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A duality theorem in Hopf algebras and its applica-
tion to Morava K-theory of BZ/p”

By

Kakhaber KorpzAaYA and Goro NISHIDA

0. Introduction

Let E* () be a complex orientable theory. Then choosing an orientation
class x EE*(BS'), we have an isomorphism E* (BS') =Ex«[[x]], where Ex is
the coefficient ring. Let N be a natural number and let(N]lx=x+F =* +rx (N
times) be the N-sequence, where xr+ry=F (x, y) is the formal group law of
the theory E*. Note that [N]x is the Euler class of the standard S'-bundle

S'— BZ/N — BS'

Therefore if [N] x is not a zero-divisor, from the Gysin sequence it follows
that

E*(BZ/N) = Ex[[x]]/(IN]x).
Suppose that E*(BZ/N) is a finitely generated free Ex-module. Then
E*(BZ/N XBZ/N) = E*(BZ/N) ®g, E*(BZ/N)
and the product map m : BZ/NX BZ/N—BZ/N imduces a ring homomorphism
m* . E*(BZ/N) — E*(BZ/N) ®g, E*(BZ/N).
Thus E*(BZ/N) is a bicommutative Hopf algebra over Ex and so is its dual
homg, (E*(BZ/N), E«).

In this paper we shall study a duality between the algebraic groups of
such Hopf algebras and their duals. For typical application we consider the

p-adic Morava K (n) -theory. Let K(n)* () be the p-adic Morava K (n) -theory
of period 2 so that the coefficient ring is

K(”) * = Zp ['Un, vn_ly t, t—l]/(tpﬂ—l - vn)

where degt =2 and Z, is the ring of p-adic integers. For a Z,-algebra R we
define
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Km)i() =Km)*() ®FR.

If R is a finitely generated free Z,-module, then K (n)%( ) will be a complex
orientable cohomology theory. Throughout this paper for any local field L we
denote by Oy its ring of integers. Suppose K, is such an extension of the
p-adic number field Q, that the residue field Og,/m = Fy. The algebraic
group associated with the Hopf algebra

K (n) oxa (BZ/p") = O, [[2]1/ [p']x,

where [p] x is the p-series of the Lubin-Tate formal group law, can be de-
scribed by the local class field theory (see[3]). Using our duality theorem we
get that the group of homotopy classes of ring spectra maps

BZ/P’+ —K (n) oL

is isomorphic to (Z/p7)". Here L is certain finite free extension of Ok, BZ/p"
is the suspension spectrum of BZ/p", and K (n) . is the ring spectrum of coho-

mology theory K (n)#( ). This is a generalization of the result of the first
named author[4].

1. A duality theorem

In this section by an R-Hopf algebra we mean a bicommutative Hopf
algebra A over a domain R such that A is finitely generated free R-module. If
A is such a Hopf algebra, then for the dual

A* = homg—-module (A, R)

we have an isomorphism A*®z A*= (4 ®z A)™* and A* is an R-Hopf algebra
in our sense. We fix the notations:

m:A ®r A— A multiplication,
u:R—A unit,

A:A—=A®g A comultiplication,
e:A— R counit (augmentation),
s:A—A coinverse (antipode).

Definition 1. 1. For an R-Hopf algebra A and an R-algebra S, let
f. & € homgr-moauie (A. S) .

We define a convolution of f and g by
fxg=m"°(f ® g)° A € homp-moauie(A, S),

where m’ is the multiplication in S.
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Lemma 1. 2. Let A be an R-Hopf algebra and let S be a commutative
R-algebra. Then hom gr—aigesra (A, S) becomes a group with respect to convolution.

Proof. Since S is commutative m’° (f°g) *A € homg-aigesra (4, S). Let u’ be
unit of R-algebra S. It is easy to check that #’°€ is the unit of convolution and
fes is the inverse of f.

Definition 1. 3. For any Hopf algebra, b €A is called grouplike ele-
ment of A4, if Ab=0b®b.

Lemma 1. 4. Let A be an R-Hopf algebra and let S be a commutative
R-algebra. Then the set {grouplike elements in A ® g S} is a group with respect to
multiplication in A Qg S.

Proof. 1t is easy to see that the product of grouplike elements is again
grouplike. Let b€ A ®& S be a grouplike element. Then € (») =1 and by defini-

tion b *+ s(b) =e(d) =1. So s(b) =b71.

