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On the decomposition numbers of the Hecke algebra
of G(m, 1, n)

By

Susumu ARIKI

1. Introduction

It is recently found that many complex reflection groups have deformation
o f  g ro u p  a lg e b ra s  [A l] , [A K ], [B M ]. F o r  th e  g ro u p  G (m , 1 , n )  in  th e
Shephard-Todd notation [C], [ST] , the Hecke algebra X A  is  the  algebra over
the polynomial ring A =Z [v i , ••-, um, q, q - 1 .] defined by generators ai, •••, an
and relations

(a i —  y1 ) ••• ( a t —  v .)  = 0 , (ai — q)(a i +q - 1 ) =0
a i a2aia2=a2aia2cti,

ajai±ia:=a,+latai+i (2 —1)

This algebra is known to be A -free. If we specialize it to v i = v,, q= q, where
vi e  C, qe Cx, this algebra is denoted by i(c.

W e note here that the study of this algebra over a  ring of integers is con-
jecturely related to  th e  m odular representation theory fo r  the  block algebras
of the general linear group [BM].

One of the building blocks for the  modular representation theory of X e  is
the case that v1,•••, vm a r e  powers of q2 1 ,  a n d  w e consider this case in  this
paper.

Let u n  b e  the Grothendieck group of the category of Xe-modules. W e set
u--=  un . T he purpose of th is paper is to  show tha t the graded dual o f u  is  a
highest weight module of g (A .) (resp. g (A 1 ) )  if q2 is no t roo t of unity (resp.
a prim itive r-th root of un ity ), and the dual basis of irreducible modules coin-
cides with canonical basis. T he  proof heavily depends on Lusztig 's theory  of
affine Hecke algebras a n d  quantum  groups, and G inzburg 's theory  of affine
Hecke algebras.

For m =1, our result verifies a conjecture of [LLT]. Hence their conjectu-
ra l a lgorithm  ac tua lly  com putes t h e  decom position num bers of the H ecke
algebra of type A. W e note here that there is an  announcement of Grojnowski
[G r] on  the  decomposition numbers of the Hecke algebra of type A , bu t what
we see here is that we can avoid the result at roots of unity to compute the de-
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composition num bers, although his result is interesting in  its own right, since
it focuses on the affine Hecke algebra of general type. The paper is organized
as follows. In section 2, we review the semi-normal form representation of Nc,
a n d  in troduce Specht m odules. In  s e c t io n  3 , w e  transplant the  induction
theorem of Kazhdan-Lusztig to Ginzburg's theory. Since no literature is avail-
ab le , w e  add  a  p roof using  th e  properties of both  K -theories explained in
[K U, [C G ] respectively, and som e results from  [K L ] [CG] . Then Ginzburg's
theory allows us to describe the decomposition numbers in  term s of intersec-
tion cohomology complex. In section 4, we define the action on the graded dual
of u and show  th a t it  is  a  highest weight module and the canonical basis cor-
responds to  th e  d u a l b a sis  o f  irreducible modules. F inally , w e describe the
module u *  in  terms of Young diagrams.

T h e  author is grateful to  P rofessor L ascoux, L eclerc and Thibon since
their paper is a motivation for th is article.

2. Hecke Algebra of G (m , 1 , n )

( 2 .1 )  A s  w as defined in  the  in troduction , w e  d en o te  b y  N c  the Hecke
algebra of G (m , 1 , n )  with specialized parameters. And we consider the case n i

are powers of q2 fr  In  particular, t1, tn  a re  invertible.
W e recall that we set ti =ai, ti = a it i - i c t i  (2 ,  and w e have titi = titi

and tiai =aiti (j#/,—  1 , i) . A  consequence of this property is that this algebra
is a  quotient of the affine Hecke algebra for the general linear group, since we
assume tha t t  (1  i  n )  a r e  invertible. To see it, w e use Bernstein presenta-
tio n  of the  affine  H ecke algebra 11,12. L et X 7 1 Z e , , a i =  e i — S  =
{si}i5i5n - i  be the simple reflections of S n . Then H O  is generated by 19,r (x EX )
and T  (1  i) ,  and  the  defining relations are

19x0y= Oyex,e0=1,
( j _ i + 2 )

T i e x =191 T i( s ix = x ) ,  T i e x T i= e s ,x  ( s ix = x + a i )

Thus, by sending T i to  a i + 1 1 )  and to ti -1 (1 ,  we have a
surjective homomorphism H q 2— , ,Y(c.

We sometimes call H q 2  the affine Hecke algebra of rank n . It is naturally
embedded into the affine Hecke algebra of rank  n  + m  by  the  following homo-
morphism.

sh ift ,„  :
0,1"--)0611«in

It is easy to see that it is an injective algebra homomorphism.

Remark. Let ui, •••, vi r  be the representative of distinct values of v 1 , •••, v n „.
W e remark that there is a simple X e -m o d u le  on w hich (a i — u i)•••  (al — u r )  acts as
nonzero linear transformation. A  simplest example is the H eck e algebra whose para-
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meters are v i = v 2 =1, q 2 * 1 , n =2 , and its representation

I i -1
— 0 - qai j

Lo 1
a 2 0 1

1 q—q - '

It is irreducible, but t1 - 1 is not zero. Hence we can not assume vi, •• • , v , are dis-
tinct unless n =1  even when we consider irreducible modules.

(2.2) W e a lso  reca ll tha t if  we define th e  algebra over the Laurent
polynomial ring C[q, q - 1 ], then the specialization f  : q - - >q gives the isomorph-
ism  C O f X  K .  B y  t h e  se m i-s im p lic ity  c r ite r io n  [A 2 ] , C (q ) O X  is
sem i-sim ple if and only if  r= m . In  th e  general case r <rn, the study of block
stru c tu re  o f  C (q) is  c lose ly  re la ted  to  th e  s tu d y  o f  asymptotic Hecke
algebra. T he  asym ptotic H ecke algebra itself is deeply studied in  [L 1] [L 2]
[L3] [L4].

( 2 .3 )  W e  r e v ie w  th e  se m i-n o rm a l fo rm  rep resen ta tion , w h ich  w as
obtained as a  natural generalization of Hoefsmit's work [H].

Let F  be a field. A s is explained in  [A 2] (see also [A K ]) , as long as the
specialized algebra F =F O X A  is  a sem i-sim ple algebra, we can associate a
representation of X F  to  each m -tuple of Young diagrams .1 = (A m , •••, 2 (m) ) .
They have a basis indexed by Young tableaux of shape A, and these basis ele-
ments a re  simultaneous eigenvectors of t1, •••, tn . More precisely, le t T  = (T (1 ) ,
••• , T ( m ) )  be a tableau o f  sh ap e  A . If  the  number i is located  at th e  (a,b) - th
en try  of .1 (c ) , the  e igenvalue  o f t i o n  th is  v e c to r  is  

v c 0 , 2 ( b - a ) .  

