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1. Introduction

Let G be a region in the extended complex plane and G be the

Kerékjarto-Stoilow compactification. Take a real-valued function ¢ on G—G
which we call an angle assignment. Qur purpose is to give a rectilinear slit
conformal mapping on G such that it maps each boundary component p to a

slit which lies on a line of inclination @ (p) to the positive real axis, where a
slit may be a point. This rectilinear slit mapping is said to achieve the angle

assignment ¢. Koebe [KP] showed the following. In the case G is a finitely
connected domain, there exists a unique rectilinear slit mapping with a norma-
lization which achieves an arbitrary given angle assignment. On the other
hand, in the case G has a countable number of boundary components, there ex-
ist angle assignments which are not achieved (cf. [W]). If G has an uncount-
able number of boundary components, even parallel slit mapping with a nor-
malization is not always unique as a region whose boundary consists of para-
llel slits of positive measure. We follow the suggestion of B. Rodin [ABB] and

assume that the angle assignment @ is continuous. In this paper, we assume

further additional conditions about ¢ and by Shiba’s theorem [S] argue the

uniqueness and existence of rectilinear slit mapping. Since the normalized rec-

tilinear slit mapping with extremal crossing module, which F. Weening [W]

gave, has boundary behavior as in Shiba’s theorem, we can prove the uniqueness.
We are grateful to Dr. Frederick Weening,

2. Notation and Preliminaries

Let A = A(G) be the real Hilbert space of square integrable complex dif-
ferentials whose inner product is given by

{w, 6) = real part of ffc wN*6 = R(w, 0),
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where *o denotes the conjugate differential of ¢ and & denotes the complex
conjugate of 0. Let A,, be the completion of the class consisting of differentials
of complex-valued C*-functions with compact support and A, be the space of
harmonic differentials. We know the following orthogonal decomposition;

A= Ay + Ao + *Aso.

We use the following subspaces:
Ioo = {wE A : w is a real differential},
I = {w€A,: wis a real differential},
e = {wE€T,: w is exact i.e. there exists a harmonic function w such that
dw = w},
i = o€ {0, *w) = 0 for any wE ).
We know Iym € Iy and Iym = By, The = BIye, where Bl = {du€Lm:u
is bounded}, Blye = {dvE ') : v is bounded}, and Bl denotes the completion
of the class Bl The class Aq coincides with o + ilko and set Ase = Ihe +
if,,e, Ahm = Fhm + 1Fhm
Now we assume that
@ has a continuous exlension @ to G which satisfies

(*) .
A E Ly, + I, on G.

Put @ = exp(ip). For a bounded harmonic function v which satisfies dv €
Bl .. d(®v) belongs to Ay + Aeo. We can write it uniquely as follows;

d(Qv) = dv(D) + dvo(D), dv(D) E Ase, dvo(D) E Ay.
Set
Blone = {dv(®) €A, : v satisfies dvEBI .},
Bl pwm = {dv(D) € Ay : v satisfies dvEBI ).
We have the following.
Lemma 1. Let v(®) and u(®) satisfy dv(®), du(D) € Bl phe. Then
(dv(@), *du(®)) = (dv, *du).
Proof. We have
(dv(@), *au(@)) = dW(P) + vo(P)), *d (@) + uo(P)))
= (@), *a(@0) = —R [ [ a(@w) Aa(dw)

= —Rlim v (Pdu + udd)

m—oo & OGm

= —Rlim LG (vdu + (—i)vude)

m—oo

= {dv, *du),

where {G,} is a regular exhaustion of G.
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Lemma 2. The subspace Bl one is orthogonal to *BI gum.
Proof. By Lemma 1
{dv(D), *du(®)) = (dv, *du) = 0,
because [}, is orthogonal to *Iym.
Set Az = m. We have

Lemma 3. The subspace Ay is orthogonal to i*A,.
Proof. 1t is sufficient to show that
d@(®) + w(®)), i*d wi(P) + iui(®))) =0
for dv(®), dvy (@) €EBIlne and du(®), du, (®) EBlorm. By Lemma 2, we have
dv(®), —*du, (D)) = (du(®D), *dv, (D)) = 0.
From the proof of Lemma 1 and the assumption (%), it follows that
(dv(D), i*dv, (D)) = —(dvy), *d) =0
and
Gidu(P), —*dur(@)) = — (d(uw,), ¥dp) = 0.
Therefore we get the conclusion
(dv(@) + idu(®P), i* (dvi(®) + idus(P))) = 0.
We remark the following.
Lemma 4. If dw belongs to Blwm + iBlym, then
dw€ (Bl owm + iBlose) N (Blone + iBlowm).
Proof. Since Ay is orthogonal to *Am,

{d®v, *dwy = dv(®D), *aw) = 0, for dvEBI .,
(id@u, *dw) = Cdu(D), *dw) = 0, for du € B[ym.

