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1. Introduction
—

L e t  G  b e  a  r e g io n  in  t h e  ex tended  com plex  p la n e  a n d  G  b e  the—
Kerekjârt15 - Stoilow compactification. Take a  real - valued function cp on  G — G
w hich w e call an  angle  assignment. O ur pu rpose  is  to  g ive  a  rectilinear slit
conformal mapping on  G such that it m aps each boundary com ponent p  to  a

slit w hich lies on  a  line of inclination Cp' (p) to  the positive rea l axis, w here a
slit m ay be a  point. This rectilinear slit m apping is said to achieve the angle

assignment (71. Koebe [KP] showed the  following. In  the  case  G  is  a  finitely
connected domain, there exists a unique rectilinear slit m apping with a  norma-
lization w hich achieves a n  a rb itra ry  g iven  angle  assignm ent. O n  th e  other
hand, in the case G has a  countable number of boundary components, there ex-
is t angle assignments which are  not achieved (cf. [W ]). If G has an  uncount-
able num ber of boundary com ponents, even parallel slit m apping with a  nor-
malization is not always unique as a  region whose boundary consists of para-
llel slits of positive measure. We follow the suggestion of B. Rodin [ABB] and
assume th a t the angle  assignment (23 is continuous. In  th is  paper, w e  assume
further additional conditions about rp' and  by  S h iba 's  theorem  [S ] argue the
uniqueness and existence of rectilinear slit mapping. Since the normalized rec-
tilinear slit m apping w ith extremal crossing module, w hich F . Weening [W]
gave, has boundary behavior as in Shiba's theorem, we can prove the uniqueness.

We are grateful to Dr. Frederick Weening.

2. Notation and Preliminaries

Let A  =  A (G ) be the rea l Hilbert space of square integrable complex dif-
ferentials whose inner product is given by

(co, a -= real part of f i G A * 6-- = 91(w, a),
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where *0 - denotes th e  conjugate differential o f a and  d  denotes the  complex
conjugate of a. Let A eo  be the completion of the class consisting of differentials
of complex - valued C - - functions with compact support and A h  be the space of
harmonic differentials. We know the following orthogonal decomposition;

A  = A h A e o  *Aeo.

We use the following subspaces:
Teo =  {c.0 Ae0 : co is  a  real differential),
T h = { W E A h : ( .0  is a  real differential),
T h e  =  {W E  T h : a )  is exact i.e. there exists a  harmonic function w such that

dw = w ),
T h . = {o - E Eh : y, *co) = 0 for any wErhe}.

We know T h m  C  T he and T hm  = B T hm , T h e  = B T h e , where B rb o  =  {du  E Thm

is bounded), BEhe =  {dv E T h e  : y  is bounded), and BT, denotes the completion

of the class B r,. The class Aeo coincides with T eo +  ire ° a n d  se t Abe = The

Ahm Thm tiThm•
Now we assume that

9 has a continuous extension (,0 to ô which satisfies

4 E 1 -'0 n  4 -  T e, on G.

P u t 0  =  exp(i(p) . F o r  a  bounded harm onic function y which satisfies dv E

B Ehe, d(O U ) belongs to Ahe A ee. W e can write it uniquely as follows;

d (0v) = dv(0) dvo(0), dv(0) EAh e , dro(0) EAeo.

Set

BTo h e { d y ( 0 )  EAh e : y satisfies dvEBEhe},
B rohm { dV (0) EA he : y satisfies d v  E M I.)

We have the following.

Lemma 1. Let v (0 ) and u(40) satisfy dv(0), clu( ) E B r o h e . Than
(dv(0 ), *d u (C ) clv, *du).

Proof. We have

(dy(0),
 * d u ( ) )  =  (d (v (0 ) yo (0 ) ) ,  *d  (u (0 )  + u o ( ) ) )

=  (c l(0v ), *d (O u )) = f f d (0u ) A d (0u )

= f øv ( du u d 0 )
aGm

—  lim (ydu, ( —i)vud(p)
f3Gh!

(dv, *du),

where {G„,} is a  regular exhaustion of G.

( * )
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Lemma 2. The subspace Brohe is  orthogonal to *B r o h,n .

