Homology ring mod 2 of free loop groups of exceptional Lie groups

By

Hiroaki HAMANAKA

1. Introduction

'Assume *G* is a compact, connected, simply connected Lie group. The space of free loops on *G* is called *LG (G)* the free loop group of *G,* whose multiplication is defined as

$$
\varphi \cdot \phi(t) = \varphi(t) \cdot \phi(t).
$$

Let *QG* be the space of based loops on *G,* whose base point is the unit *e.* Then $LG(G)$ has ΩG as its normal subgroup and

 $LG(G)/\Omega G \cong G$.

Identifying elements of G with constant maps from S^T to G , LG (G) is equal to the semidirect product of *G* and Ω *G*. Thus the homology of *LG* (*G*) is determined by the homology of *G* and Ω *G* and the algebra structure of $H_*(LG(G))$; $\mathbf{Z}/2\mathbf{Z}$ depends on H_{*}(ad ; $\mathbf{Z}/2\mathbf{Z}$) where

$$
ad: G \times \Omega G \rightarrow \Omega G
$$

is the adjoint map.

The purpose of this paper is to determine $H_*(ad : \mathbf{Z}/2\mathbf{Z})$ for the exceptional Lie goups $G = G_2$, F_4 , E_6 and E_7 . And at the same time, using the Hopf algebra structures of $H_*(\Omega E_6$; $\mathbb{Z}/2\mathbb{Z})$ and $H_*(\Omega E_7$; $\mathbb{Z}/2\mathbb{Z})$, we could determine the \mathscr{A}_2^* module structure of $H_*(\Omega G; \mathbf{Z}/2\mathbf{Z})$. Moreover some mistakes was detected in the result about Hopf structure of $H_*(\Omega E_6$; $\mathbb{Z}/2\mathbb{Z})$ of [5] and we offer the modified result. The main result is showed in Theorem 4.6, 4.9 and 5.11.

This paper is organized as follows. In $\S2$ we refer to the result of the algebra structure of $H^*(G; \mathbf{Z}/2\mathbf{Z})$ and $H^*(\Omega G; \mathbf{Z}/2\mathbf{Z})$. And in §3 we introduce the adjoint action and observe its property and in $\S 4$, $\S 5$ the induced homomorphism from adjoint action of G_2 , F_4 , E_6 and E_7 is determined. Finally in §6 we give the method to compute the Pontrjagin ring of $LG(G)$ and show the case of *G2.*

The author is grateful to Professor Akira Kono for his fruitful advices

Received November 16,1995

^{*} Partially supported by JSPS Research Fellowships for Young Scientists.

and encouragements.

2. H^{*} $(G : \mathbf{Z}/2\mathbf{Z})$ and $\mathbf{H}_*(\Omega G : \mathbf{Z}/2\mathbf{Z})$

We refer to the result of [1] and [2] about $H^*(G : \mathbf{Z}/2\mathbf{Z})$ for $G = G_2$, F_4 , E_6 , *E7.*

Theorem 2.1.

 $H^*(G_2; \mathbf{Z}/2\mathbf{Z}) = \mathbf{Z}/2\mathbf{Z}[x_3]/(x_3^4) \otimes \wedge (x_5).$ $H^*(F_4; \mathbf{Z}/2\mathbf{Z}) = \mathbf{Z}/2\mathbf{Z}[x_3]/(x_3^4) \otimes \wedge (x_5, x_{15}, x_{23}).$ $H^*(E_6; \mathbf{Z}/2\mathbf{Z}) = \mathbf{Z}/2\mathbf{Z}[x_3]/(x_3^4) \otimes \wedge (x_5, x_9, x_{15}, x_{17}, x_{23}).$ $H^*(E_7; \mathbf{Z}/2\mathbf{Z}) = \mathbf{Z}/2\mathbf{Z}[x_3, x_5, x_9]/(x_3^4, x_5^4, x_9^4) \otimes \wedge (x_{15}, x_{17}, x_{23})$

where xi is a generator of degree i. Moreover there are homomorphisms

 $G_2 \rightarrow F_4 \rightarrow E_6 \rightarrow E_7$

which map x_i *into* x_i *in the cohomology of any smaller group.*

Theorem 2 .2 . *In Theorem 2.1,*

$$
x_5 = Sq^2x_3
$$
 for G_2 , F_4 , E_6 , E_7
 $x_9 = Sq^4x_5$ for E_6 , E_7

and x_3 , x_5 *and* x_9 *are primitive.*

The algebra structure of $H_*(\Omega G; \mathbf{Z}/2\mathbf{Z})$ can be determined as an application of the Eilenberg-Moore spectral sequence. See [7].

Theorem 2.3.

 $H_*(\Omega G_2; \mathbf{Z}/2\mathbf{Z}) = \otimes \wedge (b_2) \otimes \mathbf{Z}/2\mathbf{Z}[b_4, b_{10}],$ $H_*(\Omega F_4$; $\mathbf{Z}/2\mathbf{Z}) = \otimes \wedge (b_2) \otimes \mathbf{Z}/2\mathbf{Z} [b_4, b_{10}, b_{14}, b_{22}],$ $H_*(\Omega E_6; \mathbf{Z}/2\mathbf{Z}) = \otimes \wedge (b_2) \otimes \mathbf{Z}/2\mathbf{Z} [b_4, b_8, b_{10}, b_{14}, b_{16}, b_{22}],$ $H_*(\Omega E_7; \mathbf{Z}/2\mathbf{Z}) = \otimes \wedge (b_2) \otimes \mathbf{Z}/2\mathbf{Z} [b_4, b_8, b_{10}, b_{16}, b_{18}, b_{22}, b_{26}, b_{34}]$

where b, is a generator of degree i.

3. Adjoint action

Let Ad : $G \times G \rightarrow G$ and ad : $G \times \Omega G \rightarrow \Omega G$ be the adjoint action of a Lie group *G* defined by Ad $(gh) = ghg^{-1}$ and ad $(g, l)(t) = gl(t)g^{-1}$ where *g*, $h \in G, l \in$ ΩG and $t \in [0, 1]$. These induce the homomorphisms

$$
Ad_*: H_*: (G: \mathbf{Z}/2\mathbf{Z}) \otimes H_*(G: \mathbf{Z}/2\mathbf{Z}) \rightarrow H_*(G: \mathbf{Z}/2\mathbf{Z})
$$

and

$$
ad_*: H_*(G : \mathbf{Z}/2\mathbf{Z}) \otimes H_*(\Omega G : \mathbf{Z}/2\mathbf{Z}) \rightarrow H_*(\Omega G : \mathbf{Z}/2\mathbf{Z}).
$$

Put $y * y' = Ad_*(y \otimes y')$ and $y * b = ad_*(y \otimes b)$ where y, $y' \in H_*(G; \mathbf{Z}/2\mathbf{Z})$ and $b \in H_*(\Omega G$; $\mathbb{Z}/2\mathbb{Z})$. Following are the dual statement of the result in [6].