From the proof of Lemma 1 and the assumption (%), we have
(dv(@), *dw) = (dv(P), *d(PBw)) = (dv, *d(Duw)).
Similarly, we have
(idu(®), *dw) = (du, *d(Pw)) = (du, —i*d(Pw)).
Since
(dv(®), *dw) = {idu(D), *dw) = 0,

we have
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{dv, *d(Pw)) = (du, —i*d(Pw)) = 0.
It follows that
R*d(Pw) E*¥h + *To,
and
I*d(Puw) €1, + *T.
Remarking that w is bounded, we can write
Quw=s+it+p,

where ds € Bl'ym, dt € Bl e, dp € Aeo and p is a bounded Dirichlet potential (cf.
[CC]). Since p and @Pp vanish on the harmonic boundary of Royden compacti-
fication of G, @p is a Dirichlet potential and d(®p) € A, (cf. [CC]). It follows
that

dw = d(Ps + Dt + Dp)
d(s(@) + so(P)) + id(t(D) + 1,(D)) + d(Dp),

and
dw = ds(®) + idt(D) EBlonm + iBlone.
Since idw also belongs to Bl wm + iBI hm, we know dw€ Bl gne + iBL oum.

3. Uniqueness of rectilinear slit mappings

We say that a meromorphic function f has the Az—behavior if df coincides
with an element in A; + Ag on a neighborhood of the ideal boundary. By Shi-
ba’s argument we have the following.

Proposition 1. Let mevomorphic funclions f1, f» have the Az—behavior
and the same singularities i.e. fi—f2 is analytic. Then f1 — f2 is conslant.

Proof. The function fi — f2 has also the Ay —behavior and no singularities.
It follows that d (fi — f2) € As. Since d (i — f2) is analytic, d (i — f2) =
i*d(fy — f2) €ALNi*A, = {0}. Hence f; — f2 is constant.

Here we remark the following. When a harmonic function u satisfies du €
I'ye. n has a quasi-continuous extension to the Kuramochi compactification of
G (cf. [CC)). If du € [y, it takes a constant value quasi-everywhere on each
Kerékjarto-Stoilow boundary-component (c¢f. [KY]). By these facts, it is suffi-
cient that ¢ is assumed to be quasi-continuous in the assumption (%).

Assume that G contains oo. A conformal mapping f achieving an angle
assignment is called a normalized rectilinear slit mapping if it has the follow-
ing expansion;
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flz) =z + Z axz”" in a neighborhood of {0},

n=1

Theorem 1. Assume that the region G has the following property: every
harmonic function u (du € I'y,) whose quasi-continuous extension to the Kuramochi
compactification of G takes a constant value quasi-everywhere om every
Kevékjdrto-Stoilow boundary-component satisfies du € I'nm. There is at most one

normalized rectilinear slit mapping which achieves the angle assignment ¢ (d¢ €

rhm)~

Proof. 1f a conformal mapping f on G maps each boundary component p to

a slit which lies on a line of inclination ¢ (p), the imaginary part of <1—§f takes a
constant value on each Kerékjarto-Stoilow boundary-component. By the

assumption, d(®@f) coincides with an element of Bl + iBl}m + Ay in a
neighborhood of the ideal boundary. It follows that df coincides with an ele-
ment of A; + Ae in a neighborhood of the ideal boundary and so f has the A;
—behavior. Therefore, by Proposition 1, we conclude the uniqueness.

If G has at most a countable number of Kerékjatr6-Stoilow boundary com-
ponents, it has the property in the Theorem (cf. [MF]). We have the follow-
ing.

Corollary 1. When G has a countable number of boundary components,
there is at most ome normalized veclilinear slit mapping which achieves the angle
assignment @ (dQE ym) .

Remark. In this case G is of countable connectivity, F. Weening [W]

showed, by using the argument principle, that there is at most one normalized
rectilinear slit mapping which achieves an arbitrary angle assignment.

4. The existence of rectilinear quasi-slit mappings

In this section, we assume that the angle assignment ¢ satisfies an addi-
tional condition;

theve exists a positive constant M such that

(d(Dw), d(Pw)) <M {dw, dw)
(*%) (d(Pw), d(Dw)) <M (dw, dw),
where dwE€ BAye and for a fixed point a €G,
wla) = 0.

We have the following.
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Theorem 2.
AI + 1*/11 = Ah.

