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On the zeros of the Epstein zeta functions
By

Akio Fuj

§ 1. Introduction

The purpose of the present article is to extend our recent results [ 8]
concerning the distribution of the zeros of the Epstein zeta functions. We have
shown there that the “k-analogue” of “the GUE law” fails for the Epstein zeta
functions { (s, Q). A more precise definition of “the GUE law” and also the
meaning of the “k-analogue” will be given below. The Epstein zeta function
C(s,Q) is defined by

((,Q = %Z,Q(l’. y) S for R(s) > 1,

where x, y runs over all integers excluding (x,y) = (0,0), s = ¢ + it with
real numbers o and ¢, Q (x,y) = ax®+ bry +cy® is a positive definite
quadratic form with discriminant 4 = b*> — 4ac,a,b and ¢ are real numbers
and a > 0 and we put

i
2a -

Some of the well known results concerning C(s, Q) will be recalled below. In
the present article, we are concerned with the distribution of the zeros of the
Epstein zeta functions associated with the positive definite quadratic forms of
more variables. However, we shall treat only the simpler cases among them,
for simplicity. We shall also give some new results concerning the simplest
C(s, Q). A further extension is possible and will appear elsewhere.

Let d be a positive number. Here we are mainly concerned with the Ep-
stein zeta functions of the form

—_ ’ 1
Ga (s) —Z (mt +m3 +d (m3 +m3))°"

where R (s) > 2, the dash indicates that m;s run over the integers excluding
the case (my, myms my) = (0,0,0,0). We are particularly intersted in the
distribution of the zeros of G4(s). We put for a convenience
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k= 4d.

We shall show below that for G4 (s), the “k-analogue” of the “Riemann
Hypothesis” holds but the “g-analogue” of “the GUE law” fails. These results
are the extensions of both Stark's result [23] on the “k-analogue” of the
“Riemann Hypothesis” and the author's result [8] on the failure of the
“k-analogue” of “the GUE law” for { (s, Q). We shall describe these in a more
precise form below.

We start with recalling some of the known results on {(s, Q). For a con-
venience, we put

Z(s,Q) = 2L(s, Q).

Then Z (s, Q) is known to have an analytic continuation to the whole complex
plane with a simple pole at s = 1. The residue is known to be

21

—_W :
The following expansion (cf. Theorem 1 in p.14 of Siegel [21]) at s=1 is
fundamental.

Kronecker’s Limit Formula. At s = 1, we have the following expan-
sion. :

2
()
26,0 = M+ 28 (2o + osgfy — 20e n(g; + 401

+Ai(s — 1)+,

where Cy 1s the Euley constant, we put
n(z) = ¢ TT (1 — e2mime)
m=1
for complex z = x + iy with y > 0 and A, is some conslant.

It is also well-known that Z (s, @) has the following functional equation.

Functional Equation.

(Jﬂl)%n‘sl"(s)Z(s. Q) = (L%)L;—Sﬂ_“_wr(l —5)2(1-5.Q).

I'(s) being the I" - function.
Another fundamental formula is the following.
Chowla-Selberg’s Formula.

= 2w

Z(s,Q) = 2a~5L (2s) + 2a=k"% {(2s —l)—r(sy——
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l o0
4a—s7rsk7°52 =1 (nn'b)f“’ s—=3  _mnky+yb)
+ TG LM 0 (n) cos o)) e dy,

n=1
where {(s) is the Riemann zeta function and we put
O1-2s(n) = Zdl_zs.
din

This gives first the Kronecker's limit formula in the following form (cf.
(39) of p.532 in vol. 1 of Selberg[20]).

2

2(s.Q) = ‘m+%(2co+1og]—[)+—

Zo_,(n cos< 7rb> -anyla) + A, — 1)+

This implies immediately Kronecker's limit formula as stated above.
For the simplest case, Q (x,y) = 2* + y° we have

Z(s) = Z,(mf +m3) s = Z rin) =4L(s)L(s, x),

n=1

where x is the non-principal Dirichlet character mod 4, L (s, x) is the corres-
ponding Dirichlet L-function and r(n) for n = 0 is defined by

rn) = Z 1.

n=mg+ms
—oo<m1,m2< oo

Using the properties of {(s) and L (s,x), we get the following identities.

ol 1 72-2 \ —-2nn
m\2Co + logy ) + 5 +4r ) o-1(n)e

n=1
= 27(Co — log2 — log|n () |?).

where L' (1, x) is the value of the derivative of L (s, x) at s = 1. Using the fol-
lowing well known result

4(CoL (1, x) + L7, x))

L, x) =

we get

00 0o

L) = - ), HeleRn Z(logél(im—_ll )

n=1
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= Lioges — Lioge3 + L(1os8 _ logs)

8 2\ 3 5
+af (- g) (gl A el S,

= 7 (Co — 2log2 — dlogln () ).

The last expression is very effective when one wants to have a numerical
value of L' (1, x) as is already mentioned in p.75 of Siegel [21] and also will
be used below. .

Chowla-Selberg's formula gives next a very good approximation not only
at s=1, but also on the real line. In particular, it implies that

N L)

641%a?

ii . (ﬂZE)fm -1 —M(yw”)
+ /s 06 (n) cos 2 , Y e dy
n=1

(cf. (29) of p.529 in vol. 1. of Selberg[20]). Thus for A = — 43 or — 163,
Chowla and Selberg have obtained

2(%,@) <o,

Using this kind of expression, Bateman-Grosswald [2] has also shown that

z(% Q) > 0ifk > 7.0556

and

1 /3
Z(Z,Q)<01f 2 <k <7.055

Thus they have shown that Z (s, Q) has a real zero between :1; and 1 if £ >

7.0556. In fact, the above expression on Z(?ZI—’Q) gives further the following

result which supplements the above results of Bateman-Grosswald [2] when &
= 0. We shall prove the following slighty more general result.

Corollary 1. Suppose that Q (x,y) = ax® + bxry + cy? is a positive de-

J1b? — dac

finite quadratic form, a > 0 and % is an even integer. Let k = o be as

above. Then there exist two positive numbers ky and ky which satisfy 0 < ky < k,
and the following three properties.

(i) Z%,Q) =0whenk=klork#kz.
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Moreover s = % is a double zero of Z (s, Q) for both cases.
(ii) Z(% Q) > 0when 0 <k <k ork > ks

Hence in this case, Z (s, Q) has one real zevo in 0 < R(s) < % and one

real zeroin%<fﬁ(s) <land Z(5,Q) *0ats= 0,%—(mdl

(i31) Z(% Q) < 0 when by < k < k.

This result is certainly more precise and more comprehensive than Bate-
man and Grosswald’s result mentioned above, although there is some restric-
tion to b. Our proof suggests that the last restriction might be relaxed further.

A rough numerical calculation shows that for b = 0, we can take the
above k; and k; as follows.

b, = 0.1417332---
and
ky = 7.055507955448---

To prove that 71; is a double zero in (i) of Corollary 1, we shall use the
following result which holds for a general Q.
Corollary 2.

(1) Z(3.Q) = 2a7HC3 — dlog2 — 410g2 - log — (105 Z)’

—loga - (Co — logﬂ —210g2) + 2(10% + Co + Zlog2>

Z cos( )j;wy—le—-ﬂ:nk(u+y-l)dy}'

n=1
- (1 N 2 [ 1 5 | 1\ _ ) 1
1) Z (2,Q> = ﬁ[ 5loga JEZ(Z,Q) log a JEZ(Z,Q)
3 3
—Z(log%) —8log? - (log—) + (4CE—16l0g?2—8Cy) log
—1—34{(3) + %cg + 4C%0gd — %10g34 + 16C, — 8C,Co
— 8Cylogd + D(%, Q) [—71'2 + 2(Co + 2log2)?

+ 4(Cy + 2log2) log— + 2(log-—> } + 2D’ (% Q)} |
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where we write the Laurent e;rpansion of C(s) ats =1 in the following form
L) =~=g+Ct+Cls—1 +Cls — 1)+

and we put

o

D(s,Q) = Zns‘%ol-zs(n)cos< )f ySTRe kW Vg

n=1
Moreover, when k is sufficiently large, then we can locate the real zeros
found in (ii) of Corollary 1 more precisely as follows.
Corollary 3. Suppose that Q (x,y) = ax® + bxy + cy? is a positive de-

/|b2 4ac|

finite quadratic form with a > 0. Let kb = be sufficiently large. Then

Z (s, Q) has two real zevos py and 1 — oy, where
30+ Lol
Pk—ﬂkl‘i' b k+0k as k — o,

Chowla-Selberg's formula plays also an important role when one investi-
gates the distribution of the complex zeros of Z (s, Q).
In fact, Stark [23] has shown that

for k > K, all the zevos of {(s, Q) in the region —1 <0 <2, —2k <t < 2k
are simple zeros; with the excepltion of two real zeros between O and 1, all are on the

line0=%and that for 0 < T < 2k,

N(T,Q) = —1og( ) + 0 (log logT),

where N (T, Q) denotes the number of the zeros of { (s, Q) in the region —1 < ¢
<2,0<¢<T

This is the “k-analogue” of “the Riemann Hypothesis” noticed above. (We

have replaced Stark's remainder term O (log3 (T + 3) (loglog (T +3)) %) in
N(T, Q) by O(loglogT). (cf. Remark in p.145 of Fujii[8].))

This seems to be a surprising result, because it seems to prévide us a key
to understand the following two opposite types of results. On one hand, in cer-
tain cases the Epstcin zeta functions Z (s, Q) have even infinitely many zeros
in R} (s) > 1 (cf. Davenport and Heilbronn [4]). This is because they do not
have Euler product in general. On the other hand, they have infinitely many

zeros on the critical line R (s) = % (cf. Potter-Titchmarsh [18] and Kober
[14]) and even strongly under certain hypothesis, almost all the zeros of Z (s,

Q) lie on the the critical line R (s) = % although they have not Euler product
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in general (cf. Bombieri and Hejhal[3] and Hejhal [11]).

To understand the situation more clearly, we have shown recently that
“k-analogue” of “the GUE law” fails for Z (s, Q). This should be distinguished
completely from the zeta functions like {(s), as we have seen in the previous
Fujii[6] [7] (cf. also Ozluk [17]).

To be more precise, here we shall define the notion “the GUE law”. For
C(s), we know (cf. p.212 of Titchmarsh [25]) that the number N (T) of the
zeros B+iy of {(s) in0 <7y < T,0<pB<1is given by

NIT) =2 9(T) + 1+ 5(D),

where we suppose that T # 7 for any 7, 9 (T) is the continuos function de-
fined by

9(1) = 3(1ogn(} + )~ $710g 7
with
9(0) =0
and
S(r) = largC( + zT)
It is well known that

1,7

+ +
48T~ 57607

T
9(1) = Flogye 5 -

ool

When T = 7, then we put
N(T) =5 (N(T +0) +N(T = 0)).

We have shown in [6] under the Riemann Hypothesis and the Montgomery's
Conjecture that for T > To and for 0 < a = o (logT),

Tf ( < 2na ) S(t))dt — _i;{log(Zn'a) — Ci(2ra)

08
—2ra * Si2ra) + w?a — cos 2ma) + 1+ Co +0(1)}.

We call the right hand side the GUE part and the set of a for which the above
asymptotic law holds, namely, {a;0 < a = 0 (logT)}, in this case, the univer-
sal range of a. The left hand side is, essentially, the number variance

Tf ( ( lZm )—N(t) —a>dt.
ogy
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We say that {(s) obeys “the GUE law” if the number variance

7). (s(ele +§))=slole - 5))) ax

Tf ( ( 2:;_) —S(t))zdt

~7rl—2{log(27ra) — Ci(2ra) — 2na + Si(2na) + mPa — cos 2na) + 1 + Co}

or

is

as T — ©© in the universal range of a, which includes at least the range where
a— o as T — o where G (x) denotes the inverse function of %19 (t) for t >
to. This notion can be defined generally, in particular, for the Epstein zeta
ZHT must be modified (cf. Fujii [7] [8]), as will

log——2 7

functions, although G (x) or

be seen below.
Now we turn to the Epstein zeta functions and recall our results on the
zeros of Z (s, Q). We notice first that for 0 < T < 2k,

N(T,Q) = Lo(T) +4¢(T),
where

+iT
Lo(T) = —arg<k>2 +%argf’(%+iT>+%argC(] +4i2T)

and

l4o(T)| < C,

C belng always some positive constant in this article. Since

%arg(%)éHT + %arg F(% + iT) I ! g< ) + O(l)

the number variance with which we are concerned is

Tf” 2<Sq<t + kT) —So(t))dt
log—

T

where we put

Solt) = 2 argl(1 + i20) + Ao (0).
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If it obeys”the GUE law”, then it must be that
2T-2
Tf Selt

with some positive constant C. Contrary to this, we have shown in[ 8] that
fork > K and 0 < T <X k, there exists some positive constant C such that

Tf” 2<Sq<t + kT) —SQ(t))dt <c

lg——

2
—) —Sq(t))dt ~Clog@xas a—
log——

uniformly for positive a & Tlog%.

