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On H-spaces and exceptional Lie groups
By

Akihiro OHSITA

0. Introduction

An H-space is a space which admits a continuous product with unit. F.
Borel [1] showed its fundamental group is restricted by the rational cohomol-
ogy algebra under a certain associativity condition. In particular, if an
H-space X satisfies H* (X; @) =H*(G: @) as an algebra where G is an excep-
tional Lie group, then m; (X) is a subgroup of the group in the following table.

G = G2 mX) C€Z/2
F4 Z/8XZ/8
Es Z/8XZ/8XZ/3XZ/5
E; Z/8XZ/8
Es Z/8%XZ/8

As for the mod 2 cohomology, J.Lin showed

Theorem 1 ([4]) Let X be a l-commnected H-space such that Hx (X ;
F2) is finite and associative. If H* (X ; Q) =H* (G ; Q) as an algebra for an ex-
ceptional Lie group G, then H* (X ; F2) ZH*(G ; F3) as an algebra over the mod 2
Steenrod algebra.

By adding Serre spectral sequence arguments we can refine these. The
purpose of this paper is to prove the following theorem.

Theorem 2 Let X be a connected homotopy associative H-space such that
Hi (X ; F3) is finite. Assume that H* (X ; Q) =10* (G ; Q) as an algebra, where G
is an exceptional Lie group. Then m1(X) and H* (X ; F3) are as follows.
_ m(X) = 0,
G = G2 Fu Es { H*(X ; F2) = H*(G ; F,)
G = Es m(X) € Z/3 x Z/5,
H* (X ; F,) = H*(Es ; F2)

i
- (x) =0,
¢= b U0 s F) = 1o s F) O
i

™ (X) Z/2
H*(X ; Fy) = H*(Ad (E,) ; F»)
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The four isomorphisms between the cohomologies preserve the Hopf algebra structure
over the mod 2 Steenrod algebra.

For our sake we recall here the projecitve plane and the associated exact
sequence :
~ . i ~ _~ . A -~ ¢ _—
— H' (X) = [H*(X) ® H*(X)]' = H*? (PpX) = H*' (X) —.

In the sequence P,X is the projective plane of X and ¥ is the reduced copro-
duct. Our plan to prove Theorem 2 is as follows. §1 is devoted to the proof for
the case G =Gz and explains our method. §2 and §3 deal with the cases G=F
and E; i=6, 7, 8), respectively. In these sections we shall make use of the
above exact sequence to compute 7 (X) as is stated in Theorem 2. Note that in
most cases Theorem 1 will be applicable.

Throughout this paper a space is assumed to have the homotopy type of a
CW complex localized at 2. The symbol X is reserved for the space in Theorem

2. Let H* denote H*( ; F,), or on apparent occasions H* (X ; F,). Last let X
—X be the universal covering.

Especially for the reason of rather heavy tasks in my previous office 1
needed to recover. I am very grateful to Professor Akira Kono. Throughout
preparation of this paper he advised and encouraged me kindly. Also I would
like to thank Dr. Kouichi Inoue, a kind friend who helped me to study.

1. Case G =G,

This easiest case illustrates our method. At first we notice a lemma about
the associativity of a covering space.

Lemma 3 Let p . E— B be a covering wheve B is a connected homotopy
associative H-space and E is connected. Then E 1is also a homotopy associative
H-space and p is an H-map.

Proof. An easy application of the lift theorem. Since E is homeomorphic

to E/M, where B is the universal covering space and M is a subgroup is a sub-
group of m (B), it is easy to see E is an H-space and p is an H-map. Thus for
a CW-complex K, [K, m (B) /M] — [K, E] — [K, B] is an exact sequence of
algebraic loops. Note that the first and the last terms are groups. Each element
x lying in [K, E] has a unique right inverse —x ([10]). Let ¢ denote the mul-
tiplication map of E. Because m: (B) /M is discrete, it is immediate to see g (g X
1) — (u(1xp)) is trivial.

Q.ED.

Suppose H* (X ; @) = H* (G, ; Q) as an algebra. If m; (X) #0, we can
assume 7 (X) =Z/2 by replacing X with an appropriate covering space if
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necessary. Lemma 3 ensures X is still homotopy associative after such an ex-
change. We will show the assumption 7, (X) =Z/2 leads to a contradiction.

