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Introduction

Let G be a locally compact group, and K a compact subgroup of G. Let {§,
T(x)} be a topologically irreducible representation of G on a locally convex

complete Hausdorff topological vector space §. For any 561?, we shall denote
by $ () the space of vectors which transform according to § under kT (k).
Then the operator

T (x) = j; T (kxk™%)dg (k)

leaves 9 (0) invariant, dg (k) being the normalized Haar measure on K. If pd =
dim $(8) is a positive integer, then there exists a p X p matrix-valued
continuous function Us (x) on G such that

T° () s = Us (x) R,

where d is the degree of 6 and I, is the d Xd unit matrix. This function Uj (x)
is called a spherical matrix function of type 0 of height p. Put xs;=4d * trace 0,
then the function U=U,(x) satisfies

@ [ Uk x@dee) =U),
(b) j; Ulzkyk™)dx (k) =U @) UG),

(¢) {U(x)|x€G) is an irreducible family of p X p matrices.
Conversely, any p X p matrix-valued continuous function U(x) which satisfies
these three conditions is a spherical matrix function of type 0 of height p [11].
Let U(x) be the one which satisfies the above conditions (a) - (c). If ¢ (x)
=trace U(x) is positive definite, then U(x) is bounded and is given by an
irreducible unitary representation of G. In some cases the boundedness of
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U(x) means that it is given by an irreducible unitary representation [8]. If
U(x) is quasi-bounded [4], then it is defined by an irreducible Banach
representation, and the converse is also true. Spherical functions were treated
by many people, under the assumption of boundedness or quasi-boundedness
(e.g., [11, [8], [91, [12], [15]), or, for groups with good structure, such as
connected semisimple Lie groups, in which we can deduce the
quasi-boundedness of them even if it is not assumed expicitely (e.g., [2], [5],
(6]).

Let Us(x) be the spherical matrix function of type 6 of height p defined
by a topologically irreducible representation {9, T(x)} of G. If it is equal to a
spherical matrix function defined by some Banach representation, then we say
that {9, T(x)} is essentially a Banach representation. In this case Us(x) is
quasi-bounded. Of course there exist essentially “non-Banach” representations
in general [14].

Assume that G be decomposed into the product G = SK, where S is a
closed abelian subgroup and K a compact subgroup. Then it is likely to be

true that all topologically irreducible representations containing some 0 EX

finitely many times are subquotients of Ind A for some 1-dimensional
StG
representation A of S, that is, all such representations are likely to be

essentially Banach representations. The author tried to prove it, but he has
succeeded only when G is a compactly generated locally compact motion group,
which means, after R.Gangolli [3], that G=SXK is a semidirect product of a
compactly generated abelian group S and a compact group K. This paper is
devoted to prove it.

In 81, we recall the definition of spherical matrix functions and some
relationships between spherical matrix functions and representations. A

representation {9, T (x)} is called K ~finite if dim £ (8) <+ for all FEK.
Then one of the most important theorem in §1 is Theorem 4, which asserts
that, if Go=SK, (where K, is an open subgroup of K) is a subgroup of G=SK,

then every K-finite topologically irreducible representation of G is essentially

a Banach representation if and only if every f(}rﬁnite topologically irreducible
representation of G, is essentially a Banach representation.
In §2, we reduce our problem to the one for the group G=S XK where S

= Z"TR™ (direct product), here Z denotes the set of integers, T the
1-dimensional torus, and R the real number field.

In §3, we define some algebras on G. One of them, £,(G), is constructed
using functions on Z" X K and the universal enveloping algebra of the
complexification of the Lie algebra of TR™. £,(G) plays an important role in
place of the group algebra on G.

In §4, we complete the proof of the result which is stated in Theorem 8.
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§1. Spherical matrix functions and topologically irreducible
representations

1.1. Some general theorems. Let G be a locally compact group. We
shall denote by C.(G) the convolution algebra of compactly supported

continuous functions on G. If K is a compact subgroup of G, then K denotes

the unitary dual of K and X does the normalized trace of 561?, that is, xs=
d * trace 0 where d =d (0) is the degree of 0. The normalized Haar measure on
K will be always denoted by dk (k). For every function f€C:(G) we define

Tk R0 @) = [ pleres) 1o () o oo dx (k) di k).

The subalgebra of these functions xs *f% X5 is denoted by Cc,s(G). For every
function fEC.(G) we put

7@ = [ ek ax ),

then the set of all functions f° for f€Ce,s (G) is a subalgebra of C¢,s (G) and is
denoted by I.,; (G).

