
J. Math. Kyoto U niv . (JMKYAZ) 167
38-1 (1998) 167-200

Spherical matrix functions and Banach
representability for compactly generated

locally compact motion groups

Dedicated to Professor Takeshi Hirai on his 60th birthday

By

Hitoshi SHIN'YA

Introduction

Let G be a  locally compact group, and K a compact subgroup of G. Let { ,
T (x )} be  a  topologically irreducible representation of G o n  a  locally convex

—
complete Hausdorff topological vector space F or any 5EK , we shall denote
b y  (5 ) the  space of vectors which transform according to 5 under lei—  ( k )
Then the operator

T° (x) = LT (kxle- l )d K  (k)

leaves (5 ) invariant, dx (k) being the normalized Haar measure on K. If pd=
d i m  (5 )  i s  a  p o s it iv e  in te g e r , th e n  th e re  e x is ts  a p x p  matrix - valued
continuous function U5 ( r)  on G such that

T° (x)k(5)= U5 (x) ®Id

where d is the degree of 5 and I d  is the d X d unit matrix. This function U5 (x)
is called a  spherical matrix  function of type 5 of height p .  P ut x 6 =d • trace  5,
then the function U=

 U5 ( r)  satisfies

(a) f  U(xl? - 1 ) X g (k) d K (k) U  (X) ,

(b) f  U (xky12- 9 dK  (k) = U (x) U (Y) ,

(C) { U  (X ) I x E G } is an irreducible family of p xp matrices.
Conversely, any p x p matrix - valued continuous function U (x ) which satisfies
these three conditions is  a  spherical matrix function of type 6 of height p [11].

Let U (x) be the one which satisfies the above conditions (a) - (c). If 0 (x)
= trace  U (x ) i s  positive definite, then U (x ) is bounded a n d  is  g iven  by  an
irreducible unitary representation o f  G . I n  som e c a se s  th e  boundedness of
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U (x ) m eans that it is g iven  by  a n  irreducible unitary representation [8]. If
U (x )  is quasi - bounded  [4 ], th e n  it  is  d e f in e d  b y  a n  irreducible  Banach
representation, and the converse is also true. Spherical functions were treated
by m any people, under the  assumption of boundedness o r  quasi- boundedness
(e.g., [1] , [8] , [9] , [12] , [15]),  o r , fo r  groups w ith good structure, such  as
c o n n e c te d  semisimple L i e  g r o u p s ,  in w h i c h  w e  c a n  d e d u c e  the
quasi - boundedness of them even if it is not assum ed expicitely (e.g., [2], [5],
[6]).

L et U  (x ) be the  spherical matrix function of type 5 of height p  defined
by a topologically irreducible representation { ,  T (x)} of G. If it is equal to a
spherical matrix function defined by some Banach representation, then we say
th a t  W, T  (x )) is essentially  a  Banach representation. In  th is  case U  (x ) is
quasi-bounded. Of course there exist essentially "non-Banach" representations
in general [14].

Assume th a t G  be decomposed into th e  product G = SK, w here S  i s  a
closed abelian subgroup and  K  a com pact subgroup. T hen  it is like ly  to  be
true that all topologically irreducible representations containing som e 5 e
f in ite ly  m a n y  tim e s  a r e  subquotients o f  Ind A  f o r  so m e  1- dimensional

S IG

representation A  o f  S ,  t h a t  i s ,  a ll such  rep resen ta tions a r e  like ly  to  be
essentially Banach representations. T he  au thor tried  to  p rove  it , b u t he has
succeeded only when G is a  compactly generated locally compact motion group,
which means, after R.Gangolli [3], tha t G = S X II( is a  semidirect product of a
compactly generated abelian group S  and a com pact group K . T his paper is
devoted to prove it.

I n  §1, w e reca ll th e  definition o f  spherical m atrix  functions a n d  some
re la tionsh ips be tw een  spherica l m atrix  func tions a n d  representations. A
representation { ,  T (x)} is called R l in i t e  if dim (5) < 0 0  for a ll (5 E
Then one  o f the  m ost im portant theorem in  §1 is Theorem  4, which asserts
that, if G0=SK0(where Ko is  an open subgroup of K ) is  a  subgroup of G = SK,

—
then every K - finite topologically irreducible representation of G is essentially

—
a Banach representation if and only if every K 0 -finite topologically irreducible
representation of Go is essentially a Banach representation.

In §2, we reduce our problem to the one for the group G = SXIK where S
= ZnTRm (d ire c t p ro d u c t) , h e r e  Z  deno tes t h e  s e t  o f  in tegers, T  the
1-dimensional torus, and R the real number field.

In  §3, we define some algebras on G. One of them, Y u  (G ), is constructed
using  functions on Zn X  K  a n d  th e  universal enveloping algebra  o f the
complexification of the L ie algebra of TRm. 5E,1 (G ) plays an im portant role in
place of the group algebra on G.

In §4, we complete the proof of the result which is stated in Theorem 8.
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§ 1 .  Spherical matrix functions and topologically irreducible
representations

1 . 1 .  Some general theorems. Let G b e  a  locally compact group. We
sha ll deno te  by  C ( G )  th e  convo lu tion  a lg e b ra  o f  compactly supported

continuous functions on G. I f  K  is  a compact subgroup of G , then I? denotes
—

the unitary dual of K and x a does the normalized trace of ö K, tha t is, X 6
=

d  • trace 5 where d = d (a ) is the degree of 5. The normalized Haar measure on
K  will be always denoted by cl (k ) . For every function f E C c (G) we define

X 6  *
f

*
 X  3  ( * X )  =  f K x K f

x  (hi) XJ (h2) d (k1) d (h2)

The subalgebra of these functions xa * f  *  b  is denoted by Cc,a (G) . For every
function f  E Cc (G ) we put

f (x ) =  L f  (k x k - 1 ) d (k) ,

then the set of all functions f  for J E  Cc,5 (G ) is  a  subalgebra of C,5 (G) a n d  is
denoted by /,,a (G) .

The space o f  a  representation { , T (x )} of G  is , if  nothing is stated,
understood  to  be  a  locally convex Hausdorff topological vector space. W e
assum e usua l con tinu ity  cond ition  fo r represen ta tions (see  [10]), and  an
integrability condition, th a t  is , fo r  every closed subgroup H  o f G  a n d  ço C
Cc (H ) ,  the integral

T ( )  =f„, (h) T (h) d (h) ,

where chi (h ) denotes a  left Haar measure on H, converges strongly and defines
a continuous linear operator  T (p ) on If some 5Efe is contained in k'— T(k)
w ith  fin ite  m ultip lic ity , then  th e  representatinn T  (x )}  o f  G  is called

5 -fin ite . If  th e  multiplicities o f  5 a re  finite o r  z e ro  fo r  a l l  5 E  k•- ,  then  it is

called 1?-finite. For any 5E1? we put

E 5) -= f  X  (k) T  (k) d K  (k) ,

then the  subspace (5) =E consists of all vectors which transform
according to 5 under k T  ( k )  .  If  a  representation {, , T  (x )}  is R-finite, then
dim (5) < + co  fo r a ll 5 E R . If it is  5 -fin ite  fo r some 5 E k ,  then 0 <dim

(5) < +co. Denoting by d G (x) a  (left) Haar measure on G, w e  put

T  ( f )  = fG f (x) T (x) d G (x) (f  E ( G ) )  ,

then f  —T ( f )  is  a  representation of Cc (G ) on to, and  T (f ) to (5) (5 ) for
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a n y  f  E Gc,d (G). I f  t h e  representa tion  {,f), T  (x )}  o f  G  is topologically
irreducible, so is the represeentation of C,,a (G ) on , (6 ).

A ssum e G  i s  unimodular a n d  { ,  T (x )}  i s  a  5 - finite topologically
irreducible representation of G. Let p  be the multiplicity of 5, then dim ( a )
=pd where d = d (5) . The operators

T° (x) = LT (kxle -  i fl ) d  (k )

leave (5) invariant, and T° (x)I4 (a) commute w ith all T (k) for k E K . Now we
decompose the s u b s p a c e  (5) into a direct sum of K - irreducible subspaces

(5) =

and w e get a  basis of (5 )  by gathering up those o f  Vi, then  r  ( x )  6.5) are
represented by matrices

(x) Id ••• 14 ip  (x) Id

T° (x)I. (a) =

[ u n I
= u , (x )O ld

U p i (x) I d . •' Upp(x)Id

w ith  respect to  th is  basis . Here, Id  denotes the d  X d  u n it m atrix and  U6 (x)
does a p x p  matrix with coefficients uu (x) E C (C is the complex number field).
Then the m (p, C) - valued continuous function Uj (x ), where M (p, C ) is the set
of all p x p complex matrices, is called a  spherical matrix  function of type 5  of
height p defined by {. , T (x)} [11] . Note tha t Ua (x) satisfies

(a) X *  (5=  I I (5,

(b) f u  (xk yk -1 )dx (k ) =  116(x) Ua (y) ,
(c) {U.3 (x) IX E G) is  an irreducible family of matrices.

W e should also note that these properties conversely characterize a  spherical
matrix function [11]. Define

Ua (f) = f,f (x) Ua (x) d G (x)

for f  E ic ,8  (G ), then f'—U5 (f) i s  an  irreducible p-dimensional representation of
the algebra I  (G) . The continuous function

03 (x) d  •  trace U (x )

is called a spherical function of type ô of height p [4].
L et { , T  (x )}  be a  5 - finite topologically irreducible representation of G.

We take any 'vE, ( ô ) ,  y  0, and define the fundamental subspace

• o= (f)  v  I fE  Cc (G)}

T h is  i s  invariant, a lgebraically  irreducible under T ( f )  for f  E  Cc (G ) , and
independent of v. M oreover, if  th e  representation { ,  T  (x )}  i s  5'-finite for

some 5' E k' for another compact subgroup K', then •N = {T(f)//1  f  Cc (G)}
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for any v' , , (S') =E v' *0[10].
W e have the following relationships between spherical matrix functions,

spherical functions, and representations.

Theorem 1. Let T1 (x)} , T2 (x )}  be two topologically irreducible
representations o f  G. A ssum e there exists at least one pa ir (K , d) of  compact

subgroup K  of  G  and 5 E k  such that both {'foi , T i (x )}  (i =1, 2 ) are  5 - finite.