We notice that in p.141 of [ 8], we have stated that this holds uniformly

for positive a < —}Elog%. However, as the proof shows that the last condition

)— So(t)>dt <C

uniformly for positive a € klog%. This is the failure of the “k-analogue” of

can be relaxed as above.
Consequently, we see that as k — o

e

log*

“the GUE law” for the Epstein zeta functions {(s, Q).

As an intermediate between { (s, Q) and G4 (s), we should mention the
study of Chowla and Selberg (cf. pp. 532-534 in vol. 1 of [20]) on the Epstein
zeta function of the following form

Hu(s) = ). Gnf+mb + dmd)

where R (s) > % and the dash indicates that m;' s run over the integers ex-
cluding the case (my, mz, ms) = (0,0,0). They have proved first that

2 ((2s—2)
—1) ds—l

Hai(s) = Z(s) + G

() (-

~nm(y+y-l) s=2
e DL | vy,

n=1 u|n

where Z (s) is introduced above. This expression gives an analytic continua-

tion of Hy(s) to the whole complex plane with a simple pole at s = % with the
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residue % Further they have given a Kronecker’s limit formula as follows.

2

lim{H(s) — —@3

s-»% S —§

= 28 36,2~ g ) + 2(3) + %i( FLo(m))erse

n=1 u2n

From the above expression they have proved also, using the fact that { (—2)
= 0 and the functional equation of { (s), that there is a real numberps such
that for d > do

Halps) = 0,

where pg = 0 as d = ©© but ps # 0.

We now proceed to our Epstein zeta function G4(s). Sometimes it is better
understood if one generalize the framework. Here we shall generalize G4 (s)
slightly as follows. Let @, (z, y) = awx® + bixy + ciy? and Q2 (x,y) = axx® +
baxy + c2y? be positive definite quadratic forms with the discriminants 4, and
As, respectively. For any d > 0, let G4(s, Q1, Q2) be defined by

! 1
Z (Ql (m, mz) + dQ: (ms. 7"4) ) s’

G (S, Q1 Q) =

where R (s) > 2 and the dash indicates that m,’s run over the integers exclud-
ing the case (my, ma, ms,my) = (0,0,0,0). Whenever we shall treat G (s, @,
Q,), we always suppose further, to avoid complications, that a;, b; and ¢; in the
definition of Q; (x,y) are integers for 1=1 and 2. We denote G4 (s, @, @) by
Gals, Q). We shall show first that the analogue of Chowla-Selberg’s formula
described above holds in a symmetric form as follows.

Theorem 1. When R (s) > 2, we have

Gals, @ Q) = Z(s,Q)) + /riTJ = Lot z6—1.0)

2 \*2/d
n ( JE]A_J> U B (5.4.Q, Qa 40,

where

oo Yor n
E()=E(s.d,QuQu 4) = Zn—< ), EW:ZQ—(’")-) Ko (70

n=1 min

with
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K,(z) = f A -1y

for arbitrary v and |arg z| < 5 2 and rq(m) = 2 meowy 1. Moveover E (s, d, Q1

—ooLT,Y<®
Q2 4,) is an entive function of s and satisfies the functional equation

E (s, d, Q1 Q. 4) = E@2 —5,d,Q, @, 4,).

This gives an analytic continuation of G4 (s, @, Q2) to the whole complex
plane with a simple pole at s=2 with the residue

4r?
dJ/]AA,]

We denote E(s,d, Q, Q, 4) by E(s,d, Q) below.

Remark 1. As we shall see in the proof of Theovem 1, we can express
Ga(s, Q1 Q2) in another way as follows.

Gals,Q1,Q2) =dZ(s, Q)+ m z 1(;1() >Z(S_1.Q1)

_2r )s 247573 < 1 )
+(~/M—z[ ) Els g Qe @i o).
We can also derive from Theorem 1 a Kronecker’s limit formula for

G4(s, Q1 Q2) in the following form.

Corollary 4.
47

LEE(Gd(S, Ql. Qz) - d S ) = Z(Z’ Ql)

47 _ @ 2 __
. TTATAT [2c0+ log-l—{ 210gl7]< + 4 o )l

flzhl Z (mem :h(n ))’ﬁ(m Jar).

m|n

logd — 1]

Remark 2. Remark 1 gives also a Kronecker's limit formula for Ga (s, Q1.
Q2) in the following form.

47
1?121(64(3, Q1 Q) — g) =d"27(2,Q,)

+ dle%{ZCg + logﬁ — 2log |17( + 1%%[>|2 - 1]
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27-3 & o1 (M) 7, f:; m
] a(p el )

n=1 min

We should compare Corollary 4 with Remark 2. We shall state one con-
sequence in (i) of Corollary 11 below.

Hereafter, we are mainly concerned with G4 (s), for simplicity. However
we shall mention briefly how one can extend to a more general case.

Theroem 1 implies also the following result on the trivial zero free region
of Ga(s), the trivial zeros of G4 (s, Q) and the value of G4 (s, Q) ats = 0.

Corollary 5.
(i) Ifd > 8.6, then for any ¢ = -;— and for any t,

Gd(O' + il’) #* 0.

(i) Forany d > 0 and for any positive definite integral quadratic form
Qlx,y),

Gal(s,Q) =0ats= —1,—2, —3, .

() For any d > 0 and for any positive definite integral quadratic form

Qx,y)
Ga(0,Q) = 2(0,Q) = —1.

It is noteworthy that the value of G4 (s, Q) or Z (s, Q) at s = 0 does not
depend on d or Q.

Naturally, we do not claim that the constant 8.6 in the above corollary is
best possible. In fact, it comes from a rough computation of do (6) which will
be discussed in the section 3. When the class number & (— A4) of the positive
definite quadratic forms with the discriminant — 4 is 1, then the proof of (i)
of the above Corollary 5 can be modified to get similar results for Ga(s, Q).

As another consequence of Theorem 1, we have the following corollary
concerning the less trivial real zeros of Ga(s, Q).

Corollary 6. For a sufficienily large d and for any positive definite in-
tegral quadratic form Q (x,y), there is a veal number pa4 such that

Ga(0a, Q) =0,

where pa — 0 as d — © but pg # 0.

This is an extension of Chowla-Selberg’s result on Hgs (s) mentioned
above. This will be refined in a more precise form in Theorem 3 below.

It is more convenient to write the formula in Theorem 1 for the case @, =
Q: = @ in a more symmetric form. Multiplying both sides of that formula by

b(s) = (%ﬂ—>_sf(s), we get
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65, @ (2E)"T0) = 26,9 ()" )

2 7w /({ 2rm \® _ _
+/st-1\ﬁfZT> s —1Z(s—1,Q) +2/d E(s.d,Q)

= 26,0 () 10 + 22— 5.0 (F) Tre -

+ 2/dE (s, d, Q)
=f(s) +f(2—s) + g(s), say,

where we have used the functional equation of Z (s, @) mentioned above. Thus
we have the following functional equation on G4 (s, Q).

Corollary 7. When we put

als) = Gals, Q)(/%%)_Sf(s).

then we have
als) =a2—ys).

The critical line of G4 (s, Q) is Rs = 1. At the critical point s = 1, we
have the following consequence.

Corollary 8. For any d >0 and for any positive definite integral
quadratic form Q(x,y), we have

2 I:
Go(1.Q) = 25200 + 106 S — diog | n( + 30 ))

4
+ —ME(I,d.Q),

wheve

o0

£10.0) = §(Treimn(2) ol )

n=1 mn
This corresponds to an explicit evaluation of Z(%— Q) described above. If one
uses the remark after Chowla-Selberg's formula, then one gets also

27?2

Ga(1,Q) = 4ﬁiﬁ(ZCo + log"|%|'> + 3

167 N nwh e 47
+ Mn=lo—-l(n)(:05( P >€ a + mE(l,d,Q)

We may mention a special case for G4(s) as follows.
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Corollary 8. For any d > 0, we have

2
Ga(1) = — nlog%* +8L°(1, %) + 2zEQ, d)
2
= — nlog% + 27(Co — 2log2 — 4logln G)|) + 27E (1, d)
with

E(1,d) = E(Zr (n)r(%))[{o (27y/dn).

n=1 min
The expression in Corollary 8 provides us various information concern-
ing a real zero of G4(s). We may summarize them in the following theorem.

Theorem 2. There exist two numbers D1 and Ds such that < D

_1
1672
< D, and they satisfy the following three properties.
(1) G4(1) =0whend =Dyord = D,
Moveover s = 1 is a double zevo of Ga(s) for both cases.
(i) Ga(1) > 0when 0 < d < Dyord > D,.

Hence in this case, G4 (s) has one real zero in 0 < R (s) < 1, ome real
zevoin 1 <R(s) <2, and Ga(s) £ 0fors =0, 1, and 2.

(i) G4(1) <0 when D; <d <D,
We shall see below, by our rough computations, that
D; = 0.156:-+
and

Dy = 6.039:-+
To prove (i) of Theorem 2, we shall use the following expression of Ga4(1)
and Gy (1).
Corollary 9.
(i) Ga(1) =8CeL (1, x) + 4log%2<— co% + L' (1, x>> - (1og’f72)2%
+ 27E (1, d)( log ~ - +Co>

8L (1, %) 27rF 2l (1)

(i) G7(1) =4Cm + 16C.L (1, %) + ——L AC Oy + EE—

2
+ 2Conl™ (1) + 8log%<— %ﬂ o (1) — L) (i )>

<
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+8(1og %) (= G + L)~ (10g T Z 4 22p0 (1,0)

2

2 2
+272E (1, d) {ﬂlog ’fT) + Calog 2 + 265 — I (1),

where E? (s, d) is the second derivative of E (s, d) with respect to s.

Part (ii) of the above Theorem 2 gives an analogue of Theorem 3 in Bate-
man and Grosswald [2].

When we use Corollary 9, we need the estimate of L (1, x) and L”" (1, x).
We notice the following corollary which is a result of the definition and the
Chowla-Selberg’s formula.

Corollary 10.
. " 2 , T v
(i) L"Q,x) = 307 + 20 (2) — §C5 — rlog2 + 1 + 7 (log2)?

? ? : ,
— g logm — = Co — 21 logm - logln G)| + 270" (1),

where we put

1 * 3 - :
D(s) = 2”5—70’1—23(”)L ys—fe-fm(yﬂ; ”dy

n=1

D@ +0 M6~ 1) + 2 (- e

(ii) LN’ (1, X) - '2_21“C27l' - 97ZC110g2 + 37TC() (log2)2 + %Coﬂ'sx - 67TCOC1

— 2m(log2)® —%71'310g2 — 37nL(3) + 6L (2) —6C,L (2)

3
gﬂ.’

71.2 Zcz 4
C3 + 3nC§10g2 — - (logm)® + ”4 0 %

+

3
+ logly ()| (6Cy — 37CE + 7[7 — 3 (logm)?)

+ 62D (1)logr + 37D (1).

Remark 3. For our purpose, the following rough estimates of L” (1, x)
and L' (1, x) arve enough. Since

d (lggzl) - Efzi(z — logx),

dr\ x

log’r . . . <<z . R
s S monotone increasing for 1 < x < e and monotone decreasing for x = é°.

Hence, we get
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4h—1))? 4h+1))? :
—0.162741 <~ Z<(log4kk 1 ) (logikill)) )_ (1ogéggg9)) <L"( x)

log(dk — 1))® _ (log(dk + 1))® _
<- Z( 4 — 1 fpT) < —o.usse

] g3:r

Similarly, 1is monotone ncreasing for 1 < x < e® and monotone decreas-

ng for x = e we get

oot < (Lo sl )
(log(4k — 1))*  (log(4k +1))° (log (3999) )3
<Z< 4k — 1 4+ 1 >+ 3999~ < 0.16621.

In fact, the Euler-Maclaurin summation formula gives us
L' (1, x) = — 0.1541417--
and
L (1, %) = — 0.0948828--

We notice that when d is sufficiently large, then the two real zeros found
in Corollary 6 and (ii) of Theorem 2 can be located more precisely as follows.

Theorem 3. For a sufficiently large d and for any positive definite
quadratic form Q(x,y), Ga(s, Q) has two real zeros pq and 2 — 04, where

"":%L]lglzz(zl,@) <1+lodgd%z le <1>>

as d — o0,

This gives a refinemennt of Corollary 6.

