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Homology ring mod 2 of free loop groups
of exceptional Lie groups

By

Hiroaki HAMANAKA

1. Introduction

Assume G is a compact, connected, simply connected Lie group. The space of
free loops on G is called LG (G) the free loop group of G, whose multiplication
is defined as

e oW)=¢@) - ¢).

Let QG be the space of based loops on G, whose base point is the unit e. Then
LG (G) has QG as its normal subgroup and

LG(G)/QG=G.

Identifying elements of G with constant maps from S! to G, LG (G) is equal to
the semidirect product of G and QG. Thus the homology of LG (G) is deter-
mined by the homology of G and QG and the algebra structure of H« (LG (G)
Z/2Z) depends on Hx(ad ; Z/2Z) where

ad : G XQG—QG

is the adjoint map.

The purpose of this paper is to determine Hx (ad ; Z/2Z) for the excep-
tional Lie goups G =G, F4, E¢ and E;. And at the same time, using the Hopf
algebra structures of Hx (QEs ; Z/2Z) and Hx (QE; ; Z/2Z), we could deter-
mine the &% module structure of Hx (QG ; Z/2Z) . Moreover some mistakes
was detected in the result about Hopf structure of Hx (QFs ; Z/2Z) of [5] and
we offer the modified result. The main result is showed in Theorem 4.6, 4.9
and 5.11.

This paper is organized as follows. In §2 we refer to the result of the
algebra structure of H* (G ; Z/2Z) and H*(QG ; Z/2Z). And in §3 we intro-
duce the adjoint action and observe its property and in 84, 8§85 the induced
homomorphism from adjoint action of G,, F4, E¢ and E; is determined. Finally
in §6 we give the method to compute the Pontrjagin ring of LG (G) and show
the case of Ga.
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and encouragements.

2. H*(G; Z/2Z) and H«(QG ; Z/22Z)

We refer to the result of [1] and [2] about H* (G ; Z/2Z) for G =G, F4, Es,
E,.

Theorem 2.1.
H*(G,; 2/2Z) =Z/2Z[x;)/ (x%) ® N (x5),
H* (F4 ; Z/ZZ) :Z/ZZ[Ia]/(Iﬁ) AN (1’5 X5, 1’23).

H*(Ee ; Z/ZZ) =Z/2Z[x3]/(.r§) SN (JCs X9, Xis5, L17, 1‘23),
H*(E; 1 Z/2Z) =Z/2Z|x3, x5, xo)/ (3, 28, 28) ® A (15, 217, X23)

where x; 1s a generator of degree 1. Moreover there are homomorphisms
G F—Ee™E,
which map x; into xi tn the cohomology of any smaller group.
Theorem 2.2. [n Theorem 2.1,
r5=Sq%rs for Ga, F4, Ee E;
x9=Sq*rs for E¢, E;
and x3, X5 and xg¢ are primitive.

The algebra structure of Hy (QG ; Z/2Z) can be determined as an ap-
plication of the Eilenberg-Moore spectral sequence. See [7].

Theorem 2.3.

Hy (QG, 5 Z/22Z) = ® A (by) ®Z/2Z[bs, bro],

Hy(QF.; Z/2Z) = ® N (by) ®Z/2Z b, bio, bia, bz2],

Hs(QEs ; Z/2Z) = ® A (by) ®Z/2Z by, bs, bio, bus, bis, 2],
Hu(QE; ; Z/2Z) = ® N (by) ®Z/2Z by, bs, bro, bis, bis, baz, bas, basl

where b; is a genevator of degree 1.

3. Adjoint action

Let Ad : G XG—G and ad : G X QG—QG be the adjoint action of a Lie group

G defined by Ad (gh) =ghg™" and ad (g, 1) (t) =gl (t)g~* where g, hEG, I E
QG and t€ [0, 1]. These induce the homomorphisms

Adg :Hs: (G Z/22) ®H« (G 5 Z/2Z)—H« (G ; Z/22Z)

and
ads . Hx (G ; Z/2Z) @H4(QG ; Z/22)—H«(QG ; Z/22Z).



Homology ring mod 2 671

Put y %y =Ad« (y ®y’) and y *b=ad« (y ®b) where y, y' EH« (G ; Z/22)
and bEHx(QG ; Z/2Z) . Following are the dual statement of the result in [6].

