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Homology ring mod 2 of free loop groups
of exceptional Lie groups

By

Hiroaki HAMANAKA

1. Introduction

'Assume G  is  a compact, connected, simply connected Lie group. The space of
free loops on G is called LG (G ) the free loop group of G, whose multiplication
is defined as

yo • 0 (t) =  (t) • 0 (t).

Let QG be the space of based loops on G, whose base point is  the unit e. Then
LG (G) has QG as its normal subgroup and

LO (G) / QG =." G.

Identifying elements of G w ith constant maps from S1 to  G, LG (G) is equal to
the  semidirect product of G  and QG. T hus th e  homology of LG (G) is deter-
mined by the homology of G and QG and the algebra structure of H* (LG (G)
Z/2Z) depends on H*(ad ; Z/2Z) where

ad : G X QG— QG

is the adjoint map.
The purpose of this paper is to determine He (ad  ;  Z/2Z) for the  excep-

tional Lie goups G = G 2 , F4, Es and E 7 . A nd a t the  same time, using th e  Hopf
algebra structures of H*(QEs ; Z/2Z) and H*(QE7 ; Z/24, we could deter-
mine the gi'21` m odule structure of H*  (Q G  ; Z/24 . Moi- eover some mistakes
was detected in the result about Hopf structure of H*(QEs Z/2Z) o f  [5] and
we offer the  modified result. The main result is show ed in  Theorem 4.6, 4.9
and 5.11.

T h is  paper is organized a s  follows. In  §2 w e re fe r  to  th e  resu lt of the
algebra structure of II* (G ; Z/2Z) and

 1 1 *
 ( G ; Z/2Z). A nd in §3 we intro-

duce the adjoint action and observe its  p rope rty  a n d  in  §4, §5 th e  induced
homomorphism from adjoint action of G2, F4, E 6  and E 7  is determ ined. Finally
in  §6 we give th e  method to compute the  Pontrjagin ring of LG (G) and show
the case of G2.

T he  au thor is g ra tefu l to  P rofessor A kira  Kono fo r  h is fru itfu l advices

Received November 16,1995
* Partially supported by JSPS Research Fellowships for Young Scientists.



670 Hiroaki Hamanaka

and encouragements.

2. H* (G ; Z /2Z ) and H*  (QG ; Z/2Z)

We refer to the  result o f  [ 1 ]  a n d  [2 ]  about H* (G ; Z /2 Z )  for G = G2, Fa, Es,
E7.

Theorem 2.1.

H*(G2 ; Z /2Z ) =Z /2Z [x 3 ] / (4 )  ® A
 (x5),

H* (F4 ; Z/2Z) = Z/2Z[x3] / (4 )  0  A (x 5 x15, x23),

H* (E6 ; Z/2Z) -Z/2Z[x3] / (xl) 0  A (X 3  X 9 , X 1 3 , X 1 7 , X 2 3 ),

H* (E7 : Z/2Z) = Z/2Z [x3, 15, x9] / (4, 4, 4) 0  A (X 15, x17, X23)

where xi is a generator of degree i. Moreover there are homomorphisms

G2- - T 4
- - T 6 - 4 E7

which map x , into x , in the cohomology of any smaller group.

Theorem 2 .2 .  In  Theorem 2.1,

= Sc 2x 3 f o r  G 2, F4, E 6, E 7

X9 = SCI4X 3  for Es, E7

and x 3 , x s  and x 9 are primitive.

T he  algebra struc tu re  o f H* (QG ; Z/2Z) can be determined a s  a n  ap-
plication of the Eilenberg-Moore spectral sequence. See [7 ].

Theorem 2.3.

H*  (QG2 ; Z/2Z) =  A (b 2 ) OZ/2Z[b 4 , b10],
H* (S2F4 ; Z/2Z) = O A (b2 ) OZ/2Z[b 4 , blo, b14, h22],
H*  ( QE6 ; Z/2Z) 0 A (b2) OZ/2Z[b 4 , ba, 610,1)14, b16, b22],
H*  (QE7 ; Z/2Z) =  0 A (b2 ) OZ/2Z[b 4 , ba, b10, b16, b18, b22, b26 , b34]

where b, is a generator of degree i.

3. Adjoint action

Let Ad : G X  Gœ+G and ad  : G X  Q G -Q G  be the adjoint action of a Lie group

G defined by A d  (gh) -= ghg - 1  a n d  a d  (g, 1) (t) = gl (t) g - 1  where g , hE  G , lE
QG and tE [0, 1]. These induce the homomorphisms

Ad *  :  H :  (G  ;  Z / 2 Z )  H* (G ; Z/2Z) - )I- 1* (G ; Z/2Z )

and

ad* : H* (G ; Z/2Z) OH* (QG ; Z/2Z)---.1-1 * ( Q G  ; Z/2Z ).
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Put y * y' = Ad* (y V )  and y * b = ad* (y ® b) w h e re  y , y' H *  (G ; Z/2Z)
and b E H* (QG ; Z/2Z). Following are the dual statement of the result in  [6].