Proof. By Lemma 1

(d v (0 ), *d u (0 ))  = (dv, *d u )  =  o,
because The is orthogonal to  * rhm.

Set /1., = BT0he iB T f i t h m .  We have

Lemma 3. The subspace A. is orthogonal to i*Ax .

Proof. It is sufficient to show that

(d (v (0 ) + f u ( ) ) , (v i(0 ) iu 1 (0 )) )  =  0
for dt, ( 0 ), d v i(o ) Br„,„e and d u ( ) ,  d u i (0) earohm. By Lemma 2, we have

(dv (0 ), _ * d u i ( ) )  =  (d u ( ) ,  * dvi ( 0 ) )  = O.

From the proof of Lemma 1 and the assumption (* ), it follows that

(d v (0 ),  e d v i(0 ))  = *dço) =

and

( i d u ( o ) ,
 _ * d u i ( )

)  = — (d (u u ,) , * d ( )  = O.
Therefore we get the conclusion

(d v (0 ) + idu(0), i * (dvi(0) + id u i (0 ) ) )  = O.

W e remark the following.

Lemma 4. If dw belongs to BEhn it h e n

dw E (BEohni iB r o n e ) n (B roh , + iBrohm)•

Proof. Since Ahe is orthogonal to *Ahm,
((P k , *dw) = (dv(0) , *dw ) = 0, for d vE B T h e ,

(id)u, *dw) (idu(0), *dw) = 0, for du E B rh..

From the proof of Lemma 1 and the assum ption (* ), we have

(clv( ) , *dw) = (clv(0) , *d (0 0 0 ) =  (d v , *d(Ow)).

Similarly, we have

(idu(0), *dtv) (idu, *d(di•tv)) =  (d u , — i * d (O W )).

Since

(clv(0), *dw) = (idu(0) , *dw) = o
we have
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(dv, *d( Ow )) =  (du , —i*d(T)w)) = O.

It follows that

9i*d(Ow) c *Fhm  + *re°,

and

*d(Otv) E* The + *reo.

Remarking that w is bounded, we can write

Ow = s + it  + p,

where d s E N A ., d tE R rh e , dp E li e° and p is  a  bounded Dirichlet potential (cf.
[CC]). Since p and Op vanish on the harmonic boundary of Royden compacti-
fication of G, Op is  a Dirichlet potential and d(Op) E A e o  (cf. [CC]). It follows
that

dw  = d (O s  + i t  ±  O p )
= d(s(0 ) so( )) id(t (0) + i ( ) )  + d (p ),

and

dw ds(0) idt(0) eB rohni iBrone.

Since idw  also belongs to B Eh m  i B r h . ,  we know dw E B Tone + iB rohni.

3. Uniqueness of rectilinear slit mappings

W e say that a meromorphic function f  has the A x
—behavior if df  coincides

w ith an element in /1., Ae o  o n  a  neighborhood of the ideal boundary. By Shi-
ba 's argument we have the following.

Proposition 1. Let meromorphic functions f i , f 2 hav e  the  A r — behavior
and the same singularities i.e. f1 —f2 is analytic. Then f i f2 is constant.

Proof. The function f i  — f2 has also the As — behavior and no  singularities.
It follows that d Vi f 2 )  E A , Since d (fi f 2 ) is analytic, d 1.2) =-
i*d(f i  f 2 )  E Ax n * Ax = .0 .. Hence fi — f2 is constant.

Here we remark the following. When a  harmonic function w satisfies du E
T h e ,  U  has a  quasi - continuous extension to  the Kuramochi compactification of
G  (cf. [CC] ) .  If du E  T h m , it takes a constant value quasi - everywhere on each
Kerekjàrt6 - Stoilow boundary - component (cf. [KY]). By these facts, it is suffi-
cient that (p is assumed to be quasi - continuous in the assum ption (*).