Theorem 3.4. Fory,y', y ' €H«(G ; Z/2Z) and b, b €EH«(QG ; Z/22Z)
(i) lky=y, 1%b=b.
(i) y*1=0,1f |y|>0, whether 1EH« (G ; Z/2Z) or 1EH«(QG ; Z/2Z).
(iti)  (yy') *b=y* (y *b).
(iv) y* (b)) =2 (y %b) (y" *kb') where Axy =2y ®y”
(v) oly*b)=y*x0o(b) where o is the homology suspension.
(vi) Sak(y*d) =2, (Sqky) * (Sq¥'b).
Sq% (y *y") = Z; (Saky) * (Sqk'y).
(vii) Ax(y*b) = (Axy) * (Agb)
=2 (y *b) ®(y *kb")
where Axy =2y ®y” and Axb=2b"®b". Also
Z*(y *b) = (Agy) * (Axb).

(viii) If b is primitive then y ¥ b is primitive.
Also the result of [6] implies
Theorem 3.5. We define a submodule A of Hx (G ; Z/2Z) as

A:/\(ye) for G=G2, F4, Es
A=A (ys, Y10, y18) for G=E

where yy; is the dual of x?% with respect to the monomial basis. Then there exist a
retraction p . Hx (G ; Z/2Z)—A and the following diagram commutes.

ad*
H« (G ; Z/2Z) ®Hy (QG ; Z/2Z) — Hi(QG : Z/22)

ad*/

Proof. By Proposition 2.10 of [6] we have the folloing commutative dia-
gram

p
A®HL(QG : Z/22Z)

ad*
H*(G ; Z/2Z) ®H* (QGC ; Z/2Z) — H*(QG; Z/2Z)

ad*

(Tg*U1) ®H*(QG ; Z/2Z)

where T#* is the set all transgressive elements with respect to the principal
fibration

G—G/T—BT.
Clearly
TEU1=A (x}) G=G,, F4, Es,
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TEFUL1=A (3 z& x).

Using monomial basis of H* (G ; Z/2Z) and T%*, we can dualize the above re-

sult and regard (T%*)*U 1 as the submodule of Hx (G ; Z/2Z) and we obtain
the statement.

Remark. By Theorem 3.4 (iv) and Theorem 3.5 we see that for b€ Hy
(QG ; Z/2Z) and i=3,5,9

y21*b2 (y2x*b)b+(y:*b)2+b(y21*b)
=0.

Remark. By theorem 3.4 and 3.5, when G =G, Fy, E¢ (resp. G=E,), if
ye¥ b; (resp. ye*by, yio*b; and y1s% b;) is determined for b; EHy (G ; Z/2Z),
the map Hx(ad ; Z/2Z) is determined.

4. Adjoint action on QF;

The next theorem is the main result for Es of this paper.

Theorem 4.6. In Theorem 2.3 we can take b; in Hx (QEs ; Z/2Z) so as to
satisfy that

(i)
Ay (b;) =0i+#4, 8, 16, (1)
A (bs) =, ®by, (2)
Ay (bs) =by ®bobytby @byt bsbs ®by, (3)
Ay (b16) = by ®bsbsbgtbs @bybg+bzby ®bsby+bs @by
+bobs ®bybs+babs ®by+bobsbs @b,
+ b, @bybi+ 203 ®byt+bs b3+ 03 @b, 4)
(ii)
Sqkba=1bs, Sqkbs=bzbs, Sqkbs=bs, Sqkbis=babs,
Sakb1s=bs, Sqkbio=">b% Sakb10=0, Sqkb1s=0.
) Sqkb1a=b1o, Sakbaz=0, Sqkbza=b1a.
(it

Ve ¥ ba=b}, yek ba=broF bobi, Yok bs=b1sFbrobst bibo,
Yo * b16=baytb1abst brobsbatbsbiba+biobi +b3b%,
Yok bio=0b%, yek bra=0b%, ye* bz =bia

Remark. Theorem 4.6 states the whole informations of the Hopf algeb-
ra structure, the Steenrod algebra module structure and ads for Hy (QEs ;

Z/2Z) except for Sqkbis and Sqkb,s. These are postponed until Theorem 5.11.