Denote by N , U  (x) , an d  9 i5 (x ) f o r i  = 1 , 2  the  corresponding fundamental
subspaces, spherical matrix functions, and spherical functions. Then the following
four conditions are equivalent.

(i) There exists a pair (K, 5) such that g5i = Oi.
(ii) For every p air (K, 5) for which {V, T i (x )}  (i=1, 2 ) are 5-finite, we

have 9â= q53.
(iii) There exists a p air (K , 5) such that Ul an d  1125 are  equivalent, i.e.,

they are of the same degree and Uâ(x )=PUi(x )P - 1  for some invertible matrix P.
(iv) For every pair (K, 5) for which Ti (x )) (i=1, 2 ) are 5- finite, Uâ

and 11 are equivalent.
(v) There exists a bijective linear map I: 5 j —>,N such that

1T 1 (f) T2 (f)1 ( V fc Cc (G) ) •

Proof. It is proved in  [10] th a t  ( i) , ( i i) , a n d  (v ) are  equivalent. By the
definition o f  spherical m atrix  function ( i i i )  a n d  ( iv )  fo llow  from  (v ) . The
statements ( i) , ( ii)  clearly follow from ( ii i) , (iv), respectively.

Rem ark. Assume the condition (v ) in the above Theorem 1 be satisfied.
Then it is easy to see

1T 1 (x) T 2 (x)1 (V xEG) .

Moreover, for every closed subgroup H of G, we have

IT 1 (9) = T 2  (9) (v 9 E C, (H)) ,

because IT 1 (9) T 1 (1) v = IT 1 *  v  =  (9 * f) Iv = T 2 (cp) T 2 (f) Iv = T 2 (9)
IT 1 (f ) v  fo r every  T 1 (f) y E  N , w here 9 * f  (x ) = I H9 (h) f (h— lx) d H  (h) . In
particular, note that

1E(1, 5) = E(i 2 , 5) I

holds for a n y  (K, 5).

Definition. W hen the conditions (i) (v )  in  Theorem  1  a re  satisfied,
we call {V, T 1 (x)} and 1. 2 , T 2 (x)}  are SF - equivalent.

A positive valued lower semi-continuous function p (x ) on  G  is called a
sem i-norm  i f  it  is  b o u n d e d  o n  ev e ry  compact su b se t a n d  satisfies p(xy)

p (x ) p(y ) fo r a ll x , y  E G. A  function f  is  quasi - bounded if  there  ex ists a



172 Hitoshi Shin'ya

semi - n o rm  p ( x )  s u c h  t h a t  if(x )I P (x ) .  I f  a ll  m a tr ix  coefficients of a
spherica l m a trix  func tion  LI,3(x ) a r e  quasi - b o u n d e d , th e n  w e  sa y  LI6 is
quasi-bounded.

Now we know the following fact [10], [11].

Theorem 2. L et { . ,  T  (x )}  be a  topologically irreducible representation of G
w h ich  is  ö - finite f o r som e (K ,  3 ) .  T hen the following four conditions are
equivalent.

(i) 05 is quasi - bounded.
(ii) (16 is quasi - bounded.
(iii) Oa, U.3 a re  def ined by  som e topologically  irreducible Banach

representation {3 , 73 (x )} of G.
(iv) T (x )}  is S F - equivalent to some topologically irreducible Banach

representation {Q3, T3(x)} of G.

Definition. W hen the conditions (i) —  ( iv )  in  Theorem 2 a re  satisfied,
w e say { , T  (x )} is essentially a Banach representation.

Theorem 3. L e t G  be a  locally compact unimodular group, S  a  closed
subgroup, and K a compact subgroup. A ssume that G = SK, S fl K= {e} , where e is
the unit element of G, and that the decomposition is continuous. L et { ) ,  T  (x )}  be
a  i? - finite topologically irreducible representation o f  G . T h e n  {. ,  T  (x ) }  is
essentially a  Banach representation if  an d  only  i f  there ex ists a  topologically
irreducible Banach representation { ,  A (s )}  of S and a non - zero linear map a:

o—  su c h  th at

aT (s) =A (s) a  ( VsE S) ,
aT (go) = A (cp) a  ( V yocCc (S)) .

Proof . Assume T (x )} be essentially a  Banach representation, then,
b y  t h e  defin ition  o f  e sse n tia l Banach representability, t h e r e  e x is t s  a
topologically  irreducible Banach representation {3 , (x )}  o f  G  a n d  a
bijective linear map I: . 0- 31:1 such that

IT (f)=Tz3(f) I ( V fECe(G)).

Then, as is noted in Remark after Theorem 1, we also have

IT (s) -= T o (s )I sES),

IT (9) = T  (9 )I (V  y o E C c (S )).

For the semi-norm p (x) IT  (x) II we put

If = f GI f (x)IP (x) d G (x)

and denote by L p (G) the Banach algebra of all functions satisfying llf i <  œ
We choose O R for w h i c h  (d) {0}, take a vector v ( 6 )  V  0, and put



Spherical matrix functions 173

Zp= {Tz(f)v ifELp(G)) •

This subspace is independent of such 6 and v. W e proved i n  [12] that there
exists a  topologically irreducible Banach representation A (s )} of S and a
surjective linear map s: —43 such that

PTa3(s) = A (s)13 ( V sES) ,
PTR3 (9) = A (o p  ( V yoE Cc (S))

Then th e  linear m ap a =  pc) I: .0—>1) is  no t iden tica lly  ze ro  and  clearly
satisfies

aT (s) = A (s) a (‘ s  S ) ,
aT (9) = A (O a ( V (peCc(S)).

C onverse ly , let {59, A (s)) b e  a  topo log ica lly  irreduc ib le  Banach
representation of S and a :— 0 3  a non-zero linear map such that

aT (s) = A (s) a  ( V s E S) ,

aT (9) = A (cP) a  ( V Cc (S) )

We now induce a  representation (x )}  of G from 159, A (s)) . That is,
is  the Banach space of all continuous 5a-valued function on K  in  which the
norm is given by

OII= supII (k)
k e K

The operators TA  (x ) on ,V 1 a re  given by

[TA ( x ) ]  (k) = A (0- (kx) ) (K. (kx) )

where kx = (kx) K  (k X ) O (k X ) E  S , /C (k i)  EK. For the  induced representation
{V ,  TA  (x )) , which is not topologically irreducible in  general, we denote by
( A )o the Cc (G) - invariant subspace of V  generated by V I (5) =E 5)
T h en , b y  the  F roben ius reciprocity  theorem  [13], th e re  e x is ts  a non - zero
linear map I:( W )  0  satisfying

IT ( - =  TA  (f) I ( V f E Cc (G))

Then we clearly have

IE(.S,, 6) = E (.f)' , 5)1

for any S R. Since is algebraically irreducible under the action of Cc (G),
the  map I  is  injective. Denote by Q3 = /(0) th e  closure of /(,N) in  V , th e n

TA  (x)10 is a  Banach representation of G.
W e will show that the Banach representation {Z, TA  (x ) I}  is topologically

irreducible. Let 17(V 3 ) be a G -invariant closed subspace of 3 . S ince /(,N) is

algebraically irreducible under the action of Cc (G), we have 17  n I(N ) = {O}.
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For every 5 ER we have E(", 5)'V CV, E ( ,  5) I (,N ) c I ( ,N) , and hence

(5)=E , E ( f IA  ,  5 )  (DE , 5)1 ( . N) .
On the other hand, dim E ( ' t , 5) I (.N ) = d i m  (5) < + co  implies

(5) = E ( 111 5) 1 ( o) =E ( y , 5) I ( , 0)

This means E(V i , 5)17 =- {0} for every 5 E ire, namely, 'V = {O}. Thus Banach
representation Q3, TA  (x) 10 is topologically irreducible.

We choose 5 Ek  such that . (6) * 1 0 )  and a vector v E  (5 )  , v  * 0 , then
the injective linear map I :— 3(1, is bijective because

/ (too) = {IT (f )v  I jECc(G)}  = {TA cp Iv I feCe (G)}

Clearly we have IT (f ) = TA  (Pk  I  for all J E  Cc (G), and, by Theorem 1, this
im p l ie s  t h a t  t h e  re p re se n ta tio n  0 ,  T  ( x ) )  is e s s e n t i a l l y  a B anach
representation.

1 .2 .  Proof of Theorem 4. A s is  s ta te d  in Introduction, w e w ant to
study on Banach representability for a group G = SX) K where S is  a compactly
generated abelian group. T o do this w e w ill often use Theorem 4  below. Our
aim here is to prove it.

Theorem 4 .  L e t G  be a  locally  compact unimodular group, S  a  closed
subgroup, and K a compact subgroup. A ssume that G = SK, S f l K= {e} , and that
the decomposition is continuous. Let Ko be an open subgroup of K and assume Go =
SK o i s  a  closed subgroup o f  G . T hen ev ery  K - f inite topologically  irreducible
representation of G is essentially  a Banach representation if  and only if  so is every
Ko

- finite topologically irreducible representation of Go.

F irs t w e  take  a  left H aar m easure d s(s)  on S and the normalized Haar
measures d (k) , (u ) on K , K 0 , respectively. Then d G (x) = d s (s) d K (k) (x =
sk) , d Go (Y) = d s (s) c Ko (u) (y  =su) are Haar measures on G, Go, respectively.

–
L e t u s  beg in  w ith  th e  proof o f  ' i f '  part. T a k e  a n  a rb itra ry  K -finite

topologically irreducible representation { , T (x)} of G. W e have to show it is
essentially a Banach representation.

W e choose  50 E  k  such that (50) ±  ( 0 )  . Let b e  a l l  distinct
–

elements in Ko contained in S .  Put

P =E E ri),

th e n  it  is  c le a r  th a t (50) c  P .o .  Since Ko h a s  a  fin ite  in d e x  in  K , the
Frobenius reciprocity theorem [51x0: "r] = [Indr : 5] means that the number of

Ko I K

elements 5 E k which contain a  given r E k o is  f in ite . This im plies that the



Spherical matrix functions 175

representation { ,  T  (x )}  i s  k 0 -finite  a n d  hence dimP,f)0 +  0 0  .  Choose a
vector voE , (50), v0±0. We decompose K into K 0 - cosets

K =  U  K ok, (where ko-=e) ,
i=o

and define vectors Vi (do) as

v , =  (let) vo

Consider the family o f  (not necessarily closed) proper subspaces of the
—

fundamental subspace which are invariant under E  (), T ) for all rE K 0 and
T (h) for all h E Cc  (Go) .

