Rectilinear slit conformal mappings

Dedicated to Professor Yukio Kusunoki on his 70th birthday

Ву

Fumio Maitani and David Minda

1. Introduction

Let G be a region in the extended complex plane and \widehat{G} be the Kerékjártó-Stoïlow compactification. Take a real-valued function $\widehat{\varphi}$ on $\widehat{G}-G$ which we call an angle assignment. Our purpose is to give a rectilinear slit conformal mapping on G such that it maps each boundary component p to a slit which lies on a line of inclination $\widehat{\varphi}(p)$ to the positive real axis, where a slit may be a point. This rectilinear slit mapping is said to achieve the angle assignment $\hat{\varphi}$. Koebe [KP] showed the following. In the case G is a finitely connected domain, there exists a unique rectilinear slit mapping with a normalization which achieves an arbitrary given angle assignment. On the other hand, in the case G has a countable number of boundary components, there exist angle assignments which are not achieved (cf. [W]). If G has an uncountable number of boundary components, even parallel slit mapping with a normalization is not always unique as a region whose boundary consists of parallel slits of positive measure. We follow the suggestion of B. Rodin [ABB] and assume that the angle assignment $\widehat{\varphi}$ is continuous. In this paper, we assume further additional conditions about $\widehat{\varphi}$ and by Shiba's theorem [S] argue the uniqueness and existence of rectilinear slit mapping. Since the normalized rectilinear slit mapping with extremal crossing module, which F. Weening [W] gave, has boundary behavior as in Shiba's theorem, we can prove the uniqueness.

We are grateful to Dr. Frederick Weening.

2. Notation and Preliminaries

Let $\Lambda = \Lambda(G)$ be the real Hilbert space of square integrable complex differentials whose inner product is given by

$$\langle \omega, \sigma \rangle = \text{real part of } \iint_G \omega \wedge *\bar{\sigma} = \Re(\omega, \sigma),$$

^{*}Research supported by a Fellowship of the Education Ministry of Japan.

[†]I want to thank the University of Cincinnati for its hospitality during my stay. Communicated by Prof. K. Ueno, November 6, 1995

where * σ denotes the conjugate differential of σ and $\bar{\sigma}$ denotes the complex conjugate of σ . Let Λ_{eo} be the completion of the class consisting of differentials of complex-valued C^{∞} -functions with compact support and Λ_h be the space of harmonic differentials. We know the following orthogonal decomposition;

$$\Lambda = \Lambda_h \dotplus \Lambda_{eo} \dotplus *\Lambda_{eo}$$

We use the following subspaces:

 $\Gamma_{eo} = \{ \omega \in \Lambda_{eo} : \omega \text{ is a real differential} \}$

 $\Gamma_h = \{ \omega \in \Lambda_h : \omega \text{ is a real differential} \}.$

 $\Gamma_{he} = \{ \omega \in \Gamma_h : \omega \text{ is exact i.e. there exists a harmonic function } w \text{ such that } dw = \omega \}.$

 $\Gamma_{hm} = \{ \sigma \in \Gamma_h : \langle \sigma, *\omega \rangle = 0 \text{ for any } \omega \in \Gamma_{he} \}.$

We know $\Gamma_{hm} \subset \Gamma_{he}$ and $\Gamma_{hm} = \overline{B\Gamma_{hm}}$, $\Gamma_{he} = \overline{B\Gamma_{he}}$, where $B\Gamma_{hm} = \{du \in \Gamma_{hm} : u \text{ is bounded}\}$, $B\Gamma_{he} = \{dv \in \Gamma_{he} : v \text{ is bounded}\}$, and $\overline{B\Gamma_x}$ denotes the completion of the class $B\Gamma_x$. The class Λ_{eo} coincides with $\Gamma_{eo} \dotplus i\Gamma_{eo}$ and set $\Lambda_{he} = \Gamma_{he} \dotplus i\Gamma_{he}$, $\Lambda_{hm} = \Gamma_{hm} \dotplus i\Gamma_{hm}$.