Theorem 3.4. For y, y', y" E H* (G ; Z/2Z) and b, EH* (QG ; Z/2Z)
l *y=y, l * b = b .

(ii) y * 1 = 0, if  lyl > 0, whether 1E11* (G ; Z /2Z ) or I. E H* (QG ; Z/2Z).
(iii) (yy') * b =y  * (y' * b).
(iv) y  *  (b (y' * b) (y" * b') where 6,0  = Ey' 0 y"
(V ) a (y * b) =y  * c (b) where a is the homology suspension.
(vi) SO, (y *b) = E i (Scif.ky) * (Sqrib).

SO: (y *y') = Ei (Sce*y) * (Sql- zy').
(vii) A* (y *  b) = (A* y) * (A * 6)

= E (y '*b r ) (y "*b ")
where ,6,*y=Ey' Øy" and A* b = Eb' Oh". Also

* (y * b) = (A*y) * ( b).
(viii) If  b is primitive then y * h is primitive.

Also the result o f  [6] implies

Theorem 3.5. We define a submodule A  of H*  (G  ; Z/2Z) as

A =- A (ye) for G=G2, F4, E6
A= A (y6, yie, y18) for G=E7

where y21 is  the dual of 4  with respect to the monomial basis. Then there exist a
retraction p  :  H*  (G ; Z/2Z) - - 9A  and the following diagram commutes.

ad*
H* (G  ; Z/2Z) OH * (Q G  ; Z/2Z) ii*(Q G  ; Z/2Z)

P ad* /
A OH* (QG ; Z/2Z)

Proof. B y Proposition 2.10 o f  [6] w e have  the  folloing commutative dia-
gram

ad*
H*(G ;  Z/2Z) O H * (QG  ; Z / 2 Z )  —> H* (QG ; Z/2Z)

ad * /
(Te U 1) OH * (QG ; Z/2Z)

w here Vt* is  th e  se t all transgressive elem ents w ith respect to  the principal
fibration

G—'G/T— 'BT.

Clearly

W U 1= A (x i) G= G2, F4, E6,
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Tr; U 1= A (xi, xi, xi) .

Using monomial basis of H* (G ; Z /2Z ) and V , w e  c a n  dualize the above re-
sult and regard (Tr) * u 1 as the submodule of H* (G ;  Z/2Z) and we obtain
the statement.

Remark. By Theorem 3.4 (iv) and Theorem 3.5 we see that for b
(QG ; Z/2Z) and i-=3, 5, 9

P21
*  b 2 ( y  *  b )  b  (y i * 0 2 +  b 21* b)

= 0.

Remark. By theorem 3.4 and 3.5, when G =G 2 , F4, E6 (resp. G=E 7 ) ,  if
y6* b i  (resP. Y6 * b i ,  y io * b i  and P18* b i)  is determined for b i E H* (G ; Z/2Z),
the map H*(ad ; Z/2Z) is determined.

4. Adjoint action on S2E6

The next theorem is the main result for E6 of this paper.

Theorem 4 .6 .  In  Theorem 2.3 we can take b i in  H*(S2E6 ; Z/2Z) so as to
satisfy that
(i)

A* (b1) =0 i *4, 8, 16, (1)
-6,- *(b4)—b2ob2, (2)

A* (b8) = b2 Ob 2 b4 4- 64 ON+ b2 b4 01) 2 , (3)
L ( b 16) =b2 eb 2b4 b8±b 4 gb.l bs +b 2b4 b 2 68 -1-bs Obs

±b 2 b8 b 2b4 +6 468+ b 2b4 b8 b 2

+b 2 0b2bi+b2bi0b2+b4Obi+bi0b 4 . (4)

S66 4 = 62, SP:41)8= b2b4, Scitbs= ba, Scitbis= b4b8,
Sqlb 16 =b 8 , ScORb1o =b1, Scitb 1o =0, Sce* N4 =0.

Sql:b14-= 43, Sqtb22=0, Sq1b22*birt.

Y6 * b2 b , s  *  b4 
=

b10±b2bi, Y6* b8
=

b14±b1064±bib2,

Y6 * 616
=  b22+b141)8±b10b8b4+bebib2±b10bi - 1- 01) 2 ,

Y6 *b10
=

 b t  Y 6 *  b 1 4  
1
40, Y6 *

1
)22 == bi4.

Rem ark. Theorem 4.6 states the whole informations of the Hopf algeb-
ra  structure, the Steenrod algebra module structure and ad* fo r H* (QE 6

Z/2Z) except for ScAb i s  and Sce*b22. These are postponed until Theorem 5.11.