Assume th a t G  contains co . A  conformal mapping f  achieving an angle
assignment is called a  normalized rectilinear slit mapping if it h as  the follow-
ing expansion;
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0 0

f (z) = z + E an z - n in a neighborhood of {co).
n=1

Theorem 1. A ssum e that the region G  has the following property: every
harmonic function u (du E  r h e )  whose quasi - continuous extension to the Kuramochi
coin pactification o f  G  tak e s  a  constant v alue  quasi - everywhere o n  every
Kerekjdrtd - Stoilow boundary - component satisfies du G  R m . T here is at m ost one

normalized rectilinear slit mapping which achieves the angle assignment ( t ic k , E

Ehm)

Proof. If  a  conformal mapping f  on G maps each boundary component p to
a  slit which lies on a line of inclination ço-  (p) , the imaginary p a r t  o f  f  takes a
c o n s ta n t  v a lu e  o n  each K erekA rterStoïlow  boundary - com ponen t. B y  the

assumption, d ( f )  co inc ides w ith  a n  elem ent o f  B rhei B r h . A „  in  a
neighborhood o f the  ideal boundary. It follow s that d f  coincides w ith a n  ele-
ment of A r  A „  in  a  neighborhood of the ideal boundary and so f  has the Ax
— behavior. Therefore, by Proposition 1, we conclude the uniqueness.

If G has at most a  countable number of Kerekjar(5 - Stoïlow boundary com-
ponents, it has the property  in  the  Theorem  (cf. [M F]). W e  have the follow-
ing.

Corollary 1. W hen G  has a  countable number of  boundary components,
there is at m ost one norm alized rectilinear slit m apping which achieves the angle
assignment ço-  (d ço E Th m ) .

Remark. In th is  case G is of countable connectivity, F. Weening [W]
showed, by using the argument principle, that there is at m ost one normalized
rectilinear slit mapping which achieves an a rb itra ry  angle assignment.

4. The existence of rectilinear quasi - slit mappings

In  th is  section, w e assume tha t the angle assignment satisfies a n  addi-
tional condition;

there exists a positive constant M such that

(d(Ow), d(Ow)) .11/1(dw, dw)
(cl (Ow) , d (Ow)) (dw, dw) ,

where dwEBA h e and for a fixed point a E  G,
w (a) O.

We have the following.
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Theorem 2.

A, =  Ah.

Proof. Suppose tha t an  co E A h is orthogonal to Ax  i* A x .  By the ortho-
gonal decomposition:

Ah =  A m ( rye  n *The (rhe n * rhe)) + *  A hm ,

we can write w  as

w  dwi * dw2 * dw3,

where dwi, dw3EAn m , and dw 2 E  (['he *  rh e (rhe n * T h e ) )  There exist sequ-
ences {dwin}, {dw3 n } c B r h ,„ 4- iB T h „, which converge to dwi, dw3 in the Dirich-
le t norm, respectively. By Lemma 4, dwi n

* dw3n belongs to Brohe iBrohm

i *  (3F0he iBriphm) CAx i*A x . It follows that

0 = lim (dwi n
* dw3n, to) =  (dw i * dw3 , dw i

* dw3)
n-00

Hence dw i =  * dw3 = 0 and o.) * dw2 . By the supposition for dv E BThe , dfl E
B r h „,,

(d(Ov), *dw 2) =  (i.d(Ott), * dw2)  =  O.

If w2 is bounded, from Lemma l

(dv , *d(01v2) ) = (c1(01)) , *dw 2) = 0

and

(du, — i *d(0w 2)) = (id (O u), *dw 2)  =  O.

It follows that

9rd(Ow 2) E * Fhm  * F e o  a n d  * d(Ou/2 ) E * rhe * r e o .

W e  have d(6 w 2) E  B r h m  iB  r A_ he +  — co  and dw2 E  Brohni iB ro h e . Hence
*dw2 E i*As and

0  =  ( * d w  co) =  ( * d w  * dw2).