Theorem 3.4. *For* y, y', y'' \in H_{*} $(G : \mathbf{Z}/2\mathbf{Z})$ and b, b' \in H_{*} $(QG : \mathbf{Z}/2\mathbf{Z})$ $1 * y = y$, $1 * b = b$. (i)

- (ii) $y * 1 = 0$, *if* $|y| > 0$, *whether* $1 \in H_*(G : \mathbf{Z}/2\mathbf{Z})$ *or* $1 \in H_*(\Omega G : \mathbf{Z}/2\mathbf{Z})$.
- (iii) $(yy') * b = y * (y' * b)$.
- (iv) $y * (bb') = \sum (y' * b) (y'' * b')$ where $\Delta * y = \sum y' \otimes y''$
- (v) $\sigma(y * b) = y * \sigma(b)$ where σ *is the homology suspension.*
- (v_i) $\operatorname{Sq}_{*}^{n}(y * b) = \sum_{i} (\operatorname{Sq}_{*}^{i}y) * (\operatorname{Sq}_{*}^{n-i}b).$ S_{α} ⁿ (x * y') = \sum (S_{α} ⁱ y) * (S_{α} ⁿ⁻ⁱ

$$
\operatorname{Sq}_{*}(y * y) - \Sigma_{i} (Sq_{*}y) * (Sq_{*} y).
$$

(vii)
$$
\Delta_{*}(y * b) = (\Delta_{*}y) * (\Delta_{*}b)
$$

$$
= \Sigma (y' * b') \otimes (y'' * b'')
$$

where $\Delta_{*}y = \Sigma y' \otimes y''$ and $\Delta_{*}b = \Sigma b' \otimes b''$. Also

$$
\overline{\Delta}_{*}(y * b) = (\Delta_{*}y) * (\overline{\Delta}_{*}b).
$$

(viii) *If b is primitive then* y * *h is primitive.*

Also the result of $[6]$ implies

Theorem 3.5. We define a submodule A of H_* $(G; \mathbf{Z}/2\mathbf{Z})$ as

 $A = \wedge (y_6)$ *for* $G = G_2$, F_4 , E_6 $A = \bigwedge (y_6, y_{10}, y_{18})$ *for* $G = E_7$

where y_{2i} *is the dual of* x_i^2 *with respect to the monomial basis. Then there exist a retraction* $p : H_*(G : \mathbf{Z}/2\mathbf{Z}) \rightarrow A$ *and the following diagram commutes.*

$$
H_*(G : \mathbf{Z}/2\mathbf{Z}) \otimes H_* (\Omega G : \mathbf{Z}/2\mathbf{Z}) \stackrel{ad*}{\rightarrow} H_*(\Omega G : \mathbf{Z}/2\mathbf{Z})
$$

$$
A \otimes H_*(\Omega G : \mathbf{Z}/2\mathbf{Z})
$$

Proof. By Proposition 2.10 of $[6]$ we have the folloing commutative diagram

$$
H^*(G : \mathbf{Z}/2\mathbf{Z}) \otimes H^* (\Omega G : \mathbf{Z}/2\mathbf{Z}) \xrightarrow{ad^*} H^*(\Omega G : \mathbf{Z}/2\mathbf{Z})
$$

$$
\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

$$
(\Upsilon_G^{2*} \cup 1) \otimes H^*(\Omega G : \mathbf{Z}/2\mathbf{Z})
$$

where T_G^{2*} is the set all transgressive elements with respect to the principal fibration

 $G \rightarrow G/T \rightarrow BT$.

Clearly

$$
T_G^{2*} \cup 1 = \wedge (x_3^2) \ G = G_2, F_4, E_6,
$$

672 *Hiroaki Hamanaka*

$$
T_{E_7}^{2*} \cup 1 = \wedge (x_3^2, x_5^2, x_9^2).
$$

Using monomial basis of $H^*(G : \mathbf{Z}/2\mathbf{Z})$ and T^2_{G} , we can dualize the above result and regard $(T_G^{2*})^* \cup 1$ as the submodule of $H_*(G; \mathbf{Z}/2\mathbf{Z})$ and we obtain the statement.

Remark. By Theorem 3.4 (iv) and Theorem 3.5 we see that for $b \in H_*$ $(QG : Z/2Z)$ and $i=3, 5, 9$

$$
y_{2i} * b2 = (y_{2i} * b) b + (y_i * b)2 + b (y_{2i} * b)
$$

= 0.

Remark. By theorem 3.4 and 3.5, when $G = G_2$, F_4 , E_6 (resp. $G = E_7$), if $y_6 * b_i$ (resp. $y_6 * b_i$, $y_{10} * b_i$ and $y_{18} * b_i$) is determined for $b_i \in H_*(G; \mathbf{Z}/2\mathbf{Z})$, the map $H_*(ad : \mathbf{Z}/2\mathbf{Z})$ is determined.

4. Adjoint action on ΩE_6

The next theorem is the main result for E_6 of this paper.

Theorem 4.6. In Theorem 2.3 we can take b_i in $H_*(\Omega E_6 : \mathbf{Z}/2\mathbf{Z})$ so as to *satisfy that*

$$
(i)
$$

$$
\overline{\Delta}_{*}(b_{i})=0 \quad i \neq 4, \ 8, \ 16, \tag{1}
$$

$$
\bar{\Delta}_{*}(b_{4}) = b_{2} \otimes b_{2},\tag{2}
$$

$$
\overline{\Delta}_{*}(b_{8}) = b_{2} \otimes b_{2}b_{4} + b_{4} \otimes b_{4} + b_{2}b_{4} \otimes b_{2}, \qquad (3)
$$

$$
\overline{\Delta}_{*}(b_{16}) = b_{2} \otimes b_{2}b_{4}b_{8} + b_{4} \otimes b_{4}b_{8} + b_{2}b_{4} \otimes b_{2}b_{8} + b_{8} \otimes b_{8} \n+ b_{2}b_{8} \otimes b_{2}b_{4} + b_{4}b_{8} \otimes b_{4} + b_{2}b_{4}b_{8} \otimes b_{2} \n+ b_{2} \otimes b_{2}b_{4}^{3} + b_{2}b_{4}^{3} \otimes b_{2} + b_{4} \otimes b_{4}^{3} + b_{4}^{3} \otimes b_{4}.
$$
\n(4)

 (ii)

$$
Sq_{*}^{2}b_{4} = b_{2}, Sq_{*}^{2}b_{8} = b_{2}b_{4}, Sq_{*}^{4}b_{8} = b_{4}, Sq_{*}^{4}b_{16} = b_{4}b_{8},
$$

\n
$$
Sq_{*}^{8}b_{16} = b_{8}, Sq_{*}^{2}b_{10} = b_{2}^{4}, Sq_{*}^{4}b_{10} = 0, Sq_{*}^{2}b_{14} = 0.
$$

\n
$$
Sq_{*}^{4}b_{14} = b_{10}, Sq_{*}^{4}b_{22} = 0, Sq_{*}^{8}b_{22} = b_{14}.
$$

 (iii)

$$
y_6 * b_2 = b_4^2, y_6 * b_4 = b_{10} + b_2b_4^2, y_6 * b_8 = b_{14} + b_{10}b_4 + b_4^3b_2,
$$

\n
$$
y_6 * b_{16} = b_{22} + b_{14}b_8 + b_{10}b_8b_4 + b_8b_4^3b_2 + b_{10}b_4^3 + b_4^5b^2,
$$

\n
$$
y_6 * b_{10} = b_4^4, y_6 * b_{14} = b_{10}^2, y_6 * b_{22} = b_{14}^2.
$$

Remark. Theorem 4.6 states the whole informations of the Hopf algebra structure, the Steenrod algebra module structure and ad_* for $H_* (\Omega E_6)$. $\mathbb{Z}/2\mathbb{Z}$) except for Sq ${}_{5}^{2}$, b_{16} and Sq ${}_{5}^{2}$, b_{22} . These are postponed until Theorem 5.11.