Proof of i). By Theorem 5.1 in  [5 ] we see (1 ) and by Lemma 3.1 in  [5]
we can set
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(b ) 2 —b?,( 5 )
(0 ) 4=11, (6)
(q ) 8 = b 16 • (7 )

H ere (5 ) implies (2). We set

a2=b2* , a8= (4 * , ais= (14) * ,

als= a14= (14'4)

w here  ( ) *  means the  dual w ith respect to  the  monomial basis of H*  (QG
Z/2Z). Then

H g (QG ; Z / 2 Z ) <bi, b 8>,
H g (QG ; Z / 2 Z ) <a8 ,

So we see

as  (bi) * ±Pb:, (8)

a bt (9)

where Z/2Z. W e can put p= 0 by re-defining b8 b y  68 + oi T his  implies

(3). Also in H16 (Q G  ; Z/2Z) an d  H "  (QG ; Z/2Z) we know

H16 (Q G  ; Z/2Z)= bi, 680, bt 402, b10b4b2>,
rT16 t n,•-• •  , 7 / • , / 7 1 / 2H16 s c u  L i /  L c . /  =  \a2

8

 , a8, a8a1, ais, a14a2, a isa3> ,

and we can see

a 8 = (1)8) * • (b i) *= (b ® bi)

This show s th a t a i =  (a )  * q ib is *  w here  qi G  Z/2Z. In  th e  similar way we
have

ai= (bi) * +qibis * , asai= (b8bi) * ±92bi6* , ais=- (b1) * - Fq3bis*

a14a2= (b14b2) * +q4bPs, alvd= (b10b4b2)*+q5b16* (10)

where g, E  Z/ 2Z for 1 S i S5. Again we re-define 616 b y  b16 + 0 1 ± q 2b8bi-l-q 3b1
-1- a4b14b2+q8bisb4b2 so that q ' 0. Therefore by dualizing (7) a n d  (10),
the equations

Acts = ai (aias)

=1): • (1): *•  (b i))
= 1): • ( (b4 14) *  ° 6, *)
= 64  (  ( b i ) (b8b4) ) *° A*

and
ala s =a 2 (a3a8 )

= (b 2(  ( b 2 / 4 ) (b8b4b2) ) *° A*
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deduce that

A* (b16) = b2 eb2b4b8+b4 0 b4b8±b2b4 Ob2b8±b8
±b 2b8 Ob2b4

- 1- b4b8 Ob4 - 1-- b2b4b8 Ob2
b2 (W 261+621)/ Ob2±b4 Obi+bi

Proof of ii) and iii). By equations (5 ),  (6 ),  (7 ) and the above arguments
we have easily

So2 b b  0_4 t, 0 _ 8 -
*  4 -  2, s-M-1*u8 - u 4 , oq*uis— u8.

Also,

A * Sq2
* 1)8 =Sqi,A * b8

—620b 4
- 1-- b4 0b2,

A*Scitb i s= ScitkA*1) 16
=b2 (S) b2b8-4-  b2b8 b 2

+ L I  O N + b8 0b 4

- Fh2 0b 2bid- b2bid- b2bi Ob 2.
+b 2b4 ®b 2b4

and this implies that

Sqi,b8 = b2b4, SqUii.6=b4b8+bi,

since  there  ex ists no prim itive element in  H 6  ( Q E 6  ;  Z / 2 4  and H 12 (Q E 6

Z /2k . Also we see

A *Sq016= Sq*2*/)16

= (b2b4b8+b2b1)

and this implies

Sq;b16=b2b 4b8H- b2b43 +  (primitive element).

Next we consider y 6 * bi. W e start from the next lemma.

Lemma 4.7.

Y 6 *  62 =1)1

Proof. W e  re c a ll t h e  exceptional L ie  g roup  G 2 .  B y T heorem  2 .1  and
Theorem 2.2, we have

H*(G2 ; Z/2Z)— A (y3, y 5 ,  y6)

where y3, y5 are  the dual of x 3, x 5 an d  y 6 i s  the dual of x i w ith  respect to the
monomial basis of H* (G 2  ;  Z/2Z) corresponds to y, in  H*  (E6 ; Z/2Z) and b,

in  H*  (QE6 ; Z/2Z). Therefore it is sufficient to prove that y6 *b 2 =b i in the
case of G2.
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There is an inclusion SU(3) G2 and

H*  (SU (3 ) ; Z/2Z)= A (x 3 , x 5)

w here lx ( l= i and x 5 = Sq2x 3 .  Also e i : 3 =  X 3  and e x 5 = x 5 . W e use  the  same
notation for the elements which correspond by the inclusion. F irst w e observe
the commutator map r 0 : su (3) ASU (3)—*SU (3 ) and  I' :G2AG2- - 'Gz. Here re-
member that there are the fibrations

SU (3) SU (3) (Z, 3),

U2± )G2LK (Z, 3) ,

where x o a n d  x  represent the  generator of H3 (SU (3 )  ;  Z ) and  H3 (G 2 ; ,
and S7J (3 ) and 6- 2 are  homotopy fibres of xo and x  respectively.