W e  c a ll it  the
semi-normal representation of X F .  Among tableaux of shape .1, we have a tab-
leau o f a  special kind, which is called the canonical tableau of shape A and  is
denoted by TA, defined as follows.

F o r each cell x E A, w e attach a  coordinate (a (x), b (x ) , c (x )) if  it is lo-
cated at th e  (a (x ), b (x )) - th  entry of 2( ' ) . Then w e can introduce a  lexicog-
raphic order on the set of cells by declaring x < y  if  and  only if c (x) Gc (y) or
c (x) =c (y), a (x) Ga (y) or c (x) =c (y), a (x) = a (y) , b (x) b  (y) . Then the cano-
nical tableau is  the tableau cells a re  filled in  w ith 1, •-•, n  according to  this
order.

Let R  be C [t] o r its localization, and assume th a t C (t) ol'A is semi-sim-
ple. Then we denote by S'IR  the  X R -lattice o f the sem i-norm al representation
genera ted  by  th e  basis  vec to r co rrespod ing  to  th e  canonical tableau. I t  is
R-free. Then for specialization R-- *C, we have a X c-m odule SA =  C  S'I R . We
call these modules Specht modules.

We set cn =  —6,+ . ..  0 —en a n d  use the same cn  for 6+ ••• - I- tn . This element
plays an important role in  later sections.

Lemma 2.1. (1) Let R  be a Principal ideal domain, F  be its quotient
field, such that X F  is semi-simple. We denote by S Â R  a  Specht module for the
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Hecke algebra of rank n, and we restrict it to the Hecke algebra of rank n- 1. Then
there is a  sequence of  sulymodules S'1R = V 1 D  V 2 D  • • •  such that each quotient
111/ Vi+ 1  is isomorphic to a f ull rank submodule of  a Specht module S '1 R  for some
Y oung diagram a of size n - 1.

(2) The element cn  ac ts  on S Â R as  a  scalar multiplication whose value is
given by

2(b(x)—a(x))
E V c(x )q

x€2

P ro o f  W e recall tha t F  V iz  decomposes into a  d irec t sum  of F 0  S U R ,

each of w hich is spanned by basis vectors w hose location of n are the same.
Hence we have a natural sequence of submodules F OS 1 R= W 1D W 2 D  • • •  such
that each W i/W i -F1 is isomorphic to some FO S R . If we se t 17,= W, n s A R , it is
clear that it g ives a  sequence of submodules such that v/  v+ 1  is isomorphic
to a submodule of some FO S 'R . Hence we have (1 ). (2 ) is obvious.

Note that if R  is C [t ] or its localization, we can prove that the specializa-
tion t—q- defines a  well-defined map from the Grothendieck group o f  C(t) 0
XR-modules to that of Y( c -modules. [CR, Proposition 16.16]

Further, if  C(t) 0 1 ( R is  semi-simple, then by virtue of Lemma 2.1, this
so-called decomposition map sends [C (t) 0S 2 R] t o  [S i ]  such that the restric-
tion rule betw een Specht modules described in  Lemma 2.1 is  a lso  va lid  for
these modules.

W e also note here that symmetric functions of t1, •••, t n  belong to the cen-
te r  o f XA, bu t the  center does not coincide with the  subalgebra consisting of
these symmetric functions. Hence the  situa tion  is  n o t th e  sam e as the affine
Hecke algebra for which the center is the ring of symmetric functions with re-
spect to  19 , ••• , O„ a s  determined by Bernstein. W e will give an  example be-
low.

Example. Let us consider the case n= 2 , m = 3 . By using the formula,

E t i t /
j=1

a i t i k( q q 1) k -

-
i

t=1

and the f act that {t i
1 lt 2

k 2 an,l k i , k 2 = 0 , 1 ,  w  S 2 }  is a  basis although the algebra
generated by t 1 , t2 is not 32 -dimensional, we can explicitly compute the center. Then
it turns out that the center is A - free, and its basis is given by

1, t 1
- Ft 2 , t 1 t2 ,(t 1 + t2) 2 , t1t-2 (t1 +t2) (WO 2 ,

(e2 (x) — el (x) (ti - Eh) (ti t2 ) 2 t i t 2 )  a2,
(e3 (x) t1t2 (ti ±t2) — ei (x) tit2) a2,

(e3 (x) (t 1 t2 ) — e2 (x) tit2+ (t1t2) 2 ) a ,
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where ei (x ) is  the i- th  symmetric function of X i,  X 2 , X 3 . If we specialize it to the
group algebra of G (3, 1, 2) , this center specializes to 9 - dimensional subalgebra.
But it cannot be generated by ti + tz , titz , since t13 = t23 =  1  and the subalgebra
generated by these is 6 - dimensional. Hence the center is not generated by ti +tz ,titz
over A.

3. Connection to geometric theory
(3.1) Let G = GL  (n, C ) be the general linear group, T  be the maximal

torus consisting of diagonal matrices, Z  be the Steinberg variety, 33 be the flag
variety, A/ be the nilpotent variety. W e denote by K " c ' ( Z )  (resp. KG ' c ' ( ) )
the Grothendieck group of G X  Cx-equivariant coherent sheaves on Z  (resp.

Here the coefficient is extended to C. The convolution product

[, -] • [5] =  E ( - 1)i [Rvh3*(p12*g) (p23*)]

makes KG ' c ' (Z ) into an algebra and KG ' c  (33) into a KG ' c ' (Z) -module.
A theorem of Ginzburg [CG, Theorem 7.6.10 1 says that e x c x  (Z ) is iso-

morphic to H 4 2, which is by definition the C [q , q l -algebra whose generators
and relations are given by Bernstein presentation. The proof is given by expli-
cit construction of the isomorphism. q will be specialized in  (3.5).

Since 33 is  a  homogeneous space, we can identify KG ' c ' (33) w ith the corn-
plexified representation ring RTxc.

=
 C [x1, x 1 1 ,  x n ,  xn - 1 , q. q - 9 .  The ac-

tion of H 4 2 is explicitly given by

T  •  f f — s i f f — s i ( x i + i f )  
i  x i  x i + 1 x i —  xi+i

Oe , • f= x i - lf

where si f  is the exchange of variable x i and xi.fi [CG, Theorem 7 .2 .16 ].
For any algebraic subgroup M of TX  C x , we have [CG, Theorem 6.2.10]

R m  K G x C ' ( )  K M  ( 6) .

