A duality theorem in Hopf algebras and its application to Morava K-theory of $B\mathbf{Z}/p^r$

By

Kakhaber Kordzaya and Goro Nishida

0. Introduction

Let $E^*()$ be a complex orientable theory. Then choosing an orientation class $x \in E^2(BS^1)$, we have an isomorphism $E^*(BS^1) \cong E_*[[x]]$, where E_* is the coefficient ring. Let N be a natural number and let $[N]x = x +_F \cdots +_F x$ (N times) be the N-sequence, where $x +_F y = F(x, y)$ is the formal group law of the theory E^* . Note that [N]x is the Euler class of the standard S^1 -bundle

$$S^1 \rightarrow B\mathbf{Z}/N \rightarrow BS^1$$

Therefore if [N] x is not a zero-divisor, from the Gysin sequence it follows that

$$E^*(B\mathbf{Z}/N) \cong E_*[[x]]/([N]x).$$

Suppose that $E^*(B\mathbf{Z}/N)$ is a finitely generated free E_* -module. Then

$$E^*(B\mathbf{Z}/N \times B\mathbf{Z}/N) \cong E^*(B\mathbf{Z}/N) \otimes_{E_*} E^*(B\mathbf{Z}/N)$$

and the product map $m: B\mathbf{Z}/N \times B\mathbf{Z}/N \rightarrow B\mathbf{Z}/N$ imduces a ring homomorphism

$$m^* : E^*(B\mathbf{Z}/N) \to E^*(B\mathbf{Z}/N) \otimes_{E_*} E^*(B\mathbf{Z}/N).$$

Thus $E^*(B\mathbf{Z}/N)$ is a bicommutative Hopf algebra over E_* and so is its dual

$$hom_{E_*}(E^*(B\mathbf{Z}/N), E_*).$$

In this paper we shall study a duality between the algebraic groups of such Hopf algebras and their duals. For typical application we consider the p-adic Morava K(n)-theory. Let $\overline{K(n)}*()$ be the p-adic Morava K(n)-theory of period 2 so that the coefficient ring is

$$\overline{K(n)}_* = \mathbf{Z}_p[v_n, v_n^{-1}, t, t^{-1}]/(t^{p^{n-1}} - v_n)$$

where $\deg t = 2$ and \mathbf{Z}_p is the ring of p-adic integers. For a \mathbf{Z}_p -algebra R we define

Received December 14, 1995

$$\overline{K(n)}_{R}^{*}() = \overline{K(n)}^{*}() \otimes R.$$

If R is a finitely generated free \mathbb{Z}_p -module, then $\overline{K(n)}_R^*()$ will be a complex orientable cohomology theory. Throughout this paper for any local field L we denote by O_L its ring of integers. Suppose K_n is such an extension of the p-adic number field \mathbb{Q}_p that the residue field $O_{K_n}/\mathbb{m} \cong \mathbb{F}_{p^n}$. The algebraic group associated with the Hopf algebra

$$\overline{K(n)}_{O_{Kn}}^{0}(B\mathbf{Z}/p^{r}) = O_{Kn}[[x]]/[p^{r}]x,$$

where [p]x is the p-series of the Lubin-Tate formal group law, can be described by the local class field theory (see [3]). Using our duality theorem we get that the group of homotopy classes of ring spectra maps

$$B\mathbf{Z}/p_+^r \to \overline{K(n)}_{OL}$$

is isomorphic to $(\mathbf{Z}/p^r)^n$. Here L is certain finite free extension of O_{Kn} , $B\mathbf{Z}/p^r_+$ is the suspension spectrum of $B\mathbf{Z}/p^r_+$ and $\overline{K(n)}_L$ is the ring spectrum of cohomology theory $\overline{K(n)}_L^*$ (). This is a generalization of the result of the first named author [4].

1. A duality theorem

In this section by an R-Hopf algebra we mean a bicommutative Hopf algebra A over a domain R such that A is finitely generated free R-module. If A is such a Hopf algebra, then for the dual

$$A^* = hom_{R-module}(A, R)$$

we have an isomorphism $A^* \otimes_R A^* \cong (A \otimes_R A)^*$ and A^* is an R-Hopf algebra in our sense. We fix the notations:

 $m: A \otimes_R A \to A$ multiplication, $u: R \to A$ unit, $\Delta: A \to A \otimes_R A$ comultiplication, $\varepsilon: A \to R$ counit (augmentation), $s: A \to A$ coinverse (antipode).

Definition 1.1. For an R-Hopf algebra A and an R-algebra S, let

$$f, g \in \text{hom}_{R-module}(A, S)$$
.

We define a convolution of f and g by

$$f * g = m' \circ (f \otimes g) \circ \Delta \in \text{hom}_{R-module}(A, S),$$

where m' is the multiplication in S.