Since x o ° r *  and x° r  * ,  there a re  lif ts  r  :  SU (3) A SU (3)-4SU
(3 ) a n d  F  : G2 A G 2- + G 2 such that io° F o  F o  and  I:. f F. A lso  the follow-
ing is known that

H* (ST (3) ; Z/2Z)=Z/2Z[x 8 ] ® A 1 9)

H* (U2 ; Z/2Z)=Z/2Z[x 8] 0  A (Is, x ii)

where lx i i= i and 1151=5 and by inclusion SU(3) - 2 ex8==x8 and K  X g - X 9.

(See [4].)
Next we introduce a  subspace X of SU(3) A SU (3) . W e know that SU(3)

=S 3 Ue 5 Ue 8 and S 3  Ue 5 = EC P 2  where e i i s  a cell of degree i.
We put

X =  (S 3 Ue 5 ) AS 3 =  E C P 2 AS 3 .

We can see easily that

H*  (X ; Z/2Z) = <E6 , Eti>

where led = i and s8=5q 2e6
W e denote the  2-localization of SU (3 )  a s  SU (3) (2) and the inclusion SU

(3) - - SU(3) ( 2 ) as 12 . Then we have the following diagram:

STI (3) S -U(3) (2 )

r
x= EcP2As3--su (3) Asu(3) su(3)

K (Z, 3)
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Let f  be the map f : X—>SU (3) (2) defined by f =/2° foix.
W e can see easily  75 (S 7J (3) (2)) =Z /2 Z . Let a : S 5 (2)—  SU (3 )  (2 )  be  the

2-localization of its generator. Then a*:H*(S 5(2) ; 4 - 4 H*(SU(3) (2) ; Z )  is iso-
morphic fo r  * and epic fo r  * =7. Thus by Whitehead's theorem

a* : 71- 6(S 5 (2)) — )1r6tSU (3) (2))) (12)

is isomorphic.
Here we refer to R.Bott's result that

r olvAs3E 71'6 (SU (3) ) Z /6Z

is  a  generator. (See [3] .) T h is  implies f Iv 7[6 (SU (3) (2)) Z /2Z  is  the
generator. Thus (12) implies that there exists a  map

g  : S6- - , S5(2)

and g represents the generator of n-6(S5(2)) Z/2Z and the following diagram
commutes upto homotopy.

X7 ( 3 ) 2 )

I t T a

Lemma 4.8.

f * (x8) = E8.

Proof. W e assume f * (x 8 ) = 0. Let Cf and C, be the mapping cone of f  and
g  respectively. Consider the commutative diagram below.

X SU (3 ) (2) C f — 4 EX  — '•••
te t ae ' t e

1
S6s 5

( 2 )

Then we can see

H*  (Cf ; Z /2Z ) = T8, y 9 , E7 ,  Eg> fo r  *  <10 ,

where k* ( ) =,f; and j* (E si)  =C + 1 . Also we can show easily

H* (C, ; Z / 2Z) = (Fs, e>,

and k'* (F5 ) = c s  and j' * ( Ec6) = c3 where ci is  the generator of Hi (S i  Z 12Z ).
Then we have the equations
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c* (6 6 ) = c6 , a* (x 5) =c ,
e'* t' (E )  = c 7 ,

R ecall that [g ] is  the  generator o f 74 (S 5 (2)) "=-. 7r6 (SU (3) (2)) Z/ 2Z. This
im plies that th e  2-localization o f g, 9 ( 2 )  : S 6 (2)—  - S5 (2 )  i s  homotopic t o  E 3r(2)

where r is the Hopf map r  : S 3 .—S2 . Thus C,(2)":--- E 3Cr(2)E 3 CP 2 (2) and we have

Sq2c'5 =7-
7 in  H*(C, ; Z/2Z).

Therefore Sce.i 5 = ë , s ince , if  it w ere not, c3= Sq:g 2 j 5 = Sq *
2 t' *±T 5 = e' * (SP*2±5)

=0. W e easily see Sq *
2 E7 = .4  also.

On the other hand, by the Adem relation, we obtain

s ce s c i zi 5 _ s q 3s q 1i -,5 _ 0 .

These contradict each other. Thus f *  (3 :8 )  = Eg.

Q.E.D.
Since Lemma 4.8 implies 0*(x 8) * 0 , the only one possibility is

f *  (X8) = X3 OX, +X5 Ox 3.

