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1. Introduction

Let Mil to be a  d - dimensional Brownian motion and V ( x )  be a  summable
function on R d  such that

V: =  f V  (x )d x >  O.
JR'

Then the random variables of the fo rm  fot V (Bit )  du a re  called the occupation
times and the following theorem is well known as the Kallianpur - Robbins law.

Theorem A ( [6 ]).

(d= 1) 1  lim P[ f V  (B „) du <xi = I f
 x e 2 dy, , x > O.

t--0 V  ,ft ° 7/ o

(d =2) lim  P [- 271. i t V (Bu )  du < xl = x>0.
t - - V  log t °

T his theorem was extended greatly by Darling - Kac ([4 ]) as follows and
has been stimulated the interest of many authors for a long tim e. (See e.g. [7],
[10]. See also H. Kesten [8].) Let 1.1(t[to be a  temporally homogeneous Markov
process w ith  v a lu e s  in  a  m easurable  space (S , 3 )) a n d  le t  V (x) 0 b e  a
bounded measurable function on S . Suppose there  exists a  function h (s) , (s>
0) which tends to infinity as s goes to 0 such that

(1.1) E x [f (X,,) du] — h (s) , as s --+ 00

uniformly on 1.xl V (x )  > 0 .  Then,

Theorem B ( [4 ]). (i) i f
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h (s) = (1/ s) L (1/ s) ,

where L (11s) is slowly varying as s --÷ 0, then

lim P [ 1r  v  (X ) du =Ga (x) , x > 0,L h J
where Ga  (x ) denotes the distribution function of Mittag - Leffler distribution with
index a: i. e.,

G (x) = 1

a
 f x E ( - 1 ) j  ' sin  z a j  (aj +1) y 1 - 1  dy . .r j !

i=1
(ii) Conversely, if for some normalizing function u (t) > 0,

lim PL ] -( , )   f of v(x.) du = G (x) , x > 0,

where G (x ) is a nondegenerate distribution function, then

h (s) (1/ s)aL (1/ s)

for some aE  [0 ,1 )  and slowly varying L (t) . Hence G (x) = G a (x I b) where b>0 is
an appropriate constant.

Thus Theorem B extends the  Kallianpur - Robbins Theorem from the view
poin t of Markov processes, and  under the  condition  (1 .1 ) limiting distribu-
tions of the occupation tim es should  necessarily  be Mittag-Leffler distribu-
tions w ith suitable param eters. H ow ever, i f  w e  d o  n o t confine ourselves to
Markov processes, other limiting distributions are of course possible. One of
the important aspects of Brownian motion is  th a t it  is  a  self-similar Gaussian
process, in which sense fractional Brownian motion is  an extension of Brownian
motion. Therefore, it w ould be of in terest to  study the  occupation - time prob-
lem fo r fractional Brownian motion. Let  X T  b e  a  fractional Brownian motion
with index T. That is, XT is  a  real - valued centered Gaussian process such that

E [X 7 (t) X r (s)] = —21 I tar + s ar si2r s,

A d-dimensional fractional Brownian motion, which we shall denote by XT 'd

throughout the paper, is defined to be an  R d - valued Gaussian process (XI (t) ,
X 2" (t) , • • • , Xra (t)) , where XI, Xi, •"are independent copies of r .  If 0< Td < 1,
then the existence of continuous local time is known; there exits a  jointly con-
tinuous random function 1,d (t, x) , t 0 ,  x E R d such that

_Totf (X " (u)) du= f (x)l r ,a(t, x) dx ,

fo r  every bounded continuous function f  ( x )  .  (cf. Berman [1]. S e e  [3 ] for
further references.) Recently, N. Kôno obtained the following result, which is a
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generalization of Theorem A.

Theorem C ( [ 9 ] )  .  Let V  (x ) be a bounded summable function on R d  and

let V= fft, V  (x) dx .
(i) If 0 <rd <1, then

1  rt —v 
t ,_„ .v ( ( r d  (s)) ds _  d (1

"  
0) as t co.

d  7  

(ii) If rd =1  and d  2, then

1  
log t f o ,127rd

V  (X r d  (S ) )  ds   13.

w here his an exponential random variable with mean 1.