Lemma 1. 2. Let A be an R-Hopf algebra and let S be a commutative R-algebra. Then hom R-algebra (A, S) becomes a group with respect to convolution.

Proof. Since S is commutative $m' \circ (f \circ g) \circ \Delta \in \hom_{R-algebra}(A, S)$. Let u' be unit of R-algebra S. It is easy to check that $u' \circ \varepsilon$ is the unit of convolution and $f \circ s$ is the inverse of f.

Definition 1. 3. For any Hopf algebra, $b \in A$ is called grouplike element of A, if $\Delta b = b \otimes b$.

Lemma 1. 4. Let A be an R-Hopf algebra and let S be a commutative R-algebra. Then the set $\{grouplike\ elements\ in\ A\otimes_R S\}$ is a group with respect to multiplication in $A\otimes_R S$.

Proof. It is easy to see that the product of grouplike elements is again grouplike. Let $b \in A \otimes_R S$ be a grouplike element. Then $\varepsilon(b) = 1$ and by definition $b \cdot s(b) = \varepsilon(b) = 1$. So $s(b) = \varepsilon^{-1}$.

Definition 1.5. For an R-Hopf algebra A and a commutative R-algebra S, the groups $\hom_{R-algebra}(A, S)$ and $\{\text{grouplike elements in } A \otimes_R S\}$ are denoted by $G_R(A)(S)$ and $G_R^*(A)(S)$, respectively.

Lemma 1. 6. Let A be an R-Hopt algebra. The grouplike elements in A are linearly independent.

Proof. Let K be the quotient field of R. Then $A \otimes_R K$ is a Hopf algebra over K. We consider that $A \subseteq A \otimes_R K$ and it is easy to see that grouplike elements in A have the same property in $A \otimes_R K$. So it is enough to show that grouplike elements in $A \otimes_R K$ are linearly independent. Let $b, b_i \in A \otimes_R K$ are grouplike elements with $b = \sum \lambda_i b_i$. We may assume that b_i are independent. For any grouplike element b we have $\varepsilon(b) = 1$. Then $1 = \varepsilon(b) = \sum \lambda_i \varepsilon(b_i) = \sum \lambda_i$. But $\Delta b = b \otimes b = \sum \lambda_i \lambda_j b_i \otimes b_j$ and $\Delta b = \sum \lambda_i \Delta b_i = \sum \lambda_i b_i \otimes b_i$. The $b_i \otimes b_j$ are linearly independent, so by comparing coefficients we get $\lambda_{ij} = 0$ for $i \neq j$ and $\lambda_i^2 = \lambda_i$. As $\sum \lambda_i = 1$, follows that $\sum \lambda_i b_i$ equals some b_i .

Lemma 1.7. Let A and S be as in the previous lemma. Then

$$G_R(A)(S) \cong G_R^*(A^*)(S)$$
.

Proof. Consider an S-algebra map $\psi: A \otimes_R S \to S$. This map corresponds to an element $b \in (A \otimes_R S)^* = A^* \otimes_R S$. In other words for any $f \in A \otimes_R S$, ψ $(f) = \langle f, b \rangle$. We denote such ψ by ψ_b . By definition we have:

$$\langle f \otimes g, \delta b \rangle = \langle f \cdot g, b \rangle = \langle f \cdot g \rangle = \psi_b(f) \psi_b(g)$$

= $\langle f, b \rangle \cdot \langle g, b \rangle = \langle f \otimes g, b \otimes b \rangle$.

Here f and g are any elements of $A \otimes_R S$. So $f \otimes g$ span $(A \otimes_R S) \otimes_S (A \otimes_R S)$

and we get that $\Delta b = b \otimes b$. Now group operation in $G_R(A)(S)$ is defined exactly as multiplication in dual Hopf algebra $(A \otimes_R S)^* = A^* \otimes_R S$.

Corollary 1. 8. For an R-Hopf algebra A and a commutative R-algebra S, $G_R(A)$ (S) and $G_R^*(A)$ (S) are finite abelian groups.

Proposition 1. 9. Let A and B are finite dimensional Hopf algebras over an algebraically closed field K. Suppose $f: A \rightarrow B$ is Hopf algebra monomorphism, then induced group homomorphism

$$G(f): G_{\kappa}(B)(K) \rightarrow G_{\kappa}(A)(K)$$

is an epimorphism.

Proof. See [1], page 180.

Theorem 1.10. Let A be a free bicommutative finite dimensional Hopf algebra over an algebraically closed field K. Then $G_K(A)$ $(K) \cong G_K(A^*)$ (K).

Proof. In this proof we shell write simply G() and $G^*()$ instead of $G_K()$ (K) and $G^*_K()$ (K). Consider the inclusion $G^*(A) \rightarrow A$. Since elements in $G^*(A)$ are linearly independent, we can extend to the group algebra $K[G^*(A)]$ and we get a Hopf algebra monomorphism

$$i: K[G^*(A)] \rightarrow A$$
.

