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1. Introduction

In this paper, we generalize the algebraic Novikov spectral sequences.
Then we define a homomorphism from the algebraic Novikov spectral
sequence to the May spectral sequence and study conditions in which they are
isomorphic.

In [3], we have indicated that the differentials of the generalized Adams
spectral sequences can be calculated from those of the May spectral sequences.
Moreover we can calculate the algebraic Novikov spectral sequences (c.f.,
Proposition 2.5). Hence the results of this paper can be applied to the
calculation of the differentials of the generalized Adams spectral sequences.
We may apply to the BP-and E (n) -Adams spectral sequences, and find the
new elements of the stable homotopy groups of spheres and the E(n)
-localization of spheres. These results will appear in the forthcomming
papers.

oF pr
Let F be a ring spectrum with unit 7F: S*—=F, S>——F——F the cofiber

of ¥ and F*=F A - AF the s-fold smash product of F. For any CW
spectrum X, we have exact sequences

oFf (TFAD* (P7 A%

o (SPAFSAX) —— 1 (FAFSAX) —— 1 (FAF A \’)—»n,t- (FSAX)— -
and a filtration

aF aF aF
Ty (X> ‘_7[14+1(F/\X)‘_ T Tu+ts (F /\Y)

The F-Adams spectral sequence {rE3*(X), dfl is the spectral sequence
induced from the exact couple consisting of the above long exact sequence.
We have

FEY(X) =R (FAX), df = (2P A1)« O (r/A1)x and pES“(X) =H° (:EF*(X); df)
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(c.f, (2.1)). Under certain conditions, rE«(X) is isomorphic to the
associated graded group of the above filtration. If FxF'= Fx« (F) is flat over

Fx=F4(S°) then rE$* (X) =Exti%r (F, Fx(X)).
Suppose FyF is flat over Fx and consider an ideal I of Fx invarant under
the coacton of FxF. Then the filtration

Fy(X) DIF£(X) D+ DI'F 4 (X) DI F4 (X) Do
induces a spectral sequence
LES™™(X), dI abutting to Extiés (Fx, Fx(X)).

We call it the algebraic Novikov spectral sequence for I. 1f F=BP, X=3S° and

1= (p, vy, v2,-**) then this is so called by D. C. Ravenel (c.f. [8]).
€ pr
Next consider another ring spectrum G. The cofibration S*——G——G

induces a boundary homomorphism
0c: Tust (G' AN F N X)=musr 1 (G A F A X).

We define a filtration Vi, (X)!;on m,(F A X)=F,(X) by

(1.1) Vieer ) =Im [(96) " et (G' A F A X)=m, (F A X)].
This induces a spectral sequence
rES* (X)), df°l abutting to £E3**(X).

We call it the May spectral sequence (c.f. [3,5]).
We assume that there exists a map A: F—G of ring spectra. Let I be the
kernel of Ax: Fs¥—Gx In Lemma 3.1, we prove that if Ax Fx(G)—G%(G) is

monomorphic then I'Fx (X) C V%, (X). Then we have a homomorphism
(1.2) OA'F o (X) /1" P (X) = Vi (X) / Vi (X))

Now Lemma 3.1 implies the following.

Theorem 1.1. Assume that there exists a map A: F—G of rving spectra.
Let I be the kemel of Ax: Fx—Gx. If Ax: Fx(G)—G«(G) is monomorphic then
therve exists a homomorphism
¢ LEY"™(X), dlf — treE3"™ (X)), d7%

of spectral sequence.
Moreover if o is isomorphic then ¢ is isomorphic.

For example, consider F=BP, G=HZ/(p) and X=S°. Then

I= (vo=p, v1, v, v3,**), DI/ I=Z/ (p) [vo, v1,7*] and
@tw*+t (SO)/VQ}H—I (8% =@tHZ/(P\-E%* (BP) =@,Ext§{1‘ (Z/ (P) s P*) =z/ (P) [ao, al{'"] ,
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where Ax is the dual of the Steenrod algebra and Px C A« is the polynomial

part of Ax when p is odd and the subalgebra generated by &2, &%+ when p=2.
We see that p is isomorphic, and so the algebraic Novikov spectral sequence is
isomorphic to the May spectral sequence.