L emma 1. For every xca, there exists at least one v,EEPX.

Proof. Assume P X  contains all I), (0 Then v, E  ( 0 1,t) because
XDPX.

O n the o ther hand , le t T  (f )v 0(f  E  C, (G ) )  b e  a n  arb itrary  vector in
then,

(f )vo= (sk) T (s)T (k)vo ds(s)dx(k)

=  T (s) (EfKo f (skk i) T (kk i )v o  d (k))cls (s)
1=0

Here we put hi (su) =f (suki) for s E S , u Elf°, then 111 ECc  (Go) and

T (f )vo= n+1 f s(EfK ohi (su) T(su)v i dKo(u))ds(s)
1=0

, n
1-+ T (1 1 1 )V IE X .

I=0

Thus we have ,N=JC, a contradiction.

L emma 2. There ex ists at least one maximal element in  R, and it is closed
in

Proof. L e t  {X,z)  b e  a  to ta lly  o rdered  subse t in  g. By Lem m a 1 there
exists a  vector v i su c h  th a t v i '$  P./6 for a ll 2. Since the  su b sp a c e  X =  U2X2
satisfies PX= U ÀPX,? 13y,, we know .1{ E a. Therefore, by Zorn's lemma, there
exists a maximal elem ent X . in R. Choose y ;  such that vi'$P.X.. We denote by

.  the  closure of X .  in It is  easy  to  see  tha t X . n o  i s  invariant under
T (h) h  Cc  (Go)) and E ( ,(  V  T E K - 0). Moreover, YC fl ,N is  a  proper
subspace of o  b e c a u s e  P (X .  n ,N) = 1;1(.43' vi. T hus w e obta in  X . n
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which implies X. n
By the  above Lemma 2 w e can pick up a maximal elemnt X in  a, then it

is closed in ,f)o• Denote by the closure of X  in

Lemma 3. ( i )  X  is Go -  and Cc (Go) - invariant.

(ii) =
(iii) X  is  m ax im al in  th e  family o f  Cc (G0) - invariant proper closed

subspaces of

Proof. (i) Easy.
(ii) Already proved in the proof of Lemma 2.
(iii) Suppose the re  ex ists  a  Cc (Go) - invariant closed subspace of

-
such that .Y( 17 . 17 is clearly invariant under E C ,  r) (V  'TEX )). Since 1/

is closed and we have , o cr'17. Thus 0 0 f l VD .0 n x=x, but this

m e a n s  o  f l=  X  because X  i s  m axim al in  R. T he R o-finiteness o f  th e
-

representation { , T (x)} implies E 7- 4  C ‘N. Therefore, for every r EKo,
we obtain

7-)-f/c v m 0 = x ,
and hence

V=E1) r).17

which means

Now, by Lem m a 3 , w e can  na tu ra lly  define  a  topologically irreducible
—

representation o f  Go on X  . W e  sh a ll d e n o te  it  b y  W / {  , T (y)}  . This
-

representation is of course Ko - finite. T ake TO E Ko such that E  , Cr

and choose a vector w ocE  (., TO) woEE X. W e shall denote by ivo the  class of
—

wo, then the fundamental subspace for W/X, T (y)} is given by

( / X) 0
=  { -i" h  Cc (Go) 1.

Now we need the following general

Lemma 4 .  If  a representation T (x)} of G is k - finite and topologically
irreducible, then, for every rE k o and ( T ) ,  W*0, we have

IT (h )w lhE C c(G o o.

Proof. There exist distinct 51,...,5m e k  such that wEEDE7i1. (51). Let
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W = W i + • • " + Wm , tvi E‘fo(di)

Each (51) is CC,a, (G) -irreducible, so there exists a  function fi E  Cc,(3, (G) such
tha t T (f) w = tu i by Burnside's theorem. Then the  function f o =h + •-• E
Cc (G ) satisfies

T (fo)w= E
Therefore, for every function h E Cc (Go) , we have

T (h)w= T (h) T (fo)w= T (h *fo) w

which completes the proof.

L et us re tu rn  to  o u r situation. Since Lemma 4 shows th a t  {T (it) wo I h C
C (G 0 ) } c . 0 , we know

Let 17 be the subspace of .N such that 'V .1.( and that 17 /X= ( , /,Y() 0. Then

f  is  C'c (Go) - invariant, and also invariant under E r )  fo r a ll  r E Ko, but
this implies 17 N because X  is  maximal in a. Thus we have

(, /.1() o= ,N/X.
—

W e  n o w  a s s u m e  th a t  e v e ry  g o - f in ite  to p o lo g ic a lly  ir r e d u c ib le
representation o f  G o  is  e s s e n t ia lly  a  Banach rep re sen ta tio n . T h en  the
representation , 'F(y) } d e f in e d  a b o v e  is  a lso  e sse n tia lly  a  Banach
representation. S o , b y  T h eo rem  3 , th e re  e x is ts  a  topologically irreducible
Banach representation {i9, A (s )} of S and a non - zero linear map /3:
g9 such that

/3-1" (s) = A (s) ( V sE S ),

S cp )= A (9 )1 9  ( V goECc(S)).

As we saw above, we may consider that /3 is defined on .N/.X. So, if we denote
by y the canonical projection of o  o n to  .N/X, then the non-zero linear map

a= 13 0

satisfies

aT (s) = (ao r) (s) = ( 3 )  r =  A (s) ($0 A (s) a
for all s E S , and

aT (9 )= (13°T)T(9) = (9) A (9) (fic) A (9) a
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f o r  a l l  ço E cc (s) . Therefore, by Theorem  3  again, th e  representation
T (x )} turns out to be essentially a  Banach representation.

Before starting th e  proof of o n ly  if ' p a r t  o f  Theorem 4, we shall prove
two lemmas.

Lemma 5 .  Let T  (x )} be a ie - f inite representation of  G, and rE K o  an
-

equiv alence class such that , (z- ) {0} .  T h e n  w e  c an  f in d  5  E K  an d  a
Cc (G) - invariant closed subspace X  of which satisfy the following conditions.

(i) S  contains T.
(ii) YC (5) =E 5 )0  is a Cc ,a(G) - irreducible non - zero subspace of X .
(iii) For any vector vE Ye (5) , v ± 0 , the subspace

g o = IT (.6 vlfECc(G)}
is Cc (G) dense in  YC, and independent of v e X' (ô), v*O .

(iv) There ex ists the largest G (G ) - invariant subspace X  of  Ye satisfying
E (,, 5 )X =  {0 ), and it is closed.

(y) E  ,  X  =  { 0 }  .

Proo f . W e shall denote  by 51,...,5m  t h e  a ll  distinct elements in  If-  which
-

con ta in  T  E Ko a n d  a p p e a r  in T  (x )}  .  T a k e  a  v e c to r  v i  i n  some
Cc,a, (G) - irreducible subspace of (Si), then the subspace

vi =  IT ( f )v i I f  Cc (G)}

of is  Cc (G) -invariant and closed (here the  bar indicates the  closure in
an d  th e  subspace E 51) ICv i  is  c lea rly  non - zero and  C,51 (G)  - irreducible.
L et Xv i  b e  the  un ion  o f all C c (G) - invariant subspaces X  o f  Om  su ch  th a t
E 51) g = {0). Then it is clear that X v ,  is closed and the largest one among
such subspaces X . If E ( , , r) = {0}, then S i  a n d  Ye v i  a re  ju s t one of those
pairs we wanted.

If E ±  {O}, then  w e can  find  one  o f 52,-5., sa y  52, such that
E 52) vi {0} .  W e tak e  a  vector v20  in  some Cc,52 (G) - irreducible
subspace of E ( , , 52) Xvi and get

ie v2= { T (f)v21 f  E Cc (G))

w hich  is  a  Cc (G) -invariant subspace of and 52) 002 i s  a non-zero
C.c.s, (G) -irreducible subspace o f Ye„. Let X v2 b e  the  largest Cc (G) - invariant
subspace o f k v 2  w hich  lie s  in  th e  k e rn e l of E 52). Then Xv2 is  c lo sed . If
E v) X02 =  (0), then 52 an d  Ye v, satisfy the conditions (i) ( y )  in Lemma 5.
We have only to repeat this procedure at most m times to get what we need.

-
Lemma 6 .  L e t Q 3, T  (x )) be a  K - f inite topologically  irreducible Banach

representation o f  G ,  a n d  {8, e  ( Y )  }  a  Ro -f inite topologically  irreducible
representation of Go . If  there exists a non-zero linear map J: Q3o— q  satisfying
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JT (h) = e ( h ) J vhEc, (G.)),

JE (Q3, r) =E (g, r)J (V  rEfeo),

then the representation {8, e (y)) of Go is essentially a Banach representation.

Proof. L et us first prove that ker (J) , the  kernel of J, is closed in  Z o• To

do this we denote by ker (J) the closure of ker J) in Z . If ker (J) is not closed
in  a ) , then w e can find a  vector y c  n  k e r  (J) such that y EE ker (J) . Since

J(v) *0, E (g , 2-) J (v) *0  for some rcko. This means

JE (0, r) (zonker(P) * {0),

which contradicts the equality

(z, (z o nker(J)) =JE r)ker (J) =E (g, J  (ker ( J)) = {0}.

Therefore, ker (J) is closed in Zo.
Since ker ( J)  is Go -  a n d  Cc (Go) - invariant, w e  can  na tu ra lly  define  a

representation of Go on the Banach space g= 3/ker (J) . W e shall denote it by
T(y)). The ko-finiteness of {Z, T (x)} implies that o f 1g, (y)}.
T o  show  th a t  03-  , (y ) )  is topologically  irreducible , w e assume the

contrary. Then there exists a  closed Go- invariant subspace 17 of 8  su c h  th a t

ker (J) Ft7Q3. Then, for any rcko, we have E (3 , 1-) (Q30 n =z(r) nE(Z,

r) 17 = E ( 3,1 7 .  Now choose r1 E ko such that E  ,  r1) 17 cr ker ( J ) .  Then,
denoting by J(z o n v ) the closure of m30 n17) in g, it follows that

E (g, 7-1).[( 0n17 ) =E (e, ri)J(zo n 17) =JE(Z, (zon
= J E (Q3 , t {0} .