By the hypothesis we have a fibration X—X—RP*, where X is homotopy
associative by Lemma 3. Because X and X are rationally homotopy equivalent,
X fulfils the condition of Theorem 1 and its mod 2 cohomology is isomorphic
to that of G ;

H*(X) = Folxs] ® Alxs),

($34)
where deg x;=1, and Sq’rs=uxs. Set H*RP*=F,[t], where deg t=1. Since X
is mod 2 finite, all elements lying in H* (X) are of finite height. Thus because
of the theorem of Hopf-Borel, the Serre spectral sequence deduces that

aro) =Feltl o 40 7).

(t*)

where t and x5 are obvious elements and X = Sg'xs. H* (X) is primitively
generated. In particular there exists a; lying in H? (P2X) such that ¢ (a;) =Ts.
We now have a2 = Sq’a; = S¢°Sq*as, and ¢ (Sg*a;) = 0. Hence Sg%a; has an in-
verse image 2a’ ®a” by A. S¢®(2a’ ®a”) has Ts ®Ts as a summand, which is
inconsistent with the Steenrod action on QH*. Therefore X is 1-connected. We
find that H* (X) is isomorphic to H* (G,) as an algebra over the Steenrod
algebra by Theorem 1. The Hopf algebra structure is described in [8].

2. CaseG =F,

Assume 7, (X) =Z/2 (, which is equivalent to the assumption 7, (X) #0).
In the present case

H*(f) — F, [IS]

(134) ® A (xs, X'15, xzs).

From the Serre spectral sequence for X—X—RP~ we have two cases about H*
(X) :

F, [t]
(t*)
F, [t] F; [x;]
@) ° ()

We find the former case is impossible in a similar way as in §1. Suppose the
latter case. To show x3 is primitive, we need the following useful lemma.

(1) H* (X) = ® Al(xs Te, x15, X23),  or

(2) H* (X> = ® A (xs, x23).

Lemma 4 ([6] Lemma 1. 11 in §1, Chap. 7, [2]) Suppose that a con-
nected Hopf algebra A over a field k satisfies A=A (y1, ya, ***, yn) in dimensions
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less than N, where yi's are primitive and A denotes the simple system of generators.
Then A + A+ U1 (PA ®PA) = A in dimension N, where PA denotes the submod-
ule of the primitive elements and A the aungmentation ideal. In particular we can
choose indecomposable elements of degree N from U-1(PA®PA).

If x5 is not primitive we can assume & (xs) =t ®¢* Thus we get ¥ (Sq'zs) =t2®
t?. As is easily seen, this cannot happen. Therefore x3 is primitive. Again by
Lemma 4, x2; is also primitive. Let az4 be an inverse image of xz3 by ¢. Note

that Sg%*=S¢%S¢'®*+S¢%Sq' +Sq%Sq2 +5¢*°Sq*. Since PH*=PH*=PH?»®=PH*" =
0, there are a, b, ¢, d lying in H* ® H* such that ax?=Sq®4 (a) +Sg*2 (b) +
Sq®A (¢) +S¢%°2 (d) . Therefore Sq*a + Sq?*b +Sq%c + S¢?°%d =x23 ® 23 mod Im ¥’

Since xa3 ®x23 does not lie in Im¥, by passing to QH* ® QH*, one sees this re-
lation is impossible. Therefore X is 1-connected. The remaining part is veri-
fied as in §1.

3. CaseG=E; i=6,17,8)
We will first show m; (X) =0 in the case G = Es. Suppose m; (X) =Z/2.

There is a fibration )’(V—'X—>RP°°, and hence we have two cases:
(1) H*(Xx) = %t‘]’ ® Alxs, Xe, X9, X15, T17, T23) OF
_ F, [t] ® F [x3]
(1) (z3")

As for case (1), by the same reasoning about I as in §1 one deduces such a
cohomology is impossible. When G =E; or Es, xs® obstructs this argument. In

(2) H* (X) ® A(xsv Xy, X7, 1‘23)

case (2), xs is primitive as in case (2) of §2, and also is 217 (=S¢*Sq*Sq’rs). The
next lemma shows the present case is impossible.

Lemma 5 Assume PI®=PH*=QH"*=0. If dimPH" =1 and PH"—
QHY is isomorphic, then QH¥#0.

