On H-spaces and exceptional Lie groups

Ву

Akihiro Ohsita

0. Introduction

An H-space is a space which admits a continuous product with unit. F. Borel [1] showed its fundamental group is restricted by the rational cohomology algebra under a certain associativity condition. In particular, if an H-space X satisfies $H^*(X; \mathbf{Q}) \cong H^*(G; \mathbf{Q})$ as an algebra where G is an exceptional Lie group, then $\pi_1(X)$ is a subgroup of the group in the following table.

$$G = G_2 \qquad \pi_1(X) \subset \mathbb{Z}/2$$

$$F_4 \qquad \mathbb{Z}/8 \times \mathbb{Z}/8$$

$$E_6 \qquad \mathbb{Z}/8 \times \mathbb{Z}/8 \times \mathbb{Z}/3 \times \mathbb{Z}/5$$

$$E_7 \qquad \mathbb{Z}/8 \times \mathbb{Z}/8$$

$$E_8 \qquad \mathbb{Z}/8 \times \mathbb{Z}/8$$

As for the mod 2 cohomology, J.Lin showed

Theorem 1 ([4]) Let X be a 1-connected H-space such that $H_*(X; \mathbf{F}_2)$ is finite and associative. If $H^*(X; \mathbf{Q}) \cong H^*(G; \mathbf{Q})$ as an algebra for an exceptional Lie group G, then $H^*(X; \mathbf{F}_2) \cong H^*(G; \mathbf{F}_2)$ as an algebra over the mod 2 Steenrod algebra.

By adding Serre spectral sequence arguments we can refine these. The purpose of this paper is to prove the following theorem.

Theorem 2 Let X be a connected homotopy associative H-space such that $H_*(X; \mathbf{F}_2)$ is finite. Assume that $H^*(X; \mathbf{Q}) \cong H^*(G; \mathbf{Q})$ as an algebra, where G is an exceptional Lie group. Then $\pi_1(X)$ and $H^*(X; \mathbf{F}_2)$ are as follows.

$$G = G_{2}, F_{4}, E_{8}$$

$$\begin{cases} \pi_{1}(X) = 0, \\ H^{*}(X; \mathbf{F}_{2}) \cong H^{*}(G; \mathbf{F}_{2}) \end{cases}$$

$$G = E_{6}$$

$$\begin{cases} \pi_{1}(X) \subset \mathbf{Z}/3 \times \mathbf{Z}/5, \\ H^{*}(X; \mathbf{F}_{2}) \cong H^{*}(E_{6}; \mathbf{F}_{2}) \end{cases}$$

$$G = E_{7}$$

$$\begin{cases} \pi_{1}(X) = 0, \\ H^{*}(X; \mathbf{F}_{2}) \cong H^{*}(E_{7}; \mathbf{F}_{2}) \end{cases} \text{ or }$$

$$\begin{cases} \pi_{1}(X) = \mathbf{Z}/2, \\ H^{*}(X; \mathbf{F}_{2}) \cong H^{*}(Ad(E_{7}); \mathbf{F}_{2}) \end{cases}$$

The four isomorphisms between the cohomologies preserve the Hopf algebra structure over the mod 2 Steenrod algebra.

For our sake we recall here the projective plane and the associated exact sequence:

$$\to \widetilde{\mathrm{H}}^{i}(X) \to \left[\widetilde{\mathrm{H}}^{*}(X) \otimes \widetilde{\mathrm{H}}^{*}(X)\right]^{i} \overset{\lambda}{\to} \widetilde{\mathrm{H}}^{i+2} \ (\mathrm{P}_{2}X) \overset{\iota}{\to} \widetilde{\mathrm{H}}^{i+1}(X) \to.$$

In the sequence P_2X is the projective plane of X and $\overline{\Psi}$ is the reduced coproduct. Our plan to prove Theorem 2 is as follows. §1 is devoted to the proof for the case $G=G_2$ and explains our method. §2 and §3 deal with the cases $G=F_4$ and E_i (i=6, 7, 8), respectively. In these sections we shall make use of the above exact sequence to compute $\pi_1(X)$ as is stated in Theorem 2. Note that in most cases Theorem 1 will be applicable.