This means j (z o n 17) ± {0). On the other hand, if we choose r2cieo such that
E 72)17 $Q3 (r2) and Q3 (r2) k e r  (J), we have

E ( ,  T2).1 (30 n 17 ) =E (g, r2).1(930n =JE (Q3, (3 o n v )
=JE (Z, r2)17  J 9 3  (r2)

=E (g, 1-2).1( o) c g (r2).

F rom  th is  w e  know  J(zo n17) v. Therefore, th e  Cc(Go) -invarian t closed

subspace J(zonv) o f  g  i s  non - t r iv ia l .  T h is  contadicts t h e  topological
irreducibility of {g, () (y))

—
Choose z- c Ko such that  (r) ker ( j )  and a vector y c  (r) , v ker (J),

and denote by F th e  c lass of y in , then  th e  fundamental subspace o f  {g ,
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7"(y)1 is

t o =  {T (h)171 h cc (Go)).

Since we know T (h) y  e Z . fo r  a ll h E  Cc(G o) by Lemma 4, and since Zo fl
ker (J) =ker (J) as is shown above, we have

gocz,/ n ker (J) ) =Zo/ker (J).
The linear map J :  Z0 -

4 g naturally induces a non-zero linear map

7: 30/1cer (J)

and, if we denote by the  same f  the restriction of J o n  t o, the non-zero linear
map 7: go—g is injective, and satisfies

(h) = e(h)f (v hEc, (Go)) .
Since  f ( i7 )  C (r) , 7 (v)  *  0 ,  a lgebra ic  irreduc ib ility  o f  8 0  u n d e r  the
C, (Go) - action implies f  (g  = g o . Therefore, th e  linear m ap 7: g 0— g o  is
bijective. This means, by Theorem 1, th e  representation {g, e (y)} o f Go is
SF - equivalent to the Banach representation {3- , ( y ) } .

Now let us sta rt the proof of 'only if' part of Theorem 4. Let {g, e(y)} be
—

a K 0-finite topologically irreducible representation of Go . W e shall denote by
the vector space of all '-valued continuous functions e on K satisfying

(uk) e(u) e(k) ( V uEK0).

For a  family of semi-norms (I • D i . / defining the locally convex topology of g ,
we put

Mr' S U P ' (k) L( t
k eK

and give a  locally convex topology in by these semi-norms 1 - For every
xE G  and eE e , we define

[Te (x )] (k ) =  (o . (kx)) e( (kx)),

where kx= (kx ) (kx ) , a (kx) E S ,  (kX ) EK as before. In this way we got the
induced reprepentation Te (x)}

Lemma 7. T he induced representation , T e  (x )} is  k - fin ite .

P r o o f .  For every 5ER and eE. e , we have

[E 5) ] (k) = f Xa (1?') [T0 (k')] (k) d K  (k' )

= (e ) (k k')  (k ' ) =  fi c p (1?")dx(e) .
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Let k – D (k) b e  a  unitary m atrix representation of K  belonging to 6 whose
matrix coefficients are di; (k) , d d (6) the  degree of 6, and ko,...,k,, the set of
representative elements of K modulo Ko as before. Then it follows that

d

[E (
0

,  5) ]  (k )  =d E (Lci I, (V ) (e ) d  (0 )d  (k )

d n

= n +
d

1( E f Kodif (Wet) (la i) dxo(u.))di; (k)
1,1=1 1=0

d n

= dn +1 E (Ef d i ;  (uk,) e(u) (k1)d.(v ) )di; (k) .
Ko

ij=1  1 =0

Note that, for each 1, the vector

Lod ji (ukt ) e  (u ) (O d ic° (u)

be longs to  th e  d ir e c t  su m  o f  g (r )'s , f o r  a l l  r  contained i n  6 , w hich is

finite-dimensional because {g, 19(y)} is  k 0 -finite. From  this, it is easy to see
tha t th e  vectors E (r, 5) .f)e, belong to some fixed finite - dimensional
subspace of toe .

–
Now we fix zo Ko such that g(ro) { 0 } ,  then clearly .V (t-

0) {0}. So we

can apply Lemma 5 to the induced representation tr , Te  (x) and th is roeko.
L e t  5 E Cc(G)-invariant closed  subspace  X  of a n d  th e  largest
C, (G) -invariant closed subspace X  of IC satisfying E  E 5 )  =  (0), be all
given in the sense of Lemma 5 fo r {. e , r e (x )} and T0E4. Consider the linear
map p : Ye- 4  given by

13 ( e ) ( E t ' ).

This map p is not identically zero, because, for we can find an element k
EK such that [7'9 (k )] (e ) =  (k ) *0 . The following equalities

Pr e (h) = 0 (h)/3 ( V hECc(Go)),

/3E( ,= E  (g, ( v TERI))

are also easy to check. Hence /3 (X) is a  C.,(Go) - invariant subspace of g. It can

be seen that p(x) = {0}. In fact, assume p ( x )  {0}.Then /3(11') = g because of
the topological irreducibility o f {g, (y)}. But the condition E ( , , ro) =  {0}
means

g (To) = E (g , To) g = E (g , 1-
0 ) p (Jo =E(g, To) p (x) = PE ( f ro) X= {0} ,

which is a contradiction. Therefore, the linear map /3: 0 - 4  naturally induces
a non-zero linear map
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: 111X -4.

W e denote by {Ye /X, T'e (x )} the topologically irreducible representation of G
on 0 4 .  This representation is R - finite since { e , Te (x )} is, and clearly

# f e  (h) = e(h ) -11 (vhEcc(G0)),
E (0/1{ , =E (g, r) ( V r 0) .

-
N o w  w e  a s s u m e  that e v e r y  K - finite topologically irreducible

representation o f G  is essentia lly  a  Banach representation, then {1e/X, e

( x ) }  is, too. T h u s  t h e r e  e x i s t s  a  K-finite topologically irreducible
representation { 3, T (x)} of G and a bijective linear map I :  Z0-

4  WOO 0 such
that

IT (f) = T' e  (f) I ( V fE Cc (G)).

Since / satisfies

JE (Q3, 1-) =E (IC/X , 1-) I ( V r i? )

as is pointed out in Remark following Theorem 1, non - zero linear map

J=/301 : z o—>g
clearly satisfies

JT  (h ) =  (h )f ( V hECc(Go))

JE (3, T )=E(g, T V  ( V rEko).

Therefore, by Lemma 6, {8, e (y ) }  is essentially  a  Banach representation of
G . This completes the proof of Theorem 4.

§ 2 .  Two steps of reductions for the group G = S>IK

2 . 1 .  First reduction. Let G = SX1K be a  locally compact group which
i s  a  sem i-d irec t p roduct o f  a  compactly generated abelian group S  and  a
compact group K . It is  w ell know n tha t w e  m ay  assume S = ZnFRni (direct
product) for some m, n E  N, where F is  a compact abelian group  [7]. (Z is the
ring of integers, R  the  real number field, and N  the set of positive integers.)
Our aim in  this paper is to prove that every 1?-finite topologically irreducible
representation of G is essentially a Banach representation.

L e t  { ,  T (x ) }  b e  a  5 -fin ite  (acco rd ing ly  R-finite i n  t h i s  case)
topologically irreducible representation of G. We note that kFk-

1 cF  for any k
EK, because ET?' has no non-trivial compact subgroups. Therefore, FK is  a
compact subgroup o f  G . W e  sh a ll d e n o te  b y  .Y e ( (5 )) th e  FK-invariant
subspace of generated by (5 ). Since th e  representation { ,  T  (x )}  is
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(FK) ^ -finite, we have

E
a.(FK).

Let be all distinct elements in  (FK) ^  su ch  th a t . (0'1) {0} a n d  [allif:
6] Then it is clear that

(al).

From this, it follows that

dim Ye (6)) E d im  (a1) < + co .
1=1

We now decompose the  representation of F on X' ( ( 5 ) )  into a  d irect sum of
-

irreducible ones, a n d  d e n o te  b y  21,...,2q E  F  a l l  d is tinc t characters which
appear in it.

L em m a 8 .  Put K J= {k E  K I2i (k— i rk) Ai (r) f or a l l  r ,  then Ko=
(11_,K1 is  an open normal subgroup of K.

Proof. Let w  .Ye(, (5 ) )  be a  vector which satisfies T  (y ) = y l i (r)w  for
a ll r E F ,  then T (r) T (k) w = T (k) T (k - l rk) w = (1 ? - 1 rk) T (k) w for any k E K .
Thus we know that the  character (k-irk) is a lso  a  member in  {.11 .....
In th is sense, K  acts on  the  se t {21,...,2q }. So we get the  inequality  [K: K ]
and know that K 1 is  an open subgroup of K.

Let k be an arbitrary element in K . If j  is  a  number such that .L(k - l rk) =
(7') for all rEF, then, for any uEK0, we have

A, (k - l u - l krk - l uk) = /1, =A  (kyk = .1,(y) ,

i.e., k- l ukEK0, thus Ko is  normal.

N ow  w e p u t Go = S >1K0. A s  w e have seen  in  Lemma 3, the re  ex ists  a
maximal Cc(Go) -invariant proper closed subspace X  of T h e n  (6) cr X,

because 6 (6) C (  implies c X and hence X = 6 . D eno te  by  fly ) (y E Go)
the naturally induced operator, from T (y), on the factor space Then

-
the representation {6, T (y)}  of Go is K0 - finite and topologically irreducible. If
we observe the argument done in  some paragraphs after the proof of Lemma 4,
w e know  that { , T (x )}  is essentially a  Banach representation provided that
the representation {6 , T (y)) of Go is.