Hence the Ho-action on  K M ( )  is  de te rm ined  by  • -action.

(3 .2 ) Let A =  (A l, • «, A i) be a  composition of size n. For zi, •••, z,E  C x
and A, we associate a pair of block diagonal matrices (x , s) by

x -= ED ii--1./(2i), s
= ef=i z i q- À " -1 D (A i ) ,

where

k -1

J (k )=  EE;,1+1, D
i=1

If we set L= GL (2 1 ) ••• x  G L  (2 1) , the collection of (s, q) e TX  C x  for various
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• • • , z,, q e  Cx form  (1+1 )  -dimensional torus of L X  C x . It contains the cen-
ter of L x  C x . For u = e , it is also a subgroup of

M (u) (g, q) EGx C x Igug -1 = u").

W e take  th e  parabolic  subgroup of b lock  upper triangu la r m atrices whose
Levi subgroup is L. Then for some zi, ••-, z i , q,

d (z 1 , • ••, z, ; q) = f l det (1 — q1( 2 i ) D  (2 i
- 9 )

1*.;

is not zero, and thus we can apply the induction theorem  [KL,Theorem 6.2].
L et 33x  b e  th e  subvariety of consisting o f  x -stab le  (o r  equivalently

u-stab le) flags. I n  [KL] , they defined H o-action on Kom (g3x) W e note here
that this K-theory is different from the previous one.

Let be the flag variety of L, i x  be  the subvariety of x-stable flags.
We denote by I- 42 the subalgebra of He generated by T i( i* 2 1 , 21+22, •••)

and O y ( y E  . Then the induction theorem implies

H e  (RM [C I ]  OICOM  ( iX ) )  
=

R A I [C I ]  ®KOM  (g9T)
Jiq2 Rm Rm

where Rm = C [24, ••• , z ,, z ( 1,  q, q - 1]  is  the  complexified representation
ring of M , d  is  the  polynomial in z i , •••, z/, q  whose value at z i,••• , z ,,  q is
d (z i , • ••, q).

S ince  ix  i s  a  point, K o
m  ( )  is  a free Rm -module of rank  1. B y  [KL, 5.11

(a)] , Kom (ggx) and K0m (Y3) are projective Rm -modules.
Further, in  the  language o f  [KL] , if w e set A1.=L, A2 = gg, then applica-

tion o f  [KL,1.3 (d)] for
(ffr) ( f f.r )

A, c A2

and application o f  [KL, 1.3 (11 )] f o r  X = (ffr) —1 -1 . 2 , A2, X ' = (fer) - 1.711, X' 0=
A 1 lead to the following commutative diagram

K eg (g3.x) Kom  (28x)

Ko
m (33) - - 'Kom (3) .

Hence by [KL, 5.11 (b)] , Kom ( x) .— 'Kom  (33) is  a Hq2-homomorphism. Since VT
is Rm -linear, it descends to specialization.

T o  su m m a riz e , if w e  sp e c ia liz e  Rm[d - 1 1- 4 R ,  t h e n  R  ®K o m

Rm

R ®K o
m  (5a) and H4 2 (R OKOM (L )  )  R ®Kom  ( x )  are Ho -homomorphisms,

Rm flqa Rm Rm

R ®K o
m  (g3x )  and R ®K o

m  ( )  are projective R - modules, R ®K o
m  (C )  = R.

Rm Rm Rm
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(3.3) Take z'i, •••, q ' sufficiently generic such that d  (z'i, ••• , g')
*0 , iq'l *1 , the corresponding diagonal matrix s'EM has distinct eigenvalues.
We specialize z i=  (1— t)z'i+ tzi, q  (1— t) -1-tg. W e localize C [t ]  a t points
where zi o r q is zero, and denote it by R.

For th is R, we show that R ®Kom  ( & ) - 4 1? OKom (2 ) is  injective. In fact, if
Rm Rm

it is no t injective, then the kernel is a direct summand of R ØKom (3s), since R
Rm

is  a  principal ideal domain and  these modules are projective (or equivalently
free) R-modules. Hence if we specialize t to  0, C0K0m (29) — *C0K0m (1 )  is not

Rm Rm
injective. B y  [KL, 1.3 (k)] , vertical arrow s in  the  following diagram a re  iso-
morphisms.

C  0K 0 TM (13;' ) C  0 K O T M  ( s )
Rm Rm

C  0 K 0 M  x )  c ®Kom (g9)
Rm Rm

Hence COKom (0 ) — )C 0 Kom  (V ')  shou ld  be  no t injective. But it  is  contradic-RmR m

tion since 931// cA'm a re  discrete sets.
Therefore, R ®K 0M (93x) is  a  submodule of R ®K 0M (3)) •

Rm Rm

(3.4)[K L , 1 .3  (p 3 ) ] , [K L , 1 .3  (p 2 ) ]  a n d  [KL, 1.3 (03) 1 deduce the  iso-
morphism

Rm
K

(5 9 )  R m K J '  xcx (33) .

RGxc. RT.c.

B y [KL, 1.3 (p)], we have a natural map R  0  K .cK (1)) , R  0 K 0 m c-A\ .v i Jo If it is
RTxCx Rm

not injective, sim ilar argum ent as above show s th a t  C  0  la xcx (33) —* C 0
RTxCx Rm

K oM  ( )  is not injective. But since r i  , -_- T x C ',  it is impossible.
Moreover, since R ®Kom  (3 )  is R-free, a n d  C(0Kom (̀ A) -":-- COKom 

( P M )
 i s

RM Rm Rm
n!-dimensional, we know that the left hand side and the right hand side of this
injective map have the same rank.

Hence, we conclude that R 0 K om (33 ) C  C  (t) 0  K vc. 03\ .) In particular,
Rm RG,cc.

the He-action on R ®Ko
m  ( R) is determined by that on K < ' '  (28).

Rm

(3.5) W e now  identify KW' "  (13) w ith  C [x i , xi-1, xn, x n --1, f  q 1 ]
The action of He on th is module is given by

Tz'f=  (y5+ ) - 1 (q — q - ' — T,) • (g5 +f)
61 f = (0 + ) - 1 (0--ei) • (0 +f)

where g5+ = fl i < ;  (1 - . T his follows from  [KL, 3.2 (c) ,3 .6 (a)] , [KL,
1.3 (o2)]. (Hence it is the action given at [KL, Lemma 3.10].)
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If we se t q5- = (1 — 2.7  x l x j - 1 )  ,  0 +  - ERGxC ,, specializes to a non-zero
element in R. Hence we have the commutative diagram

R[d 1] K o
m  (5ax ) - - q?[d - 1 ] ®Kom  (1)x)Rm 0.• Rm

R[c1 - 1 1 ®Kom  (g3) — qe [d - 1 ] OK om  (1))

where we use the same q5+ fo r the  specialization to R Ed - 1]  ®Kom  (g3) . The ver-Rm
tical arrows are injective b y  (3.3).