In fact, in the cases w here 0<  Td <1 the assertion is almost obvious from
the self-sim ilarity once we know the existence of the local tim e but it should
be recalled  that its explic it law  is unknow n. So w e can now  raise  a  natural
question comparing Theorems B  and C; whether o r not the law of limiting ran-
dom variable tr ,d (1 ,0 )  is  M ittag-Leffler distribution ?  A s is pointed out in [7],
th e  renew al property  o f  excursions o f  M ark o v  processes p lays a n  essential
role in  order to explain w hy w e have M ittag-L effler distribution as the limit-
ing law  of occupation tim es. From  this po in t of view , w e have to  conjecture
that the  answer is no. However, on the other hand , in  view of Theorem C  (ii) ,
it  is  a lso  n a tu ra l to  conjecture th a t th e  answ er is  yes . (R eca ll tha t th e  ex-
ponential distribution is  M ittag-Leffler distribution w ith index 0 .)  The aim of
th is  p a p e r  is  to  show  th a t  th e  an sw er is  in  fac t no. T h a t is , th e  law  o f ir ,d
(1 ,0 ) is indeed sim ilar in  some sense to Ga (a=1—  rd) up to  a  scaling multi-
plicative constant, they a re  d is tin c t un less r = 1 / 2  o r  rd = 1  (Corollary of
Theorem 1 ) . After knowing this we arrive a t a  new question; why the case Tc/
=  1  is exceptional ?  T o th is  question w e shall show that, under suitable nor-
malization, th e  law  of ' r d  ( 1 , 0 )  converges w eakly  to  a n  exponential distribu-
tion when rd approaches 1  (Theorem 2).

2. Results and Proofs

By Cn (t1, t2 , •••, tn; r) we denote the n x n  matrix with elements

(2  . 1) Cnt2 , •  •  • ,  t2 ; = I ti -1 t112 7 +  I ti ty-11 2 7 —  I ti I ti-i

where t 0 0 throughout the paper. The reader should notice tha t if  0  < t 1 <-••
<t,„ then Cn  (ti, t2, tn; r )  is the covariance matrix o f  X '. (0 —  Xr  (t1-3.)1';'=.1.

Lemma 2 .1 .  For every

(2.2) E[lr,d(1,0)1.-=  f...f 471-nd, Cn 41, 1-2, • • • , in; d0<ti< .-<tn<1

as t o,
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P r o o f .  L et V  be a  bounded continuous function on R d  such  tha t V  ( =  fie
V (x)dx) = 1 , and let

(2.3) A (e) = f  1 1 ( e - 1  x )  r ,d (1, x ) dx , s> O.
R°

Then it is easy to see that

(2.4) lim A (E) =Ind (1 , 0), a. s.
e—o

Since (2 .3 )  can be rewritten as

A (e) =e - d j  V ( e - 1  X r'd (t))dt,

we have

E [A. ( 6 ) 1 = nd j  0

1 r . . .  
j
 ridti• • •dt„ E [V  (C T X "  (t1)) • • • (tn )E 0

ni f •••fd t i • - dtn f  f
n d g ' •' , tn; x i, • •', xn )

0<tr<•••< tn< 1 x x

X v (E— 'x i ) V (e - 1 (x i ±x2) ) • • •V (E- 1  (x i + •- •+x n ))d x r - dxn

where g tn; x i , - - , x n ) is the density of

(xr,a
 ( t , )  x r,a (t2)  _ x r,a (t o , x7,d

 ( t a )
 x y , d  ( t n  1 ) )  ,

g (t i , •-•, t n ; xi, •, xn) =
.127z- ndVdet Cn (ti, t2, tn; d

d n

X exp E (C  (t1, t2 , ••-, tn; r) - 1 ) i ; xif x .
k=li,j=1

Here, x  = •••, xY ) ER d , j =1, • • •, n. Therefore, we have

E  [A (6 ) n ]  =   f  d t i •  • • d t...f
A/27 n d V i d e t  Cn(ti, t2, •••, tn; d

n  

0<ti<•-•<tn<1

x f...f v (x l ) v(xi+x,) v (x, +... +xn)
10'x x

d n

x exp[—  E (ca(tt,2
k=1 i,j=1

t2, •••, in ; r) - 1 )

Thus, keeping in mind that V-= 1, we have

lim E [A (s)
n!n] =   f ...f d t i • • • d t

'
n 

a n d id e t  C, (t1, t2 , •  • •  ,  In; r) j *

0<ti<•..<tn<1

1
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Combining this with ( 2 .4 )  we easily obtain (2 .2 ).
Q.E.D.

Theorem 1. Suppose2 ,  0 < rd<  1, and let a=1 —  yd.

I _  1  n T ( a ) n  
A/27tnd r(an+1)' 

n = 1

E p r ,d (1 , CO 1

1 n. a 1  E [l r ,d (1 , n J v in d  r a n  +1)

Corollary. I f  d  2, then the law of l r ,d (1,0) is not Mittag - Leffler distribu-
tion with any index: i. e., there do not exist 0 j 3  <1 and b> 0  such that P[lnd
(1,0) =  G ( x / I)) x >O.