Now we assume that

$$(*) \begin{cases} \widehat{\varphi} \text{ has a continuous extension } \varphi \text{ to } \widehat{G} \text{ which satisfies} \\ d\varphi \in \Gamma_{hm} \dotplus \Gamma_{eo} \text{ on } G. \end{cases}$$

Put $\Phi = \exp(i\varphi)$. For a bounded harmonic function v which satisfies $dv \in B\Gamma_{he}$, $d(\Phi v)$ belongs to $\Lambda_{he} \dotplus \Lambda_{eo}$. We can write it uniquely as follows;

$$d(\Phi v) = dv(\Phi) + dv_0(\Phi)$$
, $dv(\Phi) \in \Lambda_{he}$, $dv_0(\Phi) \in \Lambda_{eo}$.

Set

$$B\Gamma_{\Phi he} = \{dv(\Phi) \in \Lambda_{he} : v \text{ satisfies } dv \in B\Gamma_{he}\}, \\ B\Gamma_{\Phi hm} = \{dv(\Phi) \in \Lambda_{he} : v \text{ satisfies } dv \in B\Gamma_{hm}\}.$$

We have the following.

Lemma 1. Let
$$v(\Phi)$$
 and $u(\Phi)$ satisfy $dv(\Phi)$, $du(\Phi) \in B\Gamma_{\Phi he}$. Then $\langle dv(\Phi), *du(\Phi) \rangle = \langle dv, *du \rangle$.

Proof. We have

$$\begin{split} \langle dv(\boldsymbol{\Phi}), *du(\boldsymbol{\Phi}) \rangle &= \langle d(v(\boldsymbol{\Phi}) + v_0(\boldsymbol{\Phi})), *d(u(\boldsymbol{\Phi}) + u_0(\boldsymbol{\Phi})) \rangle \\ &= \langle d(\boldsymbol{\Phi}v), *d(\boldsymbol{\Phi}u) \rangle = -\Re \iint_G d(\boldsymbol{\Phi}v) \wedge \overline{d(\boldsymbol{\Phi}u)} \\ &= -\Re \lim_{m \to \infty} \int_{\partial G_m} \boldsymbol{\Phi}v (\overline{\boldsymbol{\Phi}}du + ud\overline{\boldsymbol{\Phi}}) \\ &= -\Re \lim_{m \to \infty} \int_{\partial G_m} (vdu + (-i)vud\varphi) \\ &= \langle dv, *du \rangle, \end{split}$$

where $\{G_m\}$ is a regular exhaustion of G.

Lemma 2. The subspace $B\Gamma_{\phi he}$ is orthogonal to * $B\Gamma_{\phi hm}$.

Proof. By Lemma 1

$$\langle dv(\boldsymbol{\Phi}), *du(\boldsymbol{\Phi}) \rangle = \langle dv, *du \rangle = 0,$$

because Γ_{he} is orthogonal to ${}^*\Gamma_{hm}$.

Set
$$\Lambda_x = \overline{B\Gamma_{\phi he} + iB\Gamma_{\phi hm}}$$
. We have

Lemma 3. The subspace Λ_x is orthogonal to $i^*\Lambda_x$.

Proof. It is sufficient to show that

$$\langle d(v(\boldsymbol{\Phi}) + iu(\boldsymbol{\Phi})), i^*d(v_1(\boldsymbol{\Phi}) + iu_1(\boldsymbol{\Phi})) \rangle = 0$$

for $dv(\Phi)$, $dv_1(\Phi) \in B\Gamma_{\Phi he}$ and $du(\Phi)$, $du_1(\Phi) \in B\Gamma_{\Phi hm}$. By Lemma 2, we have

$$\langle dv(\boldsymbol{\Phi}), -*du_1(\boldsymbol{\Phi}) \rangle = \langle du(\boldsymbol{\Phi}), *dv_1(\boldsymbol{\Phi}) \rangle = 0.$$

From the proof of Lemma 1 and the assumption (*), it follows that

$$\langle dv(\mathbf{\Phi}), i^*dv_1(\mathbf{\Phi}) \rangle = -\langle d(vv_1), *d\varphi \rangle = 0$$

and

$$\langle idu(\Phi), -*du_1(\Phi) \rangle = -\langle d(uu_1), *d\varphi \rangle = 0.$$

Therefore we get the conclusion

$$\langle dv(\boldsymbol{\Phi}) + idu(\boldsymbol{\Phi}), i^*(dv_1(\boldsymbol{\Phi}) + idu_1(\boldsymbol{\Phi})) \rangle = 0.$$

We remark the following.