If we equip the left hand side w ith '-action and the right hand side with
• -action tw isted by the  automorphism * of 142 defined by T, * = q —  —  T

Ox
*  = 19-x , this diagram  is commutative as He-modules. Because of the induc-

tion theorem, we also know that the vertical arrow s in  the  following diagram
are injective.

R[d1] ®Ko m  (ix )'R [6 1 - 1 ] OK om  (ix )Rm Rm

R [ d 1] ( x)— )R[d-1] OK om  ( 3x)Rm Rm

T h e  specialization we a re  interested in  is  z z ,  q =  q. Thus w e take
R-lattice Kom (*z.) of R [d 1] ®Kom (L) on the right hand side and specialize t

Rm
to  1. Then we have a diagram of He-modules

C ®Kom (99x) C  ®Kom (14.v)Rm Rm

C  K  ( )  C  K  0 31 (§9)
Rm Rm

where the He-action on  the  left hand side and  the  right hand side a re  a s  be-
fo re , a n d  in  th e  Grothendieck g roup  o f  th e  category o f  finite dimensional
He-modules, we have

[CoK0m (Y3s)] = [ H02 ( C  K  0 31)Rm 1-42 R m

since it holds on the left hand side.

(3.6) We now consider

C ®Ko
m (i s ) 4—C ®Km  (ix )

Rm Rm
I J.

C OKOM  (59x) 4 — C 0  K M  (g3x)Rm Rm
J. I

C 0 K o f r i 1) 4 — C 0 K M  (3i' )Rm Rm
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As is pointed out in  [L5, section 6], horizontal arrow s are isomorphisms. And
if we equip these modules w ith  • -action tw isted  by  * ,  i t  is  commutative as
Ho-m odules. Thus by (3.5), we have the following proposition.

Proposition 3 .1 .  Let C ®K m  ( )  be the Ho z-module with convolution pro-
Rm

duct action. Then C ®K m  (38x) is a Hoz-submodule of C ®K m w h ic h  i s  e q u a l
Rm Rm

to [ H O  (C OK M  A M  i n  the Grothendieck group of f inite dim ensional Hoz-
Rm

modules.

(3.7) Let M q )  b e  the  sm allest algebraic subgroup of M  containing
(s, q). Then we have the diagram

C 0Kom (̀ Xx) C 0K m  (59,) c C 0K m
Rm Rm Rm

ao I a
C  0  Kit s ' ) (L )  C  o  K m ( s 'q) (33x) C C 0  Km (s 4 ) (JB)

Rm(s,q) Rm(m) Rm(s.q)
Since the rightmost vertical arrow  is an isomorphism [CG, Theorem 6.2.10],
ao is  injective. On the other hand, [KL, 1.3 (k)] and [KL, 1.3 (m2)] imply

C 0  Kr ." ) ( gx) =C eK om (33.1) =Heuen (34)
Rm(s,o

As is explained in [X , 5 .8 ] the main resu lt o f  [DLP] and a  resu lt of Stein-
b e rg  [S] calculate the dimension of H* (11) , w hich coincides w ith that o f  C
0Ko

m (J1,) by Proposition 3.1. Hence a is  an isomorphism.
Rm

(3.8) Finally, we consider the following diagram in  order to  descend to
K  groups without group action.

coKm (ix) c K M (s 4 ) (
) - K ( )

Rm RM(s,1)

C OK"! (ix ) C  0  K m(s'q) (59.,) '4 K09.sx)
Rm RM(s,1)

C OKI" (3) C  0 Km(m )K  ( s )
Rm RM(s,q)

B y  [CG, Lemma 5.11.9, Theorem 6.2.4] , the  bottom ra i s  an isomorphism.
F u r th e r , [CG, Theorem  5.11.14] says it com m utes w ith  convolution. Then
bivariant Riemann-Roch theorem [CG. Theorem 5.11.15] says

K (k )-R 4 H*  (k )

K (L )  — H  (L)

K (2 ) H  (10)
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a lso  commutes w ith  convolution. I t  i s  a n  isom orph ism  by  [C G , Theorem
6.2 .4] w hich  proves [C G , 6 .2 .1(2)]. Hence the injective Ho - homomorphism

C  0  e n s . °  (54x) — '11* (14)
Rm(s,eo

is an isomorphism, since both have the sanie dimension.
L e t C O H O  be th e  specialized affine Hecke algebra, i.e. whose center is

specialized to C  by the evaluation at s. We define a subvariety Z °  o f g x 3 3 x
by

= { (b i , b 2 , N) A d (s)b i=bi, A d (s)b2=b2, NEb1 n b2 , A d (s)N =q 2N)

then  C O H o  C  (;3) K cx c- (Z ) -=1/ *  (Z a) a s  algebra and H o-action is trans-
RGxC.

ported to the convolution action of H *(Z °). [CG, Proposition 8.1.5]
Since C 0K m  (k )  corresponds to H* (AI) , we can determine I7,2-module

Rm

structure on I-I* (k )  b y  the character formula [CG, Theorem  8.2.1] . In fact,
we know that K M ( )

x )  is  free of rank 1, thus it is enough to consider it on H *
(i '). Then since jk  is a  point, the formula reduces to Tr H * = y (s")
H ere  w e  iden tify  X  w ith  H om  (T ,C x ) a s  usual. Therefore  TiO-E,Ti = 6-Ei-i
shows T i maps to q.

Hence we have transplanted the induction theorem into Ginzburg's theory.

Theorem 3 .2 . For each composition A and Zi , ••• , zi C x , we have

[11*  (* ;)] [11,2 c
H,22

where 2 1, • • • , Ai are the size of Jordan blocks of x, and GA is  the H 4 2-mod isle defined
by sending ay  to y (s), T 1 to q.

