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On the decomposition numbers of the Hecke algebra
of G(m, 1, n)
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Susumu ARIKI

1. Introduction

It is recently found that many complex reflection groups have deformation
of group algebras [A1], [AK], [BM]. For the group G (m, 1, n) in the
Shephard-Todd notation [C],[ST], the Hecke algebra #4 is the algebra over
the polynomial ring A =Z[v), ***, Un, ¢, ¢"'] defined by generators ai, ***, an
and relations

(ar—vy) - (@1—vm) =0, (a;i—q) (a;i+q") =0(2<i<n)
1020102 =A2010201, (L;a,-=a,-a,~(7'2i+2)
AiAi+10i = Ai410iA 541 (Zgign—l)

This algebra is known to be A-free. If we specialize it to v;=v;, ¢ =¢q, where
v, €EC, g€ C*, this algebra is denoted by X¢.

We note here that the study of this algebra over a ring of integers is con-
jecturely related to the modular representation theory for the block algebras
of the general linear group [BM].

One of the building blocks for the modular representation theory of K¢ is
the case that vy,***, v, are powers of ¢°# 1, and we consider this case in this
paper.

Let u, be the Grothendieck group of the category of K ¢-modules. We set
u= @u,. The purpose of this paper is to show that the graded dual of u is a
highest weight module of g (A.) (resp. g (4Y;)) if ¢* is not root of unity (resp.
a primitive r-th root of unity), and the dual basis of irreducible modules coin-
cides with canonical basis. The proof heavily depends on Lusztig's theory of
affine Hecke algebras and quantum groups, and Ginzburg's theory of affine
Hecke algebras.

For m =1, our result verifies a conjecture of [LLT]. Hence their conjectu-
ral algorithm actually computes the decomposition numbers of the Hecke
algebra of type A. We note here that there is an announcement of Grojnowski
[Gr] on the decomposition numbers of the Hecke algebra of type A, but what
we see here is that we can avoid the result at roots of unity to compute the de-
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composition numbers, although his result is interesting in its own right, since
it focuses on the affine Hecke algebra of general type. The paper is organized
as follows. In section 2, we review the semi-normal form representation of H¢,
and introduce Specht modules. In section 3, we transplant the induction
theorem of Kazhdan-Lusztig to Ginzburg's theory. Since no literature is avail-
able, we add a proof using the properties of both K-theories explained in
[KL],[CG] respectively, and some results from [KL] [CG]. Then Ginzburg’s
theory allows us to describe the decomposition numbers in terms of intersec-
tion cohomology complex. In section 4, we define the action on the graded dual
of u and show that it is a highest weight module and the canonical basis cor-
responds to the dual basis of irreducible modules. Finally, we describe the
module #™® in terms of Young diagrams.

The author is grateful to Professor Lascoux, Leclerc and Thibon since
their paper is a motivation for this article.

2. Hecke Algebra of G (m, 1, n)

(2.1) As was defined in the introduction, we denote by H¢ the Hecke
algebra of G (m, 1, n) with specialized parameters. And we consider the case v;
are powers of ¢*#1. In particular, ¢, **, t, are invertible.

We recall that we set ty=ay, ti=aitiwa; (2<i<n), and we have tit;=tjt;
and tiaj=ajt; (#i—1,1). A consequence of this property is that this algebra
is a quotient of the affine Hecke algebra for the general linear group, since we
assume that t; (1<i<n) are invertible. To see it, we use Bernstein presenta-
tion of the affine Hecke algebra Hg Let X = ®7.,Z¢;, a; = €; — €i11, S =
{si} 1sisn—1 be the simple reflections of S,. Then Hg: is generated by 6, (x €X)
and T;(1<i<un—1), and the defining relations are

0:60,=6,0.,60=1, (T;—¢) (Ti+q™) =0(1<i<n—1)
TiTinTi=TinTiTis (1<i<n—2), T\T;=T;T; (j2i+2)
TiﬁzzarTi(sixzx)v Tiﬁ.rTizﬁs,-I (Six=x+ai)

Thus, by sending T; to aj+; (1<i<n—1) and 6, to t;"* (1<i<n), we have a
surjective homomorphism Hz—X*¢.

We sometimes call Hg the affine Hecke algebra of rank #n. It is naturally
embedded into the affine Hecke algebra of rank n+m by the following homo-
morphism.

Ti_>Ti+m
shifty . {
f " 651_’0610771
It is easy to see that it is an injective algebra homomorphism.

Remark. Let uy, ***, u, be the representative of distinct values of vy, ***, Um.
We remark that there is a simple H c-module on which (a;—uy) -+ (e, —u,) acts as
nonzero linear transformation. A simplest example is the Hecke algebra whose para-
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meters are vi=v2=1, ¢*F 1, n=2, and its representation

1 —qg+q! 0 1
I
0 1 1 g—q7!

It is 1rreducible, but t;—1 is not zero. Hence we can not assume vy, ***, vm arve dis-
tinct unless n=1 even when we consider irreducible modules.

(2.2) We also recall that if we define the algebra K over the Laurent
polynomial ring C[q, ¢~'], then the specialization f . g —¢ gives the isomorph-
ism C®4 = K, By the semi-simplicity criterion [A2] , C(q) ®K is
semi-simple if and only if »=m. In the general case » <m, the study of block
structure of C () ® A is closely related to the study of asymptotic Hecke
algebra. The asymptotic Hecke algebra itself is deeply studied in [L1] [L2]
[L3] [L4].

(2.3) We review the semi-normal form representation, which was
obtained as a natural generalization of Hoefsmit's work [H].