Therefore w = O.
F o r  unbounded w2 (W2 (a) = 0 ) , ta k e  a  sequence (dw2n) c Brhe i B r h e

w hich converges to dw 2 in  the  D irich le t norm . W e m ay  assum e that (w2n)
(w 2n(a) = 0) a lso  converges to w2. Since {dw2n} is a Cauchy sequence, by the
c o n d itio n  (*  * )  d( - w2n )  is a lso  a Cauchy sequence and converges to  an ele-

ment d s e  Ahe A e o .  Since .15w 2n converges t o  -0w2, we can choose s  =  -6 W 2 . It
follows that from Lemma 1, for dveB The

0 (d (0v ), *dui2)  = lim  (d (0i)) , *dW2n)
n-»oo
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lim (dv *d(Ow2n)) =dv, *ds)

Hence 9idsE rh m  r e o  and ds E rh. + Teo ±  j (T he  +  F , ) .  W rite  s = s ' + so',
where ds'Erh. +  r i l e  and s'o is  a Dirichlet potential. There exists a  sequence
{dsn} CB.1"hni iB rhe such that sn (a) = 0 and {.30 converges to s ' —  (a).

Then by ( *  * )  ( 0 s ) )  converges in the Dirichlet norm. Since d(s,,(0))
E iAx, { d(sn(0))) converges to  a n  element in  iAx . Then {0 n }  converges to
0 (s' — s '(a )) a n d  0 (s' — s' (a)) ±  Os; s' (a) = w2. Remarking 0sO is  an
W iener poten tia l (c f . [CC]) , we know dw2 E  iA x .  Therefore *dw2 E i*A x  and
dw2 = O.

Now assume th a t G 3  co  and GD {z : l z > M > 0 } .  T he following is the
simplest case of Shiba's theorem in  [S].

Theorem 3. Under the assumptions ( * )  an d  (*  * )  ,  there exists a uni-
que meromorphic function f  which has the 1(x — behavior and has a simple pole only
at (00), where f is normalized as follows;

CO

f (z) = z E an z "  in a neighborhood of  (00).
n=i

Proof. T ake  a  positive  constan t M  s u c h  th a t  (z z > C G , and a
C- -function p w hose support is contained in {z: I z I> M ) and  p (z) = 1 on

1
(z: I z I>  M11 (M1> M). Consider a  differential —

2  
(d (z p) — i*d(z p)). I t  i s  a

C- --differential whose support is contained in  (z :M _ Iz I .M 1).  It has the fol-
lowing representation;

1
—

2  
(d(zp) — i *d(zp)) col + 00)2 +  i 0, oh, (02EAx, w 0 , r o EA e o

1 1T hen a = —

2
d(zp) —  w 1 —  coo = i ( * co2 +  *To + —

2  

*d(z p)) is c losed  and  coc-

losed on G — {oe} , hence harmonic there. It follows that a + i * a is  meromor-
phic and coincides with an element in Ax A eo , because

a ± i * a = d (zp) — col — coo ± ±  To.

Since a ± i * a is exact, there exists a  meromorphic function f  such that df = a
i * a. The f  has the Ax — behavior and a simple pole on ly  a t (00). As for the

uniqueness, the same argument as in the previous section can be applied.

Remark. If f  has the Ax — behavior, by the remark in the previous sec-
tion, the imaginary p a r t  o f  f  takes a constant value on every boundary com-
ponent except for a set of Kuramochi capacity O. So we call this f  a  rectilinear
quasi-slit mapping.
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Next we consider a  particular case. In an arbitrary region, assume tha t (,79
is continuous and  takes a  finite num ber of values. Then there  exists a  finite
number of disjoint closed boundary neighborhoods { 1/.1) such  tha t (,3 takes a
constant value on the boundary pa rt o f 171 and the complement of the ir union
is relatively compact. Then Ci5 has a  continuous extension go to  a  such that y9
is  constant on V; and a C°°-function on G. It is c lear tha t ciyo E rh . + re, and
the  assum ption ( * )  is sa tisfied . Note th a t  fo r  a  harmonic function w (du' E
B rh e , w (a) =  0),

(c/ (Ow), d (O w )) =  i f  d (Ow) A *d(OW)
G

= 
G  

(O dw  w d 0) A O rd( *du, W*dO)