L em m a 9. L et W , T  (y )) be the representation of  Go defined above. Then
there exists a character A  ET-  such that T-  (r) = (y ) ( V  E F )  where Lts is  the
identity operator on W e have A (uru - 1 ) = 2(r) for any  y e F and ueK o.

(algebraic direct sum).



184 Hitoshi Shin'ya

Proof. Since ( a )  X, there exists a Ko - irreducible subspace (5)
such  tha t W cr X . W e take  any  non-zero vector wo E  W. It is easily checked
th a t T (r) (u )  =-  T  (u )  (r) (rEF, ucKo) on the subspace le ( . (5)), so we
have T (T)T (u)w0=T (u) T (r)wo.

Denote by go the image of w o under the natural m ap of onto =
The fundamental subspace (6-) o of'6" is given by

(6 )0= (h) I h (G 0)) .

From the relation I' (r) (u) tY o f  (u) f (r) g 0  w e know  that T;  (r) commutes
with all T(y) (y EGO. Therefore I' (r) = (r).4(rEF) for some A E .

The second statement is clear.

Since ker2 is a Ko
- invariant subgroup of S, K 0 naturally acts on S/ker2=

Zn (F/ker2) Rm. In this sense w e m ay w rite Go/ker2 = (Z" (F/ker2) >1K0,
and consider { 6 ,  ( y ) )  as a R o-finite topologically irreducible representation
of G o/ker2. B y  th e  w a y , th e  g ro u p  F /k e r2  i s  e i t h e r  a  f in ite  g ro u p  or
isomorphic to the 1-dimensional torus T. Therefore, our original problem, that
is, to  p rove  tha t the  representation T  (x )) of G is essentia lly  a Banach
representation, is reduced to the same one for following two types of locally
compact unimodular groups G=SXK. One is when S=ZnTR'n (direct product)
and K acts on T trivially, and another is when S = Z it ' (direct product) where
Z  is  a finitely generated discrete abelian group.

2.2. Second red u ctio n . To proceed the second reduction we shall deal
with the above two types of locally compact groups G=SX1K at the same time.
So, w e assume h e re  th a t S = Z T R 'n (direct product) w here Z  i s  a  finitely
generated discrete abelian group, and T  i s  { e) or 1 - dimensional to rus T on
which K acts trivially.

Since Z  is discrete it holds that k I r r i c  TR '. W e now  put

krk - 1 = r (k, r)k(r),

where r e Ir , r(k ,r) E T , and 1T(r) E Rm. Because, for each z e Z , the subgroup

Ik E K k zk - 1  E  z T 1 r)  i s  open in K , and because Z  is finitely generated, the
subgroup Ko= {keK  I kzk- 1 EzTIV" for all z e Z }  is  an open subgroup of K. By
Theorem 4  w e have only to  do our w ork for the group Go= SX1Ko. Thus we
may assume from the begining that

kzk- i e zT itn i for all z eZ.

Let z 1 ,..., z n
, b e  th e  generators o f  Z . W e define continuous Ir-valued

functions r t (k ) and T-valued functions r,(k ) on K by

kz = z i v i (k) r (k) .
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It follows from
=

k iliT i(k 2 )  ri (k2)
=,v1 (k1) ri (14) r i (k 2 ) ri (k2) ) (k2) )
= ri(k2)) r i ( 1

2
1 ) r i (k2) k1 (ri (k2) ) ri (ki)

that

ri (k 1k2) = Fe (ri (k2) ) ri (ki)

for kl , k2 EK. Now if we put

f ri (k)clx(k),

we clearly have Ti =17(7i )r i (k) , and therefore

kziTik - 1 =ZiT(k, ri)ri(k)k  (7i) ri (k) = zir(k, ri)rt (k)r, E z 1r,T

fo r  1 Now we denote by Z ' the  discrete subgroup of S  generated by
.  Then Z ' is isom orphic to Z  and  S  = ZTRm = Z 'T i r  (direct

product). Here we note that kz'le- l E z 'T  for all k EK and z' E Z '. Therefore our
group may be considered as one of the following two types.

(a) G  S >I K  where S  = ZnTR'n (direct product). T is contained in the
center of G, and kzir l EzT, kRmir i cT ilm  for all kEK , zEZn.

(b) G = S>1K  where S  = Z ilm  (direct product). Z  is  a  discrete subgroup
contained in the center of G, and k i r k - 1  cRm.

-
N ow  assum e G  i s  a s  in  t h e  c a s e  (b ) .  L e t  W , T  (x ))  b e  a  K -finite

topologically irreducible representation o f  G . T h en  T (z ), z  E  Z , i s  a  scalar
multiple of the identity operator on T his implies that, taking y  only in the
subgroup RmXI K, T  (y )}  is  1? - finite and  topologically irreducible a s  a
representation of Rni>1K, and that it is essentially  a  Banach representation if
and only if  the  representation { ,  T  (x )}  of G  is . Therefore, in  ou r position,
w e m ay assum e th a t  G = R tm  X  . If T  (x )}  i s  a  I? -finite topologically
irreducible representation of G =R m  > a , th en  it is  co n sid e red  a s  tha t of the
group G '=Z nT G  (direct product) by defining T (zt) = I ,  for any zt E z-r. It is
clear that the former is essentially a  Banach representation of G if and only if
th e  la t te r  is  a lso  e ssen tia lly  a  Banach representation o f  G '. Since G ' i s  a
special case of type (a), our problem remains only in the case (a).

§3. Algebras on the group G= (ZnTR'n) >1K

By the tw o steps of reductions in  §2, we may assume that our group is G
=S >IK  where S=-ZnTR'n (direct product), and that

kzk -
 1 E zT ( VzEZn),
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kt = tk ( V  teT) ,
kR'n k - l cT itni

for any k E K . For the sake of simplicity of notations, w e put Z = Zn and R =
TR'.

3.1. Algebra C- (G ) .  For any k e K  and r R ," 2 , we define elements r (k,
r) ET and k (r) E i t '  by

krk-1= z- (k , k (r) ,

and, for any k EK, z EZ, we also define an element z - (k , ET by

kzk - 1 =-zz- (k, z).

Then F is  a linear transformation on the vector space f r ,  and, for any fixed k,
the map ri-z - (k , r) is  a continuous character on R . S in c e  the action of K on T
is  trivial, the transformation r 1-4 krk - 1 on the L ie group R = TR"' is infinitely
differentiable. The automorphism on the Lie algebra r  of R  corresponding to r

krk - 1 i s  d e n o te d  b y  A d  (k ) , w h ic h  c a n  b e  n a tu ra lly  e x te n d e d  to  an
a u to m o rp h is m  o n  th e  u n iv e r s a l  e n v e lo p in g  a lg e b ra  qi (rc) of t h e
complexification rc of r.

W hen we consider a E  L  ( I C )  a s  a  r ig h t  (and le f t)  invariant differential
operator on R , af  denotes the image of f  ( R )  by  a. On the other hand we
may regard a as a distribution fl--+af (e) on R. In th is case we write

a ( f )  = fR f (r) d a (r) = af (e)

The element e rE  ( r c )  is defined by the equality

L f (r)der(r) = f  ( r)  d  ( r) (1(r) =-- f (r- 1 ) ) .

D efn ition . W e sha ll deno te  by  C-  (G ) th e  space of functions f  o n  G
such that, for any z E Z  and k e K, ri-of (zrk) are infinitely differentiable on R.
The subspace of functions in C- (G) with compact supports will be denoted by

(G) .

A function f  on G is  in  C-  (G ) if and only if, for any x E  G , r f  ( rx )  is
infinitely differentiable on R, and if and only if ri-tf (x r) is. Put 1(x) =f ( x ')
then f  e  ( G )  if and only if f  c -  (G) . Following notations will be used when
convenient.

f *  a (x ) =  fR  f (xr- 1 )da (r) = fR f  (xr)d â (r) ,

a * f (x) = f, f d a (r) fR  f (rx)dee (r)

af  (x) = i ? f (rx) d a (r) e r * f  (x)
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W hen we compute integrals, we often need the  following Lemma 10. We
will omit the proof which is quite elementally.

L em m a 1 0 .  (i) For any f E Cc .° (G ) and a E (rc) , both f * a  and a * f
are in C-  (G).

(ii) If  at least one of f EC -  (G) and g E C (G ) is compactly supported, then
both f * g and g *f are functions in  C-  (G) , and for any a e l l ( t c )  we have

Lf *g (x irx2 )d a (r) _k g  (y)dc (y) Lf (xirx2y')da (r) ,

Lg * f (x irx2) d a (r) =f (y )d G (y ) Lf (y'xirx2)da (r) .

(iii) If f  is in  C-  (G), then f  belongs to C-  (G), and for any a E 1 (rc)
have

Lf  (x ir x  da (r) =1:c/K (k) Lf(kxfrx2k - 1 ) da (r).

B y L em m a 10 w e know  tha t  c ( G )  i s  a n  a lg e b ra  o v e r  C  w ith  the
convolution product. For every dEk, the subspaces C ° (G) * x.3 and C7(G) =

X * CC° (G) * X are  subalgebras of C7(G), and 17,6 (G) = I c ,a (G) n c- (G ) is  a
d e n se  subalgabra o f  /c ,s (G ). H e re  w e  c o n sid e r  t h e  u s u a l inductive  limit
topology in Cc (G), th a t is, Cc (G ) is the inductive limit of Banach spaces, with
th e  su p re m u m  n o rm , o f  continuous functions on G , w h o s e  supports are
contained in arbitrarily given compact subsets of G.

N ow  w e shall denote  by  qt° (rc) th e  subalgebra o f  q/ (re ) c o n s is tin g  of
elements a= a° where

a° = f  Ad (k) a d K  (k).
IC

W e take a  basis Xo, X .  of r. Then Ad (k ) can be represented by a  real
matrix with respect to this basis. From this, it is easily checked that

d = (X 6+ + 4,) ° = E
,,,=0

for some positive definite matrix Q= (g i ,).

L em m a 1 1 . L et d E  qf  (re ) be as  above. I f  a function f  E  C-  (R ) is  a
solution of the differential equation (ZI —  2) 1f=  0 for some integer 1> 0 and A  E C,
then f is analytic on R.