Let F be a field. As is explained in [A2] (see also [AK]), as long as the
specialized algebra Xrp=F ® X , is a semi-simple algebra, we can associate a
representation of X r to each m-tuple of Young diagrams A= (A, - A").
They have a basis indexed by Young tableaux of shape A, and these basis ele-
ments are simultaneous eigenvectors of t;, ***, t,. More precisely, let T= (TV,
=+, T™) be a tableau of shape A. 1f the number 1 is located at the (a,b) -th
entry of A, the eigenvalue of t; on this vector is v.q?®™®. We call it the
semi-normal representation of X r. Among tableaux of shape A, we have a tab-
leau of a special kind, which is called the canonical tableau of shape 4 and is
denoted by T,, defined as follows.

For each cell x € A, we attach a coordinate (a (x), b (x), ¢ (x)) if it is lo-
cated at the (a (x), b(x)) -th entry of 2“®”. Then we can introduce a lexicog-
raphic order on the set of cells by declaring x <y if and only if ¢ (x) <c (y) or
cx)=c(),alx)<aly) orclx)=c{),al) =a(y), b(x) <b(y). Then the cano-
nical tableau is the tableau cells are filled in with 1, +-+, »n according to this
order.

Let R be C[t] or its localization, and assume that C(f) ® X4 is semi-sim-
ple. Then we denote by S* the H-lattice of the semi-normal representation
generated by the basis vector correspoding to the canonical tableau. It is
R-free. Then for specialization R— C, we have a X ¢-module $*=C ® S%;. We
call these modules Specht modules.

We set ¢c,=60_,,+ "+ 0_c, and use the same ¢, for t,+--+t, This element
plays an important role in later sections.

Lemma 2.1. (1) Let R be a principal ideal domain, F be its quotient
field, such that Hp is semi-simple. We denote by S’z a Specht module for the
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Hecke algebra of rank n, and we restrict it to the Hecke algebra of rank n-1. Then
there is a sequence of submodules S’ = Vi, D VD ***such that each quotient
Vi/ Vi is isomorphic to a full vank submodule of a Specht module S*r for some
Young diagram y of size n—1.

(2) The element c, acts on S’k as a scalar multiplication whose value is
given by

2(b(x)-a(x))
Zvcwq
rel

Proof. We recall that F ® S*; decomposes into a direct sum of F ® S¥,
each of which is spanned by basis vectors whose location of # are the same.
Hence we have a natural sequence of submodules F ® $'%x = W;D W,D -+ such
that each W,/ Wi4 is isomorphic to some F ®S*g. If we set V;= W,; N S%, it is
clear that it gives a sequence of submodules such that V;/ Vi is isomorphic
to a submodule of some F ®S*z. Hence we have (1). (2) is obvious.

Note that if R is C[#] or its localization, we can prove that the specializa-’
tion £—t defines a well-defined map from the Grothendieck group of C(f) ®
H r-modules to that of K ¢-modules. [CR, Proposition 16.16]

Further, if C(f) ® A& is semi-simple, then by virtue of Lemma 2.1, this

so-called decomposition map sends [C (#) ® S%] to [S?] such that the restric-
tion rule between Specht modules described in Lemma 2.1 is also valid for
these modules.

We also note here that symmetric functions of ¢, **, t, belong to the cen-
ter of K4, but the center does not coincide with the subalgebra consisting of
these symmetric functions. Hence the situation is not the same as the affine
Hecke algebra for which the center is the ring of symmetric functions with re-
spect to b, -+, O, as determined by Bernstein. We will give an example be-
low.

Example. Let us consider the case n=2, m=3. By using the formula,

=

aiti-i*=t*ai— (g—q™) ‘ it

J

pa- I

aitF=ti-t*ait+ (g—q™") PR L

1

-~
1

and the fact that {6, t,*%ay|ky, k2 =0, 1, wE S,} is a basis although the algebra
generated by t), t is not 3*-dimensional, we can explicitly compute the center. Then
it turns out that the center is A -free, and its basis is given by

1, titts, tits, (+82) 2, it (i F 1), (0at2) %,
(e2(x) —e1 (x) (t1+t2) + (t1+22) 2 —Hits) as,
(e3(x) Tatz (1 +t2) —ey (X) titz) an,
(e3(x) (t1+ts) —ea (x) trte+ (t1t2) D as,
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where e; (x) is the i-th symmetric function of X1, Xz, Xs. If we specialize it to the
group algebra of G (3, 1, 2), this center specializes to 9-dimensional subalgebra.
But it cannot be gemerated by t, +ta, tits, since t>=1t>=1 and the subalgebra
generated by these is 6-dimensional. Hence the center is not generated by ti+tatit>
over A.

3. Connection to geometric theory

(8.1) Let G=GL (n, C) be the general linear group, T be the maximal
torus consisting of diagonal matrices, Z be the Steinberg variety, & be the flag

variety, /' be the nilpotent variety. We denote by K¢*¢*(Z) (resp. K¢*¢* (B))
the Grothendieck group of G X C*-equivariant coherent sheaves on Z (resp.
B) . Here the coefficient is extended to C. The convolution product

F] - [91=2(-1)' [Ripw* (Plz*g:) ® (st*@)]

makes K¢ (Z) into an algebra and K¢*¢ (#) into a K¢*¢" (Z) -module.
A theorem of Ginzburg [CG, Theorem 7.6.10] says that K¢*¢*(Z) is iso-

morphic to Hge, which is by definition the C[q, ¢7'] -algebra whose generators
and relations are given by Bernstein presentation. The proof is given by expli-
cit construction of the isomorphism. @ will be specialized in (3.5).

Since B is a homogeneous space, we can identify K¢*¢* (B) with the com-

plexified representation ring Rr«c-= C[x), ;7 =, Xn, X%, ¢, ¢”']. The ac-

tion of Hg: is explicitly given by
f=sif . Xieif—si(Xip1 f)

Xi— Xit+1 Xi—Xi+1

Tief=q 'Xin
051 .f-_‘xi—lf

where s; f is the exchange of variable x; and X+ [CG, Theorem 7.2.16].
For any algebraic subgroup M of TX C*, we have [CG, Theorem 6.2.10]

Ru ® K" (B) =K" (8).