Next, we study some other conditions under which ¢ is an isomorphism.

Theorem 1.2. We assume that Ax: F«(G)—Gx(G) is monomorphic. If

Ker [As: Fx(G' A X)—G(G' A X)]=IF«(G' N X),
then ¢ is an isomorphism.

Theorem 1.3. Let X be a CW spectrum, A: F—G a map of ring spectra
such that Asx: Gx(F) =G« (G) is monomorphic and let I=Ker [Ax: Fs—Gx]. We
assume that Fx(X) is flat over Fx and GxG is flat over G« and G-Adams speclral

sequence {cE5“(F)} converges to m«(F) and collapses.

If the ving ExtF& (Gx, G« (F)) is generated by Extd) (Gs, Gx(F)) and
Exts¥; (G, Gx(F)) and theve exists an integer t (u) for each integer u such that
Extsét! (Gx, Gx(F)) =0 for t>t(u). then the homomorphism ¢ is isomorphic.

In §2, we don’t assume that F4F is flat and define the above spectral
sequences for any ring spectrum. The above theorems are proved in §3.

2. Definitions of spectral sequences

In this section, we define and discuss the May and algebraic Novikov
spectral sequences according to [2, 3, 5, 8] for arbitrary ring spectra.

In the rest of this paper, we denote X =F, A X. For the F-Adams
spectral sequence {rE$™*(X); df}, we have

(2.1) FES*(X) =, (FAXE), df = (tF Aid) 4O (prAid) «
FES(X) =H (RES*(X): df) =Ker df/Im df.

For any ring spectrum F, consider a cochain complex [C¥*(X), 67
defined by

(2.2) Ci*(X)=m, (FS*'"AX) (FS*'=F A+ AF(s+1) -times) and

S+1
of = Z (—1) 0 C3(X)—C5(X), where

i=0
0:=1IANTFAL FSPAX=FH-TASAFAX
SFHYUAFAFIAX=FS*2NX.

Proposition 2.1 ([3, Theorem 2.3] . For any ring spectrum F, the
following holds.
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1) rES*(X)=H*(C¥*(X); 6F).
1) If Fx(F) is flat over Fx+=Fx(S%), then

H (C¥*(X); 0F) =Extiir (Fx, Fx(X)).

Now we construct a concrete isomorphism of i). The map pr: F— F
induces a cochain homomorphism

(2.3) ¢F=prA--AprAl) g C¥(X) =F, FSAX)—F,(FSAX) =pES*(X) .

Proposition 2.2. @F induces an isomorphism

¢ H* (CF* (X); 67)——ES" () = H° (pE?* (X); df).

Proof. The proof proceeds in the similar way as the one of [3, Lemma
4.10 iv)]. We consider the cochain complexes

MW= M@)S M4t and KO F¥F=1K)S, )& for r=0

given as follows:

Yy {pEi'“ (X) =m,(FAF*AX) if s<r
Y u= ___
Cs e (XE) =, (FS"AFTAX) if s>,
. af if 0<s<
aW%={‘ S
oF (x=xE) if s>y,
if s<vr
K(rs= _
Cy (X)) =m, (FS" PAFAX) if s>,
0 if s<yv
5(r)f<=[(z‘F/\l)* if s=r+1

0" (X=FAX]) s2r+2.
Furthermore, we have cochain maps
iN=4W*: K@i=>M®) & andj ) =§0)*: M@ I—ME+1)F
defined by

(1) {O if s<r ;
1\r)" = an
(TFAL) 4 CE 1 (SAXE)—=C M (FAXE) if s>
1id if s<v7r

j (r)s={ _
(=17 (pr A1) s CETENAXD)—=CET(FAXE) if s>7.