Proof. B y the  general theory on  elliptic differential operators, we know
th a t  (Zi — 2)` - i f  is analytic on R since (LI —  A)—  2) 1 -  if  = — 2) if = O. This
m ean s th a t (d A) 1 - 2f  is  ana ly tic  s ince  (d —  2) (d —  A) = (ii —  2) , - y.
Repeating this procedure we know that f  is analytic on R.

we
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3.2. Algebra Y, ( G ) .  W e consider th e  vector space  (G ) = C c (Z  X  K )
Ocq/ ( r c ) ,  w here  Cc (z X  K )  i s  t h e  v ec to r  sp ace  o f  compactly supported
continuous functions o n  th e  product space Z  X  K. W e define  transformations
Ad (k), kEK, on Y (G )  as

Ad (k ) ( D p i(g a i)=  E,i®Ad (k) a i .

W hen w e consider th e  element =  E,(pi 0  a ,  E  ( G )  a s  a  q/ (rc) - valued
function defined on the product space Z X K, we write

k) = Do, (z, k) a,.

Therefore,

[Ad (ki) (z, k) =Eçoi (z, k) Ad (k1)a,= Ad (ki) ( (z, k)).

Now we fix a c h a ra c te r  / /E t and define

[ *77] (z, k) = iz  
x K  e r  ( 1 4 ' z 0 z ))(z i,  k 1 ) [Ad (ki) n] ki-lk)dz (zi)dK(ki)

for (G ), where dz (z) is the Haar measure on Z  normalized in  such a
way that each point has volume one. Then it is easy to see that  E Y (G).
When we want to emphasize the product *  in (G ) , we write Yu (G )  instead
of (G).

Lem m a 12. Y, (G) is an associative algebra over C.

Proof. We prove the associativity. For a n d  i n (G), we have

N * 7 2 )  *  (z, k)

f Z  xK 
It (7- (k2 , z 2

1 z )) ( * 72) (z2, k2) [Ad (k2) C] (z2 k2 Ik)dz (z2)dK (k2)

>cZ xK >cif ,u(r(k2, zi l z )) p(r. (14, zi-1z2)) (z1, k1) [Ad (k1) 77] (zT1z2, kT 1k2)

X [Ad (k2) C] d z (zi) d z (z2) d K (14)dK (k2 )

fZxZxKxK ! t ( r  (k1k2, Z i l Z 0 Z ) )  (r (k1, z2)) kJ.) [Ad (k1) 77] (z2, k2 )

X [Ad (k1k2) C] kilkOk)dz (z1)d z (z2)d.K (k1)dK(k2)

Per (ki., z) ) (zi, k1)
f ZxZxKxK

X Ad (k1) {,u(r(k2, z2 1zr 1z)) i (z2, k2) [Ad (k2) C] (zilz,7 1z, kilkok)}
d z (z i ) d z (z2) 1 K (k1) d K (k2)

=f p(r(k i k1) [Ad (k1) (7) * C)] (zi1 z, kT 1 k)dz (zi)dK(k1)
Z xK

= [ *  ( 11 *  C )] ,  k )

which is the associativity of the convolution.
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Extend any function yo E C (K ) to  a  function in Cc (Z x K ) in  such a  way
tha t go (e , k ) =  (k ) and cp (z, k) = 0 (z e )  ,  then the mapping go o 0 1  is  an
isomorphism of the convolution algebra C (K ) into .E,(G). From  this point of
view  w e m ay consider C (K ) a s  a  subalgebra of SP, (G) . So, fo r  any  5 E  K ,

regarding X  as an element in .T (G) = I', (G) , both ,E (G) * x and Xa * ..E # (G)
*  a are subalgebras of SP B (G) .

For any  e lem en t e..E',(G), we define

(z, = f  (r (h, z)) [Ad (h) ] (z, h - l kh) d K  (h) ,

then is  a projection of .1a (G) onto ..r #  (G) =- E (0 ) . It is clear
that b e lo n g s  to  .r,(G) if and only if

(r (k , z )) [Ad (h ) ]  (z, = (z, k)

for all h, kEK. . r i (G) is a subalgebra of (G) since direct calculations show

( *72°)°= (V*77)°=°*17°

for any 77E.E,(G). W e also have a subalgebra

4.4 (G) = -V; (G) nT3*1eii(G) *T6
which plays an important role in this paper.

We put ,u*C - (G) = { * f I f EC- (G)} where

*f (x) = (t)f (1- - 1 .x) (t) ,

dT (t) is the normalized Haar measure on T. F o r  =Eiçoi (g a i e  (G) and f E
* C-  (G) , we define

f G f  (x )d (x ) ' E L  R  K f  (zrk) (P , d  z (z) d  a (r) (k )  ,

then it holds that

L f (x )  d  *  )7 )  (x )  = f (x y )  d  (x )  d  (y) ,GxG

L.,--(x)d(x)= fG f(x)dv(x).

For any function f  in /7* C- (G ) a n d  E.T„ (G) we define

f (x) = fG f (y - l x )d  (y) ,

which is a new element in 11* C°' (G) . W e easily have

( 4, 7)) *f='Ic (77*f)
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for e, E (G ) and f * (G). It is also easy to see that e * fe i-/- * C7 (G)
if f  belongs to ft- - * (G) .

3.3. Representations of .E, (G ) obtained from those of G .  Let {f),
T (x )} b e  a  representation of G  such  tha t T (t) = !LW 4  ( V t E T), where 4
denotes the identity operator on The space f) is, as in §1, a  locally convex
Hausdoff topological vector space. We shall denote by V  the dual space of
The pairing on X '  w ill be denoted by (•,.).

Definition. The linear subspace generated by all vectors T ( f ) v ,  where
fe7)1c Ccc° (G ) and v E ,  is denoted by

Lemma 1 3 .  The function 5 (x ) =  KT (x ) y , w ) for y E ,foc ° and w E
belongs to du * C-  (G) .

Proof. For v = T (f ) v i E r '  where f E 17* C7 (G) and v1 E , the equality

Ov,w(x)= (x) ( f )  v = f  KT (xy)vi, w)f (y) dG (y)

= Ovi,w*i(x)

implies that çb b e lo n g s  to  tt * (G) by Lemma 10.

For T ( f)v E  ( f  E g* cc° (G)), w E  , and aEq/ (10 , we have

(T (r) T  (  v ,  da (r) = fR w * .t" (r) d a (r)

=  fG Ov,w (x) d G (x) f f (x 'r)da(r) =  KT (a* f) v, w) .

Since a  *f  is  in  i* ( G )  ,  we can define a linear operator T (a ) on f r  which
satisfies

T (a) T (Pi) = T (a )1cf)

for all f  E Ft* (G) and v E .  It is easy to see that T (a13) = T (a) T (13). For e
E 1 (G) we also define a linear operator on by

0 ' T  (  , =  fG (T (x) T ( v , w) d (x)

Then the following lemma is clear.

Lemma 14. (,fo -  , T (01 is a representation of the algebra 1e, (G) .

Now we assume tha t the representation 470, T  (x )) is 5-fin ite  for some 5
El?, i.e., 0 < d i m  (5) < + co . Since x5 * C7 (G) c Ccc°(G), the dense subspace
fr  of t• is  invariant under E ( , ô), and  h e n c e  w e  k n o w  (5) = E =
E (fo , 5) . Thus the subspace (5) lies in the domain of T (i) , where
d  att (rc) was given in Lemma 11, and is  invariant under T  (d). Then we can
find a constant A EC, a positive integer 1, and a non-zero vector v (ô) such
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tha t (T (A) v= 0. Now we know that the infinitely differentiable function
011,14) (r) , w E f3■' is analytic on R  since

[(d — A) I Ov,14] (r) = (T (r) (T (d) — 2) , =0

(see Lemma 11). It follows from this observation that Ov,w(r) are analytic for
all v E  (5) and

Theorem 5 .  Let { ,f), T (x)}  be a 5-finite representation of G for some 5 e
such that T (t) = p (t) 4 for tE T. Then the function Çbv,w (x) = (T (x) v, w), for any

( 5 )  and is analytic with respect to rER.

Proof. The equality T (k) T (z) = p (r (k, z )) T  (z ) T  (k ) means that T (z)
(5) is invariant under T (k) . Thus there exist some vectors vi E•to (0";) , Gri Eff'

for i=-1,...,1, such that T (z )T (k )v =v 1 - 1- ••• +v i. Therefore the function

Ov,w(zrk) = (T  (4T  (r)T  (k) y, vj,w (r)

is analytic with respect to r.

Let { ,  T (x )} be a  5-finite topologically irreducible representation of G
such that T (t) p(t) 4  for t E T. Then it is clear that the subspace .fo (5) is
invariant and irreducible under the action of x ô * .E, (G) x a .  Any operator
on (5 )  w hich  commutes w ith  a l l  T (k)4,(5)(k e  K )  is  equa l to  som e
T I43(d) where is an element in l'„°,6 (G).

Theorem 6. Let U (x ) be a spherical matrix function of type 5 of height p.
Then all matrix  elements of  U6(x ) are analytic on  R  if  they are considered as
functions on ZxR  x  K. If  we put

U 5 ( )  =  G U a (x) d (x)

then 1-41 6 ( ) is an irreducible representation of the algebra 4 4° (G).
Conversely, le t  U (x )  be an  m(p, C) - valued function on  G  whose matrix

elements are analytic on R when they are considered to be defined on  Z x R x  K. If
it satisf ies U ° (x ) = U (x ) and  if  U  ( )  i s  a p - dimensional irreducible
representation of na (G ) , then U(x ) is a spherical matrix function of type 5.

Proof. T h e  f ir s t  h a lf  is  c le a r  b y  th e  definition o f  spherical matrix
function. So we will prove the second half. Since x6 is in St„,6  (G) and x 6*

for e v e ry  E 1) c 'u,d (G) , we have U (x5) U = U (Xs * =  U ( ) which implies
that U(x6) is the unit matrix. Thus, for a n y  E.1(G), it follows that

fG U* X3 (X)dCX) = 1 K . G U (X/C- 1 ) X6 (Odic (k)c/ (x)

=f  r
x G U (x)d ( *T 3) (x ) = U ((*T 3) ° ) =LI (* * X.5)
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= U (r )U (T a ) = U ().