Hence the H,.-action on K™ (#) is determined by * -action.

(8.2) Let A= (A4, **, A;) be a composition of size n. For z;, ***, 2, E€ C*
and A, we associate a pair of block diagonal matrices (x, s) by

=@l J(A), s=®!, 2ig7**'D(A,),
where

k-1 K .
J(k) = 2 Ei i1, D(k) = 22¢**1%E; ;.

i=1 i=1

If we set L=GL (4;) X++XGL(A,), the collection of (s, g) ET X C'* for various
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21, . 21, € C* form (I+1)-dimensional torus of L X C*. It contains the cen-
ter of L X C*. For u=¢", it is also a subgroup of

M) ={(g, q) EGX C*|lgug™'=u"}.
We take the parabolic subgroup of block upper triangular matrices whose
Levi subgroup is L. Then for some zy, ***, 24, ¢,
d(zy, =+, 215 q) = [Idet (1—¢%%*22,2,7'D (A;) D (A7)

i*f

is not zero, and thus we can apply the induction theorem [KL,Theorem 6.2].

Let B, be the subvariety of B consisting of x-stable (or equivalently
u-stable) flags. In [KL], they defined H,.-action on K™ (B;) . We note here
that this K-theory is different from the previous one.

Let & be the flag variety of L, 5§I be the subvariety of x-stable flags.

We denote by ﬁ,,z the subalgebra of H,: generated by T; (i# A, A1+ 4, )
and 6,(yE€X). Then the induction theorem implies

Ha ® (Ruld™") ®KM (#2)) =Rm[d™] 8K (B.)

Hga M M

where Ry=Clz, 2,7}, -+, z1, "%, q, ¢7'] is the complexified representation

ring of M, d is the polynomial in 2, ***, z;, ¢ whose value at z1, ***, z;, q is
d(zy, =, 21, q).
Since B, is a point, KM (B,) is a free Ry-module of rank 1. By [KL, 5.11
a)], Ko¥(B,) and KM (B) are projective Ry-modules.
Further, in the language of [KL], if we set A, =®%,, A, =%, then applica-
tion of [KL,1.3(d)] for

~

(7") A, C (7)) A,

| !
A < A
and application of [KL, 1.3(f1)] for X= () A, Xo=As, X'= (&) 7'A,, X'o=
A; lead to the following commutative diagram
Ko (B2) =K (B)
| |
Ko™ (B)—KM (B).

Hence by [KL, 5.11(b)], K¢ (8B,) — K™ (B) is a Hy,z-homomorphism. Since 7"
is Ry-linear, it descends to specialization.
To summarize, if we specialize Ru[d™']— R, then R ?KOM (B)—
M

R ®K0M (8) and qu ® (R ®K0M (B,)) =R ®K0 (B;) are H,-homomorphisms,
R ®I\0M (8B,) and R ®K0M (QB) are projective R modules, R ®K0M (B,) =
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(3.3) Take 21, '+, 21, ¢’ sufficiently generic such that d ('}, ***, 21, ¢)
#0, lg'| #1, the corresponding diagonal matrix s"€M has distinct eigenvalues.
We specialize z;= (1—#)2';+tz;, q= (1—1t) ¢’ + 5. We localize C[#] at points
where 2z; or q is zero, and denote it by R.

For this R, we show that RR%KOM (%Q-’RS{KOM (B) is injective. In fact, if
it is not injective, then the kernel is a direct summand of R ® Ko™ (8B,), since R

Rm
is a principal ideal domain and these modules are projective (or equivalently

free) R-modules. Hence if we specialize & to 0, CISDKOM (%)*CI?KOM (8) is not
M M

injective. By [KL, 1.3 (k)], vertical arrows in the following diagram are iso-
morphisms.

COKM(By)—C®KM(B)
ey e
COKM(B)—COKM(B)
Ry Ry

Hence CR®K0M (98?)—’CR®K0M (8M) should be not injective. But it is contradic-
M M

tion since BYC B are discrete sets.
Therefore, RR®K0M (B5) is a submodule of R};&KOM (B).
M M

(3.4) [KL,1.3(p3)], [KL, 1.3(p2)] and [KL, 1.3(n3)] deduce the iso-
morphism

Ry ® K§*“(B)=Ru ©® K{*(B).
Rexcx R xcx

By [KL, 1.3(p)]. we have a natural map RR ® Kl (98)—>RR®K0M(9B). If it is
TxCx M

not injective, similar argument as above shows that C ® KI* (3)—C ®
RTXC" Ry
K™ (B) is not injective. But since 8 =%8T*" it is impossible.

Moreover, since RR®K0M (B) is R-free, and CR®K0M (B) =COKM(BM) is
M M Ry
n!-dimensional, we know that the left hand side and the right hand side of this
injective map have the same rank.

Hence, we conclude that R}?KOM (B) C C(t)R ® K§*© ($B). In particular,
M GxCx

the H,z-action on RI:@KOM (B) is determined by that on K§*¢*(B).
M

(3.5) We now identify K§ ¢ (8) with C[x,, x;7%, =, X, X271, q, ¢7].
The action of H,2 on this module is given by
Tiof=(¢*) ' (gq—q'—Ti) * (¢*f)
Ociof= (¢+) (0-c) » (¢+f)

where ¢+ =[],¢; (1 —q%x;7'). This follows from [KL, 3.2(c),3.6(a)], [KL,
1.3(02)]. (Hence it is the action given at [KL, Lemma 3.10].)
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If we set ¢~ =1li5; (1 —q%:ix;™"), d*d~ € Rgxcx specializes to a non-zero
element in R. Hence we have the commutative diagram
R[d™'] ® K" (B.) R [d™'] ® KM (B,)
Ry 3] Ry
l !
R[d7'] ®KM(B)—R[d7'] ®KM(B)
Ry Al Ry

where we use the same ¢* for the specialization to R [d™!] R®K0M (B). The ver-
M
tical arrows are injective by (3.3).
If we equip the left hand side with °-action and the right hand side with

* -action twisted by the automorphism * of H,: defined by T;*=q—¢q ' —T,,
0:* = 6_,, this diagram is commutative as H,-modules. Because of the induc-
tion theorem, we also know that the vertical arrows in the following diagram
are injective.