We turn our attentions to the complex zeros of G4 (s). Concerning this
problem, we shall restrict ourselves only to Gy (s). However, as one sees that
we can extend our results, namely, Theorems 4, 5 and 6 to G4 (s, Q) with h (—
A) = 1, although we shall not state the results.

We shall first proceed to show the analogue of Stark’s results [23] on the
“k-analogue” of the “Riemann Hypothesis”. We remark first, by (i) of Corollary
5, that if

k= yJd >2.94,

then G4 (s) has no zeros in R (s) = 0 = % Hence we have only to treat the
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zeros in the region

< R(s) <%

NI

First of all we shall show the following theorem.

Theorem 4. There exists a number K such that if £k > K, then all the
zeros of Gq(s) in the region —% <og< % —k £t < k are simple zeros; with the
exception of two real zevos between 0 and 2, all are on the line ¢ = 1.

We shall next show the following theorem.

Theorem 5. Let N (T, G) denote the number of the zevos of Ga(s) in the
5

regionr—%<0<§,0StST,If/f>KandO<TSK,then

T

N(1.6) = Liog EL + 0 (1oglog?),

untformly for K.

This corresponds to Stark’s Riemann-von Mangoldt formula for N(T, Q).

Finally, we shall proceed to the analogue of the failure of the
“k-analogue” of “the GUE law” or the corresponding Berry Conjecture [1] for
Ga(s). Before stating our results, we shall first clarify the present situation. In
the proof of Theorems 4 and 5, we shall see below that

1 K 1+iT . 1
N(T,G) = P arg((;) ra-+ lT)) + —njargZ(l +4iT)+ 46(T),
where |46 (T)| < C. Hence the number variance with which we are concerned

1S
1 1 :
- an
T' (S(;(i + ICT) — Se (t))dt,

z o8

where we put

Se(t) = %argZ(l +it) + Ag ().

If it obeys “the GUE law”, then it must be, as above, that

2
T-1 ‘
’}‘fT (SG(t-{— azT>—SG(t)>dt~C|Ogaasa—¢oo
z 7 log =7

with some positive constant C. However, we shall prove below the following
theorem.
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Theorem 6. Fork > Kand 0 < T < k, we have

~—fr l<so<t + a’;T>—Sc(t))dtSC
2

lg—

uniformly for 0 < a € Tlog Enl

Hence we see that as Kk — 0,

—~f (Sc(t+ a”2>~—sc(t)>dt <cC

5 log £~

2
uniformly for 0 < a € ﬁ:logﬁn—.

Thus we see the failure of the “k-analogue” of “the GUE law” for G4 (s).
Here we should pay an attention to a special case of G4 (s). Namely, when
d = 1, then we know, as in Theorem 4 of p.30 in Grosswald [9], that for any

integer n = 1,
L 1= )

n=mi+my+m3+m
ioo(?ﬂi<o§° § dio(mod 4)

Hence, we have

Gi(s) =8(1 —222)L(s) (s — 1).

This fact is, in fact, strongly noticed by Siegel in pp.145-146 of [21]. Thus
G:(s) has the functional equation and the Euler product. However on the cri-
tical line R (s) =1, we have only such zeros of G (s) as

nm i

T log2’

n==x1 %2 £3, -
This means that the number of the zeros of G; (s) on the critical line in the re-
gion 0 < J(s) £ Tis

[TlogZ]
— |

On the other hand, by Selberg [20], we know that on the line R (s) = %or

R(s) = % the number of the zeros of Gi(s) is at least

ATlogT,

with some positive constant A. Moreover, the Riemann-von Mangoldt formula
for G (s) is, using the notations and the results which is mentioned in the pre-
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vious section,
N(T.G) = 2N (T) +[$g—2—] = Liogr — %(1 + logn) + Ag, (T) + 25 (T),

where

Consequently, we see that

G1(s) has almost no zeros on the cvitical line, namely, the Riemann Hypoth-
esis fails strongly for G (s).

And that the results mentioned above implies, under certain hypothesis,
that “the GUE law" holds for Gi(s).

Furthermore, using only the properties of {(s), we see that at s = 2,

61(s) = S48 6L 2)co + 4L @10g2 + 6L (2) + AL — 2) + -

where A is some constant. Comparing this with Corollary 4, we get (ii) of the
following corollary.

Corollary 11.

X

)

n n
() L(zy)=3 11mZJ_Z r{m) ( ) K1<27r§vd

d_m min d
.- o _§ A 44 3 . 2
() L@ x) = —5Co+ nzc (2) + 4log2 + 5 + 3logln () |

We see also that at s = 1,

(1) = 8£(0) 1im ((1 — 22725) {(s)) = 8L(0) - 2log2 = —8log2 < 0.

s—1
In fact, we see that
Gi(o) <0in0<ag<2

Combining the present evaluation of G, (1) with Corollary 8, we get further
an expsression of L' (1, x).

Corollary 12.
)= — Tz n\\ e
L'(1,x)= —log2 + 4 logm — Z( r(m)r(m)>Ko(2nﬂ).

At s = 0, we have
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6 O=80-2LO-D=8- (=3) - (—3) - (- 75)= —1.

This is included in (i} of Corollary 5.

Finally, we notice another complicated expression of L”" (1, x), which
comes from a comparison of the coefficients of (s — 1)2 in the Taylor expan-
sions of G;(s) in two ways, namely, Corollary 9 and what comes from the pre-
sent expression of Gy (s).

Corollary 13.

L1, %)= % {1?6(10@)3 + 16 (log2) 2logm — 4C,m + 4CoCit

+ 12C mlogm — 4mCélogm — 8mlog2 * logm — %an'

+ %Jﬁ logm + 8mlogm + (log2)? — %nf(logn')3 + 16log2 + (logm)?

+ 16L7(0) 1og2 + %TC (3) + 16 (2)logm — %—ﬂz(logn)z

— %Conzlogn — 167 (logm)? * logln (i) |+ 167D (1) logr

z’ _

—onEQ, 1)(c5 - -, —(logn)2>— 2E® (1, 1)].

We shall prove Theorem 1 and Corollaries 4 and 8 in the section 2, (i)
and (ii) of Corollary 5 in the section 3, Corollaries 8 and 9 and Theorem 2 in
the section 4, (i) of Corollary 5, Theorem 3 and Corollary 3 in the section 5,
Corollaries 1 and 2 in the section 6, Theorems 4 and 5 in the sections 7 and 8
and Theorem 6 in the section 9. Some of the numerical calculations in this arti-
cle have been done using Mathematica.

Finally, we should notice, among many works, the existence of the works
37 (pp.708-734) of Hecke[10], Terras[24] and Hoffstein [12]. 37 of Hecke [10]
has shown the existence of infinitely many zeros on the critical line of the
general Epstein zeta functions of many variables. Terras [24] has tried to ex-
tend Chowla-Selberg[20] and Bateman-Grosswald [2]. Hoffstein [12] has tried
to extend Bateman-Grosswald [2].

§ 2. Proof of Theorem 1 and Corollaries 4 and 8 and a remark on (i) of
Corollary 11

Let Q; (x.y), Q:(x,y), 4, and 4; be the same as in the previous section.
We suppose first that R (s) > 2. Then we have

Gals, Q@)= ). (Qulmi,ma)) "
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+ imz (m) Z (Q1 (my, m2) + dm) ~*

—co<mi,ma<oo

= Z(s, Q1) + Eo(s,d, Q1 Q2), say.
We simplify Eo(s, d, Q1, Q2) further as follows.

Eols.d, Qu Q) = ). 70,m) ) re, ) (v + dm)

m=1 v=0

We notice first that

T (s)Eo (s, d, Q1, Qs) = f s— lzroz(m) Z"Ol (v) e~ T WMy

v=0

Using the following transformation formula (cf. p.48 of Siegel [21]),

00

279 (n)e "™ = 2
' VAl

n=0

1 N 4

;Z 7q, (n) e T,
n=0

we get next

ST(s)Eo(s, d, Q1 Qz)

o

J]A_l[ f mzlmz (m) Zrol () e-mlamr o

v=0

— 2 fw s—zi —nd
=——=1| = 7o, (m)e ™"y
VAo = ot

+ '\/]_ZA—:[./:)mxs -2 Z ¥Q, (m) qul (U) e_”(dm.‘[+%)dr

m=1 v=1

= U, (s) + ¥(s), say.

w‘l (3) = J]i_r Z,,Qz(m)‘/;mxs—ze—ndmxdx
_ rs—1 v 2 I'¢—1) _
/l T (za) ! L 1 /lAll () ! Z(s —1,Q0).

4v

By a change of variable x = Y we get

;7



718 Akio Fujii

s—1
2

7,(s) = A—%T" Z s (m) im, o) (1175

f y nv—-vdvm (y+y~ ”dy

md_(m)s 23 Y () ) e, 0

n=1 mv=n

. J; ys—ze—nms/ﬁ(wy—l)dy

7o, (m)7 .(%)
ey et

mn

. j; ys—ze—and_n(y+y‘l)dy

5=l e (m)7g,
e )

n=1

Thus we have proved that

Gals, @1.Qa) = Z(s.Q) + 5 gy 26— 1@

(i) BT L el )

min

Since

7o, (M) 7g, "
el (e

gl
2
m|n
is an entire function of s, this gives an analytic continuation of G4(s, @1, Q,) to
the whole complex plane with a simple pole at s = 2.

Using Kronecker’s limit formula for Z (s, Q,) as described in the previous

section, we get the following expansion at s = 2.

2 r I'G—1)
x/IA—ll— ds_l IE(S) Z(S - ]-yQZ)

27
T IR .

%@Co + Iogl%ng - 210glﬂ(§b;2“ + llz%l>|2>+>

+




Epstein zeta functions 719

47’
— dV|A1”A2| 477.'2 . az

— 2loghn (22 +i @)lz —logd = 1)+ A's(s = 2) ++
%) 202

Since the other terms in G4 (s, @, @2) in the above expression are regular at s

= 2,5 = 2 is a simple pole of G4(s, Q1, Q2) and the residue is

47l

We may remark here that although s = 1 is a simple pole of Z (s, @) in
the above expression of G4 (s, @1, Q2). s = 1 is a removable sigularity for G (s,
Q1, Q2). Because using the functional equation of Z (s, Q) and Kronecker's
limit formula for Z (s, Q.), we get first that

2 7 I'(s—1)
m ds_l F(S) Z(S —1, QZ)

2 r 1 ) (|A2|>3‘2257r2s—31“(2_— $)Z(2—s,Q0)

V|A1 ds! I'(s
_ ﬂ _
(1 +(s = Dloggar +-)
2r
CA=T W= D) 0 =T () (s = 1) +) - <~{@z}
2n o _ ALY
: m<2€0+ oy — 2w+ <4L)p) -
_ _/JEL JAI\
+ m<200 + logT—- 210g|7]< +i %4, >|>
Hence, applying again Kronecker's limit formula to Z (s, @), we get at s = 1,
Z(S Q1)+ T F(s—l)

J|_[ 45" 1 F(S) Z(S - 1,Q2)

aay b1 AN
1——“1 <4C0 + log‘l—]m 4, Zloglr}(zal + 1 %a, )I

- 210g|7}< + 1>|2>

st + 217 (1)) + 477 (s = 1)+

+ ml \—
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Thus s = 1 is a removable singularity of Ga(s, Q1, Q2).
Under the translation s = 2 — s,

__Z Q. (M)fo,< )

min

becomes

oy ) roe( )

mln

NG

is invariant. Hence, we see that
E(s,d, @1, Q2 41) = E(2 —s,d, Q2 Q1, 41),

where E (s,d, Q1, Q2 4,) is introduced in the statement of Theorem 1. This
proves our Theorem 1.
As we have written down explicitly the Laurent expansion of

r I'(s—1)
’/]A_l[dSI F(s) Z(S_I,Qz)

at s = 2, we get immediately

and the integral

Vdn (y+y~

l)dy

472 :
1im<Gd(S, Q1. Q2) — d s )

$—2

_ . 2w I's—1) ., _ _ 4J]4)]|4,]
= Z(Z, Ql) + Ll_{l;(m 451 F(S) Z(S 1, QZ) s — 2 )

Yoz m)rm
e (; )l g5 m)

- Z(Z Q1 dm (ZCO + lOg‘l'—l'
— 210g|77(—2- + 1'121)|2 — logd — 1)

mz(m)r1 T
J’Im!z @ : )K‘(ﬁﬂ‘/d_")'
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This proves our Corollary 4 as described in the previous section
The proof of Corollary 8 is also included in the above argument.