Recall that A, z determines s, x  as was introduced in  (3 .2 ) .  Hence we de-
note 11,22 C  by MA,z.

q2

(3.9) Let

=  (b,N) (s)b =b, b , A d (s) N = q 2N ) .  c  x

and ,tt : = {NlA d (s) N= q 2N} C .1V. W e  have ,t.e- 1  (x ) = l . Since the cor-
respondence from 33 to the variety of Borel subalgebras is by taking the stabi-
lizer, N e b  is  tha t g  is  N -stab le . W e note that Xfa is smooth and p  is  proper.
To see it, w e w rite  O g  ( i)  

=
1  for s-stable  flag g  if the i-dim ensinal subspace

F, is obtained from Fr_1 by adding an eigenvector of s  whose eigenvalue is q2'.
Then the set of flags with a same ybg  bijectively correspond to r-tuples of flags
w h e re  r  is  th e  number of distinct eigenvalues of s . T h is  correspondence re-
spects CG (s) -action. Hence CG (S) -orbits give connected components of the set

W e  now  take  th e  nilpotent elem ent N  into the consideration. F o r  each
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CG CO -o rb it in  ./V, its  inverse image by the first projection p i  :  X a— >gils is also
a connected component. It is obvious since it is a  vector bundle over the orbit.
Hence, TVa is smooth.

T h is  e x p lic it  d esc rip tion  is  h e lp f u l  to  f in d  a n  e lem en ta ry  p roo f of
non-vanishing result for irreducible modules in our case. For example, to find
a  connected component ea of ./Tia such that i  ( - )  coincides with an  orbit clo-
sure, and its  intersection with is non-em pty. But, here in  the  next subsec-
tion , w e  appea l to  th e  genera l resu lt o f  Grojnowski, w hich  can  be  found in
[CG,Theorem 8.7.1], for the case q2 is not roots of unity.

(3.10) W e are in  a  position to  sta te  a  resu lt of Ginzburg-Vasserot. We
sta te  it  fo r  our specia l case . A s is explained in  [C G , Theorem 8 .6 .6 ] [G V ,
p . 76] ,

ir  (za) f-- --ExtDb(o)(g*Civ., p*Csi.)

such  tha t convolution product corresponds to  Yoneda product. F urther, a s  is
explained in [CG, p.361], FI ( Z ' )  -action on 11* (aq;) corresponds to  the action
on H*  (i' C . )  through the restriction map

Extry (tt*C , p*C .w .) — TxtD(Jv.) (ix fi* Q ., ix '

Since the decomposition theorem [CG, Theorem 8 .4 .5 ]  is applicable, we have

p*C.k , == eLe(i) (0, C 0 ) ,
i C

where i G Z and O  are C G CO -orb its in N a. Then the argum ent [CG,p.359] tells
that L e=  (1) 1ezLe (i) is irreducible o r  0  as 11,2-module, and non-zero ones are
inequivalent modules. Thus w e have,

Theorem 3 . 3  ([CG, Theorem  8 .6 .15 ] [G V , Theorem  6 .6 ] )  .  I f  Le  is
non-zero, we have,

[H*(d3.1) : Le] P,,,1  (1)

where Pea  (y ) =Edim H k (ix
IIC (0, C0))V4  .

F o r  th e  c a se  th a t  q2 h a s  in f in ite  o rd e r , [CG, Theorem  8 .7 .1 ]  and the
argument which follows the theorem proves that they are  actually non-zero. In
fact, ,a*C6- i s  a  d irec t summand of p*Ck- a n d  th e  multiplicity of IC (0, C e )  in
i i* C e  is  H* n  6). Hence, we can state a  special case of non-vanishing re-
sult of Grojnowski, due to  Lusztig.

Proposition 3.4 ([C G , P roposition  8 .4 .1 2 ])  . I f  q2 is not roots of unity,
then Le  are all non - zero.

W e rem ark that if w e order C G (s) -orbits such a w ay that it is compatible
w ith  th e  c losure  re la tion , w e  h a v e  a n  unitriangular tran sitio n  m a trix  and
hence we can conclude that Le  can be expressed a s  alternating sum of M2,2.
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4. Littlewood-Richardson ring and canonical basis

(4.1) Let V (i, h ) be an indecomposable representation (vi,f)J+1) of the
quiver A. given by

IC ( i . . j i + h - 1 ) , r i  (i _<j_ i+h — 2)17; = , L ,J + 1 = . F o r th e  cyclic quiver
0 (else) 0 (else)

we denote by I7 (i,h) = (17.i, Ti..i+i) the folded representation, i.e.

Vj =  ED kmj(r) 17k, fij+1 =  s k . . i ( r ) f k ,k + i

For Â and zi the corresponding s and x (see (3 . 2)) define
a  representation o f  r= A .  (resp. A;.121) if  q2 i s  n o t  r o o ts  o f  unity  (resp. a
primitive r-th root of unity) by putting the eigenspace of s '  of the eigenvalue
e i  on the j-th node and considering xl as the  se t o f linear maps between them.
It then becomes isomorphic to V (2, z ) = V  (i i ,2 1 ) •  • •  ED V (i i , 21). They exaust
all finite dim ensional representations o f  r whose composition of a rrow s are
nilpotent. In fact, any such representation gives a pair (x , s) such that sxs - i =
q2x , w hich is extendable to a  SL (2, C ) -module b y  [KL, 2.4 (g)] . Hence we
have the exaustion.

Since CG (s) -o rb its  of Na a re  nothing bu t representations of F , we write
L2, in s te a d  o f  Le, and Pi.z ; P , W  ( y )  instead of P.,,, (y). In  th is  notation, Theorem
3.3 says tha t [M , m  L2,z] =Pa.z; um (1) (if L2,z* 0).

(4.2) W e introduce the  graded dual o f the  Littlewood - Richardson ring
of H q 2. Let Un  b e  the  subgroup of the Grothendieck group of the affine Hecke
algebra of rank n spanned by { [M g , ]) ,  and consider the direct sumU= El) tin.
Here the coefficient is extended to C. W e give it an algebra structure by using
the shift homomorphism introduced in  (2.1). W e note tha t non-zero elements
o f  {[L2,,]} give a  b a s is  o f  U. T he  graded dual ED Horn (Un ,C )  is denoted by
U .  W e a lso  deno te  by  {[L),,] * }  th e  dual basis of non-zero irreducible mod-
ules { [L,2]

 c n = 6L E , + • • 0 - En commutes w ith  T r •-, Ta-1, any H,2-module is  a
direct summand o f the  generalized eigenspace of C . F o r  each module M  and
eigenvalue c, w e  d e n o te  th is  s u m m a n d  b y  P c n , c ( M )  T h e  induced up
(respsestricted) module of M  is denoted by Ind (M ) (resp. Res (M )) . Here we
consider the affine Hecke algebra of rank n (resp. n - 1) as a  subalgebra of the
affine Hecke algebra of rank n+1 (resp. n) in the natural way.