R1d™'] ®K" (B,)—R[d ] @K (B,)
Ry Ry
| l
R[d™'] ®KM (B:)—R[d™"] ®KM (%)
Rm Ry
The specialization we are interested in is z; =z;, ¢ =g¢. Thus we take
R-lattice Ko™ (B;) of R[d“];&KoM (B) on the right hand side and specialize ¢
M
to 1. Then we have a diagram of Hg-modules
C KM (B:) = C KM (B.)
R Ry

M

! !
COKM(B) =COKM(B)
Ry Ry

where the Hg-action on the left hand side and the right hand side are as be-
fore, and in the Grothendieck group of the category of finite dimensional
Hg-modules, we have

[C®KM(B.)] = [Hp ® (COKM(B2))],
RM qu Ry

since it holds on the left hand side.

(3.6) We now consider

CRKM(B,) —COK™ (B,)
Rym Ry

! l
COKM(B,) —COKY (B;)
Ry l RMl

CO®KM(B) —CRKM(B)
Ry Ry
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As is pointed out in [L5, section 6], horizontal arrows are isomorphisms. And
if we equip these modules with ¢ -action twisted by 3, it is commutative as
Hge-modules. Thus by (3.5), we have the following proposition.

Proposition 3.1. Let C ®K” (B) be the Hp-module with convolution pro-
duct action. Then C®KM (B:) 1s a Hge-submodule of C®KM (B) , which is equal

to [qu

modules.

(c ®KM (‘JBI))] in the Grothendieck group of fmu‘e dimensional Hg-
2 Rym

Hy

(3.7) Let M (s, q) be the smallest algebraic subgroup of M containing
(s, g). Then we have the diagram

CR®K (Bz) ~C®K“ (B:) C C®K” (B)
M

lao l a l
C ® Kgl(s.q) (331) ~ C ® KM(s ,4) (%x) CC ® KM(s,q) (%)

RM(s,q) Rps.) RM(s.q)

Since the rightmost vertical arrow is an isomorphism [CG, Theorem 6.2.10],
o is injective. On the other hand, [KL, 1.3(k)] and [KL, 1.3(m2)] imply

C ® Kg!(s.q) (%1) = C®K0M (%;) :Heven (%;)
Rms,q)
As is explained in [X, 5.8], the main result of [DLP] and a result of Stein-

berg [S] calculate the dimension of Hx (BS), which coincides with that of C
R®K0M (82) by Proposition 3.1. Hence a is an isomorphism.
M

(3.8) Finally, we consider the following diagram in order to descend to
K groups without group action.

C®K”(%)~C ® KM (B,) K (B3
M(s
l 7 l
COK"(#) =C, @ K"+ (3 B,) K (B3)
Rpis.q)
! 1 !
C®KM(9B) =C ® KMs90 (96)—»K (B°)
RM(s.9)

By [CG, Lemma 5.11.9, Theorem 6.2.4], the bottom 7, is an isomorphism.
Further, [CG, Theorem 5.11.14] says it commutes with convolution. Then
bivariant Riemann-Roch theorem [CG, Theorem 5.11.15] says

K (835 Ha (B3)
v
K (B3)—Hy (BS)
Lo
K (%s) —Hy (%s)
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also commutes with convolution. It is an isomorphism by [CG, Theorem
6.2.4] which proves [CG, 6.2.1(2)]. Hence the injective Hz-homomorphism

C @ K"“9(B,)—Hx(B3)
Rp(s,0)

is an isomorphism, since both have the same dimension.

Let C ® H;: be the specialized affine Hecke algebra, i.e. whose center is
specialized to C by the evaluation at s. We define a subvariety Z% of X8 XN
by

Z°={(by, by, N)|Ad (s) by=by, Ad (s)by=by, NEb;N by, Ad (s) N=¢*N}

then C®H=~C ® K¢ (Z) =H«(Z° as algebra and Hj-action is trans-
RGxcx
ported to the convolution action of Hx(Z%). [CG, Proposition 8.1.5]

Since CR®KM (Bs) corresponds to Hx (BS), we can determine }Zz-lnodule
M

structure on Hx (@i) by the character formula [CG, Theorem 8.2.1]. In fact,
we know that K™ (B,) is free of rank 1, thus it is enough to consider it on Hx
(8%). Then since B is a point, the formula reduces to Tr(6y, H« (BY)) =y (s).
Here we identify X with Hom (T.C*) as usual. Therefore Ti0_¢Ti = 0_,.,

shows T; maps 1o q.
Hence we have transplanted the induction theorem into Ginzburg's theory.

Theorem 3.2. For each composition A and z1, ***, 27€ C™, we have

[He (B3] = [qugzcx]

where Ay, =+, A; ave the size of Jordan blocks of x, and Cy is the I:I\,,z-modz,tle defined
by sending 6, to y (s), T; to q.