Then we have a short exact sequence

i(r) j(r)
O——K () S M (#) F——M (r+1) ¥——0),
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By [3, Lemma 2.2], H*(K (r)¥) =0 for any s; hence j () % is isomorphic on
cohomology groups, and so is ¢% since M (0)§=C§#*(X) and

+
95 = (~1)*j ()50~ 07 (0)% M(O)i—M (s+1)i=pig (x) (e=SLF 1)
Now a short exact sequence
0—=Ci+ (X5) = Ci (FAXR) —Ci (X541) —0

induces a long exact sequence

s¢ s¢
el (CF* (X7) ) —=H* (CE* (FAXE) ) —H (CF* (X541) ) —
H* (CE“ (X)) >,
Let hf: 74 (X)—H(CF* (X)) be the Hurewicz homomorphism. We denote

5C

hF ) €
hF=(5)°OhF: ma (XE)——H (CF* (XE) ) ——+- ——H (C}* (XE) ) =H° (CF*(X)).
We notice the following

Lemma 2.3 [3, Corollary 1.7]. 1) zf € IF(CE“(X)) converges to
x € Tu-s(X) if and only if there exists an element xs € m, (XF) such that
W (xs) =xF and (3F)* (x,) =x.
i) We assume the F-Adams spectral sequence {pES*(X)} converges and
collapses at the Ex-term. Then h': msx(X5)—HS(CF*(X)) is epimorphic for any
s. If (0F)S xs=0 for xsE 1, (XE) then 0F 2,=0.

Lemma 2.4. If ¥ (x) =0 jor x € m,(XE) then there exists an element
Y € Tusr1 (XE41) such that (0F)%(y) =07 ().

Proof. We notice that

B (CF* (FAX)) =0 for s>0 and h¥: 4 (F AX)— H° (CE* (F A X)) is
isomorphic

by [3, Lemma 2.2]. Then we have an exact sequence

brx 14
0—=H (CF* (X7) ) —H (CF“ (FAXE) ) ——H® (CF* (X£.1) ) ——H (CF* (X£) ) —0

and isomorphisms
0% HS (CF*(XE41) ) EH*H(CEF*(XE)) for s=1.

Then hF(x) = (6€) * O h¥(z) =0 implies 0 O k¥ (x) =0, and so we have
€ w4 (FAXS-1) with pr« Oh¥ (6) =hF (x). By the commutative diagram
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oF (TFAid) %

T, (X5) T, (FAXE)
h* l nf l =

0 ——H(CH (X)) ——H (CF*(FAXY)),

Tu+1 (X§+l)

W (x = pr«(6)) =hF (x) —pr« O T (6) =0 implies that (t¥ Aid) « (x —pr« (6))
=0, and so we have y € mu+1 (XE41) with 0F (y) =x—pr«(6). Then (3F)%(y)
=0F (x).

Next we discuss the algebraic Novikov spectral sequence. For an ideal [
of Fx, we assume that

Ose (I'CE¥* (X)) CI'CFM* (X).
Then the filtration
(2.4) Cy*(X) D+ DI - C¥*(X) DI - C¥* (X) D+
induces a spectral sequence
[EY™(X), dit abutting to pE3™ (X) =H°* (C¥*(X); 0F).

We call it the genevalized algebraic Novikov spectral sequence.
Let x be an element of I' C¥*(X) and

pr I'CE(X)—I'C (X) /I C3 (X)

the projection. If 6F(x) € I'*'C#*'*(X) then p;(x) is a cocycle, and so we
have an element

[p1 ()] €1 (I'CE* (X) /11 CEF (X))

According to the filtration (2.4), the differential d? is induced from the
correspondence

EY(X) =H ('CE* (X) /I CF“ (X)) —H (I CF (X))
‘—HSH (FHC;«E'" (X) )“"HSH (P+rc}k.u ()O /11+r+1C;lf,u (X) ) =1Ef+1"+”‘ ( f) ]

Moreover the coboundary
He(I'CE () /T CF* (X)) —H (I CE (X))

is induced from the correspondence
oF
I'Cs (X) /I C3 (X) T (X) —— ' CFH (X) DI'MCy (X) .
By the above argument, we have the following.