Definition 1. 5. For an R-Hopf algebra A and a commutative
R-algebra S, the groups homg_gigesra (A, S)and {grouplike elements in A ® S}

are denoted by Gg(4) (S) and G (A4) (S), respectively.

Lemma 1. 6. Let A be an R-Hopt algebra. The grouplike elements in A
are linearly independent.

Proof. Let K be the quotient field of R. Then A ® x K is a Hopf algebra
over K. We consider that A CA ® K and it is easy to see that grouplike ele-
ments in A have the same property in A ® g K. So it is enough to show that
grouplike elements in A ® p K are linearly independent. Let b, b; €A ®z K are
grouplike elements with b= 21;b;, We may assume that b; are independent.
For any grouplike element b we have € (b)) =1. Then 1=¢ (b) = ZA;e (b;) =
Z/L'. But 4b=0» ®b=Z/1;/1jbi ®b,‘ and 4b= ZZ;Ab,: inb,' ®bi. The b; ®bj are
linearly independent, so by comparing coefficients we get A;; =0 for i ¥4 and
A?=2;. As 21;=1, follows that 2A;b; equals some b;.

Lemma 1. 7. Let A and S be as in the previous lemma. Then

Gr(A) (S) = GE(A™) (S).

Proof. Consider an S-algebra map ¢ : A ® g S—S. This map corresponds
to an element b€ (4 ®z S)*=A*®3 S. In other words for any fEA ®¢ S, ¢
(f) = <f, b>. We denote such ¢ by ¢s. By definition we have:

<f®g, 06> = <f-g,b>=(f+g) = () s (g)
=<f,b> - <g,b> = <fQ®g, b®b>.

Here f and g are any elements of A ®x S. So f®g span (A ®¢ S) ®s(4A ®% S)
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and we get that Ab=b ®b. Now group operation in Gg(4) (S) is defined exact-
ly as multiplication in dual Hopf algebra (4 ® S)*=A4*®; S.

Corollary 1. 8. For an R-Hopf algebra A and a commutative R-algebra
S, Gr(A) (S) and G¥(A) (S) are finite abelian groups.

Proposition 1. 9. Let A and B are finite dimensional Hopf algebras over
an algebraically closed field K. Suppose f : A—B is Hopf algebra monomorphism,
then induced group homomorphism

G(f) : Gk (B) (K) = Gg(A) (K)

1s an eprmorphism.

Proof. See [1], page 180.

Theorem 1.10. Let A be a free bicommutative finite dimensional Hopf
algebra over an algebraically closed field K. Then Gx(A) (K) =Gk (4%*) (K).

Proof. In this proof we shell write simply G () and G* () instead of Gg

() (K) and G*¢ () (K). Consider the inclusion G* (4) —A. Since elements in
G* (A) are linearly independent, we can extend to the group algebra K [G*
(A)] and we get a Hopf algebra monomorphism

it K[G*(A)]—A.
Then by Proposiﬁon 1. 9 induced homomorphism
Ea=GG):GUA) =~ GKI[G*(A)])
is an epimorphism. Note that
G(K[G*(4)]) = homg-sigerra (K[G*(4)], K) = hom (G*(A4), K*) = G*(4)"

G*(A)" is the character group of G*(A4). Note that the adjoint of & : G(4) —
G*(A)" is the natural pairing ¢ : G(4) X G*(4) — K* given by ¢ (o, x) =«
(x). The same argument for A* gives an epimorphism &4x : G (4%) =G* (4 %)
and taking the character dual we have a monomorphism

Since all groups are finite abelian we have (G*(4*)")"=G*(A4*). By Lemma
1.7G*(A*)=G(A) and G(A*) =G*(A). It is easy to check that the resulting
map G (4) =G*(4)" is nothing but &,. Hence &, is isomorphism.

Let K be a discrete valuation field with maximal ideal of Ok generated by
7. Let A be an Og-Hopf algebra. In A ® ¢, K we have induced K-Hopf algebra
structure.

