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1. Introduction

Let {B/ .20 be a d-dimensional Brownian motion and V (x) be a summable
function on R? such that

% =j;, V(x)dx>0.

Then the random variables of the form fo' V (B,) du are called the occupation
times and the following theorem is well known as the Kallianpur-Robbins law.

Theorem A ([6]).

— . 1 ! _ /2 (* g
(d=1) ELT, P[Vﬁ‘j; V(B,‘)du<x] /n.[; e ¥ 2 dy, x>0.
t
@=2) lim P[-Zn~ f V(By) du<x]=1—e'$, x>0.

tmo LV Jogt VYO

This theorem was extended greatly by Darling-Kac ([4]) as follows and
has been stimulated the interest of many authors for a long time. (See e.g. [7],
[10]. See also H. Kesten [8].) Let {X/l >0 be a temporally homogeneous Markov
process with values in a measurable space (S, ) and let V (x) =0 be a
bounded measurable function on S. Suppose there exists a function h(s), (s>
0) which tends to infinity as s goes to O such that

(1.1) A E,[j;w e™ V(X,) du] ~h(s), ass—0

uniformly on { x|V (x) >01}. Then,
Theorem B ([4]). (i) If
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his)=Q1/s)*L(1/s), 0<a<l,

where L (1/s) is slowly varying as s — 0, then

lim P[mfot VX)du<xr] =G.(x), x>0,

t—o0

where Gq (x) denotes the distribution function of Mittag-Leffler distribution with
mdex o 1. e.,

Ca @) =Lf’i—————(’1)j_lsin raj e +1)y' d
« g 7 j (e +1)y'™" dy.
i=1
(ii) Comversely, if for some normalizing function u (1) >0,

lim P[u—%tyfo' V(Xwdu<z] =G (x), x>0,

{—o0

where G (x) is a nondegenerate distribution function, then

hs)=(1/s)%L(1/s)

for some a€ [0,1) and slowly varying L (t). Hence G (x) =Gq(x/b) where b>0 is
an appropriate constant.

Thus Theorem B extends the Kallianpur-Robbins Theorem from the view
point of Markov processes, and under the condition (1.1) limiting distribu-
tions of the occupation times should necessarily be Mittag-Leffler distribu-
tions with suitable parameters. However, if we do not confine ourselves to
Markov processes, other limiting distributions are of course possible. One of
the important aspects of Brownian motion is that it is a self-similar Gaussian
process, in which sense fractional Broumian motion is an extension of Brownian
motion. Therefore, it would be of interest to study the occupation-time prob-
lem for fractional Brownian motion. Let X™ be a fractional Brownian motion
with index 7. That is, X7 is a real-valued centered Gaussian process such that

ELe ()X ()] =5 | 7+ —li—sl|, s, 120,

A d-dimensional fractional Brownian motion, which we shall denote by X7 (t)
throughout the paper, is defined to be an Ré¢-valued Gaussian process (X](t),

X5 (¢), -+, X5 (1)), where X1, X3, ---are independent copies of X". If 0<yd <1,
then the existence of continuous local time is known; there exits a jointly con-
tinuous random function ly.4 (¢, ), t=0, x ER? such that

j;tf(Xm (u)) du=j;‘f(x)lr,d (t. x) dx,

for every bounded continuous function f (x) . (cf. Berman [1]. See [3] for
further references.) Recently, N. Kono obtained the following result, which is a
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generalization of Theorem A.