Then by Proposition 1. 9 induced homomorphism

$$\xi_A = G(i) : G(A) \rightarrow G(K[G^*(A)])$$

is an epimorphism. Note that

$$G(K[G^*(A)]) = hom_{K-algebra}(K[G^*(A)], K) \cong hom(G^*(A), K^*) = G^*(A)^{\land}$$

 $G^*(A)$ is the character group of $G^*(A)$. Note that the adjoint of $\xi_A:G(A)\to G^*(A)$ is the natural pairing $\varphi:G(A)\times G^*(A)\to K^*$ given by $\varphi(\alpha,x)=\alpha(x)$. The same argument for A^* gives an epimorphism $\xi_{A^*}:G(A^*)\to G^*(A^*)$ and taking the character dual we have a monomorphism

$$(G^*(A^*)^{\wedge})^{\wedge} \rightarrow G(A^*)^{\wedge}$$
.

Since all groups are finite abelian we have $(G^*(A^*)^{\wedge})^{\wedge} \cong G^*(A^*)$. By Lemma 1.7 $G^*(A^*) \cong G(A)$ and $G(A^*) \cong G^*(A)$. It is easy to check that the resulting map $G(A) \rightarrow G^*(A)^{\wedge}$ is nothing but ξ_A . Hence ξ_A is isomorphism.

Let K be a discrete valuation field with maximal ideal of O_K generated by π . Let A be an O_K -Hopf algebra. In $A\otimes_{O_K} K$ we have induced K-Hopf algebra structure.

Lemma 1.11. If $u \in A \otimes_{O_K} K$ is grouplike element, then $u \in A$.

Proof. Let $u \in A \otimes_{O_K} K$ be a grouplike element. Assume that $u \notin A$. We consider additive bases of A, e_1 , e_2 , \cdots , e_n . Then $u = \sum b_i e_i$, for some $b_i \in K$. Without losing generality we assume that b_1 have minimal valuation. Let $v(b_1) = -x < 0$. Then $\pi^x u \in A$ and

$$\Delta(\pi^x u) = \pi^x u \otimes u = \sum_{i,j} \pi^x b_i b_j e_i \otimes e_j$$

must be in $A \otimes A$. But $v(\pi^x b_1^2) = -x < 0$. So $\Delta(\pi^x u) \notin A \otimes A$ and we get the contradiction.

Definition 1. 12. Let S be a quotient field of domain R and let \overline{S} be an algebraic closure of S. We define a splitting field of R-Hopf algebra A as a subfield of \overline{S} containing splitting fields of both S-algebras $A \otimes_R S$ and $A^* \otimes_R S$.

Proposition 1. 13. Let K be a discrete valuation field and let A be a free bicommutative finite dimensional O_K -Hopf algebra. If L is a splitting field of A then $G_{O_K}(A)$ $(O_L) \cong G_{O_K}(A^*)$ (O_L) .

Proof. For the simplicity of the notation we write G instead of G_{OR} . From Theorem 1.10 it is clear that

$$G(A)(L) \cong G(A^*)(L)$$
.

Here L is finite over K and thus the extension of the valuation of K to L is discrete. Now according to Lemma. 1. 11 we have

$$G(A)(L) = G(A)(O_I)$$

and

$$G(A^*)(L) = G(A^*)(O_t)$$

Hence $G(A)(O_L) \cong G(A^*)(O_L)$.

2. Topological Application

Now we consider ring spectra maps

$$B\mathbf{Z}/p^r_+ \to \overline{K(n)}_R$$

Group operation among such ring spectra maps f and g is defined by following composition

$$B\mathbf{Z}/p_+^r \xrightarrow{d} B\mathbf{Z}/p_+^r \wedge B\mathbf{Z}/p_+^r \xrightarrow{f \wedge g} \overline{K(n)}_R \wedge \overline{K(n)}_R \xrightarrow{\mu} \overline{K(n)}_R.$$

Let us denote Hopf algebra $\overline{K(n)}_{R}^{0}(B\mathbf{Z}/p^{r})$ by $A_{R}(n, r)$,

$$A_R(n,r) = \overline{K(n)}_R^0 (B\mathbf{Z}/p^r) = R[[x]]/[p^r]x.$$

In this case [p]x is p-series of Lubin-Tate formal group law F(x, y). Thus we can choose such an orientation x, that

$$[p]x = px - x^{pn}$$

So $A_R(n, r)$ is free of rank p^n over R. We write its algebraic dual as $A_R^*(n, r)$,

$$A_R^*(n, r) = hom_{R-module}(A_R(n, r), R).$$

Let f be a spectra map of degree 0

$$f: \mathbf{BZ}/p^r_+ \to \overline{K(n)}_R.$$

We can consider f as an element of cohomology ring

$$f = f(x) \in \overline{K(n)}_R^0 (B\mathbf{Z}/p^r) = A_R(n, r)$$

and thus we can consider f as a homomorphism

$$f: A_R^*(n, r) \to R.$$

Lemma 2. 1. The following conditions are equivalent:

- a) $f \in \text{hom}_{R-algebra}(A_R^*(n, r), R)$;
- b) f is a ring spectra map $BZ/p_+^r \to \overline{K(n)}_R$
- c) f(F(x, y)) = f(x)f(y).