Proof of i). By Theorem 5.1 in [5] we see (1) and by Lemma 3.1 in [5] we can set

$$
(b_2^*)^2 = b_4^*,\tag{5}
$$

$$
(b_2^*)^4 = b_8^*,\tag{6}
$$

$$
(b_2^*)^8 = b_{16}^*,\tag{7}
$$

Here (5) implies (2) . We set

$$
a_2 = b_2^*, a_8 = (b_4^2)^*, a_{16} = (b_4^4)^*, a_{10} = b_{10}^*, a_{14} = (b_{14}^4)
$$

where ()* means the dual with respect to the monomial basis of $H_*(\Omega G)$; *Z/2Z).* Then

$$
H_8 \left(\Omega G : \mathbf{Z}/2\mathbf{Z} \right) = \langle b_4^2, b_8 \rangle,
$$

$$
H_8 \left(\Omega G : \mathbf{Z}/2\mathbf{Z} \right) = \langle a_8, a_2^4 \rangle,
$$

So we see

$$
a_8 = (b_4^2)^* + pb_8^*,\tag{8}
$$

$$
a_2^4 = b_8^* \tag{9}
$$

where $p \in \mathbb{Z}/2\mathbb{Z}$. We can put $p=0$ by re-defining b_8 by $b_8 + pb_4^2$ This implies (3). Also in H₁₆ (Ω G; **Z**/2**Z**) and H¹⁶ (Ω G; **Z**/2**Z**) we know

$$
H_{16} (\Omega G ; \mathbf{Z}/2\mathbf{Z}) = \langle b_{16}, b_8^2, b_8b_2^4, b_4^4, b_{14}b_2, b_{10}b_4b_2 \rangle,
$$

\n
$$
H^{16} (\Omega G ; \mathbf{Z}/2\mathbf{Z}) = \langle a_2^8, a_8^2, a_{84}^4, a_{16}, a_{14}a_2, a_{10}a_2^3 \rangle,
$$

and we can see

$$
a^8 = (b_4^2)^* \cdot (b_4^2)^* = (b_4^2 \otimes b_4^2)^* \cdot \Delta_*.
$$

This shows that $a_8^2 = (b_8^2)^* + q_1b_{16}^*$ where $q_1 \in \mathbf{Z}/2\mathbf{Z}$. In the similar way we have

$$
a_8^2 = (b_8^2)^* + q_1 b_{16}^*, a_8 a_4^2 = (b_8 b_4^2)^* + q_2 b_{16}^*, a_{16} = (b_4^4)^* + q_3 b_{16}^*,
$$

\n
$$
a_{14}a_2 = (b_{14}b_2)^* + q_4 b_{16}^*, a_{10}a_2^3 = (b_{10}b_4 b_2)^* + q_5 b_{16}^*
$$
\n(10)

where $q_i \in \mathbb{Z}/2\mathbb{Z}$ for $1 \le i \le 5$. Again we re-define b_{16} by $b_{16} + q_1 b_8^2 + q_2 b_8 b_4^2 + q_3 b_4^4$ $+q_4b_{14}b_2+q_5b_{10}b_4b_2$ so that q_i becomes 0. Therefore by dualizing (7) and (10), the equations

$$
a_2^4 a_8 = a_2^2 (a_2^2 a_8)
$$

= $b_4^* \cdot (b_4^* \cdot (b_4^2)^*)$
= $b_4^* \cdot ((b_4 \otimes b_4^2)^* \cdot \Delta_*)$
= $b_4 \otimes ((b_4^3) + (b_8 b_4))^* \cdot \Delta_*$

and \bar{z}_1

$$
a_2^4 a_8 = a_2 (a_2^3 a_8)
$$

= $(b_2 \otimes ((b_2 b_4^3) + (b_8 b_4 b_2)) * \Delta_*$

deduce that

$$
\Delta_{*}(b_{16}) = b_{2} \otimes b_{2}b_{4}b_{8} + b_{4} \otimes b_{4}b_{8} + b_{2}b_{4} \otimes b_{2}b_{8} + b_{8} \otimes b_{8}
$$

+ $b_{2}b_{8} \otimes b_{2}b_{4} + b_{4}b_{8} \otimes b_{4} + b_{2}b_{4}b_{8} \otimes b_{2}$
+ $b_{2} \otimes b_{2}b_{4}^{3} + b_{2}b_{4}^{3} \otimes b_{2} + b_{4} \otimes b_{4}^{3} + b_{4}^{3} \otimes b_{4}$

Proof of ii) and *iii*). By equations (5) , (6) , (7) and the above arguments we have easily

$$
Sp_{*}^{2}b_{4}=b_{2}, Sq_{*}^{4}b_{8}=b_{4}, Sq_{*}^{8}b_{16}=b_{8}.
$$

Also,

$$
\overline{\Delta} * Sq_{*}^{2}b_{8} = Sq_{*}^{2}\overline{\Delta} * b_{8}
$$
\n
$$
= b_{2} \otimes b_{4} + b_{4} \otimes b_{2},
$$
\n
$$
\overline{\Delta} * Sq_{*}^{4}b_{16} = Sq_{*}^{4}\overline{\Delta} * b_{16}
$$
\n
$$
= b_{2} \otimes b_{2}b_{8} + b_{2}b_{8} \otimes b_{2}
$$
\n
$$
+ b_{4} \otimes b_{8} + b_{8} \otimes b_{4}
$$
\n
$$
+ b_{2} \otimes b_{2}b_{4}^{2} + b_{2}b_{4}^{2} + b_{2}b_{4}^{2} \otimes b_{2},
$$
\n
$$
+ b_{2}b_{4} \otimes b_{2}b_{4}
$$

and this implies that

$$
Sq_{*}^{2}b_{8}=b_{2}b_{4}, Sq_{*}^{4}b_{16}=b_{4}b_{8}+b_{4}^{3},
$$

since there exists no primitive element in H₆ (ΩE_6 ; $\mathbf{Z}/2\mathbf{Z}$) and H₁₂ (ΩE_6 ; *Z*/2*Z*). Also we see

$$
\overline{\Delta} * \mathrm{Sq}_{*b_{16}}^{2} = \mathrm{Sq}_{*}^{2} \overline{\Delta} * b_{16}
$$

= $\overline{\Delta} * (b_{2}b_{4}b_{8} + b_{2}b_{4}^{3})$

and this implies

$$
Sq_{*b_{16}}^2 = b_2b_4b_8 + b_2b_4^3 + \text{(primitive element)}.
$$
 (11)

Next we consider $y_6 * b_i$. We start from the next lemma.

Lemma 4.7.

$$
y_6 * b_2 = b_4^2
$$

Proof. We recall the exceptional Lie group G_2 . By Theorem 2.1 and Theorem 2.2, we have

$$
H_*(G_2; \mathbf{Z}/2\mathbf{Z}) = \wedge (y_3, y_5, y_6)
$$

where y_3 , y_5 are the dual of x_3 , x_5 and y_6 is the dual of x_3 with respect to the monomial basis of H^{*} (G₂; $\mathbb{Z}/2\mathbb{Z}$) corresponds to y_i in H_{*} (E₆; $\mathbb{Z}/2\mathbb{Z}$) and b_i in H_{*} (ΩE_6 ; **Z**/2**Z**). Therefore it is sufficient to prove that $y_6 * b_2 = b_4^2$ in the case of G_2 .

There is an inclusion $SU(3) \rightarrow G_2$ and

$$
H^*(SU(3) ; Z/2Z) = \wedge (x_3, x_5)
$$

where $|x_i|=i$ and $x_5 = \text{Sq}^2 x_3$. Also $\kappa^* x_3 = x_3$ and $\kappa^* x_5 = x_5$. We use the same notation for the elements which correspond by the inclusion. First we observe the commutator map Γ_0 : $SU(3) \wedge SU(3) \rightarrow SU(3)$ and $\Gamma_1:G_2 \wedge G_2 \rightarrow G_2$. Here remember that there are the fibrations

$$
\widetilde{SU}(3) \stackrel{i_{0}}{\rightarrow} SU(3) \stackrel{x_{0}}{\rightarrow} K(\mathbf{Z}, 3),
$$

$$
\widetilde{G}_{2} \stackrel{i}{\rightarrow} G_{2} \stackrel{x}{\rightarrow} K(\mathbf{Z}, 3),
$$

where x_0 and x represent the generator of $H^3(SU(3))$; **Z**) and $H^3(G_2; \mathbf{Z})$, and $\widetilde{SU}(3)$ and \widetilde{G}_2 are homotopy fibres of x_0 and x respectively.