Throughout this paper a space is assumed to have the homotopy type of a CW complex *localized at* 2. The symbol X is reserved for the space in Theorem 2. Let H^* denote $H^*(\ ; \mathbf{F}_2)$, or on apparent occasions $H^*(X ; \mathbf{F}_2)$. Last let $\widetilde{X} \to X$ be the universal covering.

Especially for the reason of rather heavy tasks in my previous office I needed to recover. I am very grateful to Professor Akira Kono. Throughout preparation of this paper he advised and encouraged me kindly. Also I would like to thank Dr. Kouichi Inoue, a kind friend who helped me to study.

1. Case $G = G_2$

This easiest case illustrates our method. At first we notice a lemma about the associativity of a covering space.

Lemma 3 Let $p: E \rightarrow B$ be a covering where B is a connected homotopy associative H-space and E is connected. Then E is also a homotopy associative H-space and p is an H-map.

Proof. An easy application of the lift theorem. Since E is homeomorphic to \widetilde{B}/M , where \widetilde{B} is the universal covering space and M is a subgroup is a subgroup of $\pi_1(B)$, it is easy to see E is an H-space and p is an H-map. Thus for a CW-complex K, $[K, \pi_1(B)/M] \rightarrow [K, E] \rightarrow [K, B]$ is an exact sequence of algebraic loops. Note that the first and the last terms are groups. Each element x lying in [K, E] has a unique right inverse -x([10]). Let μ denote the multiplication map of E. Because $\pi_1(B)/M$ is discrete, it is immediate to see $\mu(\mu \times 1) - (\mu(1 \times \mu))$ is trivial.

Q.E.D.

Suppose $H^*(X; \mathbf{Q}) \cong H^*(G_2; \mathbf{Q})$ as an algebra. If $\pi_1(X) \neq 0$, we can assume $\pi_1(X) = \mathbf{Z}/2$ by replacing X with an appropriate covering space if

H-spaces 655

necessary. Lemma 3 ensures X is still homotopy associative after such an exchange. We will show the assumption $\pi_1(X) = \mathbb{Z}/2$ leads to a contradiction.

By the hypothesis we have a fibration $\widetilde{X} \to X \to \mathbb{R}P^{\infty}$, where \widetilde{X} is homotopy associative by Lemma 3. Because \widetilde{X} and X are rationally homotopy equivalent, \widetilde{X} fulfils the condition of Theorem 1 and its mod 2 cohomology is isomorphic to that of G_2 ;

$$\mathrm{H}^{*}(\widetilde{X}) = \frac{F_{2}[x_{3}]}{(x_{3}^{4})} \otimes \Lambda(x_{5}),$$

where deg $x_i = i$, and $Sq^2x_3 = x_5$. Set $H^*RP^{\infty} = F_2[t]$, where deg t = 1. Since X is mod 2 finite, all elements lying in $H^*(X)$ are of finite height. Thus because of the theorem of Hopf-Borel, the Serre spectral sequence deduces that

$$H^*(X) = \frac{\mathbf{F}_2[t]}{(t^4)} \otimes \Lambda(x_5, \overline{x}_6),$$

where t and x_5 are obvious elements and $\overline{x}_6 = Sq^1x_5$. $H^*(X)$ is primitively generated. In particular there exists a_7 lying in $H^7(P_2X)$ such that $\iota(a_7) = \overline{x}_6$. We now have $a_7{}^2 = Sq^7a_7 = Sq^3Sq^4a_7$, and $\iota(Sq^4a_7) = 0$. Hence Sq^4a_7 has an inverse image $\sum a'\otimes a''$ by λ . $Sq^3(\sum a'\otimes a'')$ has $\overline{x}_6\otimes \overline{x}_6$ as a summand, which is inconsistent with the Steenrod action on QH*. Therefore X is 1-connected. We find that $H^*(X)$ is isomorphic to $H^*(G_2)$ as an algebra over the Steenrod algebra by Theorem 1. The Hopf algebra structure is described in [8].