Recall that A, z determines s. x as was introduced in (3.2). Hence we de-
note [ﬂ,z,@Cz by M,...
qu

(3.9) Let
Ne={(b,N)|Ad (s)b=b, NEb, Ad (s)N=¢*N} CBX N

and g : No> N ={N|Ad (s) N=¢?N} CN. We have p' (x) = B5. Since the cor-
respondence from & to the variety of Borel subalgebras is by taking the stabi-
lizer, NEb is that F is N-stable. We note that A/ is smooth and [ 1S proper.
To see it, we write ¢4 (i) =4 for s-stable flag & if the i-dimensinal subspace

Fi is obtained from Fi-; by adding an eigenvector of s whose eigenvalue is ¢¥.
Then the set of flags with a same @5 bijectively correspond to r-tuples of flags
where 7 is the number of distinct eigenvalues of s. This correspondence re-
spects C¢ (s) -action. Hence Cg (s) -orbits give connected components of the set
$B5. We now take the nilpotent element N into the consideration. For each
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Ce (s) -orbit in N, its inverse image by the first projection p; + N*—%° is also
a connected component. It is obvious since it is a vector bundle over the orbit.
Hence, N is smooth.

This explicit description is helpful to find an elementary proof of
non-vanishing result for irreducible modules in our case. For example, to find
a connected component @ of N® such that U (@ coincides with an orbit clo-
sure, and its intersection with #: is non-empty. But, here in the next subsec-
tion, we appeal to the general result of Grojnowski, which can be found in
[CG,Theorem 8.7.1], for the case ¢° is not roots of unity.

(3.10) We are in a position to state a result of Ginzburg-Vasserot. We
state it for our special case. As is explained in [CG, Theorem 8.6.6] [GV,
p.76].

Hs(Z%) =Extpsne (s Cre, 5 Ca)

such that convolution product corresponds to Yoneda product. Further, as is

explained in [CG, p.361], Hx(Z%) -action on Hx (%B3) corresponds to the action
on H* (i uxCy.) through the restriction map

Extppixey (s Cre, s Cite) —Extps oy (17 15 Ce, 12 25 Ce) .
Since the decomposition theorem [CG, Theorem 8.4.5] is applicable, we -have

pxCie= G?’Lo(i) ®IC (0, Co),

where i€ Z and 0 are C¢ (s) -orbits in A% Then the argument [CG,p.359] tells
that Lg= ® jezLs (i) is irreducible or 0 as Hpz-module, and non-zero ones are
inequivalent modules. Thus we have,

Theorem 3.3 ([CG, Theorem 8.6.15] [GV, Theorem 6.6]) . If Ly is
non-zero, we have,

(Hx (B3 . Lo] =Pz (1)

where Pz (v) = 2dimH* (i'IC (0, Cp)) v*.

For the case that ¢® has infinite order, [CG, Theorem 8.7.1] and the
argument which follows the theorem proves that they are actually non-zero. In
fact, uxCs is a direct summand of y#«Cy- and the multiplicity of IC (@, Cp) in
1xCs is H* (B3N B). Hence, we can state a special case of non-vanishing re-
sult of Grojnowski, due to Lusztig.

Proposition 3.4 ([CG, Proposition 8.4.12]) . If ¢* is not roots of unity,
then Lg are all non-zero.

We remark that if we order Cg (s) -orbits such a way that it is compatible
with the closure relation, we have an unitriangular transition matrix and
hence we can conclude that Ly can be expressed as alternating sum of M, .
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4. Littlewood-Richardson ring and canonical basis

(4.1) Let V(i, k) be an indecomposable representation (V;, fjj+1) of the
quiver A« given by
o= {C (<j<i+h—1), _ [1 (<j<i+h—2)
’ 0 (else) 0 (else)

 Jiia1 = . For the cyclic quiver
APy, we denote by V (i,h) = (V}, f;.;41) the folded representation, i.e.

Vi=®iajon Vi, fii+1= ® kejinfins
.. 2;=¢% the corresponding s and x (see (3.2)) define

a representation of I'= A. (resp. AY;) if ¢® is not roots of unity (resp. a

For A and z;=¢

primitive 7-th root of unity) by putting the eigenspace of s~ of the eigenvalue

q¥ on the j-th node and considering z' as the set of linear maps between them.
It then becomes isomorphic to V (4, 2) =V (i,,4;) ® - ® V (i), 1,). They exaust
all finite dimensional representations of I whose composition of arrows are
nilpotent. In fact, any such representation gives a pair (r, s) such that sxs™!=
¢*x, which is extendable to a SL (2, C) -module by [KL, 2.4 (g)]. Hence we
have the exaustion.

Since Cg (s) -orbits of /* are nothing but representations of I', we write
Lz instead of Ls, and Piz: 4w (V) instead of Per(v). In this notation, Theorem
3.3 sSays that [Ma,w . Ll,z] =Pl,z 7R (1) (lf Ll.z#:o)'

(4.2) We introduce the graded dual of the Littlewood-Richardson ring
of Hg. Let U, be the subgroup of the Grothendieck group of the affine Hecke
algebra of rank # spanned by {[M,.]}, and consider the direct sumU= @ U,.
Here the coefficient is extended to C. We give it an algebra structure by using
the shift homomorphism introduced in (2.1). We note that non-zero elements
of {[Lz.]} give a basis of U. The graded dual ® Hom (U, C) is denoted by
U* We also denote by {[L:.]*} the dual basis of non-zero irreducible mod-
ules {[Lzz]}.

Since ¢p=0_¢, + -+ + 0_¢, commutes with Ty**, Tp—1, any Hpe-module is a
direct summand of the generalized eigenspace of c¢,. For each module M and
eigenvalue ¢, we denote this summand by P(M) . The induced up
(resp.restricted) module of M is denoted by Ind (M) (resp. Res(M)) . Here we
consider the affine Hecke algebra of rank # (resp. n—1) as a subalgebra of the
affine Hecke algebra of rank n+1(resp. #) in the natural way.

