Bogomolov conjecture for curves of genus 2 over function fields

By

Atsushi Moriwaki

1. Introduction

Let k be an algebraically closed field, X a smooth projective surface over k, Y a smooth projective curve over k, and f: $X \to Y$ a generically smooth semistable curve of genus $g \ge 2$ over Y. Let K be the function field of Y, \overline{K} the algebraic closure of K, and C the generic fiber of f. Let $j: C(\overline{K}) \to \text{Jac}(C)(\overline{K})$ be a morphism given by $j(x) = (2g - 2) x - \omega_c$ and $|| ||_{NT}$ the semi-norm arising from the Néron-Tate height pairing on $\text{Jac}(C)(\overline{K})$. We set

$$B_{C}(P; r) = \{x \in C(\overline{K}) \mid ||j(x) - P||_{NT} \leq r\}$$

for $P \in Jac(C)(\overline{K})$ and $r \ge 0$, and

$$r_{\mathcal{C}}(P) = \begin{cases} -\infty & \text{if } \# (B_{\mathcal{C}}(P; 0)) = \infty \\ \sup\{r \ge 0 \mid \# (B_{\mathcal{C}}(P; r)) < \infty\} & \text{otherwise.} \end{cases}$$

Bogomolov conjecture claims that, if f is non-isotrivial, then $r_C(P)$ is positive for all $P \in \text{Jac}(C)(\overline{K})$. Even to say that $r_C(P) \ge 0$ for all $P \in \text{Jac}(C)(\overline{K})$ is non-trivial because it contains Manin-Mumford conjecture, which was proved by Raynaud. Further, it is well known that the above conjecture is equivalent to say the following.

Conjecture 1.1 (Bogomolov conjecture). If *f* is non-isotrivial, then

$$\inf_{P\in \operatorname{Jac}(C)(\overline{K})} r_C(P) > 0.$$

Moreover, we can think the following effective version of Conjecture 1.1.

Conjecture 1.2 (Effective Bogomolov conjecture). In Conjecture 1.1, there is an effectively calculated positive number r_0 with

$$\inf_{P\in J_{ac}(C)(\overline{K})} r_{C}(P) \geq r_{0}.$$

Received November 20, 1995

We would like to express our thanks to Prof. Liu for his nice remarks.

Let x be a node of a singular fiber $f^{-1}(y)$ over $y \in Y$, and i an integer defined in the following way. Let $h: Z \to f^{-1}(y)$ be the partial normalization of $f^{-1}(y)$ at x. If Z is connected, then i = 0. Otherwise, i is the minimum of arithmetic genera of two connected components of Z. We say the node x of the singular fiber $f^{-1}(y)$ is of type i. We denote by $\delta_{i,y}$ (resp. δ_i) the number of nodes of type i in $f^{-1}(y)$ (resp. all singular fibers). In [2], we proved that, if f is non-isotrivial and the stable model of $f: X \to Y$ has only irreducible fibers, then Conjecture 1.2 holds. More precisely,

$$\inf_{P \in J_{ac}(C)(\overline{K})} r_{C}(P) \ge \begin{cases} \sqrt{12(g-1)} & \text{if } f \text{ is smooth,} \\ \sqrt{\frac{(g-1)^{3}}{3g(2g+1)}\delta_{0}} & \text{otherwise.} \end{cases}$$

In this note, we would like to show the following result.

Theorem 1.3. If f is non-isotrivial and g = 2, then f is not smooth and

$$\inf_{P \in \mathsf{Jac}(C)(\overline{K})} r_{\mathcal{C}}(P) \geq \sqrt{\frac{2}{135}\delta_0 + \frac{2}{5}\delta_1}.$$

2. Notations and ideas

In this section, we use the same notations as in §1. Let $\omega_{X/Y}^{a}$ be the dualizing sheaf in the sense of admissible pairing. (For details concerning admissible pairing, see [5] or [2].) First we note the following theorem (cf. [5, Theorem 5.6] or [2, Corollary 2.3]).

Theorem 2.1. If
$$(\omega_{X/Y}^a \cdot \omega_{X/Y}^a)_a > 0$$
, then

$$\inf_{P \in \operatorname{Jac}(C)(\overline{K})} r_C(P) \ge \sqrt{(g-1)(\omega_{X/Y}^a \cdot \omega_{X/Y}^a)_a}$$

where $(\cdot)_a$ is the admissible pairing.