2. Case $G = F_4$

Assume $\pi_1(X) = \mathbb{Z}/2$ (, which is equivalent to the assumption $\pi_1(X) \neq 0$). In the present case

$$H^*(\widetilde{X}) = \frac{F_2[x_3]}{(x_3^4)} \otimes \Lambda(x_5, x_{15}, x_{23}).$$

From the Serre spectral sequence for $\widetilde{X} \rightarrow X \rightarrow RP^{\infty}$ we have two cases about H^* (X):

(1)
$$H^*(X) = \frac{\mathbf{F}_2[t]}{(t^4)} \otimes \Lambda(x_5, \overline{x}_6, x_{15}, x_{23}),$$
 or

(2)
$$H^*(X) = \frac{\mathbf{F}_2[t]}{(t^{16})} \otimes \frac{\mathbf{F}_2[x_3]}{(x_3^4)} \otimes \Lambda(x_5, x_{23}).$$

We find the former case is impossible in a similar way as in §1. Suppose the latter case. To show x_3 is primitive, we need the following useful lemma.

Lemma 4 ([6] Lemma 1. 11 in §1, Chap. 7, [2]) Suppose that a connected Hopf algebra A over a field k satisfies $A = \Delta(y_1, y_2, \dots, y_n)$ in dimensions

less than N, where y_i 's are primitive and Δ denotes the simple system of generators. Then $\overline{A} \cdot \overline{A} + \overline{\Psi}^{-1}(PA \otimes PA) = A$ in dimension N, where PA denotes the submodule of the primitive elements and \overline{A} the augmentation ideal. In particular we can choose indecomposable elements of degree N from $\overline{\Psi}^{-1}(PA \otimes PA)$.

If x_3 is not primitive we can assume $\overline{\Psi}(x_3) = t \otimes t^2$ Thus we get $\overline{\Psi}(Sq^1x_3) = t^2 \otimes t^2$. As is easily seen, this cannot happen. Therefore x_3 is primitive. Again by Lemma 4, x_{23} is also primitive. Let a_{24} be an inverse image of x_{23} by t. Note that $Sq^{24} = Sq^8Sq^{16} + Sq^{23}Sq^1 + Sq^{22}Sq^2 + Sq^{20}Sq^4$. Since $PH^{39} = PH^{24} = PH^{25} = PH^{27} = 0$, there are a, b, c, d lying in $H^* \otimes H^*$ such that $a_{24}^2 = Sq^8\lambda$ (a) $+ Sq^{23}\lambda$ (b) $+ Sq^{22}\lambda$ (c) $+ Sq^{20}\lambda$ (d). Therefore $Sq^8a + Sq^{23}b + Sq^{22}c + Sq^{20}d = x_{23} \otimes x_{23}$ mod Im $\overline{\Psi}$. Since $x_{23} \otimes x_{23}$ does not lie in Im $\overline{\Psi}$, by passing to $QH^* \otimes QH^*$, one sees this relation is impossible. Therefore X is 1-connected. The remaining part is verified as in §1.

3. Case $G = E_i$ (i = 6, 7, 8)

We will first show $\pi_1(X) = 0$ in the case $G = E_6$. Suppose $\pi_1(X) = \mathbb{Z}/2$. There is a fibration $\widetilde{X} \to X \to \mathbb{R}P^{\infty}$, and hence we have two cases:

(1)
$$H^*(X) = \frac{\mathbf{F}_2[t]}{(t^4)} \otimes \Lambda(x_5, \overline{x}_6, x_9, x_{15}, x_{17}, x_{23})$$
 or

(2)
$$H^*(X) = \frac{F_2[t]}{(t^{16})} \otimes \frac{F_2[x_3]}{(x_3^4)} \otimes \Lambda(x_5, x_9, x_{17}, x_{23})$$

As for case (1), by the same reasoning about $\overline{x_6}$ as in §1 one deduces such a cohomology is impossible. When $G=E_7$ or E_8 , ${x_5}^2$ obstructs this argument. In case (2), x_3 is primitive as in case (2) of §2, and also is $x_{17} (= Sq^8Sq^4Sq^2x_3)$. The next lemma shows the present case is impossible.

Lemma 5 Assume $PH^{33} = PH^{34} = QH^{16} = 0$. If $dimPH^{17} = 1$ and $PH^{17} \rightarrow QH^{17}$ is isomorphic, then $QH^{15} \neq 0$.