Lemma 1. 11. If uEA ®oy K is grouplike element, then u€A.
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Proof. Let u €A ® o K be a grouplike element. Assume that u € A. We
consider additive bases of A, e1, ez, ***, en. Then u = Zbse;, for some b; € K.
Without losing generality we assume that b; have minimal valuation. Let v (b;)
=—x<0. Then T"» €A and

AT u) =T u®u =2 w* bibje; ®e;

ij
must be in A ®A. But v (7%h,%) = —x < 0. So 4 (7"u) €A ® A and we get the

contradiction.

Definition 1. 12. Let S be a quotient field of domain R and let S be
an algebraic closure of S. We define a splitting field of R-Hopf algebra A as a

subfield of S containing splitting fields of both S-algebras A ® S and A* ®4
S.

Proposition 1. 13. Let K be a discrete valuation field and let A be a
free bicommutative finite dimensional Og-Hopf algebra. If L is a splitting field of
A then Gox(A) (OL) ZGox (A*) (Oy).

Proof. For the simplicity of the notation we write G instead of Gox. From
Theorem 1.10 it is clear that
GA) L) =64 Q).

Here L is finite over K and thus the extension of the valuation of K to L is dis-
crete. Now according to Lemma. 1. 11 we have

GA) (L) =G(4) (0
and
G(A*) (L) =G (4% (O
Hence G (A4) (O) = G(A™*) (Oy).

2. Topological Application

Now we consider ring spectra maps

BZ/ps = K ().

Group operation among such ring spectra maps f and g is defined by following
composition

. d fA
BZ/ps — BZ/p's N BZ/p+— Km)g A Kz — K () x.

Let us denote Hopf algebra K (n) % (BZ/p") by Ar(, 7),

Arln,7) = Km)% BZ/p) = R[[x]1/[p)x.
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In this case [p]x is p-series of Lubin-Tate formal group law F (x, y). Thus
we can choose such an orientation x, that

[plz = px — =
So Ag (n, 1) is free of rank p” over R. We write its algebraic dual as A% (n, 7),
A? (”» 7) = homg-modute (AR (n. 7') , R) .
Let f be a spectra map of degree 0
f: BZ/P’+ - K(n) R.
We can consider f as an element of cohomology ring
f=f() €EKn)% (BZ/p") = Arln, 7)
and thus we can consider f as a homomorphism
f:Af(m,r) =R
Lemma 2. 1. The following conditions are equivalent :
a) f € homg_aigesra (AI’!!‘("- 7'), R) .
b) fis a ring spectra map BZ/p + — K(n)r
o) fF ) =7@)f).
Proof. a) means that following diagram is commutative

A¥(n,r) ®rAFm,v) ™  AfF@®,7)

l fof Vf
R®r R = R.
Considering the dual diagram we get
Ag(n,7r) ®r Arn, 7) }I_{ Arn, 7)
tf* e tr*
R®z R = R

where f*(1) = f(z) and ¥(x) =F (1 ®z, x ®1). Thus commutativity of this
diagram implies that a) < c).
b) means that we have commutative diagram

BZ/p", NBZ/p", N Kwn e ANKng

Lm Vo
BZ/P'+ _/’ K(n)R.
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We can consider that fem, g (f A f) EK )% (BZ/p” X BZ/p") . By definition
we have that

fem =m*(fx)) =f(F(x,y))
and
pe(fAN) =1 fy).
Sob) &c).

Let C, be the completion field of the algebraic closure of p-adic numbers
Q;. Instead of Oc, we shall simply write O.

Theorem 2. 2.  Go(Ao(n, 1)) (0) = (Z/p")".

Proof. Seel[3], Lemma 4. 7. (ii) and Lemma 4.8. (ii)

Theorem 2. 3. Let L be a splitting field of Aog,(n, 7). Then the group G
of homotopy classes of ring spectra maps

BZ/p"s = K)o,
is isomorphic to (Z/p")™.

Proof. According to the Lemma 2.1 we see that G is equal to Go, (4%, (n,
7)) (Or) as a set. Considering definitions of group operations in G and Go,

(A48,(n, 7)) (Or) we find out that in fact there is a group isomorphism
G = Go, (A8, (n, 7)) (O).
A, (n, r) and L satisfy the condition of the Proposition 1. 13. Thus
Go, (A8, (n, 7)) (O1) = Go, (A8, (n, 7)) (Oy).
But it is clear that
Go(Ao,(n, 7)) (O) = Go(Ao(n, ) (0)
and from Theorem 2. 2 follows that G= (Z/p")".
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