=  
G  

dw A * d w  f  fG 14)24  A * d

i ( f f wdw A * d  —  f  f  w d  A *dW)
G G

= (du', dw ) ± i f  w2dcp A *d(P.
G

W e know  that w2 h a s  a  harmonic majorant W  and there  exists a constant K1

which satisfies W(a) (dw, dw) , where If 1 is independent of w. Then there
exists a constant K such that 147(z) _ K(clw, du') o n  G  — U Vi . Hence we have

w2dg o A * dcp_K (dw, dw) f i G dcpA *dcp
= K(dço, d(p) (dw, dw)

Similary we have

(d (Ow) , d( w) (dw,

Hence the  assum ption ( *  * )  is satisfied for M = 1 K (clgo, . Therefore
there exists uniquely th e  norm alized rectilinear quasi-slit m apping w ith the

— behavior. In th is case the behavior coincides with the one of those treated
by K . Matsui [MK].

O n the o ther hand, F . W eening [W ] show ed that there  exists a  normal-
ized conformal mapping f  which achieves the angle assignment and has a prop-
erty  called extremal crossing module. He conjectured th e  uniqueness. Take a
square  S; ; f l  w < M , I,Z w I<M 1 which contains f  (U  17 1) and the
complement of the image of f , where co(z) = Of on 1/J. Let E; =-- {r is  a chain of
locally rectifiable arcs in S ; which a re  allowed to c ro ss  U ,*; f (Vi) , joins the

sides of S; at inclination 0;  +  74 } , the p-length of 2-7;

n-1

L ( E )  =  inf lEf ,(01 dw I ± 1 rk,i(o) — rk (1)11,
rŒE, rkk=1 k=1
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where rk+, (0) is the starting point and rk(1) is the ending point, the p-area of
Ei with respect to U i*;

A p V (G ) ,  U  f (V i ) )  =  i f  p  +  iW o lu d v  +  area o f  U f ( V i ),

and the crossing module of the E, :

i ) i n f  A P V (G) ioj f (V i))  < 1 .
p (E, j) 2

The property of extremal crossing module means it =  1.

Theorem 4. in an arbitrary region, if  yo-  is continuous and takes a finite
number of values, there exists uniquely the normalized rectilinear slit mapping
which achieves the angle assignment -y6 and satisfies the property of extremal cros-
sing module.

Proof. A s F . Weening showed, there exists a  normalized rectilinear con-
formal mapping f  which achieves the angle assignment and satisfies th e  prop-
erty of extremal crossing module. F or a  real - valued C- - function h whose sup-
port is contained in  the  closure of _f (I7; ) ,  put AI d tv l =  I d w  t O d h  I, where t
is a  real number. We have

n-1

f k P t (w)idwi Irk+, ( 0 )  -  k (1)!
k=1 k=1

n-1

exp( - 0 ,)  (dw taIdh) E I r+, ( 0 )  -  rk(1)1 2M ,
k=1

2A 0 t ( f (G) , U f  ( V i ) )

f f (dw  t O d h )  A *  (dw t O d h )

=  i f  dw A *d w  2 t9 if f  Odh A *d w  e l f  dhA *dh.

If f  f Odh A *dw 0, for a certain small t,

Ap,V (G ), ( V I ) )  <4M 2 .

Then tt(E i ) <1. Thus

0 = 9i i f  Odh A *d w  =  f  f  d h  A *d (Ow)
s, s,

9I
f fe x p t— ie i1 S i 

(h e d h ,,d n )A i(d  — idn)

---- if (he d hndn) Ad r7  = - f f
exp(-iei)si

h O c h

where = w exp( — i0i ) .  It follows that
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0 = 9if i d h  A *d (O f)

= (dh, d (O f)),

and  91d(Of) coincides with a n  element in  *1h .  +  *Teo . H e n c e  c/(4).f )  coin-
cides with an element in B rh m  " co . Therefore f  has the /1, —  behavior and so
the uniqueness which is conjectured in  [IV] follows.

Remark. I f  t h e  univalence o f  th e  norm alized rectilinear quasi-slit
mapping with the A, —  behavior is shown, applying Koebe's lemma (cf. [SO])
on each V ,;

f l e x p ( - i 6 i ) S i
=  0,

w e  c a n  sh o w  th a t it  m a p s  e v e ry  c o m p o n e n t to  a  seg m en t precisely  and
achieves the angle assignment.
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