Finally, we shall give a short notice on (i) of Corollary 11
Corollary 4 and Remark 2 imply first that for @ = Q, = Qzand 4 = 4, = 4,,

2 r()r
1)_47rlogd J—lA|Z (WZ om)rg )

Z(2, Q)( e a4l
WD
<_JJ%[£ (e m))

Taking @ = 2% + y? and letting d tend to ©°, we get (i) of Corollary 11

In fact, it can be easily seen that

Zf(m rino m(mf)«z(z Q).

Z(2,Q) £ lim —

d—oo dz

e 2

_ 2%
=le? + —) €« —,
a a

Since for a>0,
__l(f"" _gutut 1 f”_auy;l. ) 1
K;(a)—z A yzdy+le 2 dy Sz

we get
* r(m)r(ll-)
LT Jeles5)
di n=1 mln "
1V k) 12 - Z r(k)
<<dz b r(l)+d e b (1)
ki<d j=0 2id<kl<2i+1d
<)t AL Z Ty ) —’gj) « Y < 72,0).
k<d k<2i+1d k=1 k
On the other hand, for a >0,
2 -2a

Ki(a) Ze‘%j:e zdyZ .

Hence, we get
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2ol Yorl Vg o ¥ 'ff) >2(2.Q).

1<k<2d k<ks_zg 1<ks2d

§ 3. Proof of (i) and (ii) of Corollary 5

We start from the following decomposition done at the beginning of the
previous section.

Gals) = Z(s) + Eo(s, d),

where Eo(s,d) = Eo(s,d, Q, Q) for Q(x,y) = x2 + ¢2
Suppose that R(s) = ¢ > 2. We notice first that

26 = a1 = L)1 =22 = an 1+ N1+ )

=41+ %)([}(1 + ;1;)—1)2 =41+ i)@iﬁf

_4(1+ )CCZZ((Z:))

where p runs over the prime numbers and ) is the nonprincipal Dirichlet
character mod 4 as is introduced in the section 1. On the other hand,

|Eo (s, d)| < ZY( )Zr(v) (v +dm)™°

" m=1 m=1 v=1

Thus |Z(s)| > |Es (s, d)],
provided that

a(1+ )%(2_0))‘ > L@ Lio ) + (41;)%C<£)2L<%,x>2.
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The last condition is satisfied if

d>

Sl o+ (B P DS e
2(1+% L2o) |

We put

do(0)
2
gl o) [ ) (D
1\&%2o)
1+ 5%
Thus we see that for any ¢ > 2, if d > do(0), then
Gy(o +it) # 0 for any t.

Now to prove (i) of Corollary 5, suppose that
dy = do(0v)
for any o1 > 2. Then for d > d, and for ¢ = 0,, we have

IZ(a+n)|>4<1+ )§ (20) _4<1+%>§M

Cz( ) CZ(O.l)
Tt AU
dmC(m) (o1, x) + (4_31()3;((%)24%‘ X)z

> Eo(0y,d) = Eo(0,d) = |Eo(o +it,d)].
Thus we see that for any d > d, = do (01) and 0 = a,
Gd (O' + 1[’) #* 0.

In particular, since
do(%) = 8.595913749 ---

Gd(S) *+ 0

for d > 8.595913749 -+ and for any Rs = g > —3—

To justify the above argument we shall show that
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2(20) ‘
1+ )_Q_ = 4a(0), say,
o 2°/ (o) Y
is monotone increasing for g > lo (}o; ¥5) and that E, (0,d) is monotone

decreasing for g > 2.
The latter is clear from the definition of Eo (0, d).
To prove the former, we see first that

a (o) =-€z(2l{ log2 +4<1 + 21>£—(2 o) — 2(] + )—Q(o)]

t% (o) 20 ¢
— CC22<(200)) {_ 102%2 _ ( )Z‘ /l(n) i 2(1+ ) A(n)}

where A (n) = log p if » = p* with a prime number p and an integer k = 1,
and = 0 otherwise.

5 log(1 + J/5)

For o log2 , we have
l_o;_go_Z_(l_% 2t6>>()and1—i>0forn>3
Hence
a (o) >0
o> (}o—gi_Zf) Consequently, a (o) is monotone increasing for o>
log(l +./5)
log2 :

This proves (i) of Corollary 5.
By the functional equation of G (s, @), namely, Corollary 7 stated in the
section 1, we get trivial zeros as described in the statement (ii) of Corollary 5.

§4. Proof of Corollaries 8, 9 and 10 and Theorem 2

Corollary 8 implies the second equality of Corollary 8. We shall notice
the alternative expression of G4 (1) mentioned in Corollary 8. At s =1, we
have

Z(s) = 4<s—i1— F Ot G~ D+ )

L) +LQ,x) -1+ L—”—%'—Zl(s — )24,

By the functional equation of Z (s) mentioned in the section 3, we have at s = 1,
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I's—1) —
# I(s) Z(s—l)—(

_)23 22—s5)Z(2 — s)
Jd I'(s)

= (1 + Zlog%(s -1 +—é—(210g J_) (s —1)2+--)
(@1 =2r'() (s —1)+2¢ck(s —1)* +---)

o4(1—1;+c0+c1(1 — 9+ )

L)L) (=) +il)—(1 RPN
Thus we see that the value of

Z(s) +ds—n_l£-(%(;)—l)2(s ~1)

ats = 1is
8(L(1, x)< logd — logn’) + L1, x).
Hence, we get
Ga(1) = 8L, x) (Flogd — logr) + L' (1. 1)) + 27E (1, 4).

This shows the first equality in Corollary &'
The above expansion also gives the explicit evaluation of the coefficiant of
(s—1) in the Taylor expansion of

r I's—1)

Z(s) +— I

at s = 1 as
2 , , 72\2
dlog Z- (= CoL (L ) + L (1)) +8CoL (1, 7) — 2(log Z-) L1, ).
To get an explicit evaluation of Gz (1), we need the value of the derivative

. . m \*2Jd ., _ .
with respect to s of the function (ﬁ> F(S)E(é' d) ats =11t is

= 20 (1.0) g 2 + o) + 22, Lo rtm)o(2) s (2

n=1 mln

+ i(Z(—— logm)r(m)r(;%)) Ko(2ry/dn)

n=1 min
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# LB (3)) 3o o)

n=1 min
Since
Z(*l-lo n — lo m)r(m)r(l) = Z(ll n—1 l) <l> (m)
2108 g m 208 8 ) \m )T
min min
= Z(lo m —llo n>r(m)r<£) = —Z<110 n—1 > (m) (")
g 5log ” 5log ogm)r(m)r(
mn min
we get
Z(-l-logn — 10gm>r(m)r<£> =0
2 m ‘
mln
Since
fle_z,,mug: logy ;. — _ f”e—zvr‘/d—"’ié"—'l‘ﬂdy,
0 y 1 y
we get

j;we—znmug: l_ofl dy = 0.

Consequently, we get
r 2 ’ ’ 2 2
Gi(l) = 4log1(— Cop + L' (1, x)) +8Cal' (1, x) — 2<logﬂ7) T
+ 27E(1, d)( log— + Co)

This is (i) of our Corollary 9.

Let E'(1,d) and E” (1,d) be the first and the second derivative of E(1,d)
with respect to d, respectively. Then we see easily that

B0 _7@2 i (Tron (1) )i ()

min

and

£ ) = Y Yoo v

3
2d2 n=1 m|n

MY n(Yrom () a2 am) + Ko (2mdam)

n=1 mln
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Thus we see that
E(1,d) <0 for d>0
and
E’(1,d) >0 for d>0.
Hence both

—8(L(1, x)( logd — logﬂ) +L1°(1,x)

and
2rE(1,d)

are monotone decreasing convex and continuous function of d.
Since

—8(L(1, x)< logd —Iogn> +L'(1,x) >2rEQ1,4),

—8(L(1, %) (% logﬁ logm) + L' (1, %)) < 27rE<1' 1617r2>'

E(1,d) > 0 for any d > 0,
and

—8(L(1, %) (%logd - 10g7t> +L'(1,x)) = — % as d = oo,

the equation

has at least two real solutions D; and Dz, D1 < Dg, ind > 6t
T

We notice next that

o) 2l Z/— (;f(m) A 2)) i 2y |

< %[—j? — 2716 - Ky (2n/3) )

< %{% — 16 [ e (1 + )dy} %{% - %e—“‘/?}.
Hence G(;z(l) < 0, provided that 1 < o2 V7, namely that 0 < z < (l—;%&y

2
Hence, G, (1) is monotone decreasing for 0 < z <(l%n§> . On the other hand,
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dG.(1) _
dz

. 1
has at most one real solution in z > Z—; Because
T

VY (Vrom (2 )i,

n=1 min

. . 1 .
is monotone decreasing for z > F This can be seen as follows.
T

AL (T () omi)

min
S T e
n=1 min
TS

and

AL

> 22_72' n (Zr (m)r(-%))%ﬁme'”vz_”—“’”_”y
1

n= min

> ﬁiﬁ(Zr(m)r(%))%j;me‘”m‘””"”dy,

n=1 m|n

1 1
i hat —= < 2, ly that — < z.
provided tha 7z 27, namely tha P z

Consequently, we see that the equation

has exactly two real solutions Dy and D3, Dy < Ds, ind > 0.
1f d > D, then

Ga(1) > 0.
Since

lim Gd(O') = — 0o,
ag—2-0

G¢(0) must have a zero in the interval (1, 2).
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If 0 <d < D,, we have also
Ga(1) >0

and G4(0) must have a zero in the interval (1,2).
This proves (ii) of Theorem 2.
We get at the same time (i) of Theorem 2.
We shall give proofs to several inequalities used above. It is clear that

E(1,d) > 0 for any d > 0,
and

—8(L(1, x)( logd — logn) +L'(1,x))—> —o0 as d =,

Using lower bound for K, (z) described below, we have

1 1
25 (1, 1o5) 2 27 16+ Ko [0
2n 1 T 3
> 27 - 16 .e-mﬁ<1 _"—1>:32”\/;Z
V 167?

1 1
> 21 (2logm + logd) = —81<210g6—2- logn)

1 , .
> 81<§log‘]—é—2 logn)— 8L (1, %),

since L' (1, x) > 0. Finally, using an upper bound for K, (z) described below,
we get

EQ,4) = 2(21’(k)r(1)>Ko(471'ﬂ) < i(zr(kﬁ(l))e—MW Z_ﬁﬁ

n=1 min n=1 n=kl

- —4m/7 > r(k)r(l))
= E—lﬁ;(z r(k)r(l)) S fz ('""’
= ;:;f(nzlr;n ) 16C4(2) 162/'—

Here we notice that

Y —=2mmk -
“4108'77(l)|=%+4 ¢ b _—'§‘+4 m
k=1

m=1lk=1

50

n 1 \ 1
=T 44y gy .
3 Z ( 2k __ 1) k;l k(e27rk_1)

k=1
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Since
50 1
4) ————— = (0.007490729799074184462554317 -
; k(™ — 1)
and
= 1 9 p-l00m
42—-——3—— < 1.091 X 107140,
E(e?™F—1) ~ 25 g27—]
k=51
we get
— 4log|n ()] = 1.054688280995671930616768779--.
Since
L'(Ly = %(Co — 2log2 — 4logln ()],
we get

L' (1, x) = 0.1929013167969124293631--.

Using this numerical value of L' (1, x), we get
——8(L(1,X)<%4og4-—logn)-+1](1,x))

1

T
= 84(2

logd — logn) — 8+ 0.192901316797

e—47r71.8
— >
> 1.29416728 > 0.0009075 > 2rx 16042 = 2nE(1,4).

These justify above argument.
We shall next prove that s =1 is a double zero for both Gp,(s) and

GDz (3) .
We shall notice first that s = 1 is not a simple zero for both Gp, (s) and
Gp,(s). Because if d satisfies

then

In other words, if d satisfies
? ,
— nlog-d— +8L (1, x) + 27E(1,d) =0,

then
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2
8CoL (1, %) + 4log£<— Cog + L' (1, x)) (mg ) 5
+ 27E(1, d)( log 4 + C0> =0.
To proceed further we need to locate D; and D, more precisely. We shall

use several numerical values which come from a rough use of a machine.
We start with recalling Lemma 3 of Bateman-Grosswald [2] which states

that for 0 < v < % and for z > 0, we have

0< (Zz)ze%(z) <1

and

1-—

1= 42 < <u2>2 K, (z) < 1 =42 =429 -4

8 T 8z + 21(8z)2

In particular, we have for any z > 0,

e” \/2‘2<1_81_z> < Ko (2) <e—‘\/Z<l—8iz+ 12%z2>.