From now on, we assume g = 2. By the above theorem, in order to get Theorem 1.3, we need to estimate $(\omega_{X/Y}^a \cdot \omega_{X/Y}^a)_a$. First of all, we can set

(2.2)
$$(\omega_{X/Y}^a \cdot \omega_{X/Y}^a)_a = (\omega_{X/Y} \cdot \omega_{X/Y}) - \sum_{y \in Y} e_y,$$

where e_y is the number coming from the Green function of $f^{-1}(y)$. This number depends on the configuration of $f^{-1}(y)$. So, let us consider the classification of semistable cruves of genus 2. Let E be a semistable curve of genus 2 over kand E' the stable model of E, that is, E' is a curve obtained by contracting all (-2)-curves in E. It is well known that there are 7-types of stable curves of genus 2. Thus, we have the classification of semistable curves of genus 2 according to type of E' as in Table 1. (In Table 1, the symbol A_n for a node means that the dual graph of (-2)-curves over the node is same as A_n type graph.) The exact value of e_y can be found in Table 2 and will be calculated in §3.

Next we need to think an estimation of $(\omega_{X/Y} \cdot \omega_{X/Y})$ in terms of type of $f^{-1}(y)$. According to Ueno [4], there is the canonical section s of

$$H^{0}(Y, \det(f_{*}(\omega_{X/Y}))^{10})$$

such that $d_y = \operatorname{ord}_y(s)$ for $y \in Y$ can be exactly calculated under the assumption that $\operatorname{char}(k) \neq 2$, 3, 5. The result can be found in Table 2. Prof. Liu points out that by works of T. Saito [3] and Q. Liu [1], the value d_y in Table 2 still holds even if $\operatorname{char}(k) \leq 5$.

Let δ_y be the number of singularities in $f^{-1}(y)$, i.e., $\delta_y = \delta_{0,y} + \delta_{1,y}$. Then, by Noether formula,

$$\deg(\det(f_*(\omega_{X/Y}))) = \frac{(\omega_{X/Y} \cdot \omega_{X/Y}) + \sum_{y \in Y} \delta_y}{12}.$$

On the other hand, by the definition of d_y ,

$$\sum_{\mathbf{y}\in\mathbf{Y}}d_{\mathbf{y}}=10\deg\left(\det\left(f_{*}\left(\boldsymbol{\omega}_{\mathbf{X}/\mathbf{Y}}\right)\right)\right).$$

Thus, we have

(2.3)
$$(\omega_{X/Y} \cdot \omega_{X/Y}) = \sum_{y \in Y} \left(\frac{6}{5} d_y - \delta_y \right).$$

Hence, by (2.2) and (2.3),

(2.4)
$$(\omega_{X/Y}^a \cdot \omega_{X/Y}^a)_a = \sum_{y \in Y} \left(\frac{6}{5}d_y - \delta_y - e_y\right).$$

According to Table 2, we can see that

$$d_y = \delta_{0,y} + 2\delta_{1,y}.$$

Moreover, using Table 2 and an inequality:

$$\frac{abc}{ab+bc+ca} \le \frac{a+b+c}{9},$$

we can show

$$e_{\mathbf{y}} \leq \frac{5}{27} \delta_{0,\mathbf{y}} + \delta_{1,\mathbf{y}}.$$

Therefore, by (2.4), we have the following theorem.

Theorem 2.5. If f is non-isotrivial, then f is not smooth and

Atsushi Moriwaki

$$(\omega_{X/Y}^a \cdot \omega_{X/Y}^a)_a \geq \frac{2}{135}\delta_0 + \frac{2}{5}\delta_1.$$

Note that non-smoothness of f can be easily derived from the fact that the moduli space \mathcal{M}_2 of smooth curves of genus 2 is an affine variety.

3. Calculation of e_y

Let us start calculations of e_y . If the stable model of a fiber is irreducible, e_y is calculated in [2]. Thus it is sufficient to calculate e_y for II (a), IV (a,b), VI (a,b,c) and VII (a,b,c). In these cases, the stable model has two irreducible components. Let $f^{-1}(y) = C_1 + \cdots + C_n$ be the irreducible decomposition of $f^{-1}(y)$. We set

$$D_{\boldsymbol{y}} = \sum_{i=1}^{n} \left(\omega_{X/Y} \cdot C_{i} \right) v_{i},$$

where v_i is the vertex in G_y corresponding to C_i . Especially, we denote by P and Q corresponding vertexes to stable components. Then, $D_y = P + Q$. Let μ and g_{μ} be the measure and the Green function defined by D_y . In the same way as in the Proof of Theorem 5.1 in [2],

$$e_{y} = -g_{\mu} (D_{y}, D_{y}) + 4c (G_{y}, D_{y}),$$

where $c(G_y, D_y)$ is the constant coming from g_{μ} . By the definition of $c(G_y, D_y)$,

$$c(G_y, D_y) = g_\mu(P, P) + g_\mu(P, D_\mu).$$

Therefore, we have

$$e_y = 7g_\mu(P, P) - g_\mu(Q, Q) + 2g_\mu(P, Q)$$

Here claim:

Lemma 3.1.
$$g_{\mu}(P, P) = g_{\mu}(Q, Q)$$
. In particular,
 $e_{y} = 6g_{\mu}(P, P) + 2g_{\mu}(P, Q)$.