Proposition 2.5. 1) EY™(X) =1 'CF“(X) /I'"'CF* (X)) .
ii) Forx€I'Cs*(X),if 6F (x) €Y CH(X) (r=1) then
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[p1(x)] € E5(X) and db [p;(x)] =0 for 1<¢' <r—1,
and so[p;(x)] €E$"*(X). Moreover
[pr (67 (x))] € Es**7#(X) and dlp (x)]= [ps (67 (x))].

1) For x €I'C¥* (X), if 6% (x) =0 then x vepresents an element [x] € pES*(X) =

HS(C¥* (X)) and p;(x) represents [pr(x)] € [Ey*(X) . Morveover [p;(x)]
converges to [x].

Next we discuss the May spectral sequence. Let F and G be ring

76 pr
spectra. The cofibration S>——G——G induces a boundary homomorphism

0% Turt (GIAFAFSAX) =011 (GTIAFAISAX) .
We define

(2.5) S, (X) =Im[ (09" ust (GAFAFSAX)— 1, (FAFSAX)].
Now the filtration

(2.6)
E* () =m (FAFSAX) = Vi (X) D Vi (X) DD Vi (X) DViekth (X) D

induces a spectral sequence
lreES™ (X)) af®l abutting to rEs* ' (X).

We call it the May spectral sequence (c.f. [3,5]).
We notice that the filtration (2.6) is the G-Adams filtration of
T, (FAXE) =pE$*(X). If G-Adams spectral sequance

EF (FAXE) =H' (CE(FAXE); 6%)=m,— (FAXF)

converges and collapses at E,, then the correspondence

g

VEt (X)/ Vet (X0 <Vt (X) <, (G'AF AXE) —H' (CE* (FAXE); 6°)
induces an isomorphism
Vet (0 /vt () 2H(CE“ (FAXE); 6°)
by Lemma 2.3. Hence
(2.7) reEY"™ (X) =H* (Vi (X) / Vit (X0 dfs) = HS (H(CE* (FAXE); 09); dfy),
where
dfx= (t" A1) %O (r A1)« H (CE* (FAXE)) —H (CE* (XE11) )—H! (CE“(FAXE)).

For the description of this Ei-term, we define a double cochain complex



164 Mizuho Hikida
{Cst (X), 6%, 0% by
Cst* (X) =, (G AFS*'AX) and

s+1 t+1
67= ) (=) 0h: CH (X)—CE(X), 6°= ), (—1)438: CH (X) =36 (X),
i=0 j=0
where
. . 1IATFAL . )
OF: GNP AS AR ANX——G'"T'AFSYIAFAFIAX
1ATGAL

0f: GMIASAG AFSTAX

GYINGAG AFSTINX,
Now (pr)sA1: FSAX—F AX=XF induces a cochain map
o {CRE“(X), 0% = [CE (FAFSAX), 6 — [Ct“(FAXE), 6° and
ok H (Ced* (X); 0°), 0%t — {H (CE“(FAXE); 6°), dfl .

By the same way as in Proposition 2.2, we can see that ¢% induces an
isomorphism

(2.8)
Gl HS (H' (CES™ (X); 0°); 0%) —H* (H' (CE* (FAXE); 0°); dfx) =reEY™(X).
Hence we have the following.

Proposition 2.6 ([5],[3, Theorem 5.8]. We assume thal
(2.6.1) G-Adams spectral sequence

GEY*(FAXE) =H' (CE** (FAXE); 0%)=mu- (FAXE)

converges and collapses at E, for any s.

