. Rd.w,cRd’,w’.c' =4 (r)a ((f (d)a)(Zi')(Z)n;’v )p R(d.d’),(w.w'),c.

2. RawoSa w.c=Saw.eRawo=0.
3. Forcec'<|,

Sd,w,csd’.w’.c’ =

0 if cFc

._1 ’ .
(T>p,_c_1a(7)a( C)l %d)'g t(w, ') (PR .07y, w 'y c+1— R @.an,awwrc) if c=c

By Lemma 3.5 and Lemma 3.6, we can caluculate M.

Proposition 3.7. Let ai; be as in Lemma 3.5 and M= (a;;) EMc|(Z). Let
G, Go be Gauss sums defined in (2.6), (3.2). Put a(d) = (¢°—1)/(g—1) for dlr.
(1) If fis esen,

]
M= 2 Z Z.Bd,w,cRd,w,c

dlr witc=0

where Bawc are determinined inductively by the following relations :

Br.t,lzé
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Bd » c= ____].____ ddz'l, Z Z Z ad”,w”,c"ﬁd',w'.c’
v fld, w,c) Ll @Bea whhew 9Fpmpe
d’'w’ ¢’ +dwc
whete
(_1)r—(r/d)q(rtp'/dw)—(r/z) 1,f6'=0
d,w,c)= ,
f< w C) (___1)r—(r/d)Gq(rtpl—C/dw)—-(rt/Zdw)—(r/Z)) lfC>0
ald)w 1 N\ g 2AW B 4w i1
Adwo™— (r)pt v |tq'(d'w'+l)/z( 1)' (q 2 —Gp™¥” )
d( _d__wlt_o_
p(r/dd’) p(t/ww')
and
a(d)wp® 1 g g Bl memc?
27X (r)pt t:]m(—l)’ dqudwlzcﬂ(pl cc)
Ty
_ pr/dd’) pt/ww')
for ¢ >0.

(2) If fis odd,

-1
M1t=22 54,",Rd,w,0 + Z P> 5d.w,csd,w,c

dlrwlt dlrwltc=0

where 84w, Oawe are determinined inductively by the following relations .

: _ 1
Orpi-1=(— 1)’ 1<"§')“(E

5 =__1_..<_1_ 2 dZ Z Td",w",cad’,w’,c
danet g(d- w, C) pz w‘w @, dlj =d (W'’ wJ =w
dld’|r d'’|r wlt Td”,w”,c—lad',w’,c-1>
‘w It (d’.d’ ) d '’ w)=w
ad'w +dw
5, = 1 (l d%‘l d;: Zl Tar w004 w0
= P
W gld, w)\p  wwlt Ve -
— Z Z 2 Tdu,wuéd,,w,>
&ir 7 W)t
wtw’ll d’”’,d"y=d W’ w)=w

d'w'

where

— retpl-c-1/dwyl
g(d, w, C) =(_._1> (_1) r—r/d(_ZT)GGOQ 2

’
p qr(rt+dw)/2dw

gld, w)=(—1) '_r/d(ﬁ—)q"”ﬁde)/Zdw,

rd,w.c=———-—“a<‘(ir))'f§_€° (——7}) (=17 (;}’;)

@'\ Zuil
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qrd’w’pu—c-l-r(d'w’+1)/2u (1’/dd') © (t/ww')

and

Td,w=‘2(g,))1;}'(::_l') z Z(—1)""'(p“;;)q"”"”"’""""”u(r/dd’)ﬂ(t/ww’).

P nr ¢

Proof. First we assume f is even. By virtue of Lemma 3.5, we can show

1
M=22 Zad,w.cRd.w,c-

dlrw)tc=0

Put M'= 24, 2wt 2t =oBawcRawe. It follows from Lemma 3.6 that

MM= 2 X > > 2 amald)twp'™

dlr dld’.r d’|r w’’ [t c”’|pt 7 Y ”a'd".w".c"ﬁd’.w’,c“
wit  wlwt (d”,dl)=d (w”,w1>=w W},’ﬁ‘J};#C a(d)ald”)ww
0<c<! ¢’<c

Thus by putting MM-=1,¢, we have only to show that the coefficient of Bau.c
equals to

f@uwo=% T £ e l,,

Since

r)tp' e

a((;/) ’ ad',w’,c': Z Z Z

ald)w 1l iy €Sl
w

FOld”, 1= o ad”) e e (=),

it follows from the Mobius inversion formula. It is obvious that f(d, w, ¢) # 0.
Therefore we get the proposition for the case f even.

Now assume f is odd. Using Lemma 3.5 and Lemma 3.6, we can prove the
proposition by the same way as in the case f even.

We state the main result of this paper.

Theorem 3.8. Let u be a very cuspidal element of level 2—2m (cf. Defini-
tion 1.4), E=F (u), 6 be a quasi-character of E* such that 8 (1+x) =¢ (tr ux)

for x EPE. Define a quasi-character 0+ py of EXKT by (6+¢u) (th) =6(t) ¢, (k) for
LEE™ and kEKY. We assume that there exists a uniformizer @ r, of F; such that
w}, EF where F; is a maximal tamely ramified extension of F in E. Let 6;=0® A;
where ;€ (E*/F*(1+Pg))" is defined in (3.5). Set a(d) = (a?—1)/(qg—1) for
dlr. For 0<v<a (r)tp', take iy, iz i3 such that i=tp'iy+p'i,+is, 0<i,<a (), 0<i,
<tand 0<iz<p'. Put w (@) = (ipt), p°? = (i39") and d () = [kr i) : kg)
where uo is a generator of ks. When f is even (g=p’), put
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71'(14, 0) = Z Z Bd,w,cindgxxs”‘ (01 ¢ ¢14>

0<i<a(ntpt d|d(i)
wlw(i)
c<cf)

where Baw,e is as in Proposition 3.7 and when f is odd, put

, 0 — Z . c(i) )
7f(lt ) o<i<a(nipt g]é‘:(ii)) (5d,w+ <.1'3/p )54,w,c>1ndg*!(§”(6i . (l)u)

where Oguw,0a.w,c are as in Proposition 3.7.
Then m (u,0) is an irreducible supercuspidal representation of G and every

1rreducible supercuspidal vepresentation whose vestriction on K¢ contains ¢y is writ-
ten in the form m(u,0) for some HEE™.

Proof. 1t follows from Theorem 1.8, Proposition 1.12 and Proposition
3.7.
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