The space § of a representation {$, T(x)} of G is, if nothing is stated,
understood to be a locally convex Hausdorff topological vector space. We
assume usual continuity condition for representations (see [10]), and an
integrability condition, that is, for every closed subgroup H of G and ¢ €
C.(H), the integral

1) = [ o) T()an ),

where dg (h) denotes a left Haar measure on H, converges strongly and defines

a continuous linear operator T (@) on . If some €K is contained in k=T (k)
with finite multiplicity, then the representatinn {§), T(x)} of G is called

0-finite. If the multiplicities of 0 are finite or zero for all S EK, then it is
called K-finite. For any 0€EK we put

E(9, 0) =j; x5 (B) T (k)dxg (k)

then the subspace $(J) =E (9D, §)  consists of all vectors which transform
according to 6 under k=T (k). If a representation {9, T (x)} is K -finite, then

dim $(8) <+ for all §EK. If it is O-finite for some d €K, then 0 <dim
$ (0) <+oo. Denoting by d¢ (x) a (left) Haar measure on G, we put

1= f@ Tl (reC(c)),

then f—T (f) is a representation of C.(G) on &, and T (f) H(6) € H(J) for
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any f € Ccs(G). If the representation {9, T(x)} of G is topologically
irreducible, so is the represeentation of Cc,5(G) on $ ().

Assume G is unimodular and {$, T(x)} is a O-finite topologically
irreducible representation of G. Let p be the multiplicity of d, then dim £ ()
=pd where d =d (0). The operators

T°(z) = fK T (k) dg (k)

leave § (8) invariant, and T° (x) s commute with all T (k) for kEK. Now we
decompose the subspace § (J) into a direct sum of K-irreducible subspaces

-@ (5) = V1®"'EBV,7,

and we get a basis of §(6) by gathering up those of Vi, then T°(x) |g) are
represented by matrices

un @) ls  uip (@)l
T° @) |so=] : .t =U;s(x) R,
upt () 1y = upy (@) 1y
with respect to this basis. Here, I; denotes the d X d unit matrix and Us(x)
does a p Xp matrix with coefficients uy; (x) €EC(C is the complex number field).
Then the M (p, C) -valued continuous function Us(x), where M (p, C) is the set
of all p X p complex matrices, is called a spherical matrix function of type 0 of

height p defined by {9, T (x)} [11]. Note that Us (x) satisfies
(a) Xs ¥ Us;=Us,

®) [ Uskyr ™ dx () =Us @) Us ),

(¢) {Us;(x)|xEG} is an irreducible family of matrices.
We should also note that these properties conversely characterize a spherical
matrix function [11]. Define

Us (0= @) Us@)do @)
for f€1.5(G), then f>U;(f) is an irreducible p-dimensional representation of
the algebra I. s (G). The continuous function
¢s (x) =d - trace Us (x)

is called a spherical function of type 0 of height p[4].
Let {9, T (x)} be a d-finite topologically irreducible representation of G.
We take any vEH (0), v#0, and define the fundamental subspace

Ho={T(flv|rec.G)}.

This is invariant, algebraically irreducible under T(f) for f € C.(G), and
independent of v. Moreover, if the representation {§, T(x)} is &'-finite for

some & €K’ for another compact subgroup K, then Ho={T (f) v'| fEC.(G)}
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for any v €EH(§) =E (D, §) 9, v’ #0[10].
We have the following relationships between spherical matrix functions,
spherical functions, and representations.

Theorem 1. Let {§!, T'(x)}, {H% T*(x)} be two topologically irreducible
representations of G. Assume theve exists at least ome pair (K, 8) of compact
subgroup K of G and 0 €K such that both {9, T'(x)} (=1, 2) are O-finite.

Denote by b, Us(x), and @5 (x) for i =1, 2 the comvesponding fundamental
subspaces, spherical matrix functions, and spherical functions. Then the following
four conditions are equivalent.

(i) There exists a pair (K, 6) such that ¢3= 3.

(ii)  For every pair (K, 8) for which (D', T'(x)} (i=1, 2) are d-finite, we
have ¢} = 3.

(iii) There exists a pair (K, 0) such that U} and U} are equivalent, i..,
they are of the same degree and U} (x) =PU%(x) P™* for some invertible matrix P.

(iv)  For every pair (K, 0) for which {9’, T'(x)} (i=1, 2) are d-finite, U}
and U% are equivalent.

(v)  There exists a bijective linear map I. D —HE such that
IT () =T*(/)I (VfEC.(G)).

Proof. It is proved in [10] that (i), (ii), and (v) are equivalent. By the
definition of spherical matrix function (iii) and (iv) follow from (v). The
statements (i), (ii) clearly follow from (iii), (iv), respectively.

Remark. Assume the condition (v) in the above Theorem 1 be satisfied.
Then it is easy to see

IT (x) =T*(x)I (Vx€EG).
Moreover, for every closed subgroup H of G, we have
IT () =T*()1  (YEC(H)),

because IT (@) T () v=IT (¢ * f)v =T (@ * f) Iv = T*(¢) T*(f) v = T*(p)
IT*(f) v for every T'(f) v € Db, where ¢ % f(x) = [po () f(hx) dy(h). In
particular, note that

IE(9', 0) =E (97 0)I
holds for any (K, 6).

Definition. When the conditions (i) — (v) in Theorem 1 are satisfied,
we call {9}, T'(x)} and {H? T?*(x)} are SF-equivalent.