Let M be  such  tha t Pcn,c(M) = M (resp. (M ) = Then we define
i - Ind (M) (resp.i-Res (M )) by

i - Ind (M) =_ cn , -f-c q2l (Ind (M )) (resp. i - Res (M) = (Res (M)).)P

We now introduce operators ei,

e1q5 ( [M] ) — ( [ i - I n d  (M)]), fiq5 ([M]) = 95 ([i - Res (M)])

: U*— q / *  a s  follows.



Hecke algebra 801

where OE U * , [M] E U.
Let un be the Grothendieck group of the  category of 'c -m o d u le s  a n d  we

set u= Epun as in the introduction. Its graded dual is denoted by u * .
Then we define i-Res, e i , f i in the same way as before. By exploiting

the fact that

(ti"...dnau,10 —1,w E

is  a  basis of IC( ' and tnaw=aan if w E S n -i, we know that the  Hecke algebra of
G (m , 1, n) is  a free m odule as a right module over the  Hecke algebra of G (in,
1, n-1) .
Hence these definitions are well - defined.

Lemma 4 . 1 .  The fo llow in g  d ia g ra m  is  commutative.

Proof. F o r  any  irreduc ib le  f c -module D , i-R es (D) i s  a n  .0 (7 -module.
Hence the lemma is clear.

(4.3) According to the cases q2 is  n o t ro o ts  of un ity  o r a prim itive r-th
root of unity, we le t g  be  the Kac-Moody Lie algebra of type A .  or A;-'21 . The
triangular decom position o f  th e  universal enveloping algebra is denoted by
U (g) = u - eu°®u+, w here  U-  i s  th e  algebra generated by generators f i 's.
When we have a need to specify g, we write u-  (g), etc.

W e now recall som e result about PBW-type basis and canonical basis of
Lusztig. Let k  be an algebraically closed field. We fix 1 E 

k x
. L et I  be the set of

nodes of the quiver r. F or each /-graded vector space V= ED V, over k, we set
G = nt., Ant (V1), E  j . .H o rn  ( V / ,,V ) C  Hom (17V). T h e n  th e  isomorphism
classes of representations o f the  quiver r w ith  a  fixed dim ension type is no-
thing bu t G -orbits supported on E. Let Qv be the subcategory of the bounded

derived category of complexes of Q i- sheaves on E  consisting o f finite direct

sum of /C (0 , Q ,) [i] for G-orbits w h o s e  s in g u la r  support is nilpotent and i
E Z. B y running through all isom orphism  classes of /-graded spaces V, we
have the category Q = ED Qv. T h is  is  no th ing  b u t th e  category introduced in
[L7, 2.1] . It is  because  tha t the perverse  sheaves o f  [L 7 , 2 .1 ] m ust satisfy
the condition that the  singular support is n ilpo ten t [L7, Corollary 13 .6 ], thus
the orbits w ith trivial local system with non-nilpotent conormal bundle cannot
appear. Then in  the  language o f  [L7] , only aperiodic orb its  m ay  appear [L7,
Proposition 15 .5 ], and because of the orientation we choose, we have the same
number of orbits as the dimension of U . H ence  by  the isomorphism mentioned
below, we have that the set of aperiodic orbits give a  basis of (F.

Let Ye. b e  Z[v, v - 1 -free module w hose basis (L ) a re  indexed by objects in
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Q . Addition is  g iven  by  (L) (L ') =  (LED L ') [L7, 1 0 .1 ]. W e can introduce a
standard multiplication on X  via geometric method [L7, 3.1] and we modify it
to define a  new algebra structure on X [L7, 10.2]. T h e n  [L7, Theorem 10.7]
states that we have an isomorphism

A D  Q (v) u; (v) OX

such that if we denote by L u n iq u e  o rb it in  V =V i = k d , the divided pow-
er Ad ) maps to (L d) ).

T he  elements correponding to  IC (0 , Q i) a re  called canonical basis. W e

a lso  ca ll (1..0 ) ! Q r PBW - type basis. Here, iv  i s  the inclusion m ap fo r C . Note
that PBW - type basis may not live in X.

Through th e  isomorphism /ID, we often identify the  canonical basis with
elements in U .  B y  the  fa c t th a t (0 ) )  generate X  as Z[v, v - 1 ] - algebra  [L7,
Proposition 10.13], this lattice is the usual Z[v, v - 1 ] - form of W . Hence if we
specialize it to v=1, we have canonical basis of U-  (9).

Since orbits are indexed by we denote by A ,z (resp. 02,r) the corres-
ponding PBW - type b a s is  (resp. canonical basis).
The gradings w e are  interested in  a re  I = Z  and I =Z/rZ . The corresponding
group G=11 Aut (v i )  are  denoted by G . or G . Then, Gr -orbits are unions of

i I

G .-orb its. More precisely, the union of G--orbits corresponding to representa-
tions of the quiver A . w hich fold to a  same representation of the quiver A -121.
It gives the relation between PBW - type bases of A .  and A 1 .

W e note that 0,1,z= EP),z;14,w(y)0,,,,,.
T he  orbit c losures w e a re  concerned with a re  locally isom orphic to affine

Schubert v a r ie tie s  [L6, Theorem  1 1 .3 ]  a n d  P  2 ,z  : fe ,w  ( V )  a r e  know n to  be
Kazhdan-Lusztig polynomials. T he defining field k of these varieties does not
m atter a s  lo n g  a s  1 is  invertib le  in  k. T h a t is , w e  have the  sam e transition
m atrix between PF3W- type basis  and  canonical basis of W  if  w e m ove to  a
field of positive characteristic. F o r  these general principles, w e refer [BBD,
Lemma 6.1.9, Lemma 6.2.6].

Lem m a 4 .2 . Let tt be a composition and wi,•••,wi be powers of e . Then, the
PBW - type basis of II -  satisf ies the following multiplication formula.

f i  — E C  

where cm ,w , if , /  i s  the number of ways to go from w') t o  (12, w) by chang-
ing ,ti'k to 1.1 if 14/0 2,1k-2 , q 2i .