Proof. a) means that following diagram is commutative

$$A_{R}^{*}(n, r) \otimes_{R} A_{R}^{*}(n, r) \longrightarrow A_{R}^{*}(n, r)$$

$$\downarrow f \otimes f \qquad \qquad \downarrow f$$

$$R \otimes_{R} R \qquad = \qquad R.$$

Considering the dual diagram we get

$$A_{R}(n, r) \otimes_{R} A_{R}(n, r) \qquad \stackrel{\Psi}{\leftarrow} \qquad A_{R}(n, r)$$

$$\uparrow f^{*} \otimes f^{*} \qquad \qquad \uparrow f^{*}$$

$$R \otimes_{R} R \qquad = \qquad R$$

where $f^*(1) = f(x)$ and $\Psi(x) = F(1 \otimes x, x \otimes 1)$. Thus commutativity of this diagram implies that a) \Leftrightarrow c).

b) means that we have commutative diagram

$$B\mathbf{Z}/p^{r}_{+} \wedge B\mathbf{Z}/p^{r}_{+} \xrightarrow{f \wedge f} \overline{K(n)}_{R} \wedge \overline{K(n)}_{R}$$

$$\downarrow m \qquad \qquad \downarrow \mu$$

$$B\mathbf{Z}/p^{r}_{+} \qquad \overline{K(n)}_{R}.$$

We can consider that $f \circ m$, $\mu \circ (f \wedge f) \in \overline{K(n)}_R^0(B\mathbf{Z}/p^r \times B\mathbf{Z}/p^r)$. By definition we have that

$$f \circ m = m^*(f(x)) = f(F(x, y))$$

and

$$\mu \circ (f \wedge f) = f(x) f(y).$$

So b) \Leftrightarrow c).

Let C_p be the completion field of the algebraic closure of p-adic numbers Q_p . Instead of O_{C_p} we shall simply write O.

Theorem 2. 2. $G_O(A_O(n, r)) (O) \cong (\mathbf{Z}/p^r)^n$.

Proof. See [3], Lemma 4.7. (ii) and Lemma 4.8. (ii)

Theorem 2. 3. Let L be a splitting field of $A_{O_{Kn}}(n, r)$. Then the group G of homotopy classes of ring spectra maps

$$B\mathbf{Z}/p^r_+ \to \overline{K(n)}_{OL}$$

is isomorphic to $(\mathbf{Z}/p^r)^n$.

Proof. According to the Lemma 2.1 we see that G is equal to $G_{OL}(A_{OL}^*(n,r))$ (O_L) as a set. Considering definitions of group operations in G and $G_{OL}(A_{OL}^*(n,r))$ (O_L) we find out that in fact there is a group isomorphism

$$G \cong G_{OL}(A_{OL}^*(n, r)) (O_L).$$

 $A_{0L}^{*}(n,r)$ and L satisfy the condition of the Proposition 1.13. Thus

$$G_{O_L}(A_{O_L}^*(n, r)) (O_L) \cong G_{O_L}(A_{O_L}^*(n, r)) (O_L).$$

But it is clear that

$$G_{O_L}(A_{O_L}(n,r)) (O_L) \cong G_O(A_O(n,r)) (O)$$

and from Theorem 2. 2 follows that $G \cong (\mathbf{Z}/p^r)^n$.

DEPARTMENT OF MATHEMATICS
KYOTO UNIVERSITY

References

- [1] E. Abe, Hopf Algebras. Cambridge Tracts in Mathematics, Cambridge University Press, 1977.
- [2] M. Hazewinkel, Formal Groups and Applications, Academic Press, New York, 1978.
- [3] K. Iwasawa, Local Class Field Theory, Oxford Mathematical Monographs,. Oxford University

Press, 1986.

- [4] K.Kordzaya, Multiplicative Elements in Morava K-theory of BZ/p, to appear.
- [5] G. Nishida, Note on the Hopkins-Kuhn-Ravenel character, preprint.
- [6] D. Ravenel, Complex Codordism and Stable Homotopy Groups, Academic Press, Orlando, Florida, 1986.
- [7] W. C. Waterhouse, Introduction to Affine Group Schemes, Graduate Texts in Mathematics 66, Springer-Verlag, 1979.