Proof of i). By Theorem 5.1 in [5] we see (1) and by Lemma 3.1 in [5]
we can set
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b¥)2=0bf, (5)
(bF)*=bg, (6)
(b¥) 2=bT, (7

Here (5) implies (2). We set
a2=bs*, ag= (b3) *, a1s= (b%) *,
a0=bi a1a= (b

where () * means the dual with respect to the monomial basis of Hx (QG ;
Z/2Z). Then

Hs (QG ; Z/2Z) = <b3, by,
Hs (QG : Z/2Z) = <as, a¥,

So we see
as= (b%) *+pbs, (8)
at=b§ 9)
where p€ Z/2Z. We can put p=0 by re-defining bg by bg+ pbi This implies
(3). Also in His (QG ; Z/2Z) and H'*® (QG ; Z/2Z) we know
His (QG ; Z/2Z) = <bss, b, bsb3, b3, braba, brobabs),
H'* (QG : Z/2Z) =<a3, a}, asa}, ais, araaz, a10a®,
and we can see
a?= (b3)* + (b)) *= (b3 ®bF) * As.

This shows that ad= (b2) * + q1b16* where ¢, € Z/2Z. In the similar way we
have

= (b§) *+qibis™, asaf= (bgbi) *+qabic*, a1e= (b3) *+gsbis™,
a14az= (b1ab2) *+qabts, a10a3= (brobsbz) *+qsbis™ (10)
where ¢;€Z/2Z for 1<i<5. Again we re-define by by bis+q1bi+q2bsb%+qsb}

+ qab14ba +gsb1obsbs so that g; becomes 0. Therefore by dualizing (7) and (10),
the equations

ajas

%(azas)

RN CHEN )

£ ((be®bD)*oAy)
((63) + (bsbs)) *= Ax

b
b
bs®

and
ajas=a, (a%as)
= (b, ® ((bb3) + (bgbabz) ) *°Ax
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deduce that

E* (blﬁ) = bz ®b2b4b3+b4 ®b4b8+b2b4 ®b2b8+b8 ®b8
+b2b3 ®b2b4+b4b3 ®b4+b2b4b8 ®b2

F b2 ®bybd+by03 @by +by ®b3+ b3 @b,

Proof of ii) and iii). By equations (5), (6), (7) and the above arguments
we have easily

Sp?kb4= b2, ngkbsz ba, ngkbm =bs.
Also,
[_S*qukba: Sqil xbg
=b2 ®b4+b4 ®b2,

A+Sqkb1s=SqkAxbie
=b, ®bzb5+b2bs ®bz
+bs ®bgt+bs @by

+b2 ®b2b%+b2b§+b2bz ®bz.
+b2bs ®bsby

and this implies that
Sqkbs=babs, Sqkb1e=babs+ b3,

since there exists no primitive element in Hs (QE¢ ; Z/2Z) and Hi, (QEs ;
Z/2Z). Also we see

A+Sqkbis=Sqx*A xbie
= A (babsbs+bsb3)
and this implies
Sqkbis=Dbsbsbg+bobs>+ (primitive element). (11)
Next we consider ys*b;. We start from the next lemma.
Lemma 4.7.
ye ¥ by =bj

Proof. We recall the exceptional Lie group Gz By Theorem 2.1 and
Theorem 2.2, we have

Hs (Gz ) Z/ZZ) =A (y3. Ys, yG)
where y3, ys are the dual of xs, xs and ye is the dual of x3 with respect to the

monomial basis of H* (G2 ; Z/2Z) corresponds to y; in Hx (E¢ ; Z/2Z) and b;

in Hx (QEs ; Z/2Z) . Therefore it is sufficient to prove that ye* b, = b3 in the
case of G.