Since $x_0 \circ \Gamma_0 \cong *$ and $x \circ \Gamma \cong *$, there are lifts $\Gamma_0 : SU(3) \wedge SU(3) \rightarrow \widetilde{SU}(3)$ (3) and $\Gamma: G_2 \wedge G_2 \rightarrow G_2$ such that $i_0 \circ \Gamma_0 \simeq \Gamma_0$ and $i \circ \Gamma \simeq \Gamma$. Also the following is known that

$$
H^*(\widetilde{SU}(3) : \mathbf{Z}/2\mathbf{Z}) = \mathbf{Z}/2\mathbf{Z}[x_8] \otimes \wedge (x_5', x_9)
$$

$$
H^*(\widetilde{G}_2 : \mathbf{Z}/2\mathbf{Z}) = \mathbf{Z}/2\mathbf{Z}[x_8] \otimes \wedge (x_9, x_{11})
$$

where $|x_i|=i$ and $|x_5|=5$ and by inclusion $SU(3) \rightarrow G_2 \tilde{\kappa}^* x_8 = x_8$ and $\tilde{\kappa}^* x_9 = x_9$ (See [4].)

Next we introduce a subspace X of $SU(3) \wedge SU(3)$. We know that $SU(3)$ $\approx S^3 \cup e_5 \cup e_8$ and $S_3 \cup e_5 \approx \sum CP^2$ where e_i is a cell of degree *i*. We put

$$
X = (S^3 \cup e_5) \wedge S^3 \cong \sum CP^2 \wedge S^3.
$$

We can see easily that

$$
H^*(X; \mathbf{Z}/2\mathbf{Z}) = \langle \varepsilon_6, \varepsilon_8 \rangle
$$

where $|\varepsilon_i|=i$ and $\varepsilon_8 = \text{Sq}^2 \varepsilon_6$

We denote the 2-localization of $\widetilde{SU}(3)$ as $\widetilde{SU}(3)$ (2) and the inclusion $\widetilde{SU}(3)$ $(3) \rightarrow SU(3)_{(2)}$ as l_2 . Then we have the following diagram:

$$
\widetilde{SU}(3) \xrightarrow{i_2} S\widetilde{U}(3) \xrightarrow{2} G\widetilde{U}(3) \xrightarrow{2} G\widetilde{U}(3) \xrightarrow{2} G\widetilde{U}(3) \xrightarrow{\widetilde{\Gamma}_0} \downarrow i_0
$$
\n
$$
X = \sum \mathbf{C} \mathbf{P}^2 \wedge S^3 \rightarrow SU(3) \wedge SU(3) \xrightarrow{\mathbf{P}_0} SU(3)
$$
\n
$$
\downarrow K(\mathbf{Z}, 3)
$$

Let *f* be the map $f : X \rightarrow \widetilde{SU}(3)_{(2)}$ defined by $f = l_2 \circ \widetilde{\Gamma}_0 |_{x}$.

We can see easily π_5 *(SU* (3) $_{(2)}$ $= \mathbb{Z}/2\mathbb{Z}$. Let $\alpha : S^5{}_{(2)} \rightarrow SU(3)$ $_{(2)}$ be the 2-localization of its generator. Then $\alpha_{*}:H_{*}(S^5{}_{(2)}; \mathbf{Z}) \rightarrow H_{*}(SU(3)_{(2)}; \mathbf{Z})$ is isomorphic for \ast \leq 6 and epic for \ast =7. Thus by Whitehead's theorem

$$
\alpha_* : \pi_6(S^5_{(2)}) \stackrel{\simeq}{\longrightarrow} \pi_6(\widetilde{SU}(3)_{(2)}))
$$
\n(12)

is isomorphic.

Here we refer to R.Bott's result that

$$
\Gamma_0|_{S^3\wedge S^3}\in \pi_6(SU(3))\cong \mathbf{Z}/6\mathbf{Z}
$$

is a generator. (See [3].) This implies $f|_{S^3 \wedge S^2} \in \pi_6(\widetilde{SU}(3)_{(2)}) \cong \mathbb{Z}/2\mathbb{Z}$ is the generator. Thus (12) implies that there exists a map

$$
g: S^6 \rightarrow S^5_{(2)}
$$

and *g* represents the generator of $\pi_6(S^s_{(2)}) \cong \mathbb{Z}/2\mathbb{Z}$ and the following diagram commutes upto homotopy.

$$
X \longrightarrow \widetilde{SU}(3)_{(2)}
$$
\n
$$
\uparrow \iota \qquad \qquad \uparrow \alpha
$$
\n
$$
S^6 \longrightarrow S^{5}_{(2)}
$$

Lemma 4.8.

$$
f^*(x_8) = \varepsilon_8.
$$

Proof. We assume $f^*(x_8) = 0$. Let C_f and C_g be the mapping cone of f and *g* respectively. Consider the commutative diagram below.

$$
X \xrightarrow{f} \widetilde{SU}(3)_{(2)} \xrightarrow{\kappa} C_f \xrightarrow{f} \Sigma X \xrightarrow{\kappa} \cdots
$$

\n
$$
t \qquad \uparrow \alpha \qquad \uparrow \iota' \qquad \uparrow \Sigma \iota
$$

\n
$$
S^6 \xrightarrow{g} S^5_{(2)} \xrightarrow{\kappa} C_g \xrightarrow{f} \Sigma S^6 \xrightarrow{\kappa} \cdots
$$

Then we can see

$$
\mathrm{H}^*(C_f: \mathbf{Z}/2\mathbf{Z}) = \langle \overline{x}_5, \overline{x}_8, \overline{x}_9, \overline{\epsilon}_7, \overline{\epsilon}_9 \rangle \text{ for } \mathbf{X} < 10, |\overline{x}_i| = i, |\overline{\epsilon}| = i
$$

where $k^*(\bar{x}_i) = \bar{x}_i$ and $j^*(\sum \varepsilon_i) = \bar{\varepsilon}_{i+1}$. Also we can show easily

$$
H^*(C_g: \mathbf{Z}/2\mathbf{Z}) = \langle \overline{c}_5, \overline{c}_7 \rangle, |\overline{c}_i| = i
$$

and $k'^*(\overline{c}_5) = c_5$ and $j'^*(\sum c_6) = \overline{c}_7$ where c_i is the generator of $H^*(S^* : \mathbf{Z}/2\mathbf{Z})$. Then we have the equations

$$
\iota^*(\varepsilon_6) = c_6, \, \alpha^*(x_5) = c_5, \n\iota'^*(\overline{x_5}) = \overline{c_5}, \, \iota'^*(\bar{\varepsilon}_7) = c_7,
$$

Recall that $[g]$ is the generator of $\pi_6(S^b{}_{(2)}) \cong \pi_6(SU(3){}_{(2)}) \cong \mathbb{Z}/2\mathbb{Z}$. This implies that the 2-localization of *g, g*₍₂₎ : $S^6{}_{(2)} \rightarrow S^5{}_{(2)}$ is homotopic to $\Sigma^3\gamma{}_{(2)}$ where γ is the Hopf map $\gamma : S^3 \rightarrow S^2$. Thus $C_{g(2)} \simeq \sum^3 C_{\gamma(2)} \sum^3 C P^2_{(2)}$ and we have

$$
Sq^2 \tilde{c}_5 = \overline{c_7} \text{ in } H^*(C_g; \mathbf{Z}/2\mathbf{Z}).
$$

Therefore $Sq^2 \bar{x}_5 = \bar{\varepsilon}_7$, since, if it were not, $\bar{c}_7 = Sq^2 \bar{c}_5 = Sq^2 \bar{c}'^2 \bar{x}_5 = \bar{c}'^* (Sp^2 \bar{x}_5)$ $=$ 0. We easily see Sq $*^2\bar{\varepsilon}_7 = \bar{\varepsilon}_0$ also.

On the other hand, by the Adem relation, we obtain

$$
Sq^2 Sq^2 \dot{x}_5 = Sq^3 Sq^1 \dot{x}_5 = 0.
$$

These contradict each other. Thus $f^*(x_8) = \varepsilon_8$.

Q.E.D.