In a similar manner we have a more precise approximation as follows.

L@, _1 . 9 _ 15 :
¢ 2z<1 82 ' 128z 102423>SI‘°(2)

1 9 75 3675
<ot [E(1-4+ -~ + .
¢ V2 8z 12822 102428 32768z4>

We shall give an upper bound for E(1,d) first. For any

0> 1l o)

we have

E(1,4d) < ( T(M)f(%>>e_2"v;; 4;;121—7:(1 N lﬁnt/ﬁ
9 75 3675 )

512m%dn 819273 (dn)% 52428874 (dn)?

0 o)) - e

n=51 mln
9 75 3675
5127%dn 819273 (dn)% 524288 7" (d'n)z> 1 2, Say
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2 —nVs1d
Ifd> (7—'?1%@) 51—1 and # > 51, then ¢~27¥dn < & 5 Hence, if d
2
> (7—12875—1) % then we have
. n
E, < e"'m Z Ew?'(m)r(m>(1 _ 1
2= 1 nz 167[«/5’!_
2% 55
9 75 + 3675 )
512n%n 819273 (an)s  5242887*(dn)?
_ 8e™VR s s 1 (gzg . 9 . .
L g 3V L5 )+ e (O )
75 7\2 (7 \? 3675 e~ mVEld
— L L)V L(L ) +—222 ()2 (4, ) —& {4
8192n3d%c<2> (2 X> sorzggars ) -4 di e
1 5 9 75 7 3675
- Al2) +——43) - —2—a(L)+ —2L2__ 14
16mvd (2> 5127 ) 81927%43 (2) 5242887'd? @}
= ¢¥(d), say,

where we put

ezl

n*
n=1

The value of 2 (m) r(%) at w =1,2,3,+--,50 can be evaluated easily. In
fact, the corresponding values are
16, 32,0,48,64,0,0, 64, 32,128,0, 0, 64, 0, 0, 80, 64,
192,0,0,0,0, 160, 128, 0, 0, 64, 0, 0, 96, 0, 128, 0, 96,
0, 256, 64, 0,0, 0,128, 0, 0,0, 32, 320,

64,0,
64,0,
respectively. We notice also thaw by a rough calculation, we get
A(2) = 35.07460350047196233867 -+
A(3) = 25.8012242491000305926
A(3) = 21.69437774734406166682:-
(L) = 19.56275687280406069882- -

2
A (4) = 18.33050920944640605528--.

Since
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C(2)2L(2,x)* = 2.270153960110982728-

5 5 = ceon
C<§>2L(§, x) = 1.619420555337452648: -,
£(3)2L (3, x)? = 1.356592254853679817-+,
7\e (T 2
c(—) L(Z x) = 1.222748185229687098-
2) H\2
and
C(4)2L (4, x)? = 1.145665531455488938: -,
we have
ra) < 350 619420555337 + ——
q¥(d) < I 2.270153960111 — 1.619 6n/d
+ 1.35659225485368 + — — — 1.22274818522968 - —7—5—;
5124 81921343
3675 g~mVBld
+ 1.14566553145549 - —) — £———{35.07460350047
52428874 94}
9
— 25.801222424911 - + 21.694377747344061 -
167 f 5127
75 3675
— 19.5627568728941 - —2— + 18.3305092094464 - ——>>2
81927% 5 5242887*d*

= ¢¥*(d), say.

We shall give next a lower bound for E (1,d) as follows. If d >

(0.402467)2
8r?

E(1,d) = (Zr(m)r<%>>e—znﬁ 47573‘(1 - 167;/5)

m|1l

+ Z(Z’("’)’(ﬁ»e—znm 47[:;(17 (1 - 167:\/(17

n=2 min

9 75 )_ o
- = ¢¥*(d), say.
S12n%dn  81927%(dn)3 aitla). say

= 0.002051497--, then we have

We denote E| by ¢F (d).
Now we have the following inequality

qx(d) < G4(1) < ¢*(a),

where we put



734 Akio Fujii

2
gx(d) = —moglf‘— + 8 X 0.192901316796912429363 + 27¢3* (d)

and

2
g* (d) =—rlog "7+8 X 0.1929013167969124293632 + 27 (¢ (d) +4¥* (d) ).

Furthermore, a rough calculation shows that

¢*(6.039009) = —5.704270722439--+ X 1078

q*(6.039001) = —5,0218085245745--- X 10~°
¢*(0.16563) = —0.0001300811639577---
¢%(0.1656) = 0.0070947906833076--

and that

g% (6.039002) = 5.134382159--+ x 1077

gx(6.039) = —5.269797505-+ x 10~7
q%(0.165155) = —0.00028315072--
g% (0.165152) = 0.0000610434307333--.

These imply that G,(1) = 0 at d = D; and d = Dj, where
0.165152 < D, < 0.165663
and
6.039001 < D, < 6.039002.

Hence to complete the proof of (i) of Theorem 2, we have to prove that
G4 (1)# 0 for d = Dy and D.

For this purpose, we shall first evaluate G, (1). We see first after a sim-
ple evaluation that the coefficient of (s —1)2 in the Taylor series expansion of

I'(s —

F(s)l)qz (s—1)

T
Z(s)+F

ats =1is

=4{cE +20L Ly + L%Xl — o+ nFIZ(l) + Corl (1)

Fiog™ (= G 4 e/ (1, ) — L) - (10T ) (-G 4 LL2))

m2\3 &
”(log?) ﬂ]

Similarly, we see that the coefficient of (s—1)2 in the Taylor series expansion
of
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(ﬁ) 12:(/;) E(s,d)

at s = 1is
1 2\2 2 .
wE(1,d) {Z<log7> + CologT +2Ci—T (1)] + rE®(1,d),

where E® (s, d) is the second derivative of E (s,d) with respect to s.
Consequently, we get

G5 (1) = dcar + 160" (1, 1) + B X g0 4 2L

) .,
+ 2ConI” (1) + 8log sz“(_ %"— oL (1, ) — L—(—;ﬁ)

o) (- G4 £52) - (o) 5

2
+ onE (1 d) { (log-?d-> + Colog™- + 20} —r”(1)] + 27E®@ (1, d).

This proves (ii) of Corollary 9.
We now complete the proof of Theorem 2.
Suppose that G4 (1) = 0. Then

2
27E(1,d) = nlog% —8L' (1, x).
Substituting this into the explicit formula of G4 (1) given above, we get
" T 2\3 , m?\2 2 3
Gi(1)= — E(log-d—> +2L°(1, x) (log 7) + log —d-<7rC§ %

2
— 2mCy — 4L” (1L, 1)) + dCor +8L (1 ) (26, — €3 + )

rrr 3
n §L_%ll — dCCim + 58 — 4”%<3> +2mE® (1,d),

where we have used the following formulas

2
)=+ % and ' (1)= —c3 - C"” —20(3).

We put

fi@)=— L+ 2L, x)x? + x(nCt — & —2rC, —4L" (1, x)
12 6

. n’
+ 4Cm + 8L°(1, x) (20l —C+ -6—)

n 8L (1, x) 1CsCim + 47:r3C3 _ 4m{(3)
3 3
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We see that
, 8 ./ 2, 16,
@)= -2z - 2r0.0) +Lra.0+ 2
® "
—% —2rC, —4L" (1, x)
<0 for any x,
because
16 , 2
(1 X) + 71'Co - ?—chl —4L” (1 X)
16 - (0.192902)2 + =C§ — 76— —2m+ (0.0728) + 4 - 0.162741
< —3.737 < 0.

Hence, f1 (x) is monotone decreasing function of x. We notice that

3.5<4. 08<10gm6§<10 <4.09---<4.5

< log - 165152

and that

2
~36.584 < f,(log%l) < —22.367.

We notice next that

0.3<0.4912---<lo 6 039002<log~—<lo 6. 039001<O 4912--+--- <0.6

and that

2
—4.8252 <f1(10g%2*> < —3.276.

On the other hand,

o

E® (1, d) Z( Ltogn)'(Yrtm) o(22) ) o (2

min

+ Y. Liown (Y (~togm) rOm) o 2) ot

min

i%logn(Zr(m)< ))Zf “Zﬂmu—_gud

min

i —%— ogn(Z (—log m)r(m) 7’(‘,%»1(0 (2n/dn)

mln
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+ i(Z (—log m)2r(m) 7(%))Ko(2nﬁ_ﬁ)

+§<'§(—l°gm)7’(m)r< )L [ sy,
+ i;ogn(;ﬂm) e
# DD ) e o
+ 2(27(7”)7( D)L [ ey o,

- i”(‘z’:gmao;;m — L1og m)rm) (™) )i (20 /)
+l£ I{Zr(m)r( )) [ o,

= f,(d) + f3(d) say.

We notice first that since for » = 1 and for d > 0,

Ko(ZTIM) < %e—zn\/d_n L

1 1
dens
we have
—GNVD_x
Ko(27s/Dm) <® for n = 28
2[)141’!
and
—2nVE
Ko@2ny/Dam) < forn = 1.
2Dz4 n

Hence, we get

O <f2 (Dl) < —2#‘/17—1;

Z > mimlogm - (logm — llogn) (m) < )

1

1
D4 = ni

v_5,, {i 2 minlogm * (logm — %—logn)r(m) r(%)

2
n
2D14 n=1
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28 m%}logm . (logm - %logn)r(m)r(%)l'

n?

n=1

We notice next that

= . 1 n
Z 2minlog m + (log m 2Iog n)r(m)r<1n>

5

n
Lz @z0-7@1=320(%) @

n=1

) (5 20)- 45 o)

n=1 n=1

<

N!i—' l\Dp—l

e >>ZZ A8 1o - (142 n))

<16L%(2)1€(2) 7 (2) — £ (2)7.
Since for L > Ly,

L

2
¢ (2) Z | < YL (1ogL, + 4 + H%L) = k(1) say,
and
: 1 2
|C’(2) + Z mrgzﬁl < z(logL +1+ —l%gi'->= R, (L), say,
1
n=2
we get
" Cone < | B : log*n : logn\, , n*
C@L (@) — @1 < 1?12:2 —(; L+ R 1)
L
+ 2R,(L) ), OE" + R, (1),
n=2 n
Since

1000
2
Y 0B™ — 1 995771492486574817
n

n=2

1000
Z logn _ ) 929643951846542088-,
»
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R:(1000) < 0.07544353827622274147

and
R»(1000) < 0.007921570789540101327,
we get
0@ (2) — ¢ (2)7 < 2.442420134016605379.
Thus we get

. (rogm — L 2
) Znogn - (lgm — 510 ) (m1(,) < 105.7395223012017539.

n?

n=1
The values of 22 ,logm * <logm—“%logn)r(m)y<%> for n=123,+28

are

0,8 - log?2, 0, 8 + log?4, 16 - log?®5, 0, 0,

80 - log?2, 8 * 10g?9, 32 - (log?2 + log®s5)

0,0,16 - 10g°13,0,0,16 + (log®?2 + 10g®8), 16log?17,
16 + (log?2 + 10g%9), 0, 16 + (3log?5 + 2log®4),
0,0,0,0,24 - 10g?25, 32 + (log®2 + log®13), 0,0,

respectively. Hence we get

izmmlogm : (logm - %logn)f(‘i’n)V(%)

nZ

= 8.465929760628084512- .

n=1

Similarly, we get

1 > (n >
28 . —_— = A
Z 2 minlogm (logm 5logn r(m)r m) v
I ,—2aV
4

n=1 n

< 0.000471188781950964.
Combining all of these estimates, we get
0 < f2(D1) < 0.271564050120363.

In the same manner, we get

e

) o) < -z,t«/;gi 2 minlogm * (logm—%logn)r(m)r(%)
< f,(Dy) <

2

20y 2, n
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e—27l' \

6@ @) — ¢ )]
2D}

<

e—z;ﬂ’ﬁ
< — X 105.74 < 6.640912062 X 107°.
2D}

We shall next estimate fs (d) . For this purpose we put, for simplicity, W
3+V5
= my/d and V=1¢ 2z . Then we get for d > 0.16,

w0 = B (Do) e B

Hence, we get
f3(D1) < 6.56797543 X 107°
and
f3(D2) £ 7.795%X107%.
Consequently, we get
E®(1,D,) < 0.271564116.
and
E? (1, D2) < 0.000006640912063.
Hence, we get
Gm(1) < —22.36+1.71 < —20<0
and
Gp, (1) < —3.27 + 27 x 0.000006641 < —3 < 0.

Thus s = 1 is a double zero for d = D; or Da.

This completes the proof of Theorem 2.