Proof. Suppose that an w € Ay is orthogonal to Az + i*A,. By the ortho-
gonal decomposition:

Ah = Ahm + (rhen*rhe + i(rhen*rhe)) + *Ahm,
we can write @ as
w = dw, + *dw, + *dws,

where dwy, dws € Apm, and dw, € (I N ¥y, + i (I N *1,) ). There exist sequ-
ences {dwi}, {dwsn) CBIyy + iBT )y, which converge to dwi, dws in the Dirich-
let norm, respectively. By Lemma 4, dwi, + *dwsn belongs to Bl'one + iBL ohm
+ i*(BI'ose + iBpam) C Az + i*A,. It follows that

0 = lim {dwi, + *dws,, @) = {dwr + *dws, dw, + *dws).

n—oo

Hence dw, = *dw; = 0 and w = *dw,. By the supposition for dv € B}, du €
Brhnh

d(Pv), *dw,) = Cid(Pu), *dw,) = 0.
If w, is bounded, from Lemma 1
(v, *d(Pup)) = (d(Pv), *dwy) =0
and
du, —i*d(Duy)) = Gd(Pu), *dwy) = 0.
It follows that
R¥d(Puwr) € * Iy + *Iep and J¥d (Qw,) €1y + *T.

We have d(@w,) € Bl ym + iB e + A and dws € Bl pnm + iBone.. Hence
*dw, €i*A; and
0 = Fdw,, w) = Fdw,, ¥dw).
Therefore w = 0.
For unbounded ws (w2(a) = 0), take a sequence {dwasn} € B4 + iBI e

which converges to dw: in the Dirichlet norm. We may assume that {wsz.}
(w(a) = 0) also converges to w;. Since {dwz,} is a Cauchy sequence, by the

condition (* %) d(QPws,) is also a Cauchy sequence and converges to an ele-

ment ds € Ape + Aeo. Since @wszn converges to Pws, we can choose s = Dw,. It
follows that from Lemma 1, for dvEBI .

0= d(Dv), *dwsy = lim{d(Pv), *dwan)

n—oo
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= lim {dv, *d(Pwz,)) = (dv, *ds).

N—co

Hence Rds € Nym + oo and ds € Dym + oo + i (TNhe + Too) . Write s = s* + so,
where ds' € I'nm + ilse and so is a Dirichlet potential. There exists a sequence
{dsn} B um + iB e such that sx(@) = 0 and {s»} converges tos” — s'(a).

Then by (% %) {d(®s,)} converges in the Dirichlet norm. Since d(s.(®))
€ iAz, {d(s,(D))} converges to an element in iA; Then {®Ps,} converges to
O(s"—s'(a)) and D (s — s'(a)) + Psg + s'(a) ® = w,. Remarking Psg is an
Wiener potential (cf. [CC]), we know dw, € iA;. Therefore *dw, € i*A,; and
dwy = 0.

Now assume that G 2 o0 and G D {z: |zl>M> 0}. The following is the
simplest case of Shiba’s theorem in [S].

Theorem 3. Under the assumptions (%) and (% %), theve exists a uni-
que meromorphic function f which has the Ay— behavior and has a simple pole only
at {oo}, where f is normalized as follows;

flz) =z+ Z anz™" in a neighborhood of {o0}.
n=1

Proof. Take a positive constant M such that {z:|z|> M)} C G, and a
C=-function o whose support is contained in {z:|z|>M} and p(z) =1 on

{z:]z|> M} (M,> M). Consider a differential %(d(zp) —i*d(zp)). It is a

C>-differential whose support is contained in {z: M <|z|<M,}. It has the fol-
lowing representation;

%-(d(zp) - t*d(zp)) = w ti*w: + wo + %70, w1, W:E Az, Wo, T0E Aeo.

Then ¢ = %d(zp) —w — wy =1 (*w, + *ro + %*d(zp)) is closed and coc-

losed on G — {oo}, hence harmonic there. It follows that ¢ + i*o is meromor-
phic and coincides with an element in Az + Ag,, because

0+i*0=d(20)_0)1—w0+w2+’€o.

Since 0 + i*0 is exact, there exists a meromorphic function f such that df = ¢
+ i*0. The f has the Ay — behavior and a simple pole only at {o0}. As for the
uniqueness, the same argument as in the previous section can be applied.