Let M be such that Pe,c(M) =M (resp. Peyre (M) =M) . Then we define
i-Ind (M) (resp.i-Res (M)) by

i-Ind (M) =Pqyc4qu(Ind (M)) (resp. i-Res (M) =Pepc—qu (Res (M) ).)
We now introduce operators e;, fi - U*=U* as follows.

eip (M) = ([i-Ind (M) ]), fi¢p ([M]) =@ ([i-Res (M) ])
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where g€ U*, [M] € U.

Let u» be the Grothendieck group of the category of #¢-modules and we
set u= ®u, as in the introduction. Its graded dual is denoted by u™.

Then we define i-Ind, i-Res, e;, fi in the same way as before. By exploiting
the fact that

{t{(l...t”;”awlogk,’ Sm - l,weSn}

is a basis of #¢ and tyaw=awt, if wE Sy—1, we know that the Hecke algebra of
G (m, 1, n) is a free module as a right module over the Hecke algebra of G (m,
1,n—1).

Hence these definitions are well-defined.

Lemma 4.1. The following diagram is commutative.

U*_’M*
fil Vfi

U*_,u*

Proof. For any irreducible #¢-module D, i-Res(D) is an #¢-module.
Hence the lemma is clear.

(4.3) According to the cases ¢? is not roots of unity or a primitive #-th

root of unity, we let g be the Kac-Moody Lie algebra of type A« or AY;. The
triangular decomposition of the universal enveloping algebra is denoted by
Ul(g) =U ®U°®U", where U™ is the algebra generated by generators f;'s.
When we have a need to specify g, we write U~ (g), etc.

We now recall some result about PBW-type basis and canonical basis of
Lusztig. Let k be an algebraically closed field. We fix IE k*. Let I be the set of
nodes of the quiver I'. For each I-graded vector space V=@ V; over k, we set
G=1Ilie; Aut (V;), E= & ;_;Hom (V;,V;) ©Hom (V,V). Then the isomorphism
classes of representations of the quiver I" with a fixed dimension type is no-
thing but G-orbits supported on E. Let 2y be the subcategory of the bounded

derived category of complexes of Q;-sheaves on E consisting of finite direct

sum of IC (0, Q,) [i] for G-orbits @ whose singular support is nilpotent and i
€ Z. By running through all isomorphism classes of I-graded spaces V, we
have the category 2 = ® 9y. This is nothing but the category introduced in
[L7, 2.1]. It is because that the perverse sheaves of [L7, 2.1] must satisfy
the condition that the singular support is nilpotent [L7, Corollary 13.6], thus
the orbits with trivial local system with non-nilpotent conormal bundle cannot
appear. Then in the language of [L7], only aperiodic orbits may appear [L7,
Proposition 15.5], and because of the orientation we choose, we have the same
number of orbits as the dimension of U~. Hence by the isomorphism mentioned
below, we have that the set of aperiodic orbits give a basis of U™.

Let # be Z[v, v'}]-free module whose basis (L) are indexed by objects in
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9. Addition is given by (L) + (L") = (L ®L’) [L7, 10.1]. We can introduce a
standard multiplication on # via geometric method [L7, 3.1] and we modify it
to define a new algebra structure on X [L7, 10.2]. Then [L7, Theorem 10.7]
states that we have an isomorphism

Ao 1 Q(v) ®U; =Q(v) ®K

such that if we denote by L{? the unique orbit in V="V;=k? the divided pow-

er fi maps to (L{¥).

The elements correponding to IC (0, 6,) are called canonical basis. We

also call (ip) Q. PBW-type basis. Here, iy is the inclusion map for €. Note
that PBW-type basis may not live in 4.
Through the isomorphism Ag, we often identify the canonical basis with

elements in Uy. By the fact that (L{¥) generate X as Z[v, v'!] -algebra [L7,

Proposition 10.13], this lattice is the usual Z[v, v-!]-form of U;. Hence if we
specialize it to v=1, we have canonical basis of U™ (g).

Since orbits are indexed by V. we denote by 0, (resp. @) the corres-
ponding PBW-type basis (resp. canonical basis).
The gradings we are interested in are I=Z and 1=2/rZ. The corresponding
group G=i£ll Aut (V;) are denoted by G« or G,. Then, G,-orbits are unions of

Ge-orbits. More precisely, the union of Ge-orbits corresponding to representa-

tions of the quiver A« which fold to a same representation of the quiver A,

It gives the relation between PBW-type bases of A« and AY;.

We note that 0;..= 2Paz: 4w (V) Op.

The orbit closures we are concerned with are locally isomorphic to affine
Schubert varieties [L6, Theorem 11.3] and Piz.uw (V) are known to be
Kazhdan-Lusztig polynomials. The defining field k of these varieties does not
matter as long as ! is invertible in k. That is, we have the same transition
matrix between PBW-type basis and canonical basis of U; if we move to a
field of positive characteristic. For these general principles, we refer [BBD,
Lemma 6.1.9, Lemma 6.2.6].

Lemma 4.2. Let yt be a composition and wi,*** w; be powers of q°. Then, the
PBW-type basis of U™ satisfies the following multiplication formula.
ﬁu,w fi = ZCu,w ; u’.w’ﬁu',w’
where Cuw: w15 the number of ways to go from (¢, w') to (¢, w) by chang-
ing ti to wi—1 if wig q*.

2ui~2 —

Proof. By the definition of the multiplication rule, the verification of the
above formula reduces to the proof of O, fo= 2Cpw: uwwOu . for the quiver
of type As. As was remarked above, we can take k to be positive characteris-

tic. Then [L6, Proposition 9.8 (d)] gives the isomorphism Ap © # = U; such
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that PBW-type basis actually correspond to PBW basis E¢; which is deter-

mined at v=1. We have Ag=21"g, since 1’5 ((L{?)) =f® Then we have the re-
sult by the use of the algebra isomorphism from the Hall algebra Rg of the

representations of the quiver to Uy, which sends [V.] to ES; at v=1[L6, 5.10
(b)]. Recall that the multiplication in the Hall algebra is by definition,

VIIVI=2 gvyu(v) [V]

such that if v is specialized to a power of a prime, i.e. the cardinality of a finite
field k, then gvy v is the cardinality of the following set for almost all k.