Theorem C ([9]). Let V (x) be a bounded summable function on R® and
let V= Jg V(x) dx.
() If 0<7d <1, then

¢

tl o V(XT“(S))ds——*ﬁ_dl,d(l ,0) as t — oo,

(ii) If yd=1 and d =2, then

/—d

where 1, is an exponential random variable with mean 1.

as t— o,

o tf VO (s) ) ds —ms Yo

In fact, in the cases where 0<yd <1 the assertion is almost obvious from
the self-similarity once we know the existence of the local time but it should
be recalled that its explicit law is unknown. So we can now raise a natural
question comparing Theorems B and C; whether or not the law of limiting ran-
dom variable I,4(1,0) is Mittag-Leffler distribution ? As is pointed out in[7],
the renewal property of excursions of Markov processes plays an essential
role in order to explain why we have Mittag-Leffler distribution as the limit-
ing law of occupation times. From this point of view, we have to conjecture
that the answer is no. However, on the other hand , in view of Theorem C (ii),
it is also natural to conjecture that the answer is yes. (Recall that the ex-
ponential distribution is Mittag-Leffler distribution with index 0.) The aim of
this paper is to show that th¢ answer is in fact no. That is, the law of [, 4
(1,0) is indeed similar in some sense to G4 (@=1—7d) up to a scaling multi-
plicative constant, they are distinct unless y=1/2 or yd =1 (Corollary of
Theorem 1). After knowing this we arrive at a new question; why the case yd
=1 is exceptional ? To this question we shall show that, under suitable nor-
malization, the law of I,4 (1,0) converges weakly to an exponential distribu-
tion when 7d approaches 1 (Theorem 2).

2. Results and Proofs

By Cu(t1, ta, -+, ln; 7) we denote the n Xn matrix with elements

1
(2.1) Calty, to, ==tz 7) JarY { lti—n_tf|27+|ti_tj—1|27*|ti_tf|zr_|ti—1_tj—1|27§
where t, =0 throughout the paper. The reader should notice that if 0<¢t; <
<tn then C, (t1, ta, ***, ts; 7) is the covariance matrix of { X7 (t;) —X" (t;_1)} %=1

Lemma 2.1. For every n21,

! dty--dt
2.9)  Ella(1,0]=—2" f 1o dty ’
2.2 Lira Ve f Jdet Cy(ty, ta, = tw; 1) ¢

0<ti<-<tn<1
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Proof. Let V be a bounded continuous function on R? such that §(= Jre
V(x)dx) =1, and let

(2.3) AO=e[ VD) talla) dz, >0
Then it is easy to see that
(2.4) lim A () =1,4(1,0), a.s.

e—0

Since (2.3) can be rewritten as

Ale) =¢ f "V Xt (1),

we have

E[A<e>"]=—f S atedty B[V X74(0)) v (7 X7 (1))

L Y P N AR

0<t1<-+<tn<1 R¢X -« X RY

X V(B_lxl) V(e" (xl+x2)) "'V(S_l (.171+"'+x,,) )drlmd;rn
where g(ty, ***, tn; 1, ***, Z,) is the density of

(X™4 (), X9 (tz) =X (t1), ===, X7 (ta) — X7 (tnor) ),

i e,
g(tl, s by X1, xn) = y 1 y
Jemri/det Co(ty, ta, =", bt 7)
d n
1 _
Xexp[—gz Z (Calty, ta, ===, twy 7) 1) 45 ¥ xf}
k=1i,j=1
Here, ;= (x}, -+, 2%) ER",]’— -, n. Therefore, we have

dt1*+din
Fla e ="t [ f
[ (E) ] 2 nd \/det Cn (tl, ta, **, In; r) ¢

o<1 < <tn<1

><fu-fv(xl)v(xl+xz)"'V(x1+'“+xn)

RYX - XR?

Xexp[-%i Zn: (Caltr, ta, = by D 35 xl‘xf]

k=11i,j=1

Thus, keeping in mind that V= 1, we have

' dtl"'dtn
E[A(e)"] = f f '
lim E[A (&)™) == Jdet Colty, o, ", 1 7) *

0<t1<~<tn<l
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Combining this with (2.4) we easily obtain (2.2).

Q.E.D.
Theorem 1. Suppose d =22, 0<yd <1, and let a=1—17d.
(i)
__ 1 nl(a)" =1
J2rr Fam+1)°
Ell;.4(1,0)"]
> 1 wl'(a)” >0
SrrTlan+1) "=
(ii)
. 1 al(a)”
E[lr,d(l,o) ]Sﬁ”dr(m+l)’ nZ].