Then by the naturality of the commutator, we have

f *  (x8) = x3 Ox5 - l- x5 Ox3.

and

* (1 9 ) =  (Sq 1x8)
= Sce (x3 0.15 4-1 5 0 x3)

=x 3 Oxi+xi O x .

By dualizing this, we have

f* (Y 6 0 Y3) =y9 (13)

where ys E H* (d2 ; Z/2Z) is  the dual element of x s E H* (ö2 ;  Z/2Z) with re-
spect to the monomial basis.

Now we consider the case of S-26-2. We have the fibration

Qd2—+ QG2--qf (Z,2)

and the commutator map r' : G2 AQG2-052G2 lif ts  to the  m a p  ' : G2AQG2—

Q52. Here we can set

' (g, i) (t) = (g , (t))

for gE G, I E Q G  a n d  t E [0, 1] . Thus w e have the following commutative dia-
gram in which the coefficient ring Z/2Z is abbreviated.



H + 1  (C2)

H* (02) OH=g+i (02) H*+1 (02)

Id Oa

H* (0 2 ) OH* (QG2)

(Q52)

f'* IS2i*

H*1-1 ( Q 02)
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Also, we know that

H *(Q 5 2 ; Z / 2Z) A (1;7) OZ/2Z[b'8 , bid

a n d  i*  ( b '8 )  = b , i *  (b10) =No and a(V8) ==y9. This can be seen by the Serre
spectral sequence of the libration S °— >S2G2— q2G.

T h u s  (13) implies that

P s=  f* (Y 6 0 0. (b2 ))=- 0- fry'*(Y6 0 b2).

Then f '* (y , b 2 )  * o , tha t is , f'* (y6 ob2) =1/8. Therefore

r s; (y 6 ob,) = Qi*. (y6®62)

=  i *V8 b i .

Since the following diagram commutes,

r f* (y6 Ob2) — (y s  *1 ) •  b 2 +  (y s * b2) • 1 = Y6* b2.

G2 X QG2 QG2

X  I T
ad x 1

G2 X QG2 x QG2 QG2 x S2G2

Thus we finally obtain

ys* b 2= bi.
Q.E.D. (Lemma 4.7)

W e rem ark that y6 *  1), can be determ ined upto prim itive elements, if  all

Y6* b' and y s * b "  are determined where 6,*/), = Eb' Ob". Since

-A*y6* b, = (y601+y30y3+1 0y6) *A*61
= (y 6 * b ')  Ob" - Fb'e)(y 6 *b").

For example, since A- 0 6 * b 4= (y 6* b2) 0 b2+1)2 0 (y6* b2) =3 ,- * (b2bi),

y 6 * b4=P(6,4)b1od- b2bi

where 0 6 4 ) Z/2Z. Then we have
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Y6 * b4
=

P(6,4)bl0+b2bi

Y6
*

 b 8 P(6,8)b 14+ b4 (y6* 1)4) +b 2 bi, (14)

Ys * b16=Pc6,10ib22±b8 (Y6 *b8) (b4b8+14) (y s *  b4) ±b21)168±b24

where P(6,o E Z/2Z.
On the other hand, we have

Sq2* (y6* b4) —Y6 * (SCI36b4) 
=

Y6 * b2,
Sqt (y 6 *b 8) =y6* (Scitb8) =y6 * b4, (15)

Sce *  (y6* 516) = y6* (Sq1b16) =Y6 *  bs,

Since Steenrod operators m ap primitive elements into prim itive elements and
decomposable elements into decomposable elements, by (14 ), (15 ) and Lemma
4.7 we obtain that

P(6,4)Sq 2*/40 = b i, P(6,8)SC14*1)14 = P(6,4)bio> Pcs.isiSq 84<bn=p(6,8)bi4

and th is  implies that

P(6,4) 
=

P(6,8) = P(6,16) =

Sq* 2 610=bi, Sqtbm=bio, ,S4b22 =1)14. (16)

T h ere fo re  b y  (1 4 )  w e have that

y6 * b4 = b10+ b2bi, y6 * b8 b14 bl0b4+ elb2,

Y6 * bis= b2 2 ±b24b8±b10b8b4+b8bab2+1)100+14b2.

Since 614 and b2 2  are prim itive, w e have equations

Y6*b14=P(6,14)bio, (17)

Y6 * b22 
=

P(6,22)
1
q4.

w here P(6,i) E Z / 2 Z . On the other hand by (16) we have

Scit (p 6 * b 14 ) = y6* Scitbi4 — y6* bio, (18)

Sq ( y 6*b22) = y 6*Sc -abz2=Y 6*b14.