Homology ring mod 2 675

K
There is an inclusion SU(3)—G, and

H*(SUQ) ; Z/22) = A (z3, xs5)

where |z;|=1 and xs=Sq%s. Also k*r3=x; and £*rs=2xs. We use the same
notation for the elements which correspond by the inclusion. First we observe
the commutator map I'y:SU(3) ASU(3)—SU(3) and T':G:AG;—G;. Here re-
member that there are the fibrations

—_— i X0
SU@R)—=SU3)—K(Z, 3),
52—’62—’K (Z. 3),
where xo and x represent the generator of H* (SU(3) ; Z) and H® (G, ; 2),
and SU(3) and G are homotopy fibres of xo and x respectively.
Since xo° o= * and r° I' = %, there are lifts 'y . SU(3) ASU(3)—SU

(3) and T : G2AGs—G>» such that ig° T o= Tp and i T = T". Also the follow-
ing 1s known that

H*(§ﬁ(3) v Z/2Z) =Z/2Z[xs) ® N (x5, x0)
H* (5g 1 Z/22) =Z/ZZ[1‘8] ® A (x9, x11)
where |x;|=1i and |xrs|=5 and by inclusion SU(3)—=G, #*rs=x3s and £¥re=x,.
(See [4]))
Next we introduce a subspace X of SU(3) ASU(3). We know that SU (3)

=~S%UesUeg and S3Ues= 2 CP? where ¢; is a cell of degree i.
We put

X=(S%Ues) AS?=ZCP?NS°.
We can see easily that

H*(X ; Z/2Z) = {es, eo

where |&;] =1 and es=Sq%s
We denote the 2-localization of SU(3) as SU(3)  and the inclusion SU
(3)—>SU(3) 2 as lo. Then we have the following diagram:

—_—

ST(B3)>SU3) o

n L
r
X=2CP*AS*—SU(3) ASU(3) — 0SU(3)
!
K(Z, 3)
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Let f be the map f - X—SU(3) @ defined by f=I,° ﬁolz.
We can see easily s (SU(3) @) =2/2Z. Let a : S°—SU (3) » be the

2-localization of its generator. Then axHx (S%q ; Z)—Hx (SUQ3) @ ; Z) is iso-
morphic for % <6 and epic for * =7. Thus by Whitehead’s theorem

s 76 (S%e) =16 (ST (3) ) (12)

is isomorphic.
Here we refer to R.Bott's result that

r o|s3/\s36 Ts (SU (3) ) =7Z/6Z

is a generator. (See [3].) This implies flgrs € 76 (SU (3) ) = Z/2Z is the
generator. Thus (12) implies that there exists a map

g:.S5—S%

and g represents the generator of ms(S%) = Z/2Z and the following diagram
commutes upto homotopy.

f
X — SU®3)w

Te Ta
g
S8 —> S,
Lemma 4.8.

f* (xs) =¢s.

Proof. We assume f* (rg) =0. Let Cr and C, be the mapping cone of f and
g respectively. Consider the commutative diagram below.

—_—

X L’ SU(3) @ ‘: Cy —I*ZX e
te ta te t 2

§F D $% = (D e
Then we can see
H*(C; ; Z/22) = (Ts, Ts, T, &1, & for ¥ <10, |£;|=1, [el=i
where k* (F;) =z; and j* (2¢&;) =&;+1. Also we can show easily

H*(C, ; Z/2Z) = <, o, |cil =i

and k'* (¢3) =cs and j'* (Zc¢s) =¢7 where ¢; is the generator of H (S ; Z/2Z) .
Then we have the equations
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* (e6) =cs, ™ (x5) =cs,
(¥ (xTs5) =05, (" (&) =cr,

Recall that [g] is the generator of 7 (S%w) =76 (SU(3) ) = Z/2Z. This
implies that the 2-localization of g, g : S®»— S is homotopic to 27w
where 7 is the Hopf map 7 : $>=S% Thus Cyo= 2°Cr 22*CP?@) and we have

Sq%s=¢7 in H¥(C, ; Z/2Z).

Therefore Sqfs= &, since, if it were not, ¢; = Sq«’¢s = Sqx’¢ *Ts=¢'* (Spx’rs)
=0. We easily see Sq«?&;=&; also.
On the other hand, by the Adem relation, we obtain

Sq*Sq%s=Sq*Sq'2s=0.
These contradict each other. Thus f* (xs) =es.

QED.
Since Lemma 4.8 implies T o* (zs) #0, the only one possibility is

ﬁo* (Is) =x3®xs5+txs;Qxs.