Proof. Suppose QH®=0. Let x; be the primitive generator of degree 17,
then there exists ajs lying in H'® (P,X) which is mapped to x),. Since Sg'* =
Sq'Sq'®Sq' + Sq2Sq'® and PH® = PH* =0, a5’ = Sq'%a1s=Sq'A (a) + S¢?2 (b) for
some a and b. Then Sg'a+Sq% =z, ®x1; mod Im¥. However this is impossible
because QH®*=QH*¥=0

Q. E.D.

Second, we will show m (X) =0 or Z/2 for G =E;. For this purpose we
shall prove two facts: (a) 7, (X) #Z/2XZ/2, and (b) m,(X) #Z/4. In a similar
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way as in the beginning of §1, fact (a) ensures m (X) contains at most one
factor and then fact (b) implies the required result. We now suppose m; (X) =

Z/2%xZ/2. We have from the Serre spectral sequence for X—X—RP~ X RP*
— Fs[t), t,] ® Fy x5, xo)

(t:%, t2'9) (x5, xo*)

where deg t;=deg =1 and other generators are obvious elements. From Lem-
ma 4 we can set ¥ (xs) =at, ®t,*+ B, Ot (a, BEF,). Then x1,=S¢35q%xs is
primitive and Lemma 5 is valid in this case. Therefore the cohomology above
is not possible and fact (a) follows.

Next we will prove 7, (X) #Z/4. If m; (X) =Z/4, the spectral sequence de-
duces

H*(X) ® A(Ts, x17, T23, X27),

F, [fs, 1‘9]

H*(X) = A(t;, uz) ® .
(1‘5 ) 1'94)

® /1(1_6, X5, X17, L23, 1727)
where the suffices refer to the degrees. (Note that x; is not a permanent cycle
by Lemma 5.) u, has an inverse image as in H®(P,X). There exists a’ lying in
(H*®H*)* such that A(a") =Sg%s. Since A(Sq'a’) =a;® we have S¢' (a’) =t,®t,
mod Im A. This relation is a contradiction since Sg't; =1H%2=0. We conclude
that m, (X) =0 or Z/2.

Last, we will show m; (X) #Z/2 when G=Es. If it is not the case, we have

H* (X) = Fao[t] ® F;(xs, X6, X9, 215 ® Alxys, 2os, Tor, T29)
(t%) (xs®, Te®, xo*, x16") ' ' ' .

(In the spectral sequence x5 does not vanish by Lemma 5.) Since H* (X) is
primitively generated in dimensions less than 15, Lemma 4 deduces

Ulxis) = ars ® xs2 + Bxo ® Tg (1)
We will show such a coproduct cannot occur. The next lemma states the cor-

responding coproduct in H* (X). Here we set

H* ()"(-) — F, [ys, Ys, Yo, yls]

(y316 y58 y94 y154) ® A(ym Y3, Yar, y29>.

We may suppose each x; is mapped to y; except for 1=3.

Lemma 6 T(yis) =ys ® y2+ys ® ysi+ys ® ys*

Proof. We only sketch the proof. Since the cohomology is primitively
generated in dimensions less than 15, we can set ¥ (y15) =ays ®ys*+Bys Oy
+7rys®ys*(a, B, TEF,). Note that Sg'y1s and Sq?ys lie in the Hopf subalgebra
A generated by primitive elements ys, ys, yo and yiz. Thus S¢*¥ (y15) =ays® ®
ys’+Pys* ®ys* EImTA, It is then easy to see that @=4. In a similar way we
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deduce Sq*¥ (y1s) = ays ® ys* + rys ®ys* and a=7. Thus a=p=7. We now
quote the following theorem.

Theorem 7 ([7]) Let Z be a l-connected mod 2 finite H-space satis-
Sfyving the following conditions, where n= 3.

(a) H*(Z) = Fy[x]/(x*) ® R as an algebra, and x € PHZ,
(b) QRZ'I—l o 0, dim QHznu—s = dim QHZ””'H,

Then H*(Z) is not primitively genevated.

Assume a=0. Because Sq'S¢*S¢*Sqy1s=y1s° #0, we have primitive generators

Sq®y1s, Sq*Sqy1s, and Sq2Sq*Sqtyis. This is inconsistent with Theorem 7, which
completes the proof.
Q. E. D.

It is clear that the coproduct (1) cannot be mapped to the coproduct of Yis.
Thus m,(X) #Z/2 and X is simply connected.

Summing up all, we conclude that m,(X) =0 when G=E; (i=6, 8) and that
71 (X) =Z/2 or 0 when G =E;. Except the case for E;, H¥ (X) is isomorphic to
H*(G) as a Hopf algebra over the Steenrod algebra. For more detailed argu-
ments about the Hopf algebra structure we refer to [8].
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