{(Wwev |w=v"' v/ wW=Vv'}

Here, the representations of the quiver are realized over the field k. Thus we
see that the only freedom of choosing linear maps comes from those from 0—
k—0 to a sum of indecomposable modules of type k—=k—0 or 0—k—0. Let [,
(resp. ls) be the multiplicity of k—k—0 (resp. 0—k—0). Take a submodule
0—kv—0 of

0— k" —k"® k"> —0.

We write v=v;+v. €Ek"® k"2 If v,#0, we take CC k' such that C® kv,=k'".
Then the direct sum of C—C—0 and 0—k'*—0 is a submodule of

0— k" —=k"® k'*/ kv —0.
Hence the above module is isomorphic to
(k—k—0)®*""V® (k—0—0) ® (0—k—0) ®".
If v;=0, it is isomorphic to

(k—k—0)°"® (0—k—0) ®% 1,

ll+12—vlz Vlz....

and

Hence the coefficients in question are respectively,

v—1 v—1

which specialize to [;,l; at v=1. We are done.

(4.4) We return to the graded dual of Littlewood-Richardson ring. The
following proposition is a key to prove Theorem 4.4. In the theorem, the uni-
versal enveloping algebra is a little fatter than finite linear span of basis, since
infinite sum 1s allowed in each degree.

We define an antiautomorphism ¢ of U™ by o (f;) =f;. We consider U~ as a
U~-module via xu=wuo (x). Then we have the following result.

Proposition 4.3. (1) There is an isomorphism of vector spaces U~ = U*
such that the following diagram commutes.

U-=y*

fit Lfi
U-=y*
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In particular, U* becomes a free U™ -module.
(2)  Through the isomorphism given above, the canonical basis corresponds to
the dual basis of irreducible Hepe-modules {[L1.]1%*}.

Proof. (1) We first prove it for the case that ¢* is not roots of unity. We
can show that i-Res (M,,,) is the direct sum of My, with multiplicity where
(¢, w') run through

{(, W)l = (ua, oo =1, ), w'=w, wg™2=q%}

In fact, M, is an induced up module from the algebra generated by T; (i # 1,
t+ 1, ++) and 6,y EX). We denote its one-dimensional representation by ¢.
Let v3, ***, vy be powers of ¢* appearing in ¢ (6-¢,). Then M,, can be viewed
as a #c-module with this different set of parameters, which is nothing but
Specht module introduced in (2.3). Hence by Lemma 2.1, we have the restric-
tion formula.

Since {[M,,)} are basis by Proposition 3.4, we can consider its dual
basis which we denote by {[M,.]*}. Then

fi [Mu.w] * ( [Mu’,w’] ) = [Mu,w] * ( [i—Res (Mu’.w’)] )

and we have that f; [Myw] ¥ = Zcuw: ww My w]® where cyw; o is the coef-
ficient defined in Lemma 4.2.

Let U~ = U* be an isomorphism sending O, to [M,,] *. By Lemma 4.2,
we have the desired commutative diagram.

We now set UF be the graded dual of Littlewood-Richardson ring of
affine Hecke algebras whose g2 is a primitive r-th root of unity. It is naturally
a subspace of U*, since {[My.]} spans U and U,. Since i-Res for Uy is no-
thing but @ ;=ir;ni’-Res for U*, we have the following commutative diagram

U’,k—*U*q"—"-U_

fiv b S

Uf—U*=U"
where f; = Zi=in fi. In U™, they generate U~ (A32)) [DJKM] . Thus if we
identify U* with U™ (A)), we have U~ (4;X1) C U5 since 1 € Uy. Further,
U~ (AL)) is isomorphic to the algebra K of Lusztig for g=g (A1) . Thus, by

comparing dimension, we know U~ (A{",) =U¥.
(2) 1f the order of ¢* is 7, we have Oz.= 2Pu:: yw (1) Opw at v=1 and
(Myw > L1zl =Paz:uw(1). Since [Muw]* corresponds to PBW-type basis for
the folded reprepentation, it is the infinite sum of [M, )™ with respect to the

quiver A~ which are folded to the same representation. Hence, for the case q°
is a root of unity, the proof is as follows.

6],2 ( [Mu.w] ) = ZPLZ et (1) [Mu’.w'] * ( [Mu,w] )
=Paz:pw (1) = [Ll,z] *( [Mu,wJ ).
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Here, we consider [M,,]* as an infinite sum in U as is stated above. Hence

the isomorphism maps @, to [Li.]*. In view of [L7, 10.27], we have the re-
sult.

(4.5) We describe the module u* as a submodule of Fock space, whose
basis is given by Young diagrams.

Let vy =¢?"* be the parameters of #¢, v be the order of ¢>. We consider the
Hecke algebra over C(t) with parameters vy=v,t* ' (1<k<m), g=qt™ Then
it is a semi-simple algebra [A2] and the graded dual of the Grothendieck
group has a dual basis of Specht modules. Let # be the vector space with
basis indexed by Young diagrams. Then, this graded dual can be identified
with the m-fold tensor # ® -+ ®%. Thus u™* is naturally embeded in F ®--- %
through this identification.

Let A= (A= 2™) be an m-tuple of Young diagrams. For each cell in A,
we define its r-residue, # (x) by r(x) =icw —a (x) +b (x) (mod 7), where the cell
is located at (a (x),b (x)) -th entry of A“@ If =AU {x}, we write »(1'/2) =
i(mod 7).