Lemma 4. If dw belongs to $B\Gamma_{hm} + iB\Gamma_{hm}$, then

$$dw \in (B\Gamma_{\Phi hm} + iB\Gamma_{\Phi he}) \cap (B\Gamma_{\Phi he} + iB\Gamma_{\Phi hm}).$$

Proof. Since Λ_{he} is orthogonal to ${}^*\Lambda_{hm}$,

$$\langle d\Phi_{V}, *dw \rangle = \langle dv(\Phi), *dw \rangle = 0$$
, for $dv \in B\Gamma_{he}$, $\langle id\Phi_{u}, *dw \rangle = \langle idu(\Phi), *dw \rangle = 0$, for $du \in B\Gamma_{hm}$.

From the proof of Lemma 1 and the assumption (*), we have

$$\langle dv(\mathbf{\Phi}), *dw \rangle = \langle dv(\mathbf{\Phi}), *d(\mathbf{\Phi}\overline{\mathbf{\Phi}}w) \rangle = \langle dv, *d(\overline{\mathbf{\Phi}}w) \rangle.$$

Similarly, we have

$$\langle idu(\boldsymbol{\Phi}), *dw \rangle = \langle idu, *d(\bar{\boldsymbol{\Phi}}w) \rangle = \langle du, -i*d(\bar{\boldsymbol{\Phi}}w) \rangle.$$

Since

$$\langle dv(\boldsymbol{\Phi}), *dw \rangle = \langle idu(\boldsymbol{\Phi}), *dw \rangle = 0,$$

we have

$$\langle dv, *_d(\bar{\Phi}w) \rangle = \langle du, -i*_d(\bar{\Phi}w) \rangle = 0.$$

It follows that

$$\Re^*d(\bar{\Phi}_w) \in {}^*\Gamma_{hm} + {}^*\Gamma_{eq}$$

and

$$\mathfrak{F}^*_d(\bar{\Phi}_w) \in {}^*\Gamma_{he} + {}^*\Gamma_{eo}$$

Remarking that w is bounded, we can write

$$\bar{\Phi}w = s + it + p.$$

where $ds \in B\Gamma_{hm}$, $dt \in B\Gamma_{he}$, $dp \in \Lambda_{eo}$ and p is a bounded Dirichlet potential (cf. [CC]). Since p and Φp vanish on the harmonic boundary of Royden compactification of G, Φp is a Dirichlet potential and $d(\Phi p) \in \Lambda_{eo}$ (cf. [CC]). It follows that

$$dw = d(\mathbf{\Phi}_S + i\mathbf{\Phi}_t + \mathbf{\Phi}_p)$$

= $d(s(\mathbf{\Phi}) + s_0(\mathbf{\Phi})) + id(t(\mathbf{\Phi}) + t_0(\mathbf{\Phi})) + d(\mathbf{\Phi}_p),$

and

$$dw = ds(\Phi) + idt(\Phi) \in B\Gamma_{\Phi hm} + iB\Gamma_{\Phi he}$$

Since idw also belongs to $B\Gamma_{hm} + iB\Gamma_{hm}$, we know $dw \in B\Gamma_{\Phi he} + iB\Gamma_{\Phi hm}$.

3. Uniqueness of rectilinear slit mappings

We say that a meromorphic function f has the Λ_x -behavior if df coincides with an element in $\Lambda_x + \Lambda_{eo}$ on a neighborhood of the ideal boundary. By Shiba's argument we have the following.

Proposition 1. Let meromorphic functions f_1 , f_2 have the Λ_x -behavior and the same singularities i.e. f_1 - f_2 is analytic. Then f_1 - f_2 is constant.