From this, together with the analyticity of U* xa (zrk) and U (zrk) as functions
of r, it follows that U* x a=  U.

Next we take an a r b i t r a r y  EY,i(G) and put

V (x) = LU (xy)d° (y) ,

then V (zrk) is analytic with respect to r. By the equality

V (i7) = U (77 * °) = U (Tc6 * i 4t°4c5C.;) .- - u(T.5*77°)LI(**2- 6)  U  (71) v (e)

for any nET, (G) we know V (x )=U (x ) V (e) , i.e.,

LU (xy )cW (y ) =  U  (x ) fG U (y)cl° (y) = U (x) U  .

Since this equality holds for all E.T'„ (G) we obtain

fKU (xkyle -
1)d K (k) = U (x) U (y) •

M oreover, it is clear that (U (x)1 x E  G ) is  an  irreducible family of matrices,
hence U (x) is  a  spherical matrix function of type 5.

D efinition. For a R- finite representation T  (x )) of G such that T (t)
p (t) 4 (V t E T) , we put

e = e ,E w 5) (algebraic direct sum).
6Ek

The s u b s p a c e  
K
 is contained in  V° because (6) c.V° for a ll (3  E  . So

it is  in the domain of the operator T ( )  fo r (G).

Lem m a 15. For any klinite representation T  (x )) of G which satisfies
T (t) = p (t) 1,f, f or t E  T, the subspace ■V is invariant und er T  () for all E

(G) .

Proof. First we will show that V  is  invariant under

(Ç D )  = xli
g°

 (2, 
k )  T  ( z k )  d  z  ( z )  d  ( k )

for any ço E Cc (Z X K) . L et { z i ,  z2,..., z , }  be a ll d istinc t e lem ents in Z  such that
(z i , k) are not identically zero as functions on K . Then the calculation

T (k) T (yo) = j•
K x K yo (z, kl)T (kzki)dz (z)dx(k1)

=Eficgo(zi, k1 ) z i)) T (z1kki)dx(k1)
1-1
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shows th a t  T (k)T ((,o) ( 5 )  is contained in  th e  finite-dimensional subspace

ET (zi )t• (d) for all k e K. This means T ((p) to (5) C ,  or, T  (10 ) t or cc

Next we will show that V  is invariant under T (a) for all aeq/(rc). We
take an arbitrary vector y in ,f)(5). Since f)(5) c V°. there exists a  function f
e  *  Cc° (G ) and a vector vi f )  such that y= T(f )vi. Then, putting f k (x) =
f (k - l xk) , the equality

T (k)T (a) = T (k)T (a) T = T (k)T (a * = T ((Ad (k) *  f k ) (k )v
= T (A d (k) a) T (k) T v  =  T  (Ad (k) a) T (k) y

holds. Since Ad (k) a rem ains i n  a  finite-dimensional subspace of (rc)
independent of k EK, this equality shows that T (a) (5) c ,f)K

Theorem 7. L e t  {to, T  (x )}  b e  a  k - fin ite  topologically irreducible
representation of  G  such that T (t) = tt(t) 4 (V t E T )  Then {f)K  , T  ()} is an
algebraically irreducible representation of (G).

Proof. A t first we prove that the subspace gy= {T (G )), for
any non-zero vector y E , is  dense in f). Assume w E to' be a  vector such
th a t KT ( )  , w) = 0 fo r  all (G) . Then, for a ll cp E  (Z x K ) and a E
ali (re ), we have

f eKT (r) T (cp)y, w)da(r) = 0.

This implies that Or()vo (r) = 0 because the  function Orciov,w (r) is analytic
(see the proof of Lemma 15, and Theorem 5). Since this is true for a ll q) G
Cc (Z X K) , we get 0,,w (x) = 0  for all x E G. Then the topological irreducibility
of 4), T (x)) implies w=0. Thus we know that g ,  is dense in

The dense subspace .Yet, is invariant under E (to, 6) since x a *  belongs to
Se„ (G) . H e n c e  (a) c  0 , for all 5ER. This implies Yeti=  C

3.4. Linear map Yr. We take a  5ER, denote by d  its degree, and fix an
irreducible unitary matrix representation (k) of K which belongs to J.

W e shall denote  by gi th e  space o f  a ll d  X d  matrices whose matrix
elements are in the algebra Ce (Z) ( t c )  .  When we consider an element A E
sal a  function on Z, w ith its value in the set of d X d  matrices whose matrix
elements are in

 l l
 (rc), we write A (z) = (a,.; (z)) . For A (z) = (ao (4) and B (z)

= (bo (z)) in .4, we give the convolution product by

A  * B (z) = f A (zi)B (zr i z)dz (zi) ,

here, A (zi)B (zT l z) is the formal matrix product of A  (z1) and B (zi- 1z)

Definition. A linear map T . :  e  (G) * 2- 6 —>,91 is defined by
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=  f (z, k) 11) (k) d (k) = E(f„(z, D (k) d K (k) )ai

for Ei(PiOai E.E, (G) *
It is easy to see that the linear map qf is bijective and its inverse is given by

f  (A )] (z, k) =d • trace [D (k)A (z)] .

Lemma 1 6 .  F o r  e  (G) x a  a n d  n  c  ,a(G) we hav e 3ff( *  r)) =
T V  *w (n).

Proof. First we calculate )7 for (G) X d and 7) (G);

(z,

= f z .K te(r(ki, z 0 z ) ) ( z i ,  kJ.) [Ad (14) 77] (zT lz , k f ik )dz(z i)dx(k i)

= g (1-  (k i , z i
- 1 4) p(r (1? 1, zT l z)) k1) (zrlz, kki71)d z (zi) d (kZxK

kW) d z (zi) dK (ki) .fzxic

So, it follows that

[T-( 4' (z )

= Z x K x K
(Z 1 , k l)r)(Z r i Z , kk1 1) tD(k)d z (zi)dK(k1)dK(k)

=iz x i c x . i c  (Z 1 , k 1) 77(Z1 1Z, 1?) `,0 (k1 ) ̀ D (k)d z (zi) dK (k1) dK (k)

=  f z  
K
 (zi, kl) tp (14)d ir(k1)}{f r)(zr l z, k)'13 (k)d K  (O ld z (z)

=  [T (e) *W(77)] (z),

which is the equality we wanted.

§ 4 .  Proof of the main theorem

We are now in a position to prove the following main

Theorem 8. L et G = S A K  be a  locally compact group w hich is a  semi-
direct product o f  a compactly generated abelian group S and a com pact group K
acting on S . Then every K -finite topologically irreducible representation T (x)}
of G is essentially  a Banach representation.

To prove Theorem 8 w e m ay assume tha t S  is  ju s t the one given in  §3,
and we keep any other notations in §3.

Let T  (x )} be 5-fin ite  (5 ./-?), and T (t) = 11(6 4( V tE T). Let U6 (X )

b e  th e  corresponding spherical m atrix function o f  ty p e  5  o f  height p . By
Theorem 6 w e know  that U6 (zrk) is analytic •with respect to  r E R . It is clear
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that U (tX) = U 6 (X t) = (t) U 6 (X) for all teT.
Now we put

ri 6 (A) =  U  (T - ' (A ))

for all A E By Lemma 16 the  linear map A 1--+ -L i (A ) gives a p-dimensional
representation o f  th e  a lgebra  4° = C .E „ (G )) . M oreover it is irreducible
because the  representation U  ( )  of .E,°,6 (G ) is irreducible (Theorem  6).
Note tha t the  algebra 4  has the unit E  =  (x 6 0 1 )  and  i t  is  in  4°. Here we
should understand that x 6 i s  the extended function on Z X K as in  §3, and that
E is the function on Z taking the d X d unit matrix as its  value at z= e and 0 at
z*e. The mapping

* E (z)
 = f a   (.zi)E (zi- 1 d z (z) =

o

 

a (z)

of Cc (4 0 0 1  (rc) into 4  is an injection.
T o  aviod c o n f u s io n  le t  u s  d e n o te  b y  t (C P ) t h e  v e c to r  s p a c e  of

p-dimensional co lum n vec to rs w ith  com ponen ts i n  C . N o w  w e  ta k e  an
arbitrary non-zero vector y E t  (e )  and put

21v= Esd° I Oa (A) v = 0) ,

then 21 is a maximal left ideal in 4°. Moreover we put

DIV =  e g i  CY 6 (BA) V = 0 for all B E 4}.

Lemma 17. 9N, is a  left ideal in 4  such that 9J1, (1 4° =?Iv .

Proof. If A is in M y n , t h e n  6 (A) V = 6 (I dA) V = 0. Thus A  is in ?Iv .
Conversely, let A = gr(e) be an arbitrary element in 24 w h e r e  E.E,°.,,a (G) .

Then, for any B= w(n) , w e have (1-  6(BA)V = U6 (77 * v  = (7 7  *  v  = U6 (77°
*  v = U (77) U 6 () V = O. Therefore A belongs to Div n 4°.

Let 937 be an arb itrary  maximal left ideal in 4  containing M y . It is easy to
see ?I,C  911 n .9i. .9/°, which implies ?i v = 937 n . Therefore, we can regard

as a  subspace of ai/E. W e denote by H (A) the  natural action of A E
4  o n  4 / E . T h e n  th e  subrepresentation A ( A )  o f  4 °  o n  4°01, is
irreducible, and is equivalent to Ai— ( A )  .

W e shall denote by E 1 th e  element in 4  such that E t (e) is the d x d-matrix
w hose (i, j) -matrix element is 1 and the others are 0, and that E (z) = 0 for z
* e . Then we have a direct sum decomposition
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id/E= II (En) (sd/u)E131...ED (Edd) (4/E).

Since each subspace n (En) (4/9R) i s  invariant u n d e r  H (a *  E )  fo r  any
element a e  Cc (Z) ( I C ) ,  w e  g e t  d  representations of Cc (Z ) O A  ( r e )  on
11(E11) (.91/9N)

Lemma 1 8 . The representations of Cc (Z) Oc all (lcc) on n (E11) (4/931) are
algebraically irreducible and mutually equivalent.