Proof. Suppose QH¹⁵ = 0. Let x_{17} be the primitive generator of degree 17, then there exists a_{18} lying in H¹⁸ (P₂X) which is mapped to x_{17} . Since $Sq^{18} = Sq^1Sq^{16}Sq^1 + Sq^2Sq^{16}$ and PH³³ = PH³⁴ = 0, $a_{18}^2 = Sq^{18}a_{18} = Sq^1\lambda$ (a) $+ Sq^2\lambda$ (b) for some a and b. Then $Sq^1a + Sq^2b = x_{17} \otimes x_{17}$ mod Im $\overline{\Psi}$. However this is impossible because QH¹⁵ = QH¹⁶ = 0

Q. E. D.

Second, we will show $\pi_1(X) = 0$ or $\mathbb{Z}/2$ for $G = E_7$. For this purpose we shall prove two facts: (a) $\pi_1(X) \neq \mathbb{Z}/2 \times \mathbb{Z}/2$, and (b) $\pi_1(X) \neq \mathbb{Z}/4$. In a similar

H-spaces 657

way as in the beginning of §1, fact (a) ensures $\pi_1(X)$ contains at most one factor and then fact (b) implies the required result. We now suppose $\pi_1(X) = \mathbb{Z}/2 \times \mathbb{Z}/2$. We have from the Serre spectral sequence for $\widetilde{X} \to X \to \mathbb{R}P^{\infty} \times \mathbb{R}P^{\infty}$

$$\mathrm{H}^*(X) = \frac{F_2[t_1, t_2]}{(t_1^4, t_2^{16})} \otimes \frac{F_2[x_5, x_9]}{(x_5^4, x_9^4)} \otimes \Lambda(\overline{x_6}, x_{17}, x_{23}, x_{27}),$$

where $\deg t_1 = \deg t_2 = 1$ and other generators are obvious elements. From Lemma 4 we can set $\overline{\Psi}(x_5) = \alpha t_1 \otimes t_2^4 + \beta t_2 \otimes t_2^4 (\alpha, \beta \in \mathbf{F}_2)$. Then $x_{17} = Sq^8 Sq^4 x_5$ is primitive and Lemma 5 is valid in this case. Therefore the cohomology above is not possible and fact (a) follows.

Next we will prove $\pi_1(X) \neq \mathbb{Z}/4$. If $\pi_1(X) = \mathbb{Z}/4$, the spectral sequence deduces

$$\mathrm{H}^*(X) = \Lambda(t_1, u_2) \otimes \frac{F_2[x_5, x_9]}{(x_5^4, x_9^4)} \otimes \Lambda(\overline{x_6}, x_{15}, x_{17}, x_{23}, x_{27})$$

where the suffices refer to the degrees. (Note that x_3 is not a permanent cycle by Lemma 5.) u_2 has an inverse image a_3 in $H^3(P_2X)$. There exists a' lying in $(H^* \otimes H^*)^3$ such that $\lambda(a') = Sq^2a_3$. Since $\lambda(Sq^1a') = a_3^2$ we have $Sq^1(a') = t_2 \otimes t_2$ mod Im λ . This relation is a contradiction since $Sq^1t_1 = t_1^2 = 0$. We conclude that $\pi_1(X) = 0$ or $\mathbb{Z}/2$.

Last, we will show $\pi_1(X) \neq \mathbb{Z}/2$ when $G = E_8$. If it is not the case, we have

$$H^*(X) = \frac{F_2[t]}{(t^4)} \otimes \frac{F_2[x_5, \overline{x_6}, x_9, x_{15}]}{(x_5^8, \overline{x_6}^8, x_9^4, x_{16}^4)} \otimes \Lambda(x_{17}, x_{23}, x_{27}, x_{29}).$$

(In the spectral sequence x_{15} does not vanish by Lemma 5.) Since $H^*(X)$ is primitively generated in dimensions less than 15, Lemma 4 deduces

$$\overline{\Psi}(x_{15}) = \alpha x_5 \otimes x_5^2 + \beta x_9 \otimes \overline{x_6} \qquad (1)$$

We will show such a coproduct cannot occur. The next lemma states the corresponding coproduct in $H^*(\widetilde{X})$. Here we set

$$\mathrm{H}^*(\widetilde{X}) \, = \frac{F_2[y_{3}, y_{5}, y_{9}, y_{15}]}{(y_3^{16}, y_5^{8}, y_9^{4}, y_{15}^{4})} \, \otimes \Lambda(y_{17}, y_{23}, y_{27}, y_{29}).$$

We may suppose each x_i is mapped to y_i except for i=3.