Proof. The function $f_1 - f_2$ has also the Λ_x -behavior and no singularities. It follows that $d(f_1 - f_2) \in \Lambda_x$. Since $d(f_1 - f_2)$ is analytic, $d(f_1 - f_2) = i^*d(f_1 - f_2) \in \Lambda_x \cap i^*\Lambda_x = \{0\}$. Hence $f_1 - f_2$ is constant.

Here we remark the following. When a harmonic function u satisfies $du \in \Gamma_{he}$, u has a quasi-continuous extension to the Kuramochi compactification of G (cf. [CC]). If $du \in \Gamma_{hm}$, it takes a constant value quasi-everywhere on each Kerékjártó-Stoïlow boundary-component (cf. [KY]). By these facts, it is sufficient that φ is assumed to be quasi-continuous in the assumption (*).

Assume that G contains ∞ . A conformal mapping f achieving an angle assignment is called a normalized rectilinear slit mapping if it has the following expansion;

$$f(z) = z + \sum_{n=1}^{\infty} a_n z^{-n}$$
 in a neighborhood of $\{\infty\}$.

Theorem 1. Assume that the region G has the following property: every harmonic function $u(du \in \Gamma_{he})$ whose quasi-continuous extension to the Kuramochi compactification of G takes a constant value quasi-everywhere on every Kerékjártó-Stoïlow boundary-component satisfies $du \in \Gamma_{hm}$. There is at most one normalized rectilinear slit mapping which achieves the angle assignment $\widehat{\varphi}(d\varphi \in \Gamma_{hm})$.

Proof. If a conformal mapping f on G maps each boundary component p to a slit which lies on a line of inclination $\widehat{\varphi}(p)$, the imaginary part of $\overline{\Phi}f$ takes a constant value on each Kerékjártó-Stoïlow boundary-component. By the assumption, $d(\overline{\Phi}f)$ coincides with an element of $B\Gamma_{he}+iB\Gamma_{hm}+\Lambda_{eo}$ in a neighborhood of the ideal boundary. It follows that df coincides with an element of $\Lambda_x+\Lambda_{eo}$ in a neighborhood of the ideal boundary and so f has the Λ_x -behavior. Therefore, by Proposition 1, we conclude the uniqueness.

If G has at most a countable number of Kerékjátró-Stoïlow boundary components, it has the property in the Theorem (cf. [MF]). We have the following.

Corollary 1. When G has a countable number of boundary components, there is at most one normalized rectilinear slit mapping which achieves the angle assignment $\widehat{\varphi}(d\varphi \in \Gamma_{hm})$.

Remark. In this case G is of countable connectivity, F. Weening [W] showed, by using the argument principle, that there is at most one normalized rectilinear slit mapping which achieves an arbitrary angle assignment.

4. The existence of rectilinear quasi-slit mappings

In this section, we assume that the angle assignment $\widehat{\varphi}$ satisfies an additional condition;

$$(**) \begin{cases} \textit{there exists a positive constant } M \; \textit{such that} \\ & \langle d(\bar{\varPhi}w), d(\bar{\varPhi}w) \rangle \leq M \langle dw, dw \rangle \\ & \langle d(\varPhi w), d(\varPhi w) \rangle \leq M \langle dw, dw \rangle, \\ & \textit{where } dw \in B\Lambda_{\textit{he}} \; \textit{and for a fixed point } a \in G, \\ & w(a) = 0. \end{cases}$$

We have the following.

Theorem 2.

$$\Lambda_x \dotplus i^* \Lambda_x = \Lambda_h$$

Proof. Suppose that an $\omega \in \Lambda_h$ is orthogonal to $\Lambda_x \dotplus i^*\Lambda_x$. By the orthogonal decomposition:

$$\Lambda_h = \Lambda_{hm} \dotplus (\Gamma_{he} \cap *\Gamma_{he} \dotplus i (\Gamma_{he} \cap *\Gamma_{he})) \dotplus *\Lambda_{hm}$$