Proof of Theorem 1. ( i )  F or any positive definite n x n matrix A =  (au) it
ho lds that detA  'a ll•••ann  th e  equality holding if and only  if  A  is  diagonal.
Therefore, we see that

det Cn (ti, t2, •-•. tn; iti (12 —  ti) • • • (tn — tn-1)1 2 7  i f  0 <t i  < • < tn.

where the equality holds if and only if n = 1 . So Lemma 2 .1  yields

E[l r ,d (1 ,0 )1  >  
i/271.nd f  f  it" (t2 t i )  • tn-1)}cr-1 dt .•1

0<ti<•••<tn<1
n ! r ( a ) n  

,s/27r nd r a n + 1 )

T h e  f ir s t  e q u a lity  h o ld s  i f  a n d  o n ly  i f  n  =  1  a n d  t h e  la s t e q u a lity  is
well - know n a s  a  special case  o f D irichlet's in tegra l. (See  a lso  th e  proof of
Lemma 2 .3  below.)

T h e  la tte r  h a lf  ( i i )  can  be  proved  in  a  sim ilar w ay using the  next ine-
quality which follows immediately from Lemma 3 .3  of Cstirg6 et al. ( [3 ]) .

(2 .5 ) d e t  C, (t1, t2, •••, tn; (1/2)n (t2 — t1) (t„ — t n - t )  2 r , 0 < < < tn.

Q.E.D.

Proof of Corollary. To begin with recall that Mittag - Leffler distribution GB
can be characterized by its moments;

1 n!F(a)n n
,

2.
,/27rnd ran+1)'

(2.6) r ed G B (X / b )= b n r isnn
1+ 1 ) n = 1 , 2, • •

Suppose P [l r ,d (1,0) = G ( . 0 )  fo r  some 13  and  b> 0 . T h e n  ( 2 . 6 )  and
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Stirling's formula yield

1 lim n  log n log E[1,,d  (1 , n ]  = 1 —

Similarly, we have from Theorem 1 that

1 lim n  log n log E [,d (1 , 0) n ] =1 —a.,  

Thus we have 13=a, but then (2.6) contradicts Theorem  1 (i).
Q.E.D.

Theorem 2 .  L e t  2. Then

lim  P[127r d  (1 —  rd) 1,,d ,  0) x > 0.
r i 1/d

F o r th e  proof o f Theorem  2 w e prepare a  few lemmas. F o r  every fl>
and n = 1, 2, •-• we put

. f n ( ;  a, b) = I... • . u n ) - 1  du i .•.du n ,
f D n (a,b )

where

D n  (a, b) = • • , u n ) E RI Vt1, •••, u n > 0 , 0 < 1 4 1 ± • • • + u n < 1

and a <u n _du n < bi .

Lemma 2.3. (i) For any a, h  (0 <a < <0 0 ) ,

lim iSn fn (d3; a, b)0 ( n 1 ) .
1310

(ii)

lim f n  (9; 0 , œ) = 1 (rt 1 . )
sio

Proof. We change the variables as follows:

ui+/42+.•• - 4- 74,,=x1

It2 +  •  •  + 1 4 n  
=

X 1 i2

U n 'X i • ••Xn ,

or equivalently,

1141
=

X 1 (
1 —

X 2 )

142 X 1 X 2 (1 —  X 3 )

. . .

ltn = "X iX e  •  •Xn•

Then,
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a ( u , ,  •  •  •  ,  n )  =_ 1a (x 1, • • , Xn)

Therefore, letting a '=  1/ (a+1) and b' =1/ (b+ 1 ) we have

r i
fn ($; a , b ) =  . 4 " d x i f  x i n - 1 ) 1 3 - 1  (1 —  ) dx2*

0 0

X f1
a'4 4-1 1 (1  — Xn-1) 4 - 1  dx n  f  8 - 1  (1 — X )4 - 1  dx no xn

r
= B (n$, 1)B — 1) /3, /3) • (2 P, 1 3 )  j v

e

 4 - 1  (1— xn ) "  dx n

r g nS ) n B+ fba: sc 4 - 1  ( 1 —  x)I3-1 dx

where B (p, q) denotes the usual beta function. Hence, it holds

15 n  fn ([3; a , b) =
F (13n+ 1 ) f 1x13-1(1—x)13-1 dx

r l 0 1 + 1 )n  fb , X 8 - 1  (1 —  X) 4 - 1  dx
a'

Letting IS' .1 0, we have the assertion of the lemma.
Q.E.D.