Proof. By the definition of $c(G_y, D_y)$,

$$c(G_{u}, D_{u}) = g_{u}(P, P) + g_{u}(P, P + Q) = g_{u}(Q, Q) + g_{u}(Q, P + Q).$$

Thus, we can see $g_{\mu}(P, P) = g_{\mu}(Q, Q)$.

In the following, we will calculate e_y for each type II(a), IV(a,b), VI(a,b,c) and VII(a,b,c). First we present the dual graph of each type and then show its calculation.

690

In this case, $\mu = \frac{\delta_P}{2} + \frac{\delta_Q}{2}$ by [5, Lemma 3.7]. We fix a coordinate $s: G \rightarrow [0, a]$ with s(P) = 0 and s(Q) = a. If we set

$$g(x) = -\frac{s(x)}{2} + \frac{a}{4},$$

then, $\Delta(g) = \delta_P - \mu$ and $\int_G g\mu = 0$. Thus, $g(x) = g_{\mu}(P, x)$. Hence

$$g_{\mu}(P, P) = \frac{a}{4}$$
 and $g_{\mu}(P, Q) = -\frac{a}{4}$

Thus

$$e_{y} = 6g_{\mu}(P, P) + 2g_{\mu}(P, Q) = a$$

Type IV(a, b).

We fix coordinates $s: G_1 \rightarrow [0, a]$ and $t: G_2 \rightarrow [0, b)$ with s(P) = 0, s(Q)= a and t(Q) = 0. In this case, $\mu = \frac{\delta_P}{2} + \frac{dt}{2b}$ by [5, Lemma 3.7]. We set

$$g(x) = \begin{cases} -\frac{s(x)}{2} + \frac{b+12a}{48} & \text{if } x \in G_1, \\ \frac{1}{2} \left(\frac{t(x)^2}{2b} - \frac{t(x)}{2} \right) + \frac{b-12a}{48} & \text{if } x \in G_2 \end{cases}$$

Then, g is continuous, $\Delta(g|_{G1}) = \frac{\delta_P}{2} - \frac{\delta_Q}{2}$, and $\Delta(g|_{G2}) = \frac{\delta_Q}{2} - \frac{dt}{2b}$. Thus, $\Delta(g) = \delta_P - \mu$. Moreover, $\int_G g\mu = 0$. Therefore, $g(x) = g_\mu(P, x)$. Hence

$$g_{\mu}(P, P) = \frac{b+12a}{48}$$
 and $g_{\mu}(P, Q) = \frac{b-12a}{48}$.

Thus

$$e_y = 6g_\mu(P, P) + 2g_\mu(P, Q) = a + \frac{b}{6}.$$

Type VI(a, b, c).

We fix coordinates $s: G_1 \rightarrow [0, a], t: G_2 \rightarrow [0, b)$ and $u: G_3 \rightarrow [0, c)$ with s(P) = 0, s(Q) = a, t(P) = 0 and u(Q) = 0. In this case, $\mu = \frac{dt}{2b} + \frac{du}{2c}$ by [5, Lemma 3.7]. We set

$$g(x) = \begin{cases} \frac{1}{2} \left(\frac{t(x)^2}{2b} - \frac{t(x)}{2} \right) + \frac{b+c+12a}{48} & \text{if } x \in G_2, \\ -\frac{s(x)}{2} + \frac{b+c+12a}{48} & \text{if } x \in G_1, \\ \frac{1}{2} \left(\frac{u(x)^2}{2c} - \frac{u(x)}{2} \right) + \frac{b+c-12a}{48} & \text{if } x \in G_3. \end{cases}$$

Then, g is continuous, $\Delta(g|_{G_1}) = \frac{\delta_P}{2} - \frac{\delta_Q}{2}$, $\Delta(g|_{G_2}) = \frac{\delta_P}{2} - \frac{dt}{2b}$, and $\Delta(g|_{G_3}) = \frac{\delta_Q}{2} - \frac{du}{2c}$.