Then by the naturality of the commutator, we have

~

I * (Ig) =X3 ®1‘5+1‘5 ®:c3.

and

T *(xe) = T (Sq'xs)
=Sq' (x3®xs+xs ®xs)
=x;®xri+ 1} ®xs.

By dualizing this, we have
ﬁ*(ye ®y3) =Yo (13)

where yo € Hx (G ; Z/2Z) is the dual element of xe EH* (G, ; Z/2Z) with re-
spect to the monomial basis.

Now we consider the case of Qéz. We have the fibration
QC;:Z—>QGZ—>K (Z2)

and the commutator map I'" | G2 A QG,—QG; lifts to the map TG AQG—
QG,. Here we can set

T'@n@W)=T1(g1)

for g€G, IEQG and t€ [0, 1]. Thus we have the following commutative dia-
gram in which the coefficient ring Z/2Z is abbreviated.
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—~ His1 (G2)

o NG
Hy (G2) ®H*+1(G2)_F:H*+1(Gz)
o -
1d®c _ H« (QG2)
i, lQi*

Hy (G2) ®Hy (QG,) T’H*H (QG>)
*

Also, we know that
Hy (QGy 5 Z/22Z) =N (b7) ®Z/2Z s , by

and Qix (b's) = b, Qix (b1o) =b1o and o(b's) =yse. This can be seen by the Serre
spectral sequence of the fibration S"=QG,—QG.
Thus (13) implies that

yo= T s (ys®0(bs)) =0T 4 (ys ®b2).
Then T''x (ys®by) #0, that is, T' '« (ys ®bz) =b’s. Therefore
Ty (ys®by) =Qise T 4 (ys ®by)
=Qixb's=b3.
Since the following diagram commutes,

T4 (ye®by) = (ysk 1) * b+ (ys*ba) * 1=ye* b,
r
Gy X QGQ - QGZ
1xAl [
ad X 1
GZXQGZXQGZ - QGZXQGZ
Thus we finally obtain

ye * b2= b%
Q.E.D.(Lemma 4.7)

We remark that ye % b; can be determined upto primitive elements, if all
ye* b  and ye* b are determined where Axb;= 2b"®b”. Since

By kb= (ys®1+y; ®ys+1®ye) * Asb;
=2 (yexb') ®b"+b ® (ys*b").

For example, since Axys* bs= (yo %k by) ®by+by® (ys%k by) = Ay (b5b3),
Yo ¥ ba=pw0brotb2bi
where 0@.9 €Z/2Z. Then we have
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YeX bs= 0, obiotbabf
Yok bg=0pb1aT by (ysk ba) +b2b3, ' (14)
Y6k bi6= 0610221 bs (ye X bg) + (babg+b3) (ye %k by) +bobibg+byb3
where 0¢s,1) eZ/ZZ
On the other hand, we have

Sak (ye* bs) =ye* (Sqkbs) =16 * b,
ngk (ye*bs) =ye ¥ (SQ:'ka) =y kK by, (15)
qu* (ye*bm) =ye ¥k (ngkbw) =ye X bg,

Since Steenrod operators map primitive elements into primitive elements and

decomposable elements into decomposable elements, by (14)
4.7 we obtain that

4), (15) and Lemma

06.650%010=03, P68Sq* xb1a= 060010, 006,165q%b22= P6.0b1s
and this implies that

Oi6.6) = 06,8 = P6ae) =1,
Sqs2bio= b3, Sqkbis

=b1o, Sqkba=bus. (16)
Therefore by (14) we have that
Yok by=brotbabi, ysk bsg=brs+ biobs+b3bs,
yG*b16=b22+bl4b8+b10b8b4+b8b§b2+blobi+bib2
Since b4 and by, are primitive, we have equations
Ve * b14=0e6,10b%, (17)
Y6k bao= 06,22)b%s.
where 0, € Z/2Z. On the other hand by (16) we have
Sa% (ye*kbia) =ye*k Sqkbra=1ys% b0, (18)
Sa% (ye*bz2) =ys* Sakbr=ys % bys.
Since
0= (y2) *b,

=ye* (yo*bs)

=ye* biotye* (b20%),
we obtain

Yok bio=0bj.
Therefore (17) and (18) implies that

06,16 = P62 = 1.
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Since there is no primitive elements in He (QEs ; Z/2Z) and His (QEs ;
Z/2Z) and since by and by are primitive, we have

ng:blo = 0, Sq;‘kbn: 0.