we can write ω as

$$\omega = dw_1 + *dw_2 + *dw_3$$

where dw_1 , $dw_3 \in \Lambda_{hm}$, and $dw_2 \in (\Gamma_{he} \cap {}^*\Gamma_{he} \dotplus i (\Gamma_{he} \cap {}^*\Gamma_{he}))$. There exist sequences $\{dw_{1n}\}$, $\{dw_{3n}\} \subset B\Gamma_{hm} \dotplus iB\Gamma_{hm}$ which converge to dw_1 , dw_3 in the Dirichlet norm, respectively. By Lemma 4, $dw_{1n} + {}^*dw_{3n}$ belongs to $B\Gamma_{\Phi he} + iB\Gamma_{\Phi hm} + i{}^*(B\Gamma_{\Phi he} + iB\Gamma_{\Phi hm}) \subset \Lambda_x \dotplus i{}^*\Lambda_x$. It follows that

$$0 = \lim_{n \to \infty} \langle dw_{1n} + *dw_{3n}, \omega \rangle = \langle dw_1 + *dw_3, dw_1 + *dw_3 \rangle.$$

Hence $dw_1 = *dw_3 = 0$ and $\omega = *dw_2$. By the supposition for $dv \in B\Gamma_{he}$, $du \in B\Gamma_{hm}$,

$$\langle d(\mathbf{\Phi}v), *dw_2 \rangle = \langle id(\mathbf{\Phi}u), *dw_2 \rangle = 0.$$

If w_2 is bounded, from Lemma 1

$$\langle dv, *d(\bar{\Phi}w_2) \rangle = \langle d(\Phi v), *dw_2 \rangle = 0$$

and

$$\langle du, -i^*d(\bar{\Phi}w_2)\rangle = \langle id(\Phi u), *dw_2\rangle = 0.$$

It follows that

$$\Re^* d(\bar{\Phi}w_2) \in {}^*\Gamma_{hm} + {}^*\Gamma_{eo} \text{ and } \Im^* d(\bar{\Phi}w_2) \in {}^*\Gamma_{he} + {}^*\Gamma_{eo}.$$

We have $d(\bar{\Phi} w_2) \in B\Gamma_{hm} + iB\Gamma_{he} + \Lambda_{eo}$ and $dw_2 \in B\Gamma_{\Phi hm} + iB\Gamma_{\Phi he}$. Hence $*dw_2 \in i*\Lambda_x$ and

$$0 = \langle *dw_2, \omega \rangle = \langle *dw_2, *dw_2 \rangle.$$

Therefore $\omega = 0$.

For unbounded w_2 $(w_2(a)=0)$, take a sequence $\{dw_{2n}\} \subset B\Gamma_{he} + iB\Gamma_{he}$ which converges to dw_2 in the Dirichlet norm. We may assume that $\{w_{2n}\}$ $(w_{2n}(a)=0)$ also converges to w_2 . Since $\{dw_{2n}\}$ is a Cauchy sequence, by the condition (**) $d(\bar{\Phi}w_{2n})$ is also a Cauchy sequence and converges to an element $ds \in \Lambda_{he} + \Lambda_{eo}$. Since $\bar{\Phi}w_{2n}$ converges to $\bar{\Phi}w_2$, we can choose $s=\bar{\Phi}w_2$. It follows that from Lemma 1, for $dv \in B\Gamma_{he}$

$$0 = \langle d(\mathbf{\Phi}_v), *dw_2 \rangle = \lim_{n \to \infty} \langle d(\mathbf{\Phi}_v), *dw_{2n} \rangle$$

$$= \lim_{n\to\infty} \langle dv, *d(\bar{\Phi}w_{2n}) \rangle = \langle dv, *ds \rangle.$$

Hence $\Re ds \in \Gamma_{hm} + \Gamma_{eo}$ and $ds \in \Gamma_{hm} + \Gamma_{eo} + i (\Gamma_{he} + \Gamma_{eo})$. Write $s = s' + s'_0$, where $ds' \in \Gamma_{hm} + i\Gamma_{he}$ and s'_0 is a Dirichlet potential. There exists a sequence $\{ds_n\} \subset B\Gamma_{hm} + iB\Gamma_{he}$ such that $s_n(a) = 0$ and $\{s_n\}$ converges to s' - s'(a).