Finally, we shall give a proof of Corollary 10 briefly. We shall describe
the Taylor expansion of Z(s) as s=1 in two ways.

Z(s)=4L(s)Ls, x) = _szt-—l + 4(00% + L', x))
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+ 4((:17’:— + Col' (1, x) + L—%—ZQ) (s—1)

+ 4(c2% oL, )+ Sk él"‘) +L %’X))(s — 1) -
On the other hand, Chowla-Selberg’s formula gives us

1
Ns—5)Vr s
Z(S) = ZC(ZS) + ZC(ZS - 1) ( F(§)> + ;—%Zg)D(S)

It is easily seen that

M- Y
I(s)

+(s— 1) U@+ B)+ (s — 124" @)+ By) +--,

20(2s) +2C(2s — 1) =25+ (20(2) + By)

where we put

By = 21 (Co — log2),

3
By = 47C, — 4nColog2 + 5~ + 27 (10g2)?
and
_ 1 s 4 3
B, = —27{(3) — 37 log2 — §7L’(log2) + 87C,; — 8mCilog2
+ %Co?’l’3 + 471’C0 (log2) 2.
Finally,

%D (s) =4xD(1)+ (s — 1) (47D (1) + 47D (1) (logm + Co))
+ (s —1)2@aD" (1) + 47D’ (1) (logm + Co) + 27D (1) ((logm)?
+ ZCologn.' - 1-'”(1) + ZCZO)) + e,

Comparing the coefficients, we get first

3
L', x)= %Cﬂr + 20 (2) — %Czo — mlog2 + % + 7 (log2)?
+ 2Corr logln ()| + 22D (1) (logm + Co) + 27D (1)
and

L,N (1, X) = 2—21‘C27l' - 97TC110g2 + 37[Co (10g2)2 + %Coﬂ'a - 67I'C()Cl

~ 27(10g2)° — 5 log2 — 37L(3) + 6L (2) = 6CoL (2)
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+ —%nCS + 3nC8log2 + (6C, T — 6C37) log|n () |

2
n 37rD(l)<(log7‘L')2 - —’g—)+ 67D’ (1) logr + 370" (1).

Since

DW= Y Y dowmn = — T —10gln i),

n=1d|n

we get the expressions as stated in Corollary 10.
§ 5. Proof of (iii) of Corollary 5, Theorem 3 and Corollary 3

Suppose that 0 < x < % We start with the formula

Cale. Q) =2 (2, Q)+ /|ZZ[ z L Mz -10

2r \* 24d . :
Ho2) Fay e,

Since for 0 < x <%

Km0 ) = W v )

3_
e Py )

we have

|E(z.d,Q)] € —Z _(Zm i W( ))e‘ﬁ?r(l + 7&—?

min

where we have used Lemma 2 of Bateman and Grosswald [2], in stead of Lem-
ma 3 of Bateman and Grosswald [2] used in the previous section. The right
hand side is bounded for any d > 0 and if d is sufficiently large, then it is
1Vl 1
Caalina € yn
n=1

where A is a sufficiently large constant and we have used a trivial upper
bound

rotn) < H{(x, y);ax? + bxy + cy? < n}| L n.
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Since E (x,d, Q) is bounded for OSx<%, for any d >0 and for any |4|
and Z(—1,Q) = 0, we have
Ga(0,Q)=Z(0,Q).

Using the functional equation and the Kronecker’s limit formula, for Z (s, Q),
we get at s = 0,

7(s.Q) = (L%!.)Ts 2s-1 MZ(] —5.Q)

r(s) )
2
-8 g

+ ?/ZI—T<2CO + log]—[ 210g|1]( + 1M>|2) — sA, + - ]

_ _ 2z (l4]\e , L(—s)
= /[ZT<4) s 1) TAet

Hence, we get

z(0,Q) = —

Consequently, we get
Ga(0,Q)=2(0,Q =—1+#0.
This is (iii) of Corollary 5.

Now by the functional equation of Z (s, Q), we have for any % >x >0

Z(—2 —1.Q) =(7]2_Z—T)_3'” LD 70420

f2m \ 3 — (=1 =) 2+ x)
and
e o=( ) =D 0 o
=(ﬁ%)m r = 1}{;()2 =) 52— 2, <0,
Hence, using again the fact that Z(0, Q) = —1, G4 (x, Q) must have a zero near

x = 0 when d is sufficiently large.
We shall now locate it more precisely. We suppose that d is sufficiently
large.

For this purpose we shall solve the following equation for % >x>0.
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e S 2 ),
’ _7; 2

By the functional equation, this is equivalent to

l—x—ﬂz[ 1 — 2 2 —_ —
¢ = e aTE =\ (/&)m 721~ z,Q)

—Zd—(%)a_IE (.d.Q)).

Since at s = 1,

on
(s, ﬂ—+Ao+(s—1)A +.

where A, denotes the constant term in Kronecker's limit formula mentioned in
the section 1 and A, is some constant. Hence, we get

Z(1—x,Q)= M+Ao_l‘A|+"'

Hence our equation to be solsed becomes

.o 1 21 Vpgy — gy (25
Y e nore- fﬁ[(W‘T)F(] N =

+ 224, +...)— Zxﬁ(—ﬁ>z<%)3—IE(x.d.Q)]

1 2r \®
= +0@x(+d*))t.
xz<z—x,Q>r<z—x>-%[<M> ]
Taking a logarithm, this is reduced to
(1 —x)logd = log< 1 )
2—x,Qr(2 —x)m

— Jogr + log((erI—) )+ oG +a4).

Dividing by logd, we get

21
—==7(2,Q) -
_ logx 1 VA x(l+d)
=1+ logd T logd log( ( 21 )3 >+ O( logd )
V]4]
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Here we put

_1 4r l_ogi 4r®
=4 TAZCE.0) (1 + Azeo y)

Then we have

1 4r? logd  4n*
4 1A1Z(2.0) (H 4 1472 Q) +y)

{ logd
(1 + 188 it + )

1 <l 4n?
1+ 100 °8\4 1Az 2. Q)

1 1412 (2,Q)
tloga o8 42 O<dlogd -+ y>)

This is simplified to

1 Ar? logd 47’
d 14]z 2, Q)< 1+ [A]Z (2, Q) >
1 ogd 472
~ logd "’g(l T d [4]Z (2, Q) + y)+ O( 70t y)>

At this stage we see easily that y satisfies

v=ol3)

r= e+ % s o)

and get

This proves our Theorem 3.
In the same manner, we can prove Corollary 3. We shall give only a
sketch of the proof.

We suppose that k> 1 and 0 < x < —é— By Chowla-Selberg’s formula for
Z(s.Q) and the functional equation of {(s), we have for 0 <z < —é—,

57 (x,Q)a*I(x) '~

= (=2 = 201 (1 = 2) + ¢~ 2T (3 = z)¥7)

+ 47r“’k%"Zn’ 20,- Zx(n)COS< b>Kz—l (27nk)

n=1

= U (x) + Uz(l’). say.
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U,(x) and U, (x) are continuous functions.

| Kz-1(2mnk)| = |KL__, (27nk) |

<« e_mk\/T< 47mk )

we have

Us(z) € k27| Zn’ 20— u(n)cos( b)KI__ (27nk) |
n=1
l—xw z-1 —amnk_L < 1—_1')
<Y o (n)e AT
n=1
1
<< Sl
%

for0<x < % where A is a sufficiently large constant.

The Laurent expansion of U, (x) at x=0 is
U(x) = ——2—7;- + k{(2) + Corr + %F(—%)ﬁ +[k(— 2¢(2)logk — 2L (2)
~r'W)¢@) - 20w — Cwal (3) — 3var ()} e+

Hence we see that

lim Uy (x) = —

T—-+0

and

1) ,
>
U'(Alogk = Ak,

where A is sufficiently large and A  is some positive constant.
Hence, U, (x) + U, (x) = 0 must have a solution in 0 <z < % In fact, it

has only one solution.
To lacate it more precisely, we start with the following equation.

—Ia)n'™> €1 — 2x) C(%‘x)n“%*”
demprrenl I

kl—?.t

+ 47}‘”(1@5)" i’nz 20, zx(")COS< )KJ_L(Zka))

n=1

Using the Laurent expansion of { (s) at s = 1 and the above estimate on the
last sum, the problem is reduced to
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1 —4

Taking a logarithm, it is reduced to

_1 1 (@22 logx -a
=gt 210gk'°g( - ) t logk +O( 1+ k" ))

k1—2.t —_

We take

_1 1r 2logk =«

and get our Corollary 3 as described in the introduction.

§ 6. Proof of Corollaries 1 and 2
We proceed in the same manner as in the section 4. By Chowla-Selberg’s
formula stated in the section 1, we get the following expansion at s = % for a

general Q.
__ A \ Y S
Z(s,Q)=a é{log&lgl; + 2Co + 420‘0(n,)c05<%)j; y leT kY ’dy]

T T\?
+<s - E)Za 2[02 — 4log?2 — 4log2 - log-;e- —<log?>

— loga - <Co — log% - 210g2>+ 2(]Ogalk + Cy

0

+ 2log2) ) o (n)cos nzh Ny"e'"”"‘“”'”dy +-
a /Jo
n=1

Thus we get
Z(% Q) = Za_%{C% — 4log?2 — 4log2 - log% —<log%>2

— loga * (Co — log% — 2log2) + 2(10%% +Co + 21ogz)

3

. ZOO(H) COS(EEQ)L y_le—h'nk(y+y—l)dy].

n=1
This proves our Corollary 2.

b . .
We now suppose that , Is an even integer and put

H(k) Zao(n)f y—l —nank(y+y- "dy.
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Then
ﬁz% Q) = 2logk — 2logdm + 2C, + 4H (k) = J (k) say.

We notice first that

o

H (k)= -—annao(n)'/;we—mzk(wy-x)dy <0

n=1

for > 0 and

HI (k) — 272' Zn Oo (n) (f ye—nnk(y+y ”dy + f J—l —nnkly+y 1’dy> > O

n=1

for k > 0.
Hence
— 2logk + 2logdm — 2Co
and
4H (k)

are monotone decreasing convex continuous function of > 0.
Since J(4) < 0, I< )>Oand

J(k)— @ as k—> 0,
the equation J (k) = 0 has at least two real solutions k; and k2 in

1

]32 > kl >ZE

We notice next that

]’ (k) = ‘i‘ + 4H (k) = —}% — 87[20-0 (n) j;we_"nkw”_”dy.

n=1

fwe—nnk(yw-l)dy — fwe—”"k(”ﬂ’ l)<1 -+ 1 >dy
0 0 y

~2nnk

:> —2nnky :>
f dy 2mnk

Since

we get
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J () S £ — %i (n) e~k = _(1 - ZZ Z ~2mmiky

n=1 m=1j=1
=%(1—27;~—————em}_1) <Hi-25m—) <o,

T namely, that 0 < k < _g§ Hence J (k) is mono-

2
. log3 ’ _
tone decreasing for 0 <k < o - Moreover, J' (k) = 0 has at most one real

provided that 1 < S

ositive solution, because % ) na, (n) e ™kt gy is monotone decreasing
0 Y
n=1

for k > 0. This can be seen as follows.

fk (kzno" n)f Tk hy) = Zno() (n)f; PR Py

n=1 n=1
— T[ZnZO'o (")j; e—nnk(y+y'l)(y + y'l)dy
n=1

and

©0

ﬂzn200(7l)ﬂme—nnk(y+y—l)(y + y‘l)dy

n=1

> Zn Oo (n)f —imk(yﬂl‘l)dy > Znao n)f —nnk(y+y- l)dy

n=1

Consequently, J (k) = 0 has exactly two real solutions k, and k; in ky > k;
> 0.

We shall justify some of the above arguments. First, we shall prove that
1
J <47r) > 0.

an(4s) = siao(n)m,(z;m =) > 8Ko(2n =)= 8\/13— 3> 6.45

n=1

> —2C, = —Zlogﬁ + 2logdt — 2.

Hence, we getj( 1 ) > 0.

We shall next show that
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J4) <0.
4H(4) = SZao(n)Ko (8mn) < 8200 (n) 87m g 8T
-snz — 2e_8"C(2)2 — ;r_ge—sm‘

n=1

Hence, we get

J(4) = 2logd — 2logdm + 2C, + 4H (4) < —2logr + 2C, + 1—8‘"8" <0
From the above argument it is clear that if & > ks or 0 < k < ky, then
Z(l Q>> 0
2' .
Since
lim Z(0,Q)= —
0—1-0

Z (0, Q) must have a real zero in the interval (% l>.

This proves (ii) of Corollary 1.
We get at the same time (i) of Corollary 1.