Thus we get the all formulas in Theorem 4.6.
QED.

By Theorem 4.6 we can deduce the following theorem about G, and F,.

Theorem 4.9. 1. In H«(QG, ; Z/22)

Yok by= b3,

Yok bs=brotbabl,
Yo * b1o=Dbi.

2. In H+ (QFy ; Z/2Z)

Yok bp= b3,

Ye* by=biotbob},
Yo ¥ b1o=0b3,

ye* bis=bl,
Yok b =bis.

Proof. By the naturality of the adjoint action we have the following com-
mutative diagram.

ad
Gy X QGz—’QGz
l |

ad
F X QF—QF,
! l

ad

E¢X QEs—QF;

Here Hx (QG, ; Z/2Z)—Hx« (QF, ; Z/2Z) and Hx« (QF, ; Z/2Z)—Hx (QEs
Z/2Z) are monic. Then Theorem 4.6 implies the statements.

5. Adjoint action on QE;

For the Hopf algebra structure of Hx (QE; ; Z/2Z) we refer to the following
result of [5].

Theorem 5.10 (A. Kono & K. Kozima). In Theorem 2.3 we can choose b;
in He (QE7 5 Z/2Z) so as to satisfy that

Av(b;) =0 for i#4, 8 16, (19)
B* (be) =b2®by, (20)
A (bg) =by ®babyt by ®by+boby by, (21)
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Ay (bis) =by ®bybybg+by ®bybstbsby ®bsbg+bg @b
+ bobg ®bybytbabs @byt babsbs @by, (22)

Proof. For (19) see Theorem 5.1 in [5]. Then (20), (21) and (22) fol-
lows from Theorem 4.6.

Now we observe the induced homomorphism on homology by the adjoint
action of E; on QE;.

Theorem 5.11. In Theorem 5.10 b; satisfies the following tables
bi || ye*b; Y10k b Yis ¥ b;
by || O 0 b
be || bio b baztbablo
bs || bratbabio bigtbabia bagtbabas+bobsbd
biofl O b, bis
bia | b, 0 bis
big || baatbgbist bsbgbio baetbsbist babsbra baat bgbas+ babsbaz+ babsbsbio
big| 0 b%s bis
baz || bi, ble bio
bas || bie bls b
bss || blo b3 bs
bi | Sqkbi Sakb: | Sqkbi | Sg¥
by b2 _ _ -
bs baby by - -
brof| p2 0 - -
bisl| O bio - -
bie|| bratbababs bybs bs -
big|| O 0 b1o -
baa || 2, 0 b1a -
bas|l O baz b1s -
bas|l b2 0 0 bis

Proof. By considering the inclusion E¢— E, the result of Theorem 4.6
turns into

Ye* 02=0, y6*k by=1b1o, Yk bs=0b14aF bsd1o, Y6k b10=0,
Yo ¥ bie=bazt bgb1at babsbro, ek bra=bio ye* boz=b14,
Sqkbs=ba, Sqkbs= b2bs, Sqkbs =04, Sqkbis=babs,
Sqkbie=bs, Sqkb10=0, Sqkb1o=0, Sqkb1,=0,

Sqkbis =b1o, Sqkb22=0, Sqkba=b14.

If b; is primitive, ys%* b;, Y10 % bs, y1s % b; and Sqkb; are primitive. Thus
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yi*b;=0 for (4, 7)=(6, 18), (10, 2), (10, 14)

and
Sqk*b;=0 for (i,) = (18, 2), (26, 2), (34, 4)
since there is no primitive elements of degrees which these elements have in

H:(QE; ; Z/2Z).
As stated in the proof of Theorem 4.6, yg % b; can be determined modulo

primitive elements, if all ye % b" and ye * b” are known there Axb; = 2b' ®b”.
This is true for the case of y10%b; and y1s% b;. Thus we can put as follows:

Y10 ¥ ba= 0uo,0b1s, (23)
Y10 % bs= 008 bist ba (y10% by) (24)
Y10 ¥ b1s= pao.1eb2st (decomposable elements) (25)

where puo,n € Z/2Z. By applying Sq% for (23), obtain
puo.uSqibu:Sqi (ym *b,) =ye¥ bs=y1o

and this implies P00 =1. Also by applying Sq% for (24) and Sq% for (25), we
obtain the following equations in the similarway:

0(10,8>Sq§kb 18~ ngz (y 10k bgTbyb 14)
=yeX by '
=Y1o0, (26)

01016 5q%b26 = Sq% (y10* b1e)
=ye*k bistyro* (bebs)
=by mod decomposable elements. (27)

Then (26) and (27) implies Paos =1 and Pao1e =1 and Sqbis = by, Also,
since Sqkbss is primitive and no decomposable element in Hy (QE; ; Z/2Z) is
primitive, (27) tells that Sq&bss=bss. Therefore we obtain

Y10k bs=byy, (28)
Y10k bg=b1stbabiy, (29)
Y10 big=bst bsbis+Dabsbia (30)

By applying Sq% and Sqk to (29) and Sq% to (30), we have

Y10 % (b2bs) =Sqkbrs+b2bia,
YeXkbstyokb,= Sqkbis T bab1o,
Ye X (b4b8) +yio¥ bs=Sq§|<b26+bsb10-

So we obtain that
Sakb1s=0, Sqkb1s=0, Sqkbze=b1s.

Also, y10* byo can be computed as
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Y10k b=y ¥ (ye*b4)
=ye* (y10%bs)
=ye*b1s=blo.
Next we observe yio* big, Y10 * b2z and yio ¥ bze. Since yio* bys is primitive
we can put

Y10 ¥ b1s8= P01 bls, (31)
Y10 baz = 0(10,22)be, (32)
Y10% b26= P10,260bls. (33)

where 0qo.n € Z/2Z. By applying Sq&k for (31), Sq% for (32) and Sq¥ for (33),
we obtain that

puo,ls)Sqibﬁ:Sqi Y0¥ b1a=y10k b1o= b,
010,22S0%b36 = Sqky10 % b=y ¥ by = b3,
010,26 Sq¥bTs = Sq¥y 10 % bas = ye *k by = bio.

Therefore we have pao,18 = 000,22 =0 = 020 =1 and
Sqk (bfs) = b, (34)
Remember that by (11) in the proof of Theorem 4.6 we have
Sqkbis=kbisFbabsbs+bob3 in Ha (QEs ; Z/2Z)
where k€ Z/2Z and then
Sakbis=kbiatb2babs in He (QE; ; Z/2Z).

Then one can easily show k=1 from (34). Hence

Sqib15:b14+bzb4bg+bzbz lﬂ H*(QEG 5 Z/ZZ)
SQ*zble:b14+bzb4b3 in H*(QE7 N Z/ZZ)

Moreover we have that in Hx (QE¢ ; Z/2Z)

Sak (ye* bis) =ye%k (brytbobebs+bob3)
= b%o+ bzb4b14+b2b8b10+ b43b8+bi

while

Sa% (ye* bis) =Sqk (baztbgbrat bsbgbiotbibio+bsb3)
= Sqibzz + babab1y + babsb 1o+ bgbg + bi

Therefore it follows that
Sqkbae=0b% in Hx (QE¢ ; Z/2Z) and H« (QE, ; Z/22Z).

Next we consider yis* bz, y1s% bs and y1s% bg. We can put
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Y18 ¥ b2=pas2 b0, (35)
Y18 * b4 =pasabz2+ (decomposable elements), (36)
Yis %k b3=p(18,3)b25+ (decomposable elements) , (37)
Yis % b15=p(13’15)b34+ (decomposab]e elements) ' (38)

By applying Sq% to (37), we have

Sak (y1s % bs)
Y10k b
=b,3 mod decomposable elements.

Pas.eSq%kbas

Thus passy=1 and also we see

Y8 ¥ b4=Sq'>‘k (yls * bg)
=Sqkbze
= by, mod decomposable elements.