Then by (**) $\{d(\Phi s_n)\}$ converges in the Dirichlet norm. Since $d(s_n(\Phi)) \in i\Lambda_x$, $\{d(s_n(\Phi))\}$ converges to an element in $i\Lambda_x$. Then $\{\Phi s_n\}$ converges to $\Phi(s'-s'(a))$ and $\Phi(s'-s'(a)) + \Phi s'_0 + s'(a) \Phi = w_2$. Remarking $\Phi s'_0$ is an Wiener potential (cf. [CC]), we know $dw_2 \in i\Lambda_x$. Therefore $*dw_2 \in i^*\Lambda_x$ and $dw_2 = 0$.

Now assume that $G \ni \infty$ and $G \supset \{z : |z| > M > 0\}$. The following is the simplest case of Shiba's theorem in [S].

Theorem 3. Under the assumptions (*) and (**), there exists a unique meromorphic function f which has the Λ_x -behavior and has a simple pole only at $\{\infty\}$, where f is normalized as follows;

$$f(z) = z + \sum_{n=1}^{\infty} a_n z^{-n}$$
 in a neighborhood of $\{\infty\}$.

Proof. Take a positive constant M such that $\{z:|z|>M\}\subset G$, and a C^{∞} -function ρ whose support is contained in $\{z:|z|>M\}$ and $\rho(z)=1$ on $\{z:|z|>M_1\}$ $(M_1>M)$. Consider a differential $\frac{1}{2}(d(z\rho)-i^*d(z\rho))$. It is a C^{∞} -differential whose support is contained in $\{z:M\leq |z|\leq M_1\}$. It has the following representation;

$$\frac{1}{2}(d(z\rho) - i^*d(z\rho)) = \omega_1 + i^*\omega_2 + \omega_0 + i^*\tau_0, \, \omega_1, \, \omega_2 \in \Lambda_x, \, \omega_0, \, \tau_0 \in \Lambda_{eo}.$$

Then $\sigma=\frac{1}{2}d(z\rho)-\omega_1-\omega_0=i\;(*\omega_2+*\tau_0+\frac{1}{2}*d(z\rho))$ is closed and coclosed on $G-\{\infty\}$, hence harmonic there. It follows that $\sigma+i^*\sigma$ is meromorphic and coincides with an element in $\Lambda_x+\Lambda_{e\rho}$, because

$$\sigma + i^*\sigma = d(z\rho) - \omega_1 - \omega_0 + \omega_2 + \tau_0.$$

Since $\sigma + i^*\sigma$ is exact, there exists a meromorphic function f such that $df = \sigma + i^*\sigma$. The f has the Λ_x -behavior and a simple pole only at $\{\infty\}$. As for the uniqueness, the same argument as in the previous section can be applied.

Remark. If f has the Λ_x -behavior, by the remark in the previous section, the imaginary part of $\overline{\Phi}f$ takes a constant value on every boundary component except for a set of Kuramochi capacity 0. So we call this f a rectilinear quasi-slit mapping.

Next we consider a particular case. In an arbitrary region, assume that $\widehat{\varphi}$ is continuous and takes a finite number of values. Then there exists a finite number of disjoint closed boundary neighborhoods $\{V_i\}$ such that $\widehat{\varphi}$ takes a constant value on the boundary part of V_i and the complement of their union is relatively compact. Then $\widehat{\varphi}$ has a continuous extension φ to \widehat{G} such that φ is constant on V_i and a C^{∞} -function on G. It is clear that $d\varphi \in \Gamma_{hm} + \Gamma_{eo}$ and the assumption (*) is satisfied. Note that for a harmonic function w ($dw \in B\Gamma_{he}$, w(a) = 0),

$$\langle d(\bar{\Phi}w), d(\bar{\Phi}w) \rangle = \iint_{G} d(\bar{\Phi}w) \wedge *_{\overline{d}}(\bar{\Phi}w)$$

$$= \iint_{G} (\bar{\Phi}dw + wd\bar{\Phi}) \wedge (\Phi^*dw + w^*d\Phi)$$

$$= \iint_{G} dw \wedge *_{\overline{d}}dw + \iint_{G} w^2d\varphi \wedge *_{\overline{d}}\varphi$$

$$+ i \left(\iint_{G} wdw \wedge *_{\overline{d}}\varphi - \iint_{G} wd\varphi \wedge *_{\overline{d}}w\right)$$

$$= \langle dw, dw \rangle + \iint_{G} w^2d\varphi \wedge *_{\overline{d}}\varphi.$$