Corollary. Ifd=2, then the law of 15,4 (1,0) is not Mittag-Leffler distribu-
tion with any index: i. e., there do not exist 0 <B <1 and b>0 such that P [l,4
(1,0) <z]=Gs/b), x>0.

Proof of Theorem 1. (i) For any positive definite n X»n matrix A= (a;;) it
holds that detd <aii***a the equality holding if and only if A is diagonal.
Therefore, we see that

det Co(ty, bz, o tay 1) S M1 Ua— 1) o tn—ta-)} 7 if  0<t;<---<ty,

where the equality holds if and only if n=1. So Lemma 2.1 yields

E[lr,d(lso)n]z/%nd ff (te=t0) - (= tp )L  dtyeedity

0<t1<-+<tn<1
__n! Ia)”
S Flan+1)

The first equality holds if and only if » = 1 and the last equality is
well-known as a special case of Dirichlet's integral. (See also the proof of
Lemma 2.3 below.)

The latter half (ii) can be proved in a similar way using the next ine-
quality which follows immediately from Lemma 3.3 of Csorgd et al. ([3]).

(2.5) det Cplty, ta, == ta; 1) = (1/2)" {1 (ta—t) -+ (ta—ta—) 1 77, 0<t;,< - <4,

Q.E.D.

Proof of Corollary. To begin with recall that Mittag-Leffler distribution Gg
can be characterized by its moments;

< g n! —
(2.6) j;xdGB(x/b)—b Fnt1) n=1,2,

Suppose P [l;4(1,0) <x] =G (x/b) for some B and 5> 0. Then (2.6) and
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Stirling’s formula yield

lim log E[l,4(1,0)"]=1—8.

nooo 1 lOg 1

Similarly, we have from Theorem 1 that

: nl —1—
lLTonlognlogE[lr,d(l,O)] l1—a.

Thus we have S=a, but then (2.6) contradicts Theorem 1 (i).
Q.ED.

Theorem 2. Let=2. Then

lim P27 (1 —1d) 1,4 (1.0) Szl =1—e"%, >0

r11/d

For the proof of Theorem 2 we prepare a few lemmas. For every >0
and n=1,2, --* we put

f»(B; a, b) fo (e un) 2 duyduy, 0<a<b<oo,
Dnla,b)

where

Dyla, b) = {(uy, =, un) ER ug, =, uy >0, 0<uy+--+u,<1
and a <uy_1/un<bl.

Lemma 2.3. (i) Foranya, b (0<a<b<o0),
lim B" £, (B; a, b) =0 n=1).
Blo
(ii)
lim 8" f»(8; 0, o) =1 n=1).
Blo
Proof. We change the variables as follows:

u1+uz+---+un=xl

u2+"‘+un:1'1.rz

uﬂzrl' ..xnv
or equivalently,
ur=x;(1—x2)

U2 =T 1 X2 (l —.1'3)

Un=—X1X2" " " Tn.

Then,



Kallianpur-Robbins law 821

a (ul‘ ...' un)

9 (zr o ) =2tz
1) » n

Therefore, letting a’=1/(a+1) and =1/ (b+1) we have

1 1
fn (B a, b) =j; ri’ﬁ"ldxlj; 28V (1= 2,) 8 dpyee
1 @
X j:) o 1=z, )" dxn—lj;, x5 (1—x,) % dx,
=Bf. DB(n—1)8 B2, B) [ =i (1=z,)%" dx,

__re-” 1 @
"F(ﬁn+1)3(3,3)fb, PN (1—x)f ' dx

where B(p, q) denotes the usual beta function. Hence, it holds

- _1“(19+1)nj:::r“"l(l*ﬂf)ﬁ'l dx
B n (B, 0. V) =5t D) [10-)rar

Letting B 0, we have the assertion of the lemma.
QED.

For every n=1 and for any a, b (0<Xa<p<o0), let
An= 11, -, tn) ERM 0<, < - <1, <1
and

Aula, b) =U{(ty, =, ta) €A a<(ti—timy) / (t;—1t;) <b}.

i+
Then,

Lemma 2.4.