For every n >_ 1 and for any a, b  (0 <a<b < co), let

A n= I( t , , tn) C R I  0 <t < tn< li

and

An (a, b) =U 1 (t1, ***, tn) EA R l a <  (t, —  t,_1) ( t i — li-i) <b1

Then,

Lemma 2.4.

(i) iim m f . . . f  iti(t2—to..-(1,i—tn_i) I 8 - 1  dti — dtn =  1.
slo An

(ii) lirn f  • - • f i t i  (t2 — t1) • • • (tn— t_1) I 8 - 1  d tr  • -dtn=-- - O.
$10 An(a,b)

Proof. Changing the variables, we have  (i)  from Lemma 2.3 (ii). Keeping
in mind the symmetry of lui, •••,unl in Lemma 2.3 (j) ,we also have (ii).

Q.E.D.

Lemma 2.5.

det C, (t1, t 2 ,  •  • •  ,  t n ;  lim sup
a 1. 1.0 A M . 6 I6) li t1) • • • (tu —  tn-1) 2 r

the convergence being uniform for 0 <  r < 1 /2  in wide sense.
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P roo f. F o r  0 <t 1 <••• <t n  l e t  C'n  (t1, t2, •••, tn; 7-) denote th e  correlation
matrix of IX' (t1) (6-017=1, j .  e., Cn (ti, t2, "•, in; 7-) is the n X n  matrix with
elements

ru=
2 (t ir

Notice that

d  t  Cn (t1, t2 , •-, tn ;  (2.7) det (ti, t2, •••, in;
( t 2 — t 1 )  •  • •  (tn — tn-1)}  2 r .

As is pointed out by K ôno  ([9 ]) we easily have

(u k  t k  — tk-i) •ttiV n i  '

Combining this with the definition of An \il n (a, b) we have

(2.8) li m s u p  Irul =0,
d  1 0 ,b I . 0  1.V1.(,

Since n1= r22= •••= 1, (2 .8) implies

(2.9) Inn s u p  Id a  C— n  (ti, t2, ••*, tn; 7-) —11= O.
.1 0,b I 0. A „\A ,,(, b)

The assertion of the lemma follows from (2 .7 )  a n d  (2 .9 ).
Q.E.D.

We are now ready to prove Theorem 2. By Lemma 2.1,
(2.10) E [(2 Jrd (1— rd)1r,d (1 ,0 ))1

dti— dt n  =n!(1 — yd) n f  • • •

f d e t  C n ( t i ,  t 2 ,  • - ,  tn; r) d
0<ti<•••<tn<1

W e shall first consider the  integration on A n (a, b): U sing  (2 .5 )  and Lemma
2 .4  (ii) ,w e  see

(2.11)

uni - nsup n! (1 —  yd) n  f dti. dt 
r— l/ d 1n(a,b) .idet Cn(ti, t2, •••, tn; T) d

• .  .sup n!2/ (1 —  yd) n  f  f An(a,b) It1(t2 —  t (1—rd)-1l) (tn—tn-1)1 a t 1 . dtn
T -1 /d

W e next study the integration on An\An (a, b): For any given E > 0, Lemma 2.5
allows us to choose small a > 0 and large b < 0 0  so  that

1
<  (1 +  6 ) iti(t2 +  ti) (in— tn-1) I — rd  o n  An\An (a, b).

fdet cn(ti, t2, • tn; d

Therefore, for such 0 <a <b < co ,
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(2.12)

urnsup n! (1 —  rd) n f
„\A,.(..b),/det C, (ti, t2 , • tn, d

- lim sup n! (1 +6) (1 — rd) n  f  f i t m .  ( , , , o lti(t2 - 11)••• (tn— tn-1)[ —
r d  d ti'• . dtn

7-4/d

- lim sup n! (1 - 1- 6) (1— rd)n f
A  

it1(t2 - 11) — (tn — tn- 1 ) — rd  d t l . . . dtn
An

= (1+E)n !

by Lemma 2 .4  ( ii) . Summing (2 .11) a n d  (2 .12) we have from  (2 .10) that

lim sup E[(,12ir d (1 — rd)i r ,d(1,0)) n ] (l+ s)n !,

Since s >0 is arbitrary, this im plies

lim sup E[(,/27c d (1 — rd)i r ,d(1,0))1 n!,
7-1/d

The reverse inequality

lirn inf E [ (,/2ir d (1 — rd)i r ,d(1,o))n] n!,
1/d

follows easily from Theorem ' (i). Therefore we conclude

lim EU.V2ir d  (1 —  I'd) lr ,d (1 ,0))1 = n!,n 1 ,
r-1/ d

which completes the proof of Theorem 2.
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