Since

0 =  (0 )  * b 4

y 6 *  ( y 6 *  b 4 )
=

Y6 * b10+ Y6 * (b2bi)

we obtain

Y6*/)10=0.

Therefore (17) a n d  (18) implies that

P(6,14)-=P(6,22)=1.
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Since there is no prim itive elements in  H6 (QE6 ; Z/2Z) and H18 (QE6
Z/2Z) and since b10 and b22 are primitive, we have

qtb i o = 0, Sqtb 22 =0.

Thus we get the all formulas in Theorem 4.6.
Q.E.D.

By Theorem 4.6 we can deduce the following theorem about G2 and F4.

Theorem 4 .9 .  1. In H* (S2G2 ; Z/2Z)
Y 6 *  b2 — b,

Y6* b4 =  b10+ b2bi,
ys*bio=b1.

2. In H* ( S2F4 ; Z/2Z)
Y6*b2=bi.,
Y6 * b4 = NO+ b21)42,

Y6 *b10 = 0 ,

Y6 *b14

Y6 * b22

Proof. By the naturality of the adjoint action w e have the following com-
mutative diagram.

ad

G2 X S2G2--+QG2
1.

F4 X 9,F4—"q2F4

ad

E6 X QE6—>
QE6

Here H* (S2G2 ; ZI2Z) — >H* (52F4 ; Z/2Z) and H* (S2F4 ; Z/2Z) — >H* (Q.E6
Z/2Z) are monic. Then Theorem 4.6 implies the statements.

5. Adjoint action on QE 7

F or the  Hopf algebra structure  of H* ( 2E7 ; Z/2Z) w e refer to  the following
result o f  [5].

Theorem 5 .1 0  (A. Kono & K. Kozima). In Theorem 2.3 we can choose b,
H* (S2E7 ; Z/2Z) so as to satisfy that

A* (b,) =0 for i*4, 8, 16, (19)
A* (b4) = b2 b2, (20)

A*(b8)-=b20b2b4+b4064 -+- b2b40b2, (21)
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A* (b16) = b2 b 2b4 bs + b 4 M a+ b2b4 b 2b8 + b s eb 8

+ b2 b8  b2 b4 + b4 b8  0 b4 + b 2 b4b 8 ob2. (22)

Proof. F o r  (19 ) see Theorem 5.1 in  [5 ]. Then (20 ), (21 ) and  (22 ) fol-
lows from Theorem 4.6.

Now we observe the induced homomorphism on homology by the adjoint
action of E7 on QE7.

Theorem 5.11. In  Theorem 5.10 b, satisf ies the following tables

bi y s*b i Y bo*bi Y18* b,
b2 0 0 bio
bs No bi4 b22+ bzbio
bs 1)14 ± b4bio b18+ b4b14 bzs + 1422 ± b2babio
bio 0 bio b14
bpi bio 0 bis

Ns b22+ b8b14+ b4b8b10 626 ± bsbis+ b4bsbi4 1)34 ± bab26+ babsb22 ± b2b4bsbio
Ns la b124 bis

b22 bT4 bis bto
b26 bis 0.8 bi2
1)34 bto b222 bis

b, Sq24:b, Scitbi Sqlb : RI':
b4 b2 ..._ _ _

bs b2b4 b4 _ _

No bi 0 — _

b14 0 blo — _

bis b144- b2b4b8 Ms b8 _

bis 0 0 No _

b22 bio 0 b14 —

b25 0 b22 b18 —

b34 bis 0 0 b18

Proof. By considering the inclusion E6- 4E7 , the  result of Theorem 4.6
turns into

Y6*b2=0 , Y6 *b4
=

b10, Y6*b8
=

 b14+b4b10, Y6*N0
= 0

,

ys * = 622 + bat, 14+ b4bsbis, Y6*b14
=

b1.0 y6*b22= OA,

Scji:b4 =b 2 , Si:008=1)2N, Scitb8=b4, Scitb16=b4b8,
ScM 16 =b 8 , Sqb i o 0, Sqtb i o =0, Sdb 14 =0,

Sqtbi4=b10, C ' 4f. Sq1b22=b14.

1f b1 is primitive, ys*bi, yio*bi, y 18 * b1 and Sql*bi are primitive. Thus
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y  *  b  = 0  fo r  (i, j )  = (6, 18), (10, 2), (10, 14)

and
Sq14,* b i = 0 fo r  (i, j)  = (18, 2), (26, 2), (3 4 ,4 )

since  there  is no prim itive elements of degrees which these elements have in
Hi (QE7 ; Z /2 Z ) .