Proof. By the  definition of the multiplication rule, the  verification of the
above formula reduces to the  proof of 0,, w  f2= Ec u,w; g ' , w ' e  ay ,  fo r  th e  quiver
of type A 3 .  A s was remarked above, we can take k to  be positive characteris-
tic . T hen  [L6, Proposition 9.8 (d ) ]  gives th e  isomorphism 2'0  :  X  U ; such
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th a t  PBW - type basis ac tually  correspond t o  PBW basis È  i w hich  is deter-
mined at v=1. W e have 20 -= /VD, since Â'D ((/, (1) ) )  =A d '. Then we have the re-
su lt  b y  th e  u se  o f  th e  algebra isomorphism from the  H all algebra R D  of the
representations of the quiver to  U;,- , w hich sends [ v i  to Ec i a t v=1 [L6, 5.10
(b)]. Recall that the multiplication in the Hall algebra is by definition,

[17 1  [V " ]  E (v) [V]

such that if v is specialized to a power of a prime, i.e. the  cardinality of a  finite
field k, then gv,ir,r , i s  the cardinality of the following set for almost all k.

c V 1V17= V" ,V W'Lsz V'l

Here, the representations of the quiver a re  realized over the field k. Thus we
see that the only freedom of choosing linear maps comes from those from 0— >
k— q) to  a  sum of indecomposable modules of type k-- k--, 0 o r 0— qc— >0. Let
(resp. 12 ) be the  multiplicity of k—  4--q) (resp. 0— qc— >0). T ake a  submodule
0--qcv- 40 of

0— >k"---k" V  —q).

We write v=v i + v 2 Ek h1 kI 2. If vi *O, w e take C c le  such that c  k v ,  = k".
Then the direct sum of C--- 4 C— >0 and 0--4c` 2- 0 is a submodule of

0— *0-->k" k 12/ kv

Hence the above module is isomorphic to
(k ____,k , 0 )$(11- 1) ED (k _>0 , 0 )  ( 0 , k _ 4 0)

If vi = 0, it is isomorphic to

(k— qc— +0) "0 (0 — ./c-- 0 )  e ( 1 2 - ".

Hence the coefficients in question are v - 1 v -1and   respectively,

which specialize to 11,/2 at v=1. We are  done.

(4.4) W e return  to  the  graded dual of Littlewood - Richardson ring. The
following proposition is  a  key to prove Theorem  4.4. In  the  theorem, the  uni-
versal enveloping algebra is a  little fatter than finite linear span of basis, since
infinite sum is allowed in each degree.

We define an antiautomorphism a  of U-  b y  cr(j i ) = f i . W e consider U-  a s  a
U- -module via xu= ua(x ). Then we have the following result.

Proposition 4.3. ( 1 )  T here is an  isomorphism of  vector spaces U-  U *

such that the following diagram commutes.

U*

f i
U*
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In particular, U*  becomes a free U- -module.
(2) Through the isomorphism given above, the canonical basis corresponds to

the dual basis of irreducible 1-1a 2-modules {[L,Lz ] * ).

Proof (1) W e first prove it for the case that 172 is no t roo ts of unity. We
can show that i - Res (A i m )  is  the direct sum of Mg

,,w, with multiplicity where
(1tZ, w') run through

14/ ) =  (p i ,  •  . .  ,  p i - 1 , .  ,  p i ) ,  I v ' —  w  w  4 214.0-2 —  q 2i)

In fact, Mf i ,„, is  an  induced up module from the algebra generated by T  (i
+,a2, •••) and e ( x) . We denote its one-dimensional representation by (P.

Let t);., •••, be powers of q2 appearing in  yo ( 0 , ) .  Then M,,w  can be viewed
a s  a  Yee-module with this different se t o f  param eters, w hich is nothing but
Specht module introduced in  (2.3). Hence by Lemma 2.1, we have the restric-
tion formula.

S ince  {[M,,, ] )  a r e  b a s is  b y  Proposition 3.4, w e can  consider its dual
basis w hich w e denote by [M„,.] * } . Then

ft[114,wl* ([Mie = ([i- Res (M

and w e have that f i [M,,w ] *  = Ec „, w *  where c o o  ; ,w ' is  the  coef-
ficient defined in Lemma 4.2.

L et U- U* b e  a n  isomorphism sending 0,,. to [M ,,.] * . By Lemma 4.2,
we have the desired commutative diagram.

W e  n o w  s e t  U;.' b e  th e  g raded  dua l o f  Littlewood-Richardson ring of
affine Hecke algebras whose q2 i s  a primitive r-th root of unity. It is naturally
a  subspace o f U* , since  {[M ,, ]}  sp a n s  U  a n d  Ur . Since i -R es fo r  (.4,' is no-
thing b u t e  , (r)e - Res for U* , we have the following commutative diagram

U* 4=--
f i 1 1 l f ,

where f i f i , .  I n  U- , they  genera te  U-  (21..'21) [DJKIVI] . T h u s  if  we
identify U* w ith  U-  (2'0?-121 )  ,  w e have U-  (24;,121) c (.4-̀  since  1 E  0. Further,

U-  (41;.121) is isomorphic to the  algebra X  of Lusztig for g =g (A '.21). Thus, by
comparing dimension, we know U-  (A (

r
i_) i ) U .

(2) If the order of (12 i s  r, we have  -6 2,z = El' A,z ; (1) a t v = 1 and
[Ma w  : 1-2.z] = PÀ,z ; (1 ) . Since [M,,, ] *  corresponds to  PBW-type basis for
the folded reprepentation, it  is  the infinite sum o f  [M„,,,,,] *  w ith  respect to  the
quiver A - w hich are  folded to the  same representation. Hence, for the case q2

is a root of unity, the proof is as follows.

= EP 2,2 , t i e  ( 1
)  DI it ' ,wd * ([114,w] )

=P),,.„, w (1) =.[LA ,z]*([Mi,,w]).
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Here, w e consider [M,,.] *  a s  a n  infinite sum in  U a s  is stated above. Hence
the isomorphism maps iY t o  [L,t,2 ] *

 . In view o f  [L7, 10.27], w e have the re-
sult.

(4.5) W e describe the module u*  a s  a  submodule of Fock space, whose
basis is given by Young diagrams.

Let vk =q 21" be the  parameters of iec, r be the order of q2 . W e consider the
Hecke algebra over C (t) with parameters vk= vkt 1' - 1 (1 q= q r . Then
i t  i s  a  sem i-sim ple a lg e b ra  [A2 ] a n d  th e  g raded  dua l of the Grothendieck
g roup  has a  d u a l b a sis  o f  Specht modules. L et g  b e  th e  vector space with
basis indexed  by  Young diagrams. T hen , this graded dual can be identified
with the m-fold tensor g  (8).- Og. Thus u*  is naturally  embeded in g  g
through this identification.