We know that w^2 has a harmonic majorant W and there exists a constant K_1 which satisfies $W(a) \le K_1 \langle dw, dw \rangle$, where K_1 is independent of w. Then there exists a constant K such that $W(z) \le K \langle dw, dw \rangle$ on $G - \bigcup V_i$. Hence we have

$$\iint_{G} w^{2} d\varphi \wedge *d\varphi \leq K \langle dw, dw \rangle \iint_{G} d\varphi \wedge *d\varphi$$
$$= K \langle d\varphi, d\varphi \rangle \langle dw, dw \rangle.$$

Similary we have

$$\langle d(\mathbf{\Phi}w), d(\mathbf{\Phi}w) \leq M \langle dw, dw \rangle$$
.

Hence the assumption (**) is satisfied for $M=1+K\langle d\varphi, d\varphi\rangle$. Therefore there exists uniquely the normalized rectilinear quasi-slit mapping with the Λ_x -behavior. In this case the behavior coincides with the one of those treated by K. Matsui [MK].

On the other hand, F. Weening [W] showed that there exists a normalized conformal mapping f which achieves the angle assignment and has a property called extremal crossing module. He conjectured the uniqueness. Take a square $S_j = \{e^{i\theta_i}w : |\Re w| < M, |\Im w| < M\}$ which contains $f(\cup V_i)$ and the complement of the image of f, where $\varphi(z) = \theta_i$ on V_j . Let $\Xi_j = \{\gamma \text{ is a chain of locally rectifiable arcs in } S_j$ which are allowed to cross $\bigcup_{i\neq j} f(V_i)$, joins the sides of S_j at inclination $\theta_j + \frac{\pi}{2}\}$, the ρ -length of Ξ_j

$$L_{\rho}(\Xi_{j}) = \inf_{\tau \in \Xi_{j}} \left\{ \sum_{k=1}^{n} \int_{\gamma_{k}} \rho(w) |dw| + \sum_{k=1}^{n-1} |\gamma_{k+1}(0) - \gamma_{k}(1)| \right\},\,$$

where $\gamma_{k+1}(0)$ is the starting point and $\gamma_k(1)$ is the ending point, the ρ -area of Ξ_i with respect to $\bigcup_{i\neq j} f(V_i)$,

$$A_{\rho}(f(G), \cup_{i\neq j} f(V_i)) = \iint \rho(u+iv)^2 du dv + \text{area of } \cup_{i\neq j} f(V_i),$$

and the crossing module of the Ξ_i :

$$\mu(\Xi_i) = \inf_{\rho} \frac{A_{\rho}(f(G), \cup_{i \neq j} f(V_i))}{L_{\rho}(\Xi_i)^2} \leq 1.$$

The property of extremal crossing module means $\mu(\mathcal{E}_i) = 1$.

Theorem 4. In an arbitrary region, if $\hat{\varphi}$ is continuous and takes a finite number of values, there exists uniquely the normalized rectilinear slit mapping which achieves the angle assignment $\hat{\varphi}$ and satisfies the property of extremal crossing module.