We introduce operators e;, fi on F ®+- ®F by

eid= ru%m‘ﬂ' fid= r(/t'%:)si/I '
As is referred in [LLT, Theorem 4.1], a theorem of Hayashi states that # be-
comes g-module by these operators [Ha] [MM]. In fact, we introduce h; by hiA
= @) —a” (1)) A, where a{ (1) (resp. a®” (1)) is the number of Young dia-
grams appearing in f;A (resp. e;A). We let v be a Young diagram appearing in
eifid or fie;d. Then v= (A\{x}) U {y} such that »(x) =ir(y) =j. If xp are not
adjacent, v appears in both ef;A4 and fje;A. Hence we consider the rest of the
case. If 1=, x,y cannot be adjacent, If i=j, x,y must coincide. Thus we have
lei, ;] = 8ijhi. Nextly, we let v be a Young diagram appearing in ¢;A. Then v=
A\{x} such that r (x) =j. If the cell on the right hand side of x has residue i
which is counted in a@¥’ (1), then a¥’ (1) —a'’ (1) decreases by one if x is re-
moved. If this right hand side cell is not counted in a{’ (1), then the cell just

above x becomes a cell counted in a (¢;4) and thus a{’ (1) —a? (1) decreases
by one. The same holds for the cell just below x. Hence we have [h;, ¢;] = —e¢;
if i=j%1, and [hi, e;] =2e;. Similar argument shows ad (¢;) %;=0,(r=3, j=i %
1), ad (e;)%;=0(=2,7=i%1), and the remaining relations.

If we shift the numbering of generators, the same is true for ¥ which has
a shifted r-residue, which appears as the components of ¥ ® --- ® #. Hence
F ®---®F becomes a g-module via above defined operators.

By Lemma 2.1(2), it coincides with U(g) -action on u* if restricted to u*.

Further, the m-tuple of the empty diagram ¢ is a weight vector. In par-
ticular, if we denote the weight by A, then A (h;) is the cardinality of the set
{klix=1i(mod 7)}. (we set h;= [e;, fi] as usual.)
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(4.6) We now state the theorem.

Theorem 4.4. Let g be the Kac-Moody Lie algebra of type Ao (resp.AYy) if
q% is of infinite order (resp. of order v), and u™® be the graded dual of the Grothen-
dieck groups of #c.

We denote by n; the multiplicity of g% in {vy,"*.vm}. Then we have,

(1) u*is a highest weight g-module with highest weight A= 2 m;A; where
A; are fundamental weights.

(2) Let {0} =1{0.2) be canonical basis of U™ (g), va be the highest weigh!
vector of u*. Then the set of non-zero elements in {bva} coincides with the dual
basis of irreducible # c-modules.

Proof. We prove (2) first. By Lemma 4.1, »* is again a cyclic
U™ -module, and the dual basis of irreducible Hy-modules coincides with cano-
nical basis by Proposition 4.3 (2) . Take an irreducible Hgez-module D. Then
[D]* maps to 0 if D is not a #¢-module, and maps to a dual basis element of
irreductible #¢-modules otherwise. Hence non-zero elements of the image of
canonical basis are linearly independent, and are nothing but the dual basis of
irreducible #¢-modules. Hence we have (2).

Since we have already seen that #* is a g-submodule of # ® -+ ® %, and
(2) tells that it is a cyclic module generated by v4, we have (1).

We have also proved the following proposition.

Proposition 4.5. Let F ®--- ®F be the m-fold tensor of the space of Young
diagrams &, and f; be the operator fiA= 2rar =il

Then u™ is the subspace of F ®+++ @F spanned by {fi,*fiyP}, where ¢ is the
empty Young diagram.

As we have seen above, we regard u™* as a submodule of F ® - ® . To

make it U;-module, we have to choose a Hopf-algebra structure. It should be
A_ defined in [K, 1.4.2], since [K, Lemma 2.5.1] states that the tensor pro-
duct of lower crystal lattices is a lower crystal lattice. We note that the mod-
ule is irreducible, since it is a submodule of an integrable module. Hence the
number of irreducible modules is computable by the ¢g-dimension formula.

Another important remark about the module structure of u* is for the
Hecke algebra of type A. In this case, the number of irreducible modules is
also known as the number of 7r-regular partitions [DJ], and its generating
function coincides with the ¢-dimension. Hence we again know that the
g-module u* for the Hecke algebra of type A is irreducible and realized as
L (Ay) . The canonical basis coincides with the dual basis of irreducible mod-
ules by the above theorem.

(4.7) Innerproduct on negative part of the quantized enveloping algebra

U,(g) are introduced in two ways. That in [GL] satisfies (uf;, v) = (1—v?)
(u, d; (v)) where d;(v) ®f; is the term appearing in 4., (v) defined in [GL].
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On the other hand, that in [K] satisfies (uf;, v) = (u, Ad(t;)e; W))
(K, 5.2.3]. It is easy to see that d; (f;u) =f;d; (u) +8;;u. If we replace d; by
Ad (t;) ei’, we have the same formula [K, 3.4.4]. Hence these innerproduct
coincide modulo vZ [[v]]. By [K, Proposition 5.1.2] , the global basis of
Kashiwara satisfies (b, b") =0,;+vZ[[v]].

Using these properties, Grojnowski and Lusztig have proved that the
global basis of Kashiwara coincides with the canonical basis of Lusztig[GL].

When mapped to an irreducible integrable module, non-zero elements
coincide with the lower crystal basis [K,Theorem 5], which is unique up to
isomorphism [K,Theorem 3]. Hence, for the Hecke algebra of type A, Theorem
4.4 verfies a conjecture of Lascoux-Leclerc-Thibon if we recall the remark
stated at the end of the previous subsection.
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