We notice first that for kb, and kg, s = % is not a simple zero of Z (s, Q).
Because if k satisfies
2logk — 2logdm + 2C, + 4H (k) = 0,
then

2
C% — 4log®2 — 4log?2 - log% —<log%> —loga * <C0 —log? —‘710g2)

+ z(logalk + ¢+ 2logé)H (k) = 0.

1.
To prove that s = 5 isa double zero for these cases, we need to locate k;

and k; more precisely. Here we use the same method as to locate D, and D;
more precisely. Here the situation is much simpler because the functions in-
volved are much simpler and we get rough numerical values

k1 = 0.1417332---
and
ky, = 7.055507955448---

as noticed in the section 1.
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As an example, we shall locate k2. We put
b= %(1 + ¢) with & = 107,
Then we have for this #,
1/az(3.Q)=10g(1 £ &) + 2H<-§g-(1 +e)).

Now

0<9H<4” ) Z ( l+s)n>
s%\/;hwoww G

g‘é 10 (o E -+ W@ <410

On the other hand,

2
log(1+ &) >e—5 > 107

Similarly, we have

log(l—g)< —e< —107"

Thus at & = %(1 4+ 1079,
e

3:9)
Z<2, Q>0
and at k = 4—Z}(l — 10714,
e
Z<l Q> <0
2’ ’
Since
'427% = 7.05550795544818276277064853817 -
e
we get

ky = 7.055507955448---.
We now proceed to complete the proof of Corollary 1.
We start with Chowla-Selberg’s formula stated in the section 1.



752 Akio Fujii

1
r(s—Y /7 L
a7 (s, Q) = 2 (25) + 2612 (25 — 1) (s r(2)> + 4’}(’3 D(s),

where D (s) is introduced in the statement of Corollary 2 in the section 1.

2
The coefficient of <s - %) of the Taylor expansion of

F(s —%>~/E

2L(2s) + 2B5L(2s — 1) )

AL DAL N @
r{z) r(z) " ry)
T

+16C; + 7 .
iy )

2
Similarly, the coefficient of (s — %) of the Taylor expansion of

+4C r(a)y
)

2
+ 4Co<log%) —8Cllog-7k£ + 8C,

Amskes 1
F() D(S) at s = 2

is
1 1 | 2

2D (E) n D(§> [— 7+ 2(Cy + 2log2)? + 4(Cy + 2log2) log = + 2<log%) ]

This implies that

iz ()~ b va2d) om - 6213
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’ l
r(3)
()
2
1 1

+ 2D”<§)+ D(g)['— w2+ 2(Co + 2l0g2)?

()

+16C, + 5

+ 4Co(1ogZ)” —8Cilog™ + 8¢y 5 )
2

+4(Co + 2log2) logt + 2(10gZ) }.

Here we notice that
- E - deo-§ a5

-3

and
(%)(%): _2;) ( : n>3 = _16<C(3)—§1 (2;11)3

Hence, we get

)= —1423).

)= 5 +((FE)
(F) )= e+ F(F)G) + (F)GR)

Consequently, we get

and

Q)@ @l
) e e e

SR ol R s ) E e S

= 16C, — —1‘731( (3) + %CS — 8C1Co — 8Cilogd + 4C%logd — %log34.

This implies (ii) of Corollary 2.
We now suppose that

Z(%>= 0 and Z’(%>= 0.

Then we have
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2D(3) = logZ + Zlog2 — Co

We substitute this into above formula for %ﬁZ(%—) Then we get

3352 (3] 4o s (s )t . e

-13ic(3) + %cg + AC logh — %log% + 16C, — 8CiCo — 8Cilogd
1 2
+ D<§) [— 2+ 2(Co + 2l0g2)? + 4(Co + 2log2) log% + 2(log~%> }
+2D"<%)

2
+ log£ — L 8¢, + 3C% + 4C,log2 — 4l0g?2)
k 2
1

- EC@') + EC% + 6C3log2 + 4Colog?2 +
3 3 2

- 10g2'7l'2 - %log32 + 16C2 - 8C1C0 — 8C110g4 + ZD”<%>

7[200

We put

2
falx) = —%.rs + 2% (Co — 2log2) + x<~ % — 8C, + 3C% + 4Colog2 — 4log22)

- %C (3)+ %C% + 6Célog 2 + 4Colog?2

+ %TEZC() - 10g2 * 71'2 - %logsz + 1602 - 80100 - 8C110g4.

Then we see easily that
2
file)= — x — (Co — 210g2))? + 4C3 — %~ — 8C,
<0 for any <.

Hence f4(x) is a monotone decreasing function of x. We notice that
T _ T _
3 <logi = logr— 7 = 3.098538:-» < 4
k1 J141---

and that
fi(4) < —62 and f,(3) < —39.

Similarly, we have

—_— JL: ——n. = — cue —_
1 <logy = 1087 55555 0.809:- < —0.7
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and

fa(=1) < —4 and f,(—0.7)< —5.

We shall estimate next D(%) First, by the definition, we get

D" (s)= ZIngn *ns” Zd‘ 2Scos( )f ys—— Tk gy

dln
+ Zlogn n’ %Z(—Zlogd)dl_zscos(-—ngb>j; ys—fe""""(“'” l)dy
din
+ Zlogn ns"‘Zdl 25 < )f logy ys——— —nnk(y+y—1)dy
din
+ Zlogn n’ Z(—°logd)d‘ 2scos( )f ys—— —nnk(y+y- ”dy
din
+ En Z( 210gd )2q1- 25(20%( )f y —— o Tk Y l)dy
n=1 d|n
+ Zn Z( Zlogd)dl ZQCOS< )f logy * y nnk(v+u-|,dy
n=1 din
+ Zlogn ns—%Z dl —25 ( )f logy y —nnk(y+y- ”dy
din
+Z s_—Z( 2logd)d'~ 2SCOS( )f logy * y* -3 -mnky g
n=1 din
+ Z Zdl 25COS< )f log Y yS—— —nnky+y~ l)dy.
n=1 dln

Hence, we get

DH(%)Z 42 2(108(1 - log'n> cos(nn >f 1 o~ TRk Y l)dy
n

=1d
- oo 2

+ Zao(n)cos(%g)ﬁ %le'”"k‘”+”_')dy
n=1

= f5(k) + fo (k) say.

We shall estimate f5 (kz) first.
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fs(kz) = i Z(logd - —logn) Ko (2mnks,)

4 i —Znnkz Z( 1
< — logd — -logn)z
2
f_ n=1 din
< %—: ‘2’”‘22 Z(logd — —logn>
din

Ze IC (2)C(2)— £(2)% <1.027713 X 107,

Similarly, we get

14

—27tnk1 2
fs (k1) Z Z(logd - —logn>
i 1 1 2
N oo <i Zd1n<logd 210gn> i de(logd - Elogn) )
\/E = n? = n? )
Since
4 e—21mk1 1 2 <
Z T Z(logd — Elogn) < 0.07896949867,
n=1 dln
1 2
& Zd|n(logd—§logn) 1 ’
) 2 =L @@-@?)
n
n=1
s% X 2.44242013401660538
and
2
4 Zdln<logd — %1ogn)
y 2 — 0.533458527928099--,
n
n=1
we get

fs (k1) < 0.85.

S

3+

To estimate fg(k), we put W =kmand V =¢ 2z ,
have

|fe () |<Zoo(n)f log’y "Wty < ZZao(n)f ‘M Wy

n=1

for simplicity. Then we
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_ 2 ¥ go(n) (= 2 — 6logy + 2log’y _wn
=2 Z " fl oy

3

n=1 y
< _V4F 0o (:l) j;“ 1-— 3logy3 + logzye—wwdy
n y
n=1
4\ gon) _wyn [ log? 4log’V O o, (n) _
< L e [ ey < ET Y e
n=1 n=1
_ 4log V{ wv . L awv o 2 _awy v4wvi Uoj_")]
= e + e + —e + e
w2V 2 9 n?
n=4
_ AoV _wy 1 owv 4 2 awy o cawv(rapoy 1 1 _>
= e [e + 5¢ + ge + e (C (2) —1 5 }

This implies that
Ifs (k1) | <f3(0.131733) | < 0.001646
and

Ife (ko) | <5 (7.0555) | < 3.22 x 10713,

Hence, we get
%ﬁz”(%) < —3941.8< —37<0atk =k,
Similarly, we get
%ﬁz”(%)<—4 +1.8<—2<0atk=kh,

This proves all of Corollaries 1 and 2.

§ 7. Preliminaries for the proof of Theorems 4 and 5

We need another expression of E (s) which gives a better upper bound of
E (s) for a larger |t| This will be used in the next section to prove some lem-
mas which is necessary for the proof of Theorems 4 and 5.

We start with expressing

00

Eols) = Yrln) ). b+ m+ dm)

m=1 —oo<my,mz<co
in another way.

o 0o

Eo(s) = Zr(m) Z f_i(m'i"'-yz + dm) ~dy

m=1 mi=—
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+ Zr(m) Z f ({ }——>——((m + y? + dm) ~)dy

my=—oo

- Z’(m)ﬁi ./: (@® + y* + dm) dxdy

m=1

+ iy(mf_if:({x}— ) (@ 4y am) ) dady

n i“m) iﬂi(@)-%)ﬁ((rﬁ+y2+dm)_s)dy

m=1 m1=—co

= @,(s) + @y(s) + D3(s), say.

Since
o *° 2n oo
2 2 =s —_ -5
f_wf_m(x + y® + dm) *dx dy j; fo (# + dm) Srdr db
= Zﬂ(dWI) _S+ILN (142 + 1) “Sudu = S%l(dm)_s‘“‘
we get
1
®1(8) . F(;() >Z(S'— 1)

By a change of variable x = Jyr+ d*r;u and by a repeated use of partial in-
tegral, we get for each integerj =1

D,(s) = i 7(m)£2(y2 + dm) S ﬁiBl({¢y2 + dmu})

m=1

. L((uz + 1) %) dudy

Ve [+ ot 7 Bl i)

d 7 .
((? 4+ 1) %) dudy,

du(Zj)

where B, (x)is the 2j —th Bernoulli polynomial.
Now suppose that |s|< /d + 3, 0 21, j = [Clogd] and d is sufficiently
large. Then we have for any positive constant A

|@2 (S>|S ir(m) f:o (y2 + dm) —0—j+%

m=1
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f @ (iz_, 2/ (? + 1) 77 @2ls| + 2 — 1) ¥dudy
® T

< —é%z’ @ls| + 2 — 1)

. Z r(m)f:o (y? + dm)“""*%dyf_: w2+ 1) du

m=1

< 4ot ]_CLZLZI @ls| +2 —1)¥
(2m) ¥
. Z ;:la(r_n—l)ﬂ _: (v + 1)_‘"”%(111) (f: wm?+1)"9"du)
m=1
sl +ai—2\¥ (B,
c(ilebta =2 sy

In a similar manner we can estimate @;(s). Since

o

i’(’") Z ® + dm) ~°~i*7

m=1 n=-c

< Yrom (@myort 4 [T+ am) ot

m=1

+ (ol +])f (? + dm) "% dx)
& Z v(m) (dm) =" *3(1 + /dmf 2 4 1) i3y

+ (la +j)~/_d_m—f~ (u® + l)‘“"‘%du),
we get for 6 = 1
|(p3<8>| << d_A.

Thus we get for |s] < /@ +3, 6 =1 and d > d,, using the notations in-
troduced in the section 1,

N = 125 £ )] < 10,6)] + 104(5)| < d.
This will be used in the next section.

§ 8. Proof of Theorems 4 and 5

We shall extend the argument in Stark [23]. We shall provide several
lemmas which will be used in the proof of Theorems 4 and 5. We shall give a
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full proof only to Lemma 1. The proofs of the other lemmas will be omitted,
because it is clear how to modify Stark’s proof in the present situation.

First we recall the well-known results concerning the function Z (s) = 4{
(s)L (s, x). First of all it satisfies the following functional equation

750 (s)Z(s) = 9 r1 —s)z(1 —s).
The trivial zeros of Z(s) are
s=—1, —2,—=3,-.
Z (o) # 0 for ¢ > 0.

C
(log (1£] +3)) % (loglog (] +3) )5
C

Fort = 3and foro=1— ; T, we have
(log (| t| + 3))3 (loglog (|t| + 3))3

Z(s)#0foro=>1—

—ZZ—(s) & (logt) 3 (log logt) ¥
and
%(3) K (logt)%(loglogt)%.

These come from Chapter [l and IV of Titchmarsh [25] and their exten-
sions to L (s, x) (cf. Satz 6.2 of p.295 in Prachar [19] for a weaker result,
which is already enough for our present purpose) . We put, as already intro-
duced in the section 1,

76)=26)(Z) T, 60 = () I'6) and g () = 2B (5,4, Q).