Then peES"™ (X) =H* (H' (CE&*(X); 6°); 6%).
i1) We assume that

(2.6.2) FsF and F+(X) are flat over Fx and
(2.6.3) G-Adams spectral sequence

cE8“ (F) =H' (CE* (F)) =Ty (F)

converges and collapses at E,.
Then pcES*™ (X) =Extile (Fx, H' (CE*(FAX))).

The assumptions of the above proposition 1ii) hold for the following
cases:

(2.9) F=BP,G=HZ, X=S°,
(2.10) F=BP,G=En), X=L,S".

For the second case, we refer [4, Theorem 3.18] and [7, Theorem 6.2].
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3. Isomorphisms between spectral sequences

In this section, we prove Theorem 1.1-3.
In the first place, we argue on products:
For a ring spectrum G, the product 4% G AG—G induces a product

C¥(X) XCE¥ (Y)—CE " (XNY)
by taking
2y: SUASY G AGAXAGAGS AY—
GSAGAGNAGYAXN Y‘l—/\ﬂ’Gs/\G AGEAXAY
for r€CE(X) and y ECE™ (Y) (cf, (2.2)). Then we have a product
HS(CE* (X)) X HS (CE*(Y))—HS* (CE“* (XAY)).

If G«G is flat over Gx, then this is the original product on Extd&-groups.
Consider a cofibering a: X;—X,—X3 and a spectrum Y such that

0—CE* (1) = CE* (Xz) —CE* (X3)—0 and
0—=CE (X1 A Y)=CE (XA Y)—CE (XsAY)—0

are exact. Then we have the coboundary homomorphisms

0% H(CE* (X3) ) —=H P (CE“ (X)),
0% HS(CE“ (XA Y))—H* (CE¥*(X,AY)) and
0C: HS(CE*(YNX;))—H* (CEF“(YNAXY)).

For x€H*(CE*(X3)), y EHY (CE(Y)), we have
(3.1) 0¢(xy) =(—1)*(6° x)y and 0 (yx) =y (6° x).
For another ring spectrum F, the product uf: FAF—F induces products

T (GAF) @y (G AF) = Ty (GSAGY AFAF) =Ty (G5 AF) and
HS(CE“(G'AF)) QH* (CE*(G'AF) ) —HS* (CE“* (G'AGY AF)).

For x€m, (G°AF), yEmy (G5 AF),
(3.2)

165

hC(xy) = (6°) (6%)° (h () h (y)) = ((6°)*hC (x)) ((3€) RhE(y)) =h® (x)hC (y)

by (3.1).

Now we prove Theorem 1.1-3. Let A: F—G be a map of ring spectra

and I=Ker [F4+—Gx«]. The following lemma implies Theorem 1.1.

Lemma 3.1. If Ax: Fx(G)= G« (G) is monomorphic then the following

holds:
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1) Im {06 T4 (GAF) =74 (F)} =1
i) Im (09" Turx GIAFAX)—=74 (FAX)} = Vi (X) DI' - F5(X).
Proof. 1) By the commutative diagram

36

(TG AY)
T (S°AF) —— 1, (GAF)

(AR« l l (AAD «

(TGAD)

T.(S°AG) — m (GAG)

Tu+1 (EAF)

in which the upper line is exact, we see i) since
(tA1) & T (S°AG) =1, (GAG) and (1AR) x T (GAF) =1, (GAG)

are monomorphic by the assumption.
ii) For

r=xwxyxy I - F+(X) (€1 y EFx (X)),
we have elements
i Exs1 (GAF) with 0 (x/) =x; and ' =x,x5 2y E Tusx (GIAFAX)
by i). Then (8€)'(x") =x. This implies ii).
We notice that if
(3.3) Vi (X) =I'Fx (X)

then the May and algebraic Novikov spectral sequences are isomorphic.
Hence we prove Theorem 1.2 and 1.3 by showing (3.3).