A s stated in  the  proof of Theorem 4.6, y 6 *  b1 can be determ ined modulo

primitive elements, if  a ll y 6  *  b" and y6 *  b " a re  know n there A*b i =  Eb' 0 b".
This is true for the case of y io *  b 1 and y18 * b ,. Thus we can put as follows:

yio*b4=Poo,4)614, (23)
y 10 * b8= p(10,018+ b4 (y * b4) (24)
yio*bi6=P(10,16)b26+ (decomposable elements) (25)

where P(io,1) E Z/2Z  By applying S d  fo r  (23), obtain

p( 1 0 ,4)Sqtbi4=Sq 4*(yio*b4) =y6*b4=y10

and this implies p ( 1 0 ,4 ) =  1. Also by applying S d  fo r  (24) and S d  fo r  (25), we
obtain the following equations in the similarway:

P(l0,8)Sdbi8:=Sd (y 10* 68 + b4b14)
=y6 *1)4
=y10, (26)

Poo,16■Sqtb26 -=Sq 4* (y10 * b16)
=

Y6* b16±Y10* (b4b
b22 mod decomposable elements. (27)

T h e n  (26 ) a n d  (27 ) implies p(16,8) = 1 and p(10,16) = 1 and  Sdb i s  =  No. Also,

since Sqtb26 is  prim itive and no decomposable element in  H22 (QE7 ;  Z /2Z ) is

primitive, (27) tells that Sqtb26=b22. Therefore we obtain

y10* b 4 =  b14, (28)

ylo * b8 = 1)18+1414, (29)

y 10* bi6= b26H- b8b18+ b4b8b14 (30)

By applying Sqi: and Sqt to  (29) and SO , to  (30), we have

io * (621)4) =Sq018+ b2b 14,

y6* b8±Y10 * b4
=

S0018±b4b10,

Y6* (b4b8) ±Y10*b8
=

SCIU26±b8b10.

So we obtain that

Sd<b18=0, Sqtbi8=0, Sc0026=b18.

Also, yio*b10 can be computed as
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yio*bi0=y10* (y6*b4)
=Y6* (Y io*b4)

= y6 *

Next we observe ylo*b18, yio*b22 and yi.o*b26. Since yio*b is is  primitive
we can put

yio*bi8=P(lnati)bi4, (31)

yio*b22= - -- P(lo,22)bis, (32)

Yb0* b26=po0,26>bi8. (33)

where p o o m eZ/2Z. By applying Sqs* fo r  (31), Sqt fo r  (32) and S O ' fo r  (33),
we obtain that

P(io,18)Sqlbi4=Sql yio*b18=y10 *  b 10 b 0 ,

p(10,22)Sqtbi6=Sdy10* b22= y 6 * 0 22
s q Vbi8 = s q4,16y =P (10,26) 10 026 y6 * 0 14 bi().

Therefore we have P(10,18) = P(10,22) = p= (10,26) = 1 and

Sqt (bi6) =bi4. (34)

Remember that by (11) in the proof of Theorem 4.6 we have

Sdb16=kb14 -f- b2b4b8+b2bi H*(aE6 ; Z/2Z)

where kEZ/2Z and then

Sdb16=kb14 -1- b2b4b8 in H * (52E7 ; Z/2Z).

Then one can easily show k 1 from (34). Hence

Sciiii 1 6 =b 14 - i- b2 b4 b8 +b 2 b1 in H* (52E6 ; Z/2Z).

Sq* 21)16=b14 - Fb2b4b8 in  H*(QE 7 ;  Z/2Z).

Moreover we have tha t in H* (S2E6 ; Z/2Z)

Sd (y6* b16) =Y6* (b14 b2b4b8 b2bi)

= 1)7,0+ b2b4b14+ b2b8b10+ b4
3 b8 +  14

while

Sq (y o * = Sq (b22+1414+ b4b8b10+14b10±b2b,)
=ScAb22+b2b4b14 - Fb2b8bio + bib s + la

Therefore it follows that

Sdb 22 = 0 0 in  H*(S2E6 ;  Z / 2Z ) and H*  (Q.E7 ; Z/24 .

Next we consider y18*b2, .Vis*ba and y 1 8 *b 8 . We can put
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Y18 * b2 P(18,2)
1
4 ), (35)

Y18 * b4 
=

P(18,4)b22 ± (decomposable elements), (36)
Y18*b8=- P(18.8)b26+ (decomposable elements), (37)
Y18 * b16 P(18,1034 + (decomposable elements), (38)

By applying Sql to  (37), we have

P(1.8,8)Sql:b26=-- S.:De (y18 * b8)

*  1)5
:=7 618 mod decomposable elements.

Thus P(18.8)= 1 and also we see

y18 * b4 = SO, (y18 * b8)

-=--622 mod decomposable elements.