Proof. The operator H (E 1 1 )  is c learly  an intertwing operator of ri (E11)
(4 / E )  o n to  H (EH) (4 / 9j1) . S o  w e  have o n ly  to  show  the  irreducibility.
Assume t h a t  n (E11) (4/931) b e  red u c ib le , th en  th e re  ex is ts  a non-trivial
invariant subspace H1 of 11 (Eli) (4 /931). We put

H= Hie) n (E21)H1e•••e(E41)1/1.

Then, for any A = (au) =si, we have

d d

(A)H= E Fl (a„*E,,)H = Efi (a ,,*E ) FI (E i ,) H
i,j=1 i,j=1

d d

En (aii*E) n (EioHicEn (E11 ) 111 =H,
i,J=1 i=1

which contradicts the irreducibility of the natural representation A' — fi (A ) of
4  on 4 / E .

Now we must find out how an algebraically irreducible representation of
the algebra Cc (Z) O A  (re) can be given. To do this, we find another algebra
which is isomorphic to Cc (z) ®€t (re).

Let X0 b e  a  basis of the Lie algebra of T, and a  basis of the Lie
algebra o f  Rrn. H ere  w e  can  tak e  X, (1 111) a s  th e  p a rtia l differential
operator w ith respect to  the i-th coordinate on Rrn. Then X0, X1,...,Xm form  a
basis of the Lie algebra r of R= TR', and q/ (re) is the algebra of polynomials
13=C [X0 ..... Xm]. When we emphasize an element a Eq/ (re )  is  a polynomial of
X0 .... ,Xm , we write a= a (X0 ..... X m) .

On the other hand, we take n variables Y1,...,Yn and put

U [I71 ..... 17
n ],

1, ....1 .  0

where j i ,...j„ are non-negative integers. Then El is an algebra with the obvious
operations of sum  and product. The algebra of polynomials o f  Y1 ..... Yn, Xo,

Xm  will be denoted by C [Y, X ] for short.
Since a  function a E  cc (z) is defined on Z = Zn, w e w rite  a = a (z) =

a (z i ,...,zn )  where z = E  Z. W e now  define an  isomorphism ^ of the
algebra Cc (Z) Oeq/ (re) onto 4:104 by
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(a0a) A  (Y1 . . . . .  Y n, X 0 , - , 11( M )

=E a (zi,...,zn ) • • • nina
zez

L em m a 19. Algebraically irreducible representations of Cc(Z)Oc cil ( IC )  are

one - dimensional. They are parametrized by 0= (01,...,0n) E  (C x ) n (C x = C (0))
and v= (vo, 1)1 ,...o )m ) E e n + ' ,  and given by

A "(E ai(g ai)=E  (ai(gai) A . . . . .  On, vo, .

Proof. B y th e  above observation it is enough to  g ive  a ll a lgebra ica lly
irreducible representations o f  El 0 4 ,  o r  equivalen tly , a ll p roper maximal
ideals in it.

Let X be a maximal ideal in  C0 c13. Then Xo= X n c [37, x ] is  an ideal in
C [Y, X ], and it is easy to see

2e=  U

Suppose there exists an ideal Vo in C [Y, X ] such that Xo VocC[Y, X ], then

V= U
is  a n  ideal in  E.10c13, and satisfies 1J. T h is  implies D = E1003. Hence it

follows that Do = D n C [Y, = c [y, x]. Therefore, we know that N o i s  a
maximal ideal in  C [Y, X ]. A s is w ell know n, there exists e= (0, ..... en) e
and v= (vo, E C m + 1  such that

Xo= {PEC [Y, X] 'P ( O , v) =0).
If  Oi =0, then  Yi eX o . But this m eans that 1= YT1 Y1 E X, a contradiction. So, 0
must belong to  (Cx) n  . Conversely, if  0 belongs to  (Cx) , then X is  a  proper
ideal since it can not contain 1. As a result, we have proved that

X =  (PEQ0c13 I P(0, = o ) ,

and that every maximal ideal is given in th is way.
Thus every algebraically irreducible representation of i--1003 is given by

P1-0P(0, eC  for some p a ir  (0, 14 E  (C )O n  X  C m '. S in ce  (a0a)1—+ (a0 a )^
is an isomorphism of C ,(4 0 c 61,/ (IC )  o n to  C1003, this proves the statement of
the lemma.

By Lemmas 18 a n d  19, th e  natural representation A 1—> 11 )  o f 4  on
W V  is equivalen t to  the irreducible representation on I (C d )  given by



v i 116'1) (an ) • • ' A
"

 (aid) v i

7-  C (A)r :

I
= 1=V d A "  (ad1) ". A e a )  (add) V d

- d

EA 8.1) (ait) v
i =1

d

EA
"

 (ad j)
i =1
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for A = (au) E•94 with au E Cc (Z ) (tc) •

Lemma 2 0 .  There exists a p - dimensional subspace Ye o f  (Cd ) , invariant
under 7r(A ) ( y A  E  . ° ) , such that the representation A r (A ) lie of 4 ° is
equivalent to A (A) .

Proof. Since the  representation A 1– ■ ria (A ) of 4° was equivalent to A—)
il  (A ) realized on the subspace 4° /91„ of ai/E , our statem ent is clear by the
definition of Tr.

Recall xa as an element in Cc (Z x K ) and put A o = (x50X0)/d. Then Ao is
an element in 4, and it satisfies

U (A 0) U  ( T  - 1  (AO)) =. U (T(30X 0)

=izxT. K U (20) X 6 (z , k)d z (z)dX 0 (t)d K  (h)

= 1  xKA tt (t) U (k) X  (k)dX0 (t) d K  (k)

P(X o) d,

i(X  0 )  = tt f t(exp tX0)1r=0. From this we obtain

p(X0)O A" (Ta0X0) o
where

= (Ao) =

A" (21:30.X0)

th a t  is ,  Ii(X0) = A" (xa Xo) = vo. So, vo = 1_1(Xo) is  de te rm ined  by  the
represen ta tion  { , ,  T (x )}  ( a n d  Xo)  .  N o w  w e  p ic k  u p  a  1-dimensional
representation

Ae'v (ztr) =

of the group ZR = ZnTilm, where z  = E Z n ,  t e T, r=  (ri, ... r,n) e Rm.
T h e n  t h e  a b o v e  1-dimensional representation A "  o f  t h e  a lg eb ra  Cc (Z)

(rc) is obtained by

o (X0)

  

o
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(zr) a (z) d z (z) d a  (r) .A "  ( a ® a )  = L xR A "

We put W (zrk) = A " (zr) ' I) (k) and define

W° (zrk) = fK W (hzrkh - i )dK (h) = LA "  (hzrh - 1 ) `I) (hkh- 1 ) d K  (h) .

For a n y  Egi ',j(G ) put A = g f () = (a i,) E ar , then

W° () =  w ( )  =  fG  W  (x )d  (x ) =
fZxRxKile'l) 

(zr) '13 (k)d (zrk)

A d 4 ) (a n )  • - •  A " (a id )

= ;[
A" (a d i )  • • • 118 ' q ad d )  = 7 ( A ) •

From this equality and Lemma 20, it follows that the p-dimensional irreducible
rep re sen ta tio n  1--q_/5 ( ) o f  .E„°,5 (G ) is  e q u iv a le n t to  I— ' W ° () lie, where le is
the p-dimensional subspace of ' (Cd )  stated in Lemma 20.

The fact that g  is  invariant under W° (x ) is  easy  to  prove, and we give
the proof for the sake of completeness. Let w be any element in the dual space
of f (Cd) such that (v , 0 = 0  for all v E 0. Then, for any v c Ye and
we have

fG ( W° (x)v, (x ) =  fG ( W (x) v , tv)d° (x)

(xk - 1 )v, w) X a 
( k ) d 0

 (x)dic (k) = f G ( W (x)v, w)d *Ta) (z )f Gx.K( W

=  ( ? J f ( e° * V ) v ,  w) =0,

which means ( W° (x )v, w) =0 because (Vr(x)v, iv) is analytic w ith respect to
rER. Thus we get Vr(x )vEk.

S in c e  LI (e) a n d  W° (e) lie a r e  b o th  t h e  id en tity  o p e ra to r , U  ( z )  is
equivalent to W°(x)lie, tha t is, there exists an invertible operator P on le such
tha t U5 (x) = (W0 (x)10) P. The function W° (x) lie is clearly quasi-bounded,
and  hence IL, ( x )  is a lso  quasi - bounded. In  o ther w ords, th e  representation

T  (x )} is SF - equivalen t to  a  subquotient o f  th e  Banach representation
induced from  1-dimensional representation A 6 ''' o f  th e  subgroup S = ZR =
ZnTitni (cf. [12]). Therefore, the proof of Theorem 8 is now completed.

Added in  proof. T h e  proof o f  Lemma 19 i s  n o t  va lid , because the
equality Do =D n c [ y, X ] is not always true. So, we show here how to find 0
= On) E  (C x ) n  and V

=
 (  U m )  Cm + 1

.

Let CIY, Y', X ] be th e  algebra of polynomials of ..... ..... Y , and
Xo, ..... X,n w ith com plex coefficients. W e denote by I  th e  ideal in  C [Y, Y',
X ] generated by Yi Yi — 1 ..... Yn Yn — 1. Then the  homomorphism cp: C [Y, Y',
X] — >0 0 0 3  such that (p(Ye)= Yi, (p (Y ;)=  1171 ( 1f l )  ,  (Xi ) = X (0 rn.)
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naturally  induces a n  isomorphism o f  C  [Y , Y ', X] / I onto  la  003 . So, any
maximal ideal X in  40,0 0 3  corresponds bijectively to  a m axim al ideal D =
yo-

1 (X ) in C [Y, Y', X ] containing I. Now there exist uniquely 0= (01,..., On) e
Cn, = 6'0 EC', and v= (vo, vm) Een + 1  such that

V =  {PEC [Y, r, x i I P(0, ») =0).
Since Yi Y; —1 (1 .J/) are  in  D, we have OA = 1 (1 fl). Therefore Be
(Cx)n and we clearly have

X =  {Pe C.,0c$  I P ( 9, v) =0).

C onversely, it is easy to see that, for e v e ry  (0, ) ) )  E  (Cx ) n X en + 1 , the  right
hand side is a  proper maximal ideal in ElOc$.
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