Thus, $\Delta(g) = \delta_P - \mu$. Moreover, $\int_G g\mu = 0$. Therefore, $g(x) = g_\mu(P, x)$. Hence

$$g_{\mu}(P, P) = \frac{b+c+12a}{48}$$
 and $g_{\mu}(P, Q) = \frac{b+c-12a}{48}$

Thus

$$e_{y} = 6g_{\mu}(P, P) + 2g_{\mu}(P, Q) = a + \frac{b+c}{6}$$

Type VII(a,b,c).

We fix coordinates $s: G_1 \rightarrow [0, a], t: G_2 \rightarrow [0, b]$ and $u: G_3 \rightarrow [0, c]$ with s(P) = 0, s(Q) = a, t(P) = 0, t(Q) = b, u(P) = 0 and u(Q) = c. In this case, $\mu = \frac{ds}{3a} + \frac{dt}{3b} + \frac{du}{3c}$ by [5, Lemma 3.7]. We set

$$g(x) = \begin{cases} \frac{s(x)^2}{6a} - \left(\frac{1}{6} + \frac{1}{2}\frac{bc}{ab+bc+ca}\right)s(x) + \frac{a+b+c}{108} + \frac{1}{4}\frac{abc}{ab+bc+ca} & \text{if } x \in G_1, \\ \frac{t(x)^2}{6b} - \left(\frac{1}{6} + \frac{1}{2}\frac{ac}{ab+bc+ca}\right)t(x) + \frac{a+b+c}{108} + \frac{1}{4}\frac{abc}{ab+bc+ca} & \text{if } x \in G_2, \\ \frac{u(x)^2}{6c} - \left(\frac{1}{6} + \frac{1}{2}\frac{ab}{ab+bc+ca}\right)u(x) + \frac{a+b+c}{108} + \frac{1}{4}\frac{abc}{ab+bc+ca} & \text{if } x \in G_3. \end{cases}$$

Then, g is continuous and $\Delta(g) = \Delta(g|_{G_1}) + \Delta(g|_{G_2}) + \Delta(g|_{G_3}) = \delta_P - \mu$. Moreover, $\int_G g\mu = 0$. Therefore, $g(x) = g_\mu(P, x)$. Hence

$$e_{\psi} = 6g_{\mu}(P, P) + 2g_{\mu}(P, Q) = \frac{2}{27}(a + b + c) + \frac{abc}{ab + bc + ca}.$$

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY e-mail: moriwaki@kusm.kyoto-u.ac.jp

References

- Q. Liu, Conducteur et discriminant minimal de courbes de genre 2, Comp. Math., 94 (1994), 51-79.
- [2] A. Moriwaki, Bogomolov conjecture over function fields for stable curves with only irreducible fibers, to appear in Comp. Math.
- [3] T. Saito, The discriminants of curves of genus 2, Comp. Math., 69 (1989), 229-240.
- [4] K. Ueno, Discriminants of curves of genus 2 and arithmetic surfaces, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi NAGATA, (1987), 749-770.
- [5] S. Zhang, Admissible pairing on a curve, Invent. Math., 112(1993), 171-193.

.

Atsushi Moriwaki

Type of E	Description of the stable model	Figure of E' and types of singularities by cor		
	E' of E	tracting (-2) -curves in E		
I	a smooth curve of genus 2			
		g=2		
II (a)	two elliptic curves meeting at one point transversally	A_{a-1}		
		g=1 $g=1$		
III (a)	an elliptic curve with one node	A_{a-1} $g=1$		
IV (a,b)	a smooth elliptic curve and a rational curve with one node, which meet at one point trans- versally	$\begin{array}{c c} A_{b-1} & A_{a-1} \\ \hline & & \\ g=0 & g=1 \end{array}$		
V (a, b)	a rational curve with two nodes	$A_{a-1} A_{b-1}$		

TABLE 1. Classification of semistable curve E of genus 2

VI (a,b,c)	two rational curves with one	A_{a-1}
	node, which meet at one point	X I
	transversally	$\begin{array}{c c} A_{b-1} \\ g=0 \\ g=0 \\ g=0 \\ g=0 \end{array}$
VII (a,b,c)	two smooth rational curves, which meet at three points transversally	$g = 0$ A_{a-1} A_{b-1} A_{c-1} A_{c-1}

TABLE 2. δ_y , d_y and e_y

Туре	δ_{y}	d _u	e _u
Ι	0	0	0
II (a)	a	2a	a
III (a)	a	a	$\frac{a}{6}$
IV (a,b)	a+b	2a+b	$a + \frac{b}{6}$
V (a,b)	a+b	a+b	$\frac{a+b}{6}$
VI (a,b,c)	a+b+c	2a+b+c	$a + \frac{b+c}{6}$
VII (a,b,c)	a+b+c	a+b+c	$\frac{2}{27}(a+b+c) + \frac{abc}{ab+bc+ca}$

.