(i) lim Bff r(ta—t) - =ty | B dtyeedt, = 1.
Bglo An

(ii) lim B"ff it (ta— 1)~ (ta—tn1) | BV dby+d £, =0.
ﬂlo Anla,b)

Proof. Changing the variables, we have (i) from Lemma 2.3 (ii). Keeping
in mind the symmetry of {u;, ***, u,} in Lemma 2.3 (i),we also have (ii).
Q.E.D.

Lemma 2.5.

lim  sup det Calty, tz, =", tn; 7)

. —1{=0,
alostoo At {1 (ta—t) o (ty—tnoy)} 77

the convergence being uniform for 0<y<1/2 in wide sense.
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Proof. For 0<t, <---<t, let Cp (s, ta, =, ts; 7) denote the correlation

matrix of (X7 (t;) —X7 (t;-1)} =1, i. e, Cn(t1, g, =+, tn; 7)is the n X# matrix with
elements

R 77 7t 798 P 7 e [ P8 0
1
2(ti—tis) Tt —tim)7

Notice that

det Culty, ta, "=, twy 7)
i (ta—t) - (= tao) | 2

As is pointed out by Kéno ([9]) we easily have

2.7) det C, (b, ta, = b 7) =

. \7
,7’ij|S<'u’—/\‘uL> , 1), we=te— o).

wi Vu;
Combining this with the definition of 4,\A4, (a, b) we have
(2.8) lim  sup |r;|=0, i#7.
10810 A\ Gb)
Since r1=r=-=1, (2.8) implies
(2.9) lim  sup [det Culty, ta, -, ta; 7) —1]=0.

al0pl oo A\AL(ab)
The assertion of the lemma follows from (2.7) and (2.9).
Q.ED.

We are now ready to prove Theorem 2. By Lemma 2.1,
(2.10) E[(V2r®(1—7d)1,4(1,0))"]

dty--dt
:n‘(l— d)” f...f 1 z
15 fdet Cnlty, ta, =+, tn; Tyd

0<t1<<tn<1

We shall first consider the integration on A,(a, b): Using (2.5) and Lemma
2.4 (ii) ,we see

(2.]1)

. dlye+diy,

l '(1_ d nf...f

mswpnl (L=7d)” o ) e Ol e e )

n
<lim sup n!2? (1—rd)"f---f {tr (b= 1) =+ (= tu- )} 797ty dty
r—1/d An(a,b)

=0

We next study the integration on A,\A, (a, b): For any given >0, Lemma 2.5
allows us to choose small a >0 and large b < so that

1
< (14e) {ty(ta—ty) - Uu—tuy) 77 A\A(a, b).
/detCn(tl, tz,"',tnmd ( 5){1(2 1) ( )l on \ (a )

Therefore, for such 0<a<p<oo,
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(2.12)
. dtyedty
1 "1—7d ”ff
1glls/blpn (1=7d) A\t Jdet Cu(by, ta, =, b 1) @

<lim supn!(1+e) (1—rd)"f~--f ity (ta=t1) +* (bu—tnr) | 777 dty-dt,
As\n (a,b)

r—1/d
<lim supn!(1+e) (l—rd)”f--f t(tz=t0) -+ (ta—tu )} 774 diyodity
r—1/d An
=(14+e)n!
by Lemma 2.4 (ii). Summing (2.11) and (2.12) we have from (2.10) that
lim sup E[ (V274 (1—7d)1,4(1,0))"] < (14+¢&)n!, n=>1.
r—1/d

Since €>0 is arbitrary, this implies

lim sup E[(V27%(1—7d)1,4(1,0))"] < nl, n=>1.

r—1/d

The reverse inequality

liminf E[ (V274 (1—7d) 1,.4(1,0))"] > nl, n=>1

r—=1/d

follows easily from Theoreml (i). Therefore we conclude

lim E[(y2r4 (1 —7d)1,4(1,0))"] = nl, n>1,

r—1/d

which completes the proof of Theorem 2.
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