Since Lemma 4.8 implies $\tilde{\Gamma}_0^*(x_8) \neq 0$, the only one possibility is

$$
\widetilde{\Gamma}_{0}^{*}(x_{8})=x_{3}\otimes x_{5}+x_{5}\otimes x_{3}.
$$

Then by the naturality of the commutator, we have

$$
\widetilde{\Gamma}^*(x_8) = x_3 \otimes x_5 + x_5 \otimes x_3.
$$

and

$$
\widetilde{\Gamma}^*(x_9) = \widetilde{\Gamma} (Sq^1 x_8)
$$

= Sq¹ (x₃ \otimes x₅ + x₅ \otimes x₃)
= x₃ \otimes x₃² + x₃² \otimes x₃.

By dualizing this, we have

$$
\widetilde{\Gamma} * (y_6 \otimes y_3) = y_9 \tag{13}
$$

where $y_9 \in H_*(\widetilde{G}_2; \mathbf{Z}/2\mathbf{Z})$ is the dual element of $x_9 \in H^*(\widetilde{G}_2; \mathbf{Z}/2\mathbf{Z})$ with respect to the monomial basis.

Now we consider the case of ΩG_2 . We have the fibration

$$
\Omega \widetilde{G}_2 \rightarrow \Omega G_2 \rightarrow K(\mathbf{Z},2)
$$

and the commutator map $\Gamma' : G_2 \wedge \Omega G_2 \rightarrow \Omega G_2$ lifts to the map $\tilde{\Gamma}' : G_2 \wedge \Omega G_2 \rightarrow$ $\Omega \widetilde{G}_2$. Here we can set

$$
\widetilde{\Gamma}'(g, l) (t) = \widetilde{\Gamma}(g, l(t))
$$

for $g \in G$, $l \in \Omega G$ and $t \in [0, 1]$. Thus we have the following commutative diagram in which the coefficient ring *Z/2Z* is abbreviated.

Also, we know that

$$
H_*(\Omega \widetilde{G}_2; \mathbf{Z}/2\mathbf{Z}) = \wedge (b'_7) \otimes \mathbf{Z}/2\mathbf{Z} [b'_8, b_{10}]
$$

and $\Omega i_*(b'_8) = b_4^2$, $\Omega i_*(b_{10}) = b_{10}$ and $\sigma(b'_8) = y_9$. This can be seen by the Serre spectral sequence of the fibration $S^0 \rightarrow \Omega G_2 \rightarrow \Omega G$.

Thus (13) implies that

$$
y_9 = \widetilde{\Gamma} * (y_6 \otimes \sigma(b_2)) = \sigma \widetilde{\Gamma}' * (y_6 \otimes b_2).
$$

Then $\widetilde{\Gamma}'*(y_6 \otimes b_2) \neq 0$, that is, $\widetilde{\Gamma}'*(y_6 \otimes b_2) = b'_{8}$. Therefore

$$
\Gamma_*(y_6 \otimes b_2) = \Omega i_* \circ \widetilde{\Gamma'}_*(y_6 \otimes b_2)
$$

= $\Omega i_* b'_8 = b_4^2$.

Since the following diagram commutes,

$$
\Gamma'_{*}(y_{6} \otimes b_{2}) = (y_{6} \ast 1) \cdot b_{2} + (y_{6} \ast b_{2}) \cdot 1 = y_{6} \ast b_{2}.
$$
\n
$$
G_{2} \times \Omega G_{2} \longrightarrow \Omega G_{2}
$$
\n
$$
1 \times \Delta \downarrow \qquad \uparrow \lambda
$$
\n
$$
G_{2} \times \Omega G_{2} \times \Omega G_{2} \longrightarrow \Omega G_{2} \times \Omega G_{2}
$$

Thus we finally obtain

$$
y_6 * b_2 = b_4^2.
$$

Q.E.D. (Lemma 4.7)

We remark that $y_6 * b_i$ can be determined upto primitive elements, if all $y_6 * b'$ and $y_6 * b''$ are determined where $\overline{\Delta}_* b_i = \sum b' \otimes b''$. Since

$$
\overline{\Delta} * y_6 * b_i = (y_6 \otimes 1 + y_3 \otimes y_3 + 1 \otimes y_6) * \overline{\Delta} * b_i
$$

= $\sum (y_6 * b') \otimes b'' + b' \otimes (y_6 * b'')$.

For example, since $\bar{\Delta}_{*} y_6 * b_4 = (y_6 * b_2) \otimes b_2 + b_2 \otimes (y_6 * b_2) = \bar{\Delta}_{*} (b_2 b_4^2)$,

$$
y_6 * b_4 = \rho_{(6,4)} b_{10} + b_2 b_4^2
$$

where $\rho_{(6,4)} \in \mathbb{Z}/2\mathbb{Z}$. Then we have

$$
y_6 * b_4 = \rho_{(6,4)} b_{10} + b_2 b_4^2
$$

\n
$$
y_6 * b_8 = \rho_{(6,8)} b_{14} + b_4 (y_6 * b_4) + b_2 b_4^3,
$$

\n
$$
y_6 * b_{16} = \rho_{(6,10)} b_{22} + b_8 (y_6 * b_8) + (b_4 b_8 + b_4^3) (y_6 * b_4) + b_2 b_4^3 b_8 + b_2 b_4^5
$$
\n(14)

where $\rho_{(6,i)} \in \mathbb{Z}/2\mathbb{Z}$.

On the other hand, we have

$$
Sq_{*}^{2}(y_{6} * b_{4}) = y_{6} * (Sq_{*}^{2}b_{4}) = y_{6} * b_{2},
$$

\n
$$
Sq_{*}^{4}(y_{6} * b_{8}) = y_{6} * (Sq_{*}^{4}b_{8}) = y_{6} * b_{4},
$$

\n
$$
Sq_{*}^{8}(y_{6} * b_{16}) = y_{6} * (Sq_{*}^{8}b_{16}) = y_{6} * b_{8},
$$
\n(15)

Since Steenrod operators map primitive elements into primitive elements and decomposable elements into decomposable elements, by (14), (15) and Lemma 4.7 we obtain that

$$
\rho_{(6,4)}Sq_{*}^{2}b_{10}=b_{4}^{2}, \ \ \rho_{(6,8)}Sq_{*}^{4}b_{14}= \rho_{(6,4)}b_{10}, \ \ \rho_{(6,16)}Sq_{*}^{8}b_{22}= \rho_{(6,8)}b_{14}
$$

and this implies that

$$
\rho_{(6,4)} = \rho_{(6,8)} = \rho_{(6,16)} = 1,\nSq_*^2 b_{10} = b_4^2, Sq_*^4 b_{14} = b_{10}, Sq_*^4 b_{22} = b_{14}.
$$
\n(16)

Therefore by (14) we have that

$$
y_6 * b_4 = b_{10} + b_2 b_4^2, y_6 * b_8 = b_{14} + b_{10} b_4 + b_4^3 b_2,
$$

$$
y_6 * b_{16} = b_{22} + b_{14} b_8 + b_{10} b_8 b_4 + b_8 b_4^3 b_2 + b_{10} b_4^3 + b_4^5 b_2.
$$

Since b_{14} and b_{22} are primitive, we have equations

$$
y_6 * b_{14} = \rho_{(6,14)} b_{10}^2,
$$

\n
$$
y_6 * b_{22} = \rho_{(6,22)} b_{14}^2.
$$
\n(17)

where $\rho_{(6,i)} \in \mathbb{Z}/2\mathbb{Z}$. On the other hand by (16) we have

$$
Sq_{*}^{4} (y_{6} * b_{14}) = y_{6} * Sq_{*}^{4} b_{14} = y_{6} * b_{10},
$$

\n
$$
Sq_{*}^{8} (y_{6} * b_{22}) = y_{6} * Sq_{*}^{8} b_{22} = y_{6} * b_{14}.
$$
\n(18)

Since

$$
0 = (y_6^2) * b_4
$$

= y_6 * $(y_6 * b_4)$
= y_6 * b_{10} + y_6 * $(b_2b_4^2)$,

we obtain

 $y_6 * b_{10} = b_4^4$.