This means pas,9=1. Moreover we know that
A (y18% bs) = b2 ® (y15% by) + (y18% bs) ®by,
that is, y18% bs= b+ by (y18 % b2) . Therefore
Y18k b2=Sqk (y1s % bs)
=Sq% (bz2+pus,2b2b%)

2
bio

and pas»=1. Also operating Sq¥ to (38). we see

Y10 % bs=Sq¥ (y18% b1e)
= 00u8165q¥b3s+ (decomposable elements) .

Then, by (29), we deduce Pus16=1 and Sq¥bss=bs.
Now we can compute yis ¥ bz, Y18 by, Y18% bs and y13%* bys, using

Y18k bs= 0qsnbazt b2 (Y15 % by)

and by the similar manner. Hence we have

yis ¥ b= b, . (39)
Y18 ¥ ba=bptbably, (40)
18 % bg= bzs+ bsbzs + babsbio, (41)
Y18 % bre= b3s+bgbast babgbaz+ babsbsblo. (42)
Next we observe yis% bio, Y18 ¥ b1s, Y18 ¥ b1s and y1s % bee. We can put
Y18 bio=Pus10bls (43)
Y18 % b1a= pus10bls, (44)

Y18k b1s= pus, 1 bls, (45)



Homology ring mod 2 685

Y18 % b26 = 018,26 032, (46)
by primitivity. We can easily show pus10= Qas10 = Ous18 = Oasz2e =1 by ap-
plying Sq&to (43), Sq% to (44), Sq¥ to (45) and Sq¥ to (46). Also by ap-
plying Sq% to (46), we have

Y18 % b22=Sak (y1s % b26) =Sqkd%=blo.

Now the rest we have to do is to determine ye > bas, Y10 * bas, y18 ¥ bas and
to determine Sqkbss and Sqkbss. Here (42) implies that

Ye * by = Ye * (y 18 % b16+b8b20+ b4bgbaz + b2b4b8b%0)
=y15% (Yo% big) +ye% (babast bebgbzat bobsbgbio?)
=bto
By the similar manner we can compute yio % b3 and yi1s* bas as
Y10k by = b3,
Y8k b3s=b3e (47)

Also by applying Sq% to (47), we have
Y8k (Sqibu) Fyiokba= ngk (b36) .

This means y1s % (Sq%bss) =0, while Sqkbss=bz or 0. Therefore Sqkbz=0.
Also by applying Sq% to (42), we have

Sakbse=vy1s % (Sqkbrs) TSak (bsbas+ babsbas+ bzbabsb?o)
= b%e

Thus we obtain the all entries of the tables in Theorem 5.11.
QED.

6. Homology ring of LG (G)

As stated in §1, LG (G) is isomorphic to the semi-direct product of G and QG.
Thus the following diagram commutes (See [6].)

QG X G X QG XG—2QG X QG X G XCQG X G
loxX @ P ()
LG (G) XLG(G) LG (G)

where @ : QG X G—LG (G) is map defined by @ (I, g) (t) =1(t) * g and A,
A" and g are the multiplication maps of QG, LG (G) and G respectively and w
is the composition

(1ge X T X 1) ° (1ge X ad X 1) ° (1g6 X Ags X 1gxe).

And also, @ is homeomorphism.
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Therefore we have the following theorem.

Theorem 6.12. Let G be a compact, connected, simply connected Lie group
and p a prime. Then

H« (LG (G) ; Z/pZ) ®H« (QG ; Z/pZ) =8« (G ; Z/pZ) as Z/pZ module and the
multiplication is defined by

b®y) « '®yY)=(b" (yx*b)) ®yw *y")
wher b, b €EHx(QG ; Z/pZ), y, vy €EH« (G ; Z/pZ) and Asy=2y0) Oy .

Thus by Theorem 4.6, 4.9 and 5.11 we can directly compute the algebra
structure of H« (LG (G) ; Z/2Z) for G =Gz, F4, Es, E7. But it is complex to
write them out exactly. Hence we show the case of G, only.

Theorem 6.13. Hu« (LG (G2) 5 Z/2Z) is generated by ys, ys, ye and b, ba,
bio. And their fundamental relations are

y3=0, y¢=0, y3=0, b3=0,
[y, ;1 =0, [bi, b;] =0 [ys, b:] =0, Lys, b:] =0,
[ys, bs] =b% .[ye, b4] =bio. [ye, blO] =bj.
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