Lemma 6
$$\overline{\Psi}(y_{15}) = y_5 \otimes y_5^2 + y_9 \otimes y_3^2 + y_3 \otimes y_3^4$$
.

Proof. We only sketch the proof. Since the cohomology is primitively generated in dimensions less than 15, we can set $\overline{\Psi}(y_{15}) = \alpha y_5 \otimes y_5^2 + \beta y_9 \otimes y_3^2 + \gamma y_3 \otimes y_3^4 (\alpha, \beta, \gamma \in \mathbf{F}_2)$. Note that Sq^1y_{15} and Sq^2y_{15} lie in the Hopf subalgebra A generated by primitive elements y_3 , y_5 , y_9 and y_{17} . Thus $Sq^1\overline{\Psi}(y_{15}) = \alpha y_3^2 \otimes y_5^2 + \beta y_5^2 \otimes y_3^2 \in \operatorname{Im} \overline{\Psi}|_{\overline{A}}$. It is then easy to see that $\alpha = \beta$. In a similar way we

deduce $Sq^2\overline{\Psi}(y_{15}) = \alpha y_5 \otimes y_3^4 + \gamma y_5 \otimes y_3^4$ and $\alpha = \gamma$. Thus $\alpha = \beta = \gamma$. We now quote the following theorem.

Theorem 7 ([7]) Let Z be a 1-connected mod 2 finite H-space satisfying the following conditions, where $n \ge 3$.

- (a) $H^*(Z) = \mathbf{F}_2[x]/(x^4) \otimes R$ as an algebra, and $x \in PH^{2^{n-1}}$.
- (b) $QR^{2^{n-1}} = 0$, dim $QH^{2^{n+1}-3} = \dim QH^{2^{n+1}+1}$.

Then $H^*(Z)$ is not primitively generated.

Assume $\alpha=0$. Because $Sq^1Sq^2Sq^4Sq^8y_{15}=y_{15}^2\neq 0$, we have primitive generators Sq^8y_{15} , $Sq^4Sq^8y_{15}$, and $Sq^2Sq^4Sq^8y_{15}$. This is inconsistent with Theorem 7, which completes the proof.

Q. E. D.

It is clear that the coproduct (1) cannot be mapped to the coproduct of y_{15} . Thus $\pi_1(X) \neq \mathbb{Z}/2$ and X is simply connected.

Summing up all, we conclude that $\pi_1(X) = 0$ when $G = E_i (i = 6, 8)$ and that $\pi_1(X) = \mathbb{Z}/2$ or 0 when $G = E_7$. Except the case for E_7 , $H^*(X)$ is isomorphic to $H^*(G)$ as a Hopf algebra over the Steenrod algebra. For more detailed arguments about the Hopf algebra structure we refer to [8].

GENERAL EDUCATION
AKASHI COLLEGE OF TECHNOLOGY

References

- [1] F. Borel, Sur les groupes fondamentaux des H-espaces, Comm. Math. Helv., 53 (1978), 73-91.
- [2] K. Ishitoya, A. Kono and H. Toda, Hopf Algebra Structures of Mod 2 Cohomology of Simple Lie Groups, Publ. RIMS Kyoto Univ., 12 (1976), 141-167.
- [3] R. Kane, The Homology of Hopf Spaces, North-Holland Math. Library #40, 1988.
- [4] J. Lin, The Mod 2 Cohomology of the Exceptional Groups, Topology and its Appl., 25 (1987), 137-142.
- [5] J. Milnor, and J. C. Moore, On the Structure of Hopf Algebras, Ann. Math., 81 (1965), 211-264.
- [6] M. Mimura, and H. Toda, Topology of Lie Groups, 1 and 2, AMS Translations of Math. Monographs #91, 1991.
- [7] A. Ohsita, On the non-cocommutativity of the mod 2 cohomology ring of certain finite H-spaces, J. Math. Kyoto Univ., 29 (1989), 459-462.
- [8] A. Ohsita, Master's thesis (1987).
- [9] E. Thomas, Exceptional Lie Groups and Steenrod Squares, Michigan Math.J., 11 (1964), 151-156.
- [10] A. Zabrodsky, Hopf Spaces, North-Holland Math. Studies #22, 1976.