Therefore (17) and (18) implies that

 $\rho_{(6,14)}= \rho_{(6,22)}=1.$

Since there is no primitive elements in H₆ (ΩE_6 ; **Z**/2**Z**) and H₁₈ (ΩE_6 ; $Z/2Z$) and since b_{10} and b_{22} are primitive, we have

$$
Sq^4 * b_{10} = 0, Sq^4 * b_{22} = 0.
$$

Thus we get the all formulas in Theorem 4.6.

Q.E.D.

By Theorem 4.6 we can deduce the following theorem about G_2 and F_4 .

Theorem 4.9. 1. In
$$
H_*(\Omega G_2 : \mathbb{Z}/2\mathbb{Z})
$$

\n $y_6 * b_2 = b_4^2$,
\n $y_6 * b_4 = b_{10} + b_2 b_4^2$,
\n $y_6 * b_{10} = b_4^4$.

2. *In* $H_*(\Omega F_4; \mathbf{Z}/2\mathbf{Z})$

$$
y_6 * b_2 = b_4^2,
$$

\n
$$
y_6 * b_4 = b_{10} + b_2 b_4^2,
$$

\n
$$
y_6 * b_{10} = b_4^4,
$$

\n
$$
y_6 * b_{14} = b_{10}^2,
$$

\n
$$
y_6 * b_{22} = b_{14}^2.
$$

Proof. By the naturality of the adjoint action we have the following commutative diagram.

$$
G_2 \times \Omega G_2 \stackrel{\text{ad}}{\longrightarrow} \Omega G_2
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
F_4 \times \Omega F_4 \stackrel{\text{ad}}{\longrightarrow} \Omega F_4
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
E_6 \times \Omega E_6 \stackrel{\text{ad}}{\longrightarrow} \Omega E_6
$$

Here $H_*(\Omega G_2 : \mathbf{Z}/2\mathbf{Z}) \rightarrow H_*(\Omega F_4 : \mathbf{Z}/2\mathbf{Z})$ and $H_*(\Omega F_4 : \mathbf{Z}/2\mathbf{Z}) \rightarrow H_*(\Omega E_6 :$ *Z/2Z)* are monic. Then Theorem 4.6 implies the statements.

5. Adjoint action on Ω **E**₇

For the Hopf algebra structure of $H_*(\Omega E_7; \mathbf{Z}/2\mathbf{Z})$ we refer to the following result of $[5]$.

Theorem 5 .1 0 (A. Kono & K. Kozima). *In Theorem 2.3 we can choose b,* in $H_*(\Omega E_7; \mathbf{Z}/2\mathbf{Z})$ so as to satisfy that

$$
\overline{\Delta}_{*}(b_{i}) = 0 \quad \text{for } i \neq 4, 8, 16,
$$
\n
$$
(19)
$$

$$
\overline{\Delta}_{*}(b_{4}) = b_{2} \otimes b_{2},\tag{20}
$$

$$
\overline{\Delta}_{*}(b_8) = b_2 \otimes b_2 b_4 + b_4 \otimes b_4 + b_2 b_4 \otimes b_2, \tag{21}
$$

$$
\overline{\Delta}_{*}(b_{16}) = b_{2} \otimes b_{2}b_{4}b_{8} + b_{4} \otimes b_{4}b_{8} + b_{2}b_{4} \otimes b_{2}b_{8} + b_{8} \otimes b_{8} \n+ b_{2}b_{8} \otimes b_{2}b_{4} + b_{4}b_{8} \otimes b_{4} + b_{2}b_{4}b_{8} \otimes b_{2}.
$$
\n(22)

Proof. For (19) see Theorem 5.1 in [5]. Then (20) , (21) and (22) follows from Theorem 4.6.

Now we observe the induced homomorphism on homology by the adjoint action of E_7 on ΩE_7 .

b_i	$y_6 * b_i$	$y_{10} * b_i$	$y_{18} * b_i$
b ₂	0	0	b_{10}^2
b ₆	b_{10}	b_{14}	$b_{22}+b_2b_{10}^2$
b_8	$b_{14} + b_4 b_{10}$	$b_{18} + b_4 b_{14}$	$b_{26}+b_4b_{22}+b_2b_4b_{10}^2$
b_{10}	0	b_{10}^2	b_{14}^2
b_{14}	b_{10}^2	θ	b_{16}^2
b_{16}	$b_{22} + b_8 b_{14} + b_4 b_8 b_{10}$	$b_{26}+b_8b_{18}+b_4b_8b_{14}$	$b_{34} + b_8b_{26} + b_4b_8b_{22} + b_2b_4b_8b_{10}^2$
b_{18}	θ	b_{14}^2	b_{18}^2
b_{22}	b_{14}^2	b_{16}^2	b_{10}^{4}
b_{26}	b_{16}^2	b_{18}^2	b_{22}^2
b_{34}	b_{10}^{4}	b_{22}^2	b_{26}^2

Theorem 5.11. *In Theorem 5.10 b, satisfies the following tables*

Proof. By considering the inclusion $E_6 \rightarrow E_7$, the result of Theorem 4.6 turns into

> $y_6 * b_2 = 0$, $y_6 * b_4 = b_{10}$, $y_6 * b_8 = b_{14} + b_4b_{10}$, $y_6 * b_{10} = 0$, $y_6 * b_{16} = b_{22} + b_8b_{14} + b_4b_8b_{10}$, $y_6 * b_{14} = b_{10}^2$, $y_6 * b_{22} = b_{14}^2$, $Sq_{*}^{2}b_{4} = b_{2}$, $Sq_{*}^{2}b_{8} = b_{2}b_{4}$, $Sq_{*}^{4}b_{8} = b_{4}$, $Sq_{*}^{4}b_{16} = b_{4}b_{8}$, $Sq_{*b_{16}}^{2}=b_{8}$, $Sq_{*b_{10}}^{2}=0$, $Sq_{*b_{10}}^{4}=0$, $Sq_{*b_{14}}^{2}=0$, $Sq_{*b_{14}}^{4} = b_{10}$, $Sq_{*b_{22}}^{4} = 0$, $Sq_{*b_{22}}^{8} = b_{14}$

If b_i is primitive, $y_6 * b_i$, $y_{10} * b_i$, $y_{18} * b_i$ and Sq'_*b_i are primitive. Thus

$$
y_i * b_j = 0
$$
 for $(i, j) = (6, 18)$, $(10, 2)$, $(10, 14)$

and

$$
Sq^i_{\star} * b_i = 0 \text{ for } (i, j) = (18, 2), (26, 2), (34, 4)
$$

since there is no primitive elements of degrees which these elements have in H_i $(\Omega E_7$; $\mathbf{Z}/2\mathbf{Z})$.

As stated in the proof of Theorem 4.6, $y_6 * b_i$ can be determined modulo primitive elements, if all $y_6 * b'$ and $y_6 * b''$ are known there $\overline{\Delta}_* b_i = \sum b' \otimes b''$. This is true for the case of $y_{10} * b_i$ and $y_{18} * b_i$. Thus we can put as follows:

$$
y_{10} * b_4 = \rho_{(10,4)} b_{14},\tag{23}
$$

$$
y_{10} * b_8 = \rho_{(10,8)} b_{18} + b_4 (y_{10} * b_4)
$$
\n
$$
y_{10} * b_{16} = \rho_{(10,16)} b_{26} + (\text{decomposable elements})
$$
\n(24)

where $\rho_{(10,i)} \in \mathbb{Z}/2\mathbb{Z}$. By applying Sq⁴ for (23), obtain

$$
\rho_{(10,4)}\text{Sq}^4\text{H}_{14} = \text{Sq}^4\text{H}_{10} \ast \text{H}_{10} = y_6 \ast \text{H}_{10} = y_{10}
$$

and this implies $\rho_{(10,4)} = 1$. Also by applying Sq‰ for (24) and Sq‰ for (25), we obtain the following equations in the similarway:

$$
\rho_{(10,8)} Sq_{\ast}^{8} b_{18} = Sq_{\ast}^{8} (y_{10} * b_{8} + b_{4} b_{14})
$$