This means p( 18 ,4 ) = 1. Moreover we know that

A* (Y * /94) — b2 (Y18 * b2) + (y18* b2) 0  b2,

tha t is, y18* b4
==

 b22±b2 (Y18 * ba) . Therefore

p18* b2 S 4  (Y 1 8  *  b 4 )

=Sqlt(b224- P(18,2)b2bio)
=bio

and p (1 8 ,2 )--= 1. Also operating Sc01,6 t o  (38) , we see

y * b8= Sqr (y18 * b16)
=

p(l8,16)Scel:
6
634+ (decomposable elements).

Then, b y  (29) , we deduce Po.8,16) = 1 and SqVb34= bis.
Now we can compute yia*b2 , 18 * b4, Y18* b8 and P 18 * b 16 , using

Y18* b4 
=

P(18,4)b22+b2 (Y18 * b2)

and by the similar manner. Hence we have

Y18 * b2 = bio, (39)

Y18 * b4 ""-= b22 +b200, (40)

y is *1)8= 6 2 6  b 4b22 6210 4bio, (41)

y18 * b16
=

 b34 b8b26+ b4b8b22 b2b4b8b10. (42)

Next we observe yi.5*bui, Y18 *b14, Y18 *b18 and Y18* b 26 . We can put

Y18 * b10 P(18,10)bi4, (43)

Y18 * ble
=

p(l8,14)bie, (44)

y18 * bl8
=

 P(18,18)14.89 (45)
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1/18 * b26 = P(18,26) 142, (46)

by primitivity. W e can easily show n, (18,10) = P(18,14) = P(18,18) = P(18,26) = 1 by ap-
plying Sdto (43 ), Sqt t o  (44), S W  to  (45 ) and  Sq4:6 t o  (46). Also by ap-
plying Sqt to  (46) , we have

Y18 * b22 
_ c  

q t (y 1 8  b 2 6 )  =  S q tb i2  =  1 4 0 .

Now the rest w e have to  do is to determine y6*b34, y10* b34, 1/18 *  b34 and
to determine Sqi<b34 and  Sdb34. H ere (42) implies that

1/6 * b34 Y 6  *  ( 1/ 18 * b16±b8b20+ b4b8b22+ b2b4b80.0)

— 1/18 * (y6* b16) +y6* (1426+64b8b22+b2b4b8b10 2 )

=bt o

By the similar manner we can compute ylo*b34 and Y 18 * b 34 as

yi0 * 1)34 --- bi2

Y18 "* b34 bis (47)

Also by applying S d  t o  (47) , we have

y 18  *  (S (Ab34) + y10*  b34= Sq l (b i6 ) •

This means 1/ 18* (Sdb 34 ) =0, while Sq8:034=b26 or 0. Therefore Sq1b34=0.

Also by applying ScA to  (42) , we have

sce034 = y  18 *  (Sqicb 16) ±Sd (b8b 26+ b4b8b22+ b2b4b8b10)

= 0 6 ,

Thus we obtain the all entries of the tables in Theorem 5.11.
Q.E.D.

6. Homology ring of LG (G)

A s stated in  §1, LG (G) is isomorphic to the sem i-direct product of G and QG.
Thus the following diagram commutes (See [61.)

QG x G x QG x G—q-2G X QG X G X QG x G
x (1)

/1' 
LG (G) x LG (G) (G)

w here 0 : QG x G--oLG (G) is map defined b y  (I, g) (t) = 1 (t) • g and
/1" and t i are the multiplication maps of QG, LG (G) and G  respectively and co
is the composition

(10 G  x TX  1G) ° (10G x ad x 1G) ° (10G X AG* X 10xG ) •

And also, 0  is  homeomorphism.
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Therefore we have the following theorem.

Theorem 6 .1 2 . L et G  be a compact, connected, simply connected L ie group
and p a prime. Then

H* (LG (G) ; Z / p Z )  H* ( QG ; Z / p Z )  H* (G ; Z /pZ ) as Z /pZ  module and the
multiplication is defined by

(b Oy) • (11 0 0 =  (1) • (y (2 )*  16 ) 0  ( y ( i )  •  y ')

wher b, e f l *  (QG ; Z/pZ), y, E H *  (G ; Z /pZ ) a n d  *y = Ey(t) Oy (2).

Thus by Theorem 4.6, 4.9 and  5.11 we can directly compute th e  algebra
s tru c tu re  o f  H*  (LG (G )  ; Z/2Z) fo r  G = G2, F4, E6, E 7 . B u t it is com plex to
write them out exactly. Hence we show  the case of G 2 only.

Theorem 6 .1 3 . FI* (LG (G2) ; Z/2Z1 is generated by  y3, y5, y6 and b2, b4,
N o . A nd their fundamental relations are

0=-0, yi=0, yi=0, b=0,
[y,, y i ] =- 0, [bi , bi ] =0 [y 3 , bi] =0. [y 5 , bi ] =0,

[ye, b2] , [y6, 1)4] =1)10, [ye, b10]
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