L e t  = (2 (1) ,•••,P " ) )  be an m-tuple of Young diagrams. F o r each cell in A,
we define its r-residue, r (x ) by r (x )= .-ic(x) — a (x )  b (x) (mod r), where the cell
is located at (a (x),b (x)) - th  entry of /I' ' ' .  I f  A' = A U {x}, we write r (2V,I)

(m o d  .
We introduce operators  e 1, f1 on  g®-•• Og by

eA= E i , f  i A =  E  A'.
r(27,1)-

-
-4

A s is referred in  [LLT, Theorem 4.1] , a theorem of Hayashi states that g  be-
comes g-module by these operators [Ha] [MM]. In fact, we introduce h i by h,2
= (4! ) — a9 (A)) A, where a(_» (A ) (resp. a+) (A)) is the number of Young dia-
grams appearing in f i À (resp. e12). W e le t 1.) be a Young diagram appearing in
eifii /1 or fe 1A. T h e n  w= (2 \{x}) U {y} such that r (x) (v) ==j. If x,y a re  not
adjacent, ).) appears in  both 4 ; 2 and fe 1A. H ence w e consider the  re s t of the
case. If i $ j, x,y cannot be adjacent. If 1; 7-7.j, x,y m ust coincide. Thus we have
[e, f] =51;h1. Nextly, we le t 1.) be a Young diagram appearing in eyl. Then v=
\{x} such that r (x )  j .  l i th e  c e l l  on  the  right hand side of x has residue i

which is counted in  a+) (A) , then a+) (A) — a!» (A) decreases by one if x is re-
moved. If this right hand side cell is not counted in 4 (4 ,  then the cell just
above x becomes a cell counted in (1'2' (e i2) and thus ct ) (.1) — (A) decreases
by one. The same holds for the cell just below x. Hence we have  [h i , e; ] =
if i = j±  1, a n d  [hi, ei] =2e i . Similar argument shows ad (ei ) 2e; = 0, 3 , j= i±
1), ad (e1) 2e1 =  (r=2 , j =i ±1) , and the remaining relations.

If we shift the numbering of generators, the sam e is true for g  which has
a  shifted r-residue, w hich appears a s  th e  components o f g  ® ••• 0  g .  Hence
g e ---  O g  becomes a g-module via above defined operators.

By Lemma 2.1 (2) , it coincides with U(g) -action on u* if restricted to u*.
Further, the m-tuple of the  empty diagram 0 is  a  weight vector. In  par-

ticular, if  we denote the  weight by A, then A (h i )  is  the  cardinality of the set
fielik==- i (mod r )). (we set h 1 [e1 , f,] as usual.)
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(4.6) We now state the theorem.

Theorem 4 .4 .  Let g be the Kac -Moody L ie algebra of type A .(resp.A -121)
q2 is  of inf inite order (resp. of order r) , and u *  be  the graded dual of the Grothen-
dieck groups of

We denote by n i the multiplicity  of q2 i in  {v i ,•••,v .} . Then we have,
(1) u *  is  a highest weight g-m odule w ith highest weight A = E n i A i where

A, are fundamental weights.
(2) L et {b} = {02,z }  be canonical basis of U-  (e), itit be the highest weight

vector of u * .  T hen the set of non-zero elements in  {bv,i} coincides w ith the dual
basis of irreducible O c -modules.

Proof. W e  p r o v e  ( 2 )  f i r s t .  B y  L e m m a  4 .1 ,  u *  i s  a g a i n  a  cyclic
tr-m odu le , and the dual basis of irreducible H2-modules coincides with cano-
n ica l basis  by  Proposition 4.3 (2) . Take a n  irreducible H2-module  D . Then
[D] *  m aps to  0  if D is  no t a Oc-module, and maps to a  dual basis element of
irreductible Oc-m odules otherwise. Hence non-zero elements of the image of
canonical basis a re  linearly independent, and are nothing but the dual basis of
irreducible M c -modules. Hence we have (2).

Since we have already seen that u *  i s  a g-submodule of g  ••• 0.7, and
(2) tells tha t it is a cyclic module generated by VA, w e  have (1).

We have also proved the following proposition.

Proposition 4 .5 .  Let g O g  be the nt-fold tensor of the space of Y oung
diagram s g, and f i  be the operator f12=Er(A ' b1).12' •

Then u *  is  the subspace of g  0 •••  O g  spanned by V ic - f i N 0), w here 0 is the
empty Y oung diagram.

A s we have seen above, we regard u *  as a  subm odule  o f g  0 • •  0 g .  T o
m ake it U;-m odule, we have to choose a Hopf-algebra structure. It should be
L  d e fin e d  in  [K , 1 .4 .2 ] , since [K , L em m a 2.5.1] states that the tensor pro-
duct of low er crystal lattices is a  lower crystal lattice. W e note tha t the  mod-
ule  is irreducible , since it is a submodule o f a n  integrable module. Hence the
number of irreducible modules is computable by the q-dimension formula.

A nother im portant rem ark  about the m odule  structure  of u *  i s  for the
Hecke algebra of type A . In  th is  case, the num ber o f irreducible modules is
also know n a s  th e  num ber o f r-regu la r pa rtitions [D J] , and  its generating
function  co inc ides w ith  the  q -d im ension . H e n c e  w e  a g a in  k n o w  th a t the
0 - module u *  fo r the  H ecke  algebra of type  A  is  irreducib le  and  realized as
L (A0 ) . The canonical basis coincides with the  dual basis of irreducible mod-
ules by the above theorem.

(4.7) In n e rp ro d u c t  on negative part of the quantized enveloping algebra
U. (g ) are  introduced in two ways. That in  [G L ] satisfies (ufi , y) (1 — v2) -1

(u, d i  (v )) where di(y) of , is the term appearing in Z1,-,,,,(y) defined in [GL].
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O n  th e  o th e r  h an d , th a t  i n  [K ] sa tis f ie s  (ufi ,  y )  =  ( u ,  A d (t1 )e ' (0 )
[K , 5 .2 .3]. It is easy  to  see  that di(fi u) = f ,  d i (u) u. If w e replace d i by
Ad ( t i )  e ',  w e  have  the  sam e form ula [K , 3.4.4 1 .  H ence these innerproduct
coincide modulo vZ [ [y ] ] .  B y  [K, Proposition 5 .1 .2 ]  , th e  g loba l b a s is  of
Kashiwara satisfies (b, b') = .

U sing  these  p roperties, Grojnowski a n d  Lusztig h a v e  p ro v e d  th a t the
global basis of Kashiwara coincides with the canonical basis of Lusztig[GL].

W hen  m apped  to  a n  irreducible  in tegrable  m odule, non-zero elements
coincide with the  low er c rysta l basis  [K,Theorem 5] , w hich  is  unique up to
isomorphism [K,Theorem 3]. Hence, for the Hecke algebra of type A , Theorem
4.4 verfies a conjecture  of Lascoux-Leclerc-Thibon i f  w e  reca ll th e  remark
stated at the end of the previous subsection.
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