\n
$$
= y_{6} * b_{4}
$$

\n
$$
= y_{10},
$$

\n
$$
\rho_{(10,16)} Sq_{\ast}^{4} b_{26} = Sq_{\ast}^{4} (y_{10} * b_{16})
$$

\n
$$
= y_{6} * b_{16} + y_{10} * (b_{4} b_{8})
$$

\n
$$
= b_{22} \qquad \text{mod decomposable elements.}
$$
 (27)

Then (26) and (27) implies $\rho_{(10,8)} = 1$ and $\rho_{(10,16)} = 1$ and $Sq_{*}^{8}b_{18} = b_{10}$. Also, since Sq^{4}₂₆ is primitive and no decomposable element in H₂₂ (ΩE_7 ; **Z**/2**Z**) is primitive, (27) tells that $Sq_{*}^{4}b_{26}=b_{22}$. Therefore we obtain

$$
y_{10} * b_4 = b_{14}, \tag{28}
$$

$$
y_{10} * b_8 = b_{18} + b_4 b_{14}, \tag{29}
$$

$$
y_{10} * b_{16} = b_{26} + b_8 b_{18} + b_4 b_8 b_{14}
$$
 (30)

By applying Sq_{*}^{2} and Sq_{*}^{4} to (29) and Sq_{*}^{8} to (30), we have

$$
y_{10} * (b_2 b_4) = Sq_4^2 b_{18} + b_2 b_{14},
$$

$$
y_6 * b_8 + y_{10} * b_4 = Sq_4^4 b_{18} + b_4 b_{10},
$$

$$
y_6 * (b_4 b_8) + y_{10} * b_8 = Sq_4^8 b_{26} + b_8 b_{10}.
$$

So we obtain that

$$
Sq_{*}^{2}b_{18}=0
$$
, $Sq_{*}^{4}b_{18}=0$, $Sq_{*}^{8}b_{26}=b_{18}$.

Also, $y_{10} * b_{10}$ can be computed as

$$
y_{10} * b_{10} = y_{10} * (y_6 * b_4)
$$

= $y_6 * (y_{10} * b_4)$
= $y_6 * b_{14} = b_{10}^2$.

Next we observe $y_{10} * b_{18}$, $y_{10} * b_{22}$ and $y_{10} * b_{26}$. Since $y_{10} * b_{18}$ is primitive we can put

$$
y_{10} * b_{18} = \rho_{(10,18)} b_{14}^2, \tag{31}
$$

$$
y_{10} * b_{22} = \rho_{(10,22)} b_{16}^2, \tag{32}
$$

$$
y_{10} * b_{26} = \rho_{(10,26)} b_{18}^2. \tag{33}
$$

where $\rho_{(10,i)} \in \mathbb{Z}/2\mathbb{Z}$. By applying Sq_{*} for (31), Sq_{*} for (32) and Sq_{*} for (33), we obtain that

$$
\rho_{(10,18)} \text{Sq}_{*}^{8} b_{14}^{2} = \text{Sq}_{*}^{8} y_{10} * b_{18} = y_{10} * b_{10} = b_{10}^{2},
$$
\n
$$
\rho_{(10,22)} \text{Sq}_{*}^{4} b_{16}^{2} = \text{Sq}_{*}^{4} y_{10} * b_{22} = y_{6} * b_{22} = b_{14}^{2},
$$
\n
$$
\rho_{(10,26)} \text{Sq}_{*}^{16} b_{18}^{2} = \text{Sq}_{*}^{16} y_{10} * b_{26} = y_{6} * b_{14} = b_{10}^{2}.
$$

Therefore we have $\rho_{(10,18)} = \rho_{(10,22)} = \rho =_{(10,26)} = 1$ and

$$
Sq_{*}^{4}(b_{16}^{2}) = b_{14}^{2}.
$$
 (34)

Remember that by (11) in the proof of Theorem 4.6 we have

$$
Sq_{*b_{16}}^{2} = kb_{14} + b_{2}b_{4}b_{8} + b_{2}b_{4}^{3} \text{ in } H_{*}(\Omega E_{6} ; \mathbf{Z}/2\mathbf{Z})
$$

where $k \in \mathbb{Z}/2\mathbb{Z}$ and then

$$
Sq_{*b_{16}}^2 = kb_{14} + b_2b_4b_8
$$
 in $H_*(\Omega E_7 : \mathbf{Z}/2\mathbf{Z})$.

Then one can easily show $k=1$ from (34). Hence

$$
Sq_{*}^{2}b_{16}=b_{14}+b_{2}b_{4}b_{8}+b_{2}b_{4}^{3} \text{ in } H_{*}(\Omega E_{6} ; \mathbf{Z}/2\mathbf{Z}).
$$

$$
Sq_{*}^{2}b_{16}=b_{14}+b_{2}b_{4}b_{8} \text{ in } H_{*}(\Omega E_{7} ; \mathbf{Z}/2\mathbf{Z}).
$$

Moreover we have that in $H_*(\Omega E_6; \mathbf{Z}/2\mathbf{Z})$

$$
Sq_{*}^{2}(y_{6} * b_{16}) = y_{6} * (b_{14} + b_{2}b_{4}b_{8} + b_{2}b_{4}^{3})
$$

= b_{10}^{2} + b_{2}b_{4}b_{14} + b_{2}b_{8}b_{10} + b_{4}^{3}b_{8} + b_{4}^{5}

while

$$
Sq_{*}^{2}(y_{6} * b_{16}) = Sq_{*}^{2}(b_{22} + b_{8}b_{14} + b_{4}b_{8}b_{10} + b_{4}^{3}b_{10} + b_{2}b_{4}^{5})
$$

= Sq_{*}^{2}b_{22} + b_{2}b_{4}b_{14} + b_{2}b_{8}b_{10} + b_{4}^{3}b_{8} + b_{4}^{5}.

Therefore it follows that

$$
\mathrm{Sq}_{*}^{2}b_{22}=b_{10}^{2} \text{ in } \mathrm{H}_{*}(\Omega E_{6} ; \mathbf{Z}/2\mathbf{Z}) \text{ and } \mathrm{H}_{*}(\Omega E_{7} ; \mathbf{Z}/2\mathbf{Z}).
$$

Next we consider $y_{18} * b_2$, $y_{18} * b_4$ and $y_{18} * b_8$. We can put

684 *Hiroaki Hamanaka*

By applying Sq^8 to (37), we have

$$
\rho_{(18,8)} Sq_{*}^{8}b_{26} \equiv Sq_{*}^{8}(y_{18} * b_{8})
$$

\n
$$
\equiv y_{10} * b_{8}
$$

\n
$$
\equiv b_{18} \mod \text{ decomposable elements.}
$$

Thus $\rho_{\text{\tiny{(18,8)}}}=1$ and also we see

$$
y_{18} * b_4 = Sq_4^*(y_{18} * b_8)
$$

= Sq₄⁴b₂₆

$$
\equiv b_{22} \mod \text{ decomposable elements.}
$$

This means $\rho_{(18,4)} = 1$. Moreover we know that

$$
\overline{\Delta}_{*}(y_{18} * b_4) = b_2 \otimes (y_{18} * b_2) + (y_{18} * b_2) \otimes b_2,
$$

that is, $y_{18} * b_4 = b_{22} + b_2 (y_{18} * b_2)$. Therefore

$$
y_{18} * b_2 = Sq_{*}^{2} (y_{18} * b_4)
$$

= Sq_{*}^{2} (b_{22} + \rho_{(18,2)} b_2 b_{10}^{2})
= b_{10}^{2}

and $\rho_{(18,2)}=1$. Also operating Sq $_{*}^{16}$ to (38), we see

$$
y_{10} * b_8 = Sq^{16}_{*}(y_{18} * b_{16})
$$

= $\rho_{(18,16)} Sq^{16}_{*}b_{34} + (\text{decomposable elements}).$

Then, by (29), we deduce $\rho_{(18,16)} = 1$ and $Sq_{*}^{16}b_{34} = b_{18}$.