K
1 5 .. __5
Lemma 1. If1+ 7SGS§,3_tSK+1,Orth'—§,O
(logk) s
<t £ 3, then
IF () |>1F (2—s)]
and

IF(s) + 52— s)>lgs)l.
Proof In the above region we have

1
(logt) 5 (log logt) %

If ()| = 4lb ($)ICG)L (s, )| > 4lb(s)]

1
(logk) *

> 4lb(s)]
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1
(logl:) 8

S _’f_ 2-20 2—-20 —
|b9|<g)t 22— 9)]

2—-20
< log’k - (%) t2-2at1+ﬁ{.——(2 -0)

< log’k * o—AtoB0s ¢ (logk) 2,

For 1 + <g0 <2+ and3£t$x+1,wehave

since

2y o (b ioag =0 _ 1 < _1 >
|Z(s)| € log?k * t'*Tog for logxso—l+loglc' t =3

because

1

- 2
Z6) < () —) <ot for o214+
H oo logk’

T “*w*"’]’(l + — — 1t> (1 + ﬁ — it)
12(~ fone +it)l = og

10 K logxﬂt)]'(_________'_”)
logk

i Z(l + = — it)| & log?k * tiosw+l!
loglc

and

1

. 1 1
|Zz(e+ 3i) €1 for logk <o<L1+ Togr”

For2+LSaSiand3Sth+1,wehave
logk 2

ey, (&) Te-9z@2-9)

b(s) ' [b(s)]
_ ez s = Dz (s — 1)
[b(s)]

220 _ 2-20
]——“—I’|Z(s D] €&k |Z(l + logli)'

< k¥ oglk € Kk~ Tomr log?k & _gz_
K

i

For 0 = 5,0 <t £ 3, it is clear that

nojon

|L%(s—)-| < (logk) 2

Hence we get
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lF) > 1r@ = s)l.
Consequently, we get

IF(s) + 72— 92| =2 — o)l
0] B IOT R O] RO 19 (s)]
KA )

log’k log’k log?k

Lemma 2. If1— <o 1+ - and K St < g+ 1, then

(logk)® (logk)

?ﬁ(%(s)) > logk and |3<§(s))|<log/€.

Proof. Since

’

oy = 6 I z
7 (s) —log;*l‘ F<S> + Z(S),

we get
ER(% (s)) > log% + logt — (logt)% + O(%) > logk.
Similarly, we get
3(L-6)! < togr.
f
Lemma 3. There exists a number To such that kK < Ty < k + 1 and

arg f(1 +4Ty) =0 (27m).
Thus f(1 +1To) > 0 and f(1 — iTo) > 0.

Lemma 4. Frl<o<1+

7 and t = T,

(logk)s
F&I= @2 —s)and If(s) +72—s)|>lg(s)]

with equality in the first part if and only if 0 = 1.
Lemma 5. Let R be the interior of the vectangle corners at '52—1 1T,

- % + iT,. Then the number (counted with multiplicity) of the zeros of a(s) in

R is exactly

2 +%argf(1 +iTy).
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Thus we have for 0 < T < Ty

N(T) = %argf(l +iT) 4+ 0()

- %arg((%)“”l"(l +iT) + %argZ(l FiT) +0()

T

_ T, k1 _ 1 .
= log; + n(TlogT T) + n_argZ(l +4iT)+ 0(1).

Since we know that

arg{(1 +iT), argL (1 + 4T, x) < log logT,

this proves our Theorem 5.

The proof of Theorem 4 can be obtained if we follow the argument in
pp.53-54 of Stark[23].

§9. Proof of Theorem 6.

For the proof of Theorem 6, we shall prove the following lemma which is
more general than what we need.

Lemma 6. For any % <o=Z1,for T>Tyand for 0 < h £ T, we have

fTZT (arg(Z(a' + i(t + h))) _ arg(Z (O' + it)))zdt — T(l - C0252517,1Og2)

\ A2(4m + 1) )
" 1= hlog (4m + + 1-6(0)
,,,Z:, (4m + 1)%log® (4m + 1) cos (hlog (4m 1>>>) O(T'3@)

where 0 (0) is an appropriate positive constant which may depend on O.
It is clear that this result with 6=1 implies our Theorem 6.

Now suppose that 2 < X = T% < T? q is a sufficiently small positive con-
stant which may depend on 0. We put

Ox.: = % + Zmax(ﬁ - % lozX)’
o

o running here through all zeros 8 + iy of {(s) for which

We put further
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cA(n) for 1<n<X
(10g'y) —2{1og’, )
Ax(n) =1 A®) 2 (logh)? for X<n<x?
(1o85,)
~A(n)m for X?<n <X

Under these notations, we shall use the following Selberg’s explicit formula (cf.
p.239 of Selberg[20]) for ¢ = ox, and t = VX.

Cio = T Ay ofhg) T Aot py)

ax t+it
n<Xx3 n<X3

Then we get for t 2 T and for ¢ = ox,,
arg({(o+it)) = <f -C—(u + 1t)du>
o) 4o 1T 25 s o)

naﬂtlogn logX p OXatit
n<Xxs3

=M@t +0(R()), say.
We put
1 if 02 ox,

f(a,t)={

0 otherwise.

Similarly for the Dirichlet L-function L (s, %), we define similar notations
as follows. We put first

1 1 2
orax = 3 + 2max(B00 — 3. 155%).

o(x)

o(x) running here through all zeros 8(x) + iy (x) of L(s, x) for which

XslB(x)~§|

It =700 < < TogX

Under these notations, we shall use the following explicit formula (Cf. Fujii
[5]) for 0 = 0x,, and t = J/X.

Z -———L—A"(") o +0( O Z Ac)y (n) |) + 0 (Xi%logt).

erx-Ht

n<Xs3 n<X3

Then we get for t 2 T and for 0 2 0Ox,,y,
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arg(L(a+ it, x))=“f:3L—,(u +it, x)du
=3( A@_X_Z)+O( %( Z MZ(LH_I gt))

a“'log't 10g)( o 0x,:x+!t
= M(t.x) +0RG %)), say.
We put
1 if 02 0%,
flo.t, %) =I
0 otherwise.

Then for any 0 = max (0x,, Ox.y), We have

arg(Z(a+it))=M@E) + Mt x) +ORE) + R x))
=M@E +0[R()), say.

Now for any% <o<1l,

f:T(arg(Z(0+i(t +h))) —arg(Z(oc +it)))2%dt
= [t + Wi 0r .t + 1, 05(0,1,0)
c (arg(Z(o+i(t +h)))— arg(Z(o +it))) %t

+ [0 = 0. 4+0)1(0.05 (@, 1+h, 0f (0,1 20)
s (arg(Z(o+ it +n)))— arg(Z(o +it)))%dt = S; + S,, say.
Since
arg{(c +it), arg{(e +i(t + h)), argL (o6 +it, x) and argL (o +i(t + h), x)
< logT for 0 = %— we get

se <107 ([ (1= fle.0)ar+ [0 = a.t,x))dt
2T 2T
+ fT (1 —f(o,t+ h))dt +fT (1 —=flo,t + h, x))dt)

= 10g’T + (S3+ Sy + 87" + 537), say.

Sy < T < t < 2T ; there exists 8 + i7 in the region 8 > +

logX'
X3 X3 1 1
- <r<oT+ h th > (~ o)3]
T ogx =7 logx Such that m)z}((/g l)B 5 5 |
|le— TISTXL
p>li_ L

2 IORX
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IA
)

X3(B—
Z _logX < logX QI( 7).,

1 3
T— _X_<7(2T+_X_
logX

B>(-+(7)2

where we put

(o, T) = min (7\%2(1—(—;-“7)%)’ T4<%+a>%<1—(%+a)%) log’T

We notice that we have used Theorem 1 in p.128 and Theorem 1 in p.131 of
Karatsuba and Voronin [13]. (One might get a better estimate if one does not

. . _1 3 . . "
use a trivial estimate X*®~2’ € X2.) In a similar manner, we can estimate S,
S5 and S7”" and get

%
logX

where Theorem 1 in p.128 and Theorem 1 in p.131 of Karatsuba and Voronin
[13] can be easily extended to L (s, x).

To evaluate S;, we use the above formula for arg({ (¢ +it)), arg({ (o +
i(t+hn))), argl (o +it, x), and argL (o + i(t + k), x). We get first

Sz<

si= [rot + Wrlo.05 (0.t + b (0.t 1)) (TG + ) = F W) ar
vo(([77 o1 +w— i )ar) ([TRww)) + o [TRear)
= Sy + 0(VS4v/Ss) + 0(Ss), say.
s;= [0+ w - 70
+f:T(f(o, t+n)f(a (ot +n x)f(o,t,x) —1)

(Mt + h)—M (1))t
= S;+Ss, say.

Ss<<<<f”(1— (0,t))dt>% (f 1—f(a,t+h))dt>%
+(fT (1~ fl(ot, x))dt)% (f: (1 —f(o, t+n, x))dz)%)
([ (M(t+n>—z\7(t))4dt)

< (St + VST + /ST +/STT) - S say.

So we are left to evaluate Sy, S7 and Ss.
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S4=f (zz(t) —zz‘(t))

1 2T
—_ —2 = 2
f ndr = [ PO+ zf, In (1) [t
= Ss + Ss + S, say,

where we put

n =Y A0 (L)) + 1),
gn \n

na-Htlo
n<Xx3

We get simply,
Ax (m) Ax (")

Ss K Z P, 0),
s (mn) “logmlognlog (mn) .0
mn<X3
where we put
1 ifo=1
— (1-0)
O(X,0) =) X0 if5 <0<l
log®X

By Montgomery and Vaughan [16], we get

So= ), (T+000) 2| 1) 4

2(7]
n<Xx3
:T<1—cos(hlog2) ¥ A2 (4m+1) (1=cos (hlo (4m+1)))>
220 o (Am=+1)%log? (4m+1) g
A2 (n) AZ(n) )
+O<T n*lo 2n> + O< n?Nog?n
n>X ) g n<xs g
1—cos (hlog2) N A2 (dm+1)
=T 1— hlog(dm+1
( 229 2 (4m+1)*log? (m+1) (1=cos (hlogl4m+1))))

+ O<X2" Tl )+ 0((1)1()( ).

where we put

log logX ifo=1
&, (X, 0)=§ x6u-o |
logX if 2 <og<l1.

Using Montgomery and Vaughan [16] again, we get

S, € f | Z (mﬁ;‘fﬁf,lf;iﬁtgn (—1— — 1)(% — 1)l
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2T Axm)Axm) x m)x ) (1 _ __L — 1)
+ [ AN 1)( 1)l ar

mn<X3
2T u(k) 2T ” (k 2(
< fr IZ ko'mlz fr IZ potit |2dt
k<X k<Xs
2 2
e Z (T + 0(k)) | (&) | Zztt(k,x)l
k<xs

2
LT Z ULI:ZI;’_’L + Z 00 (k) 212 & T + X120-0]og8x

k<X6 k<X6
where
x(m)/lxgn) __1__ _1__ — .
u (k) = Z logm logn (m"’ 1)(7‘“, 1) K ao(k) = Z 1,
mm:<—X3 dlk
— Ax(m) Ax (")X (m)x (n) 1 1
wlkx) = logm logn ( ih 1)<nfh 1) < aolk)
mn=k
mn<X3

and we have used the estimate

Zo& (k) <€ Ylog'Y.

k<Y

Finally,
CT cT ; .
Sf'<<fr Rz(t)dt+fT R2(t, x)dt = S5+ S's | say.

Using pp.248-251 of Selberg[20], we get

( [, g+ g

S5

0x:+1t

TlogX(f XT"ICT Z —Mg—()—(ﬂ‘r‘dtdO)%

0+ttl

+ Tlog?T) < l.
2

Similarly, using an extension of Selberg’s argument to L (s, x) (cf. Fujii
[5]), we get

sy €« .

2
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Consequently, we get

f:r(arg(z(a+i(t +h))) —arg(Z(oc+it)))%t

=T(l—cos (hlog2) X A2 (dm+1)

920 L (am+1)¥log? (4m +1) (1—cos (hlog(4m+1)))>

-2 (o1, 1,13a_7a0 _1_) (Tsa(l—a))
+ 0(T' 2 2)+O(T2 1 2 st +O———-logT

+ 0(T%¥(0, T) logT) + o(1% (T1-210gT + /T7TogT) VTG, T) ).

Here we can choose an optimal a and get our Lemma 6 as described at the

beginning of this section, although we shall not describe it explicitly.
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