Remark. If f has the A;—behavior, by the remark in the previous sec-

tion, the imaginary part of @f takes a constant value on every boundary com-
ponent except for a set of Kuramochi capacity 0. So we call this f a rectilinear
quasi-slit mapping.
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Next we consider a particular case. In an arbitrary region, assume that ¢
is continuous and takes a finite number of values. Then there exists a finite

number of disjoint closed boundary neighborhoods {V;} such that ¢ takes a
constant value on the boundary part of V; and the complement of their union

is relatively compact. Then @ has a continuous extension ¢ to G such that [0)
is constant on V; and a C*-function on G. It is clear that d@ € I, + I, and
the assumption (%) is satisfied. Note that for a harmonic function w (dw €
BF;,e, ’LU(G) = O),

@(Bu), a(@0) = [[ al@w) A*a(Bu)
= ffc (Pdw + wdD) A (D*dw + w*dD)

=fj; dw/\*dw-i‘fj; wdeA*dg
+i<ff6wdw/\*d(p—f-/-c wdgo/\*dw)

= {dw, dw) + fj; wdo AN*d .

We know that w? has a harmonic majorant W and there exists a constant K,
which satisfies W(a) <K, {dw, dw), where K, is independent of w. Then there
exists a constant K such that W(z) <K {dw, dw) on G — UV, Hence we have

fj; wdeN*d o <K {dw, dw>ffc doN*do
=Ko, dp) {dw, dw).

Similary we have
d(@Pw), d(Pw) <M {dw, dw).

Hence the assumption (% %) is satisfied for M = 1 + K {d¢, d¢). Therefore
there exists uniquely the normalized rectilinear quasi-slit mapping with the
Az — behavior. In this case the behavior coincides with the one of those treated
by K. Matsui [MK].

On the other hand, F. Weening [W] showed that there exists a normal-
ized conformal mapping f which achieves the angle assignment and has a prop-
erty called extremal crossing module. He conjectured the uniqueness. Take a
square S; = {e®w ;| Rw|<M, |Jw|<M} which contains f (U Vi) and the
complement of the image of f, where ¢(z) = 6; on V;. Let &; = {7 is a chain of
locally rectifiable arcs in S; which are allowed to cross U ix; f(V:), joins the

sides of S; at inclination 6; + %}, the p-length of =}

TEE;

L&) = i) J owlaul +"len+1<o> - .
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where 7441 (0) is the starting point and 74(1) is the ending point, the p-area of
5; with respect to U ,; f(V3),

Ao (f(G), Uuif(Vy)) = ffp(u + iv)2dudv + area of U, f(V)),

and the crossing module of the &j:

Apf(G), Uiz f(V1)) <1
L, (5))? T

¢ (E;) = inf
14
The property of extremal crossing module means p(5;) = 1.

Theorem 4. In an arbitrary region, if @ is continuous and takes a finite
number of values, theve exists uniquely the normalized vectilinear slit mapping

which achieves the angle assignment @ and salisfies the property of extremal cros-
sing module.

Proof. As F. Weening showed, there exists a normalized rectilinear con-
formal mapping f which achieves the angle assignment and satisfies the prop-
erty of extremal crossing module. For a real-valued C”-function © whose sup-
port is contained in the closure of f(V;), put o |dw| = |dw + t®dh |, where ¢
is a real number. We have

n

Z frk 01 (w) ldu| + nzl 7641 (0) — 74 (1)]

n—1

> ZER . exp(—1i6;) (dw + t®dh) + Zlnﬂ(O) — ()| =2Mm,
k=1 k=1

245, (F(G), Uinif (Vi)
= ff(dw + (®dh) N* (dw + tDdh)

= [[awnraw+ 2 [ [ 0ann¥aw + ¢ [ [annran.

If RS S Pdh A*dw # 0, for a certain small ¢,
A (F(G). Uy f (V) <4
Then u(5;) <1. Thus

0= ?Rffs Bdh A *dw = ‘J?ffsjdh/\*d(@w)
= mfj;xp(—io»sj (hedE + h"dn) /\i(d&- B 'idr))

- fj;xp(—iOJ)Si (hed& + hﬂdn) /\dﬂ - f»[;xp(_iﬁi)Si hed&dﬂ,

where & + in = w exp (—i6;). It follows that
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0= mffdh/\*d(@f)
= (dn, d(®))),

and Rd(Pf) coincides with an element in *I, + *I. Hence Jd(Df) coin-
cides with an element in Bl + . Therefore f has the Ay— behavior and so
the uniqueness which is conjectured in [W] follows.

Remark. [f the univalence of the normalized rectilinear quasi-slit
mapping with the A; — behavior is shown, applying Koebe's lemma (cf. [SO])

on each Vj;
f»[;xp(—iﬁy)s; heden - 0'

we can show that it maps every component to a segment precisely and
achieves the angle assignment.
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