Proof of Theorem 1.2. For any € Vi (X), we have 2, € st (GPAFAX)
with (0% (x,) =x. Then

(76 A1) xO (IAAAD) £ (8¢ x1) = (AAANATL) O (26 A1) 4 (0° x,) =0.
Since
(1AL s Tk (SPAGTIAGCAX) =714 (GAGT'AG AX)
is monomorphic, (1AAAL)%(0%,) =0. llence
3¢ . €EKer [Ax: Fx (GTAX) =G (GAX) 1 =IF« (GIAX),

and so we have x;-1 €E %G ' AF A X) and 6, €I with 0° x, = Ox,_1.
Inductively, we have elements

2 € (GIAFAX) i=t,t—1,--,0) and 6;€1G=¢, t-1,-+-, 1)

with 0%xis1=0i1xi. Hence
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= (0" (x,) = (09! (6¢$:—1) =6,(0% ! (It—l) =+=0,0,-,"** O1x0.
This implies (3.3) and this theorem.
We prepare the following proposition for the proof of Theorem 1.3.

Proposition 3.2. We assume that Ax. Fx(G)—Gx(G) is monomorphic.

If
0: I'Fx (X) /T F 5 (X) = Vi (X) / VL (X)

is epimorphic and there exists an integer t(u) for each integer w such that
it (X) =0 for t>1(u), then

G LEY (X)), dit = {reE3"(X) , d7°)

1S an 1somorphism.

Proof. We prove (3.3). Let

pr I'Fu (X)=I'Fs (X) /I F 5 (X)), py: Vg (X) = Ve, (X) / Vi (X)
be projections. For any x € Vi, (X), we have

X' EI'Fx(X) with pOp;(x’) =py (x) and i=x—x' € VIH 1 (X).
By induction, we have 6, € Vit (X) and 6/ €I'''Fy (X) (=1, 2,--+) with
0O0p1(6/) =pv(6:) and Oir1=0;—0:€ Vitith, (X).

By the assumption, 6; = 0 for i>t(u), and so x =1 + 2% 6. Hence
TEI'Fx(X).

Proof of Theorem 1.3. Since Fx(X) is flat, the G-Adams spectral
sequence {gEY (FF A X)} is isomorphic to {GEY(F) @ rFx(X)!. Since

G-Adams spectral sequence {gEy*(F)! converges and collapses at E; and GG
is flat,

St (X) / Vi 1 (X) = 6E5* (F) @y Fx (X) =Extlife (G, Gx (F)) QpuF s (X).
Then, by Lemma 3.1 i),
[= Vi1 (S) = Vi1 (S /V542(S°) =Extlue (G, G (F))
is epimorphic, and so is
1"+ Fx(X) = Vi (X)) / VL0 (X) =Extéds (Gx, G*(F))®F*F* (X)
by the assumption. By Proposition 3.2, this implies Theorem 1.3.

HIROSHIMA PREFECTURAL UNIVERSITY



168 -

(1]
(2]
[31]
[4]
[5]
(6]
(71
(8]
(9]

Mizuho Hikida

References

J. F. Adams, Stable Homotopy and Generalised Homology, Univ. of Chicago Press, Chicago,
Ilinois and London, 1974.

H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton, New Jersey,
1956.

M. Hikida, Relations between several Adams spectral sequences, Hiroshima Math. J., 19 (1989),
37-76.

M. Hikida and K. Shimomura, An exact sequence related to Adams-Novikov E,-terms of a
cofibering, J. Math. Soc. Japan, 46, (1994), 645-661.

H.-R. Miller, On relations between Adams spectral sequences, with an application to the stable
homotopy of a Moore space, J. Pure appl. Algebra, 20 (1981), 287-312.

S.-P. Novikov, The methods of algebraic topology from the viewpoint of cobordism theories,
Math. USSR-Izv., 1 (1967), 827-913.

D.-C. Ravenel, Localization with respect to certain periodic homology theories, American Journal
of Mathematics, 106 (1984), 351-414.

D.-C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press,
New York, 1986.

R.-M. Switzer, Algebraic Topology, Homotopy and Homology, Springer-Verlag, Berlin and New
York, 1975.