Proof. As F. Weening showed, there exists a normalized rectilinear conformal mapping f which achieves the angle assignment and satisfies the property of extremal crossing module. For a real-valued C^{∞} -function h whose support is contained in the closure of $f(V_f)$, put $\rho_t |dw| = |dw + t\Phi dh|$, where t is a real number. We have

$$\begin{split} & \sum_{k=1}^{n} \int_{\gamma_{k}} \rho_{t}(w) |dw| + \sum_{k=1}^{n-1} |\gamma_{k+1}(0) - \gamma_{k}(1)| \\ & \geq \sum_{k=1}^{n} \Re \int_{\gamma_{k}} \exp(-i\theta_{j}) (dw + t\Phi dh) + \sum_{k=1}^{n-1} |\gamma_{k+1}(0) - \gamma_{k}(1)| \geq 2M, \\ & 2A_{\rho_{t}}(f(G), \cup_{i \neq j} f(V_{i})) \\ & = \iint (dw + t\Phi dh) \wedge \overline{*(dw + t\Phi dh)} \\ & = \iint dw \wedge \overline{*dw} + 2t\Re \iint \Phi dh \wedge \overline{*dw} + t^{2} \iint dh \wedge \overline{*dh}. \end{split}$$

If $\Re \int \int \Phi dh \wedge \overline{*dw} \neq 0$, for a certain small t,

$$A_{\rho_t}(f(G), \cup_{i\neq j} f(V_i)) < 4M^2.$$

Then $\mu(\Xi_i) < 1$. Thus

$$0 = \Re \iint_{S_{j}} \Phi dh \wedge \overline{*_{dw}} = \Re \iint_{S_{j}} dh \wedge \overline{*_{d}(\overline{\Phi}w)}$$

$$= \Re \iint_{\exp(-i\theta_{j})S_{j}} (h_{\xi} d\xi + h_{\eta} d\eta) \wedge i (d\xi - id\eta)$$

$$= \iint_{\exp(-i\theta_{j})S_{j}} (h_{\xi} d\xi + h_{\eta} d\eta) \wedge d\eta = \iint_{\exp(-i\theta_{j})S_{j}} h_{\xi} d\xi d\eta,$$

where $\xi + i\eta = w \exp(-i\theta_i)$. It follows that

$$0 = \Re \iint dh \wedge \overline{*d(\bar{\Phi}f)}$$
$$= \langle dh, d(\bar{\Phi}f) \rangle,$$

and $\Re d(\bar{\Phi}f)$ coincides with an element in ${}^*\Gamma_{hm} + {}^*\Gamma_{eo}$. Hence $\Im d(\bar{\Phi}f)$ coincides with an element in $B\Gamma_{hm} + \Gamma_{eo}$. Therefore f has the Λ_x -behavior and so the uniqueness which is conjectured in [W] follows.

Remark. If the univalence of the normalized rectilinear quasi-slit mapping with the Λ_x - behavior is shown, applying Koebe's lemma (cf. [SO]) on each V_i ;

$$\iint_{\exp(-i\theta_j)S_j} h_{\xi} d\xi d\eta = 0,$$

we can show that it maps every component to a segment precisely and achieves the angle assignment.

DEPARTMENT OF SYSTEM ENGINEERING
KYOTO INSTITUTE OF TECHNOLOGY
DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF CINCINNATI

References

- [ABB] J. M. Anderson, K. F. Barth and D. A. Brannon, Research problems in complex analysis, Bull. London Math. Soc., 9 (1977), 129-162.
- [CC] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer-Verlag, 1963.
- [KP] P. Koebe, Abhandlungen zur Theorie der konformen Abbildung: V. Abbildung mehrfach zusammenhängender Bereiche auf Schlizbereiche, Math. Z., 2 (1919), 198-236.
- [KY] Y. Kusunoki, Characterization of canonical differentials, J. Math. Kyoto Univ., 5 (1966), 197-207.
- [MF] F. Maitani, On the boundary behavior of harmonic measures, Tech. Rep. Osaka Univ., 26 (1976), 373-380.
- [MK] K. Matsui, Convergence theorems of Abelian differentials with applications to conformal mappings I, II, J. Math. Kyoto Univ., **15** (1975), 73-100, **17** (1977), 345-373.
- [SO] L. Sario and K. Oikawa, Capacity functions, Springer-Verlag, 1969.
- [S] M. Shiba, On the Riemann-Roch theorem on open Riemann surfaces, J. Math. Kyoto Univ., 11 (1971), 495-525.
- [W] F. Weening, Existence and Uniqueness of Non-parallel Slit Maps, Thesis, University of California, San Diego, 1994.