Now we can compute $y_{18} * b_2$, $y_{18} * b_4$, $y_{18} * b_8$ and $y_{18} * b_{16}$, using

$$
y_{18} * b_4 = \rho_{(18,4)}b_{22} + b_2(y_{18} * b_2)
$$

and by the similar manner. Hence we have

$$
y_{18} * b_2 = b_{10}^2,\tag{39}
$$

$$
y_{18} * b_4 = b_{22} + b_2 b_{10}^2,\tag{40}
$$

$$
y_{18} * b_8 = b_{26} + b_4 b_{22} + b_2 b_4 b_{10}^2,\tag{41}
$$

$$
y_{18} * b_{16} = b_{34} + b_8 b_{26} + b_4 b_8 b_{22} + b_2 b_4 b_8 b_{10}^2. \tag{42}
$$

Next we observe $y_{18} * b_{10}$, $y_{18} * b_{14}$, $y_{18} * b_{18}$ and $y_{18} * b_{26}$. We can put

$$
y_{18} * b_{10} = \rho_{(18,10)} b_{14}^2, \tag{43}
$$

$$
y_{18} * b_{14} = \rho_{(18,14)} b_{16}^2, \tag{44}
$$

$$
y_{18} * b_{18} = \rho_{(18,18)} b_{18}^2, \tag{45}
$$

$$
y_{18} * b_{26} = \rho_{(18,26)} b_{22}^2, \tag{46}
$$

by primitivity. We can easily show $\rho_{(18,10)} = \rho_{(18,14)} = \rho_{(18,18)} = \rho_{(18,26)} = 1$ by applying Sq $*$ to (43), Sq $*$ to (44), Sq $*$ to (45) and Sq $*$ to (46). Also by aperty plying Sq_{*}^{4} to (46) , we have

$$
y_{18} * b_{22} = Sq_{*}^{4}(y_{18} * b_{26}) = Sq_{*}^{4}b_{22}^{2} = b_{10}^{4}
$$

Now the rest we have to do is to determine $y_6 * b_{34}$, $y_{10} * b_{34}$, $y_{18} * b_{34}$ and to determine Sq $_{4}^{2}b_{34}$ and Sq $_{4}^{8}b_{34}$. Here (42) implies that

$$
y_6 * b_{34} = y_6 * (y_{18} * b_{16} + b_8b_{20} + b_4b_8b_{22} + b_2b_4b_8b_{10}^2)
$$

= $y_{18} * (y_6 * b_{16}) + y_6 * (b_8b_{26} + b_4b_8b_{22} + b_2b_4b_8b_{10}^2)$
= b_{10}^4

By the similar manner we can compute $y_{10} * b_{34}$ and $y_{18} * b_{34}$ as

$$
y_{10} * b_{34} = b_{22}^2
$$

\n
$$
y_{18} * b_{34} = b_{26}^2
$$
\n(47)

Also by applying Sq_{*}^{8} to (47) , we have

$$
y_{18} * (\text{Sq}_{*}^{8}b_{34}) + y_{10} * b_{34} = \text{Sq}_{*}^{8}(b_{26}^{2}).
$$

This means y_{18} * (Sq $_4^8b_{34}$) = 0, while Sq $_4^8b_{34}$ = b_{26} or 0. Therefore Sq $_4^8b_{34}$ =0.

Also by applying Sq_{*}^{2} to (42) , we have

$$
Sq_{*}^{2}b_{34} = y_{18} * (Sq_{*}^{2}b_{16}) + Sq_{*}^{2}(b_{8}b_{26} + b_{4}b_{8}b_{22} + b_{2}b_{4}b_{8}b_{10}^{2})
$$

= b_{16}^{2} .

Thus we obtain the all entries of the tables in Theorem 5.11.

Q.E.D.

6. Homology ring of *LG (G)*

As stated in §1, $LG(G)$ is isomorphic to the semi-direct product of G and ΩG . Thus the following diagram commutes (See $[6]$.)

$$
\Omega G \times G \times \Omega G \times G \xrightarrow{\omega} \Omega G \times \Omega G \times G \times G \xrightarrow{\lambda \times \mu} \Omega G \times G
$$

\n
$$
\downarrow \phi \times \phi \qquad \qquad \downarrow \phi
$$

\nLG (G) \times LG (G)

where Φ : $\Omega G \times G \rightarrow LG(G)$ is map defined by $\Phi(l, g)(t) = l(t) \cdot g$ and λ , λ' and μ are the multiplication maps of ΩG , LG (G) and G respectively and ω is the composition

$$
(1_{\Omega G} \times T \times 1_G) \cdot (1_{\Omega G} \times \mathrm{ad} \times 1_G) \cdot (1_{\Omega G} \times \Delta_{G*} \times 1_{\Omega \times G}).
$$

And also, Φ is homeomorphism.

Therefore we have the following theorem.

Theorem 6 .1 2 . *Let G be a compact, connected, simply connected Lie group and p a prime. Then*

 $H_*(LG(G) : \mathbf{Z}/p\mathbf{Z}) \otimes H_*(\Omega G : \mathbf{Z}/p\mathbf{Z}) \cong H_*(G : \mathbf{Z}/p\mathbf{Z})$ as $\mathbf{Z}/p\mathbf{Z}$ module and the *multiplication is defined by*

$$
(b \otimes y) \cdot (b' \otimes y') = (b \cdot (y_{(2)} * b')) \otimes (y_{(1)} \cdot y')
$$

wher b, $b' \in H_*(\Omega G; \mathbf{Z}/p\mathbf{Z})$, $y, y' \in H_*(G; \mathbf{Z}/p\mathbf{Z})$ *and* $\Delta_{*}y = \sum y_{(1)} \otimes y_{(2)}$.

Thus by Theorem $4.6, 4.9$ and 5.11 we can directly compute the algebra structure of H_{*} $(LG(G)$; $\mathbb{Z}/2\mathbb{Z})$ for $G = G_2$, F_4 , E_6 , E_7 . But it is complex to write them out exactly. Hence we show the case of G_2 only.

Theorem 6.13. H_{*} $(LG(G_2) : \mathbf{Z}/2\mathbf{Z})$ *is generated by y₃, y₅, y₆ and b₂, b₄, No . A nd their fundamental relations are*

$$
y_3^2 = 0, y_5^2 = 0, y_6^2 = 0, b_2^2 = 0,
$$

\n
$$
[y_i, y_j] = 0, [b_i, b_j] = 0 [y_3, b_i] = 0, [y_5, b_i] = 0,
$$

\n
$$
[y_6, b_2] = b_4^2, [y_6, b_4] = b_{10}, [y_6, b_{10}] = b_4^4.
$$

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- $\lceil 1 \rceil$ S. Araki, Cohomolgy modulo 2 of the compact exceptional groups, J. Math. Osaka Univ., 12 (1961), 43-65,
- $\lceil 2 \rceil$ A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., 76 (1954), 274-342.
- A. Bott, A note on the Samelson product in the classical groups, Comm. Math. Helv., 34 (1960), $\begin{bmatrix} 3 \end{bmatrix}$ 249-256.
- M. Mimura, The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6-2 (1967), $[4]$ 131-176.
- $[5]$ A. Kono & K. Kozima, The mod 2 homology of the space of loops on the exceptional Lie groups, Proc. Royal Soc, Edinburgh, 112 A (1989), 187-202.
- $\lceil 6 \rceil$ A. Kono & K. Kozima, The adjoint action of Lie group on the space of loops, Journal of the Mathematical Society of Japan. 45-3 (1993), 495-510.
- M. Rothenberg & N. Steenrod. The cohomology of the classifying space of H-spaces, Bull. $[7]$ Amer. Math. Soc. (N.s.), 71 (1961), 872-875.