A positive valued lower semi-continuous function o(x) on G is called a
semi-norm if it is bounded on every compact subset and satisfies p(ry)
<o) p(y) for all x, y €EG. A function f is quasi-bounded if there exists a
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semi-norm o(x) such that |f(x)|<p(zx). If all matrix coefficients of a
spherical matrix function Us(x) are quasi-bounded, then we say Us is
quasi-bounded.

Now we know the following fact [10], [11].

Theorem 2. Let {9, T(x)} be a topologically irreducible representation of G
which is O-finite for some (K, 0). Then the following four conditions are
equivalent.

(i) s is quasi-bounded.

(ii) Us is quasi-bounded.

(iii) ¢s, Us are defined by some topologically irreducible Banach
representation {8, T (x)} of G.

(iv) {9, T(x)} is SF-equivalent to some topologically irreducible Banach
representation (B, Te(x)} of G.

Definition. When the conditions (i) ~ (iv) in Theorem 2 are satisfied,
we say {9, T (x)} is essentially a Banach representation.

Theorem 3. Let G be a locally compact unimodular group, S a closed
subgroup, and K a compact subgroup. Assume that G=SK, SNK=1{e}, where ¢ is
the unit element of G, and that the decomposition is continuous. Let {§, T (x)} be

a K ~finite topologically irreducible representation of G. Then {§, T(x)} is
essentially a Banach rvepresentation if and only if theve exists a topologically

irreducible Banach representation (B, A (s)} of S and a non-zevo linear map :
DB such that

aT(s)=A()a (VsES),
aT (p) =A(p)a (VY eEC(S)).

Proof. Assume {§), T(x)} be essentially a Banach representation, then,
by the definition of essential Banach representability, there exists a
topologically irreducible Banach representation {8, Tg(r)} of G and a
bijective linear map I : H—B, such that

IT(f)=Ts(NI  (VfEC.(G)).
Then, as is noted in Remark after Theorem 1, we also have

IT(s)=Tg(s)I (Vs€ES),
IT(@) =Ts(@p)I (V@ECAS)).

For the semi-norm p(.r) =||Tq; (x) || we put

= [ 17 @lo @) @)

and denote by L,(G) the Banach algebra of all functions satisfying || f o <+ 0.
We choose 0E€K for which B (9) # {0}, take a vector v EB(3), v+#0, and put
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B,={Ts(f)v|fEL,(G)}.

This subspace is independent of such § and v. We proved in [12] that there
exists a topologically irreducible Banach representation {8, A(s)} of S and a
surjective linear map 8: B,—% such that

BTs(s)=A(s)B  (VsES),
BTz (p) =A(p)B (VY @EC.(S)).

Then the linear map a = B01: Ho— B is not identically zero and clearly
satisfies

aT(s)=A(s)a (Vs€ES),
aT () =Alp)a (Y eEC.(S)).

Conversely, let {8, A(s)} be a topologically irreducible Banach
representation of S and a: §o—%B a non-zero linear map such that

aT(s)=A(s)a (Vs€S),
aT(p)=Alp)a (Y eEC(3)).
We now induce a representation {H*, T* (x)} of G from {B, A(s)}. That is, H*

is the Banach space of all continuous B-valued function £ on K in which the
norm is given by

lEl= ?,‘;,B"E (&) ls.

The operators T4 (x) on H4 are given by
[T (x)&] (k) =A(0 (kx)) & (k (kx))

where kx =0 (kx) k (kx), 0 (kx) €S, k (kx) €K. For the induced representation
{94, T (x)}, which is not topologically irreducible in general, we denote by

(9*) ¢ the C.(G) -invariant subspace of §* generated by $* (§) =E (H%, §) H.
Then, by the Frobenius reciprocity theorem [13], there exists a non-zero

linear map I: Ho— (H*), satisfying
IT(H=T"(N1  (VfECAG)).
Then we clearly have

IE (9, 6) =E(9*, 0)I

for any SEK. Since 9o is algebraically irreducible under the action of C.(G),
the map I is injective. Denote by 8 =1(£,) the closure of I(£o) in H*, then
{8, T* (x)|s)} is a Banach representation of G.

We will show that the Banach representation {8, T (x)|s} is topologically
irreducible. Let ‘i/(g%) be a G-invariant closed subspace of 8. Since I (o) is

algebraically irreducible under the action of C.(G), we have ¥ N 1(9,) = {0}.
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For every €K we have E (§%, 8) ¥ C¥, E(H?, 8)1(Ho) CI(Ho), and hence
B(0) =E (%, 6)BDE (9%, 6)VDBE (4, 6)1(Ho).
On the other hand, dim E ($4, 6) (o) =dim § (6) <+ implies

B(3) =E (9%, 8) (Do) =E (", 3)1(Ho).

This means E (4, 6) ¥ = {0} for every €K, namely, ¥ = {0}. Thus Banach
representation {38, T4 (zx)|s} is topologically irreducible.

We choose 0 €K such that $ () # {0} and a vector v € § (), v#0, then
the injective linear map I: §,—8, is bijective because

1(Ho) =UT (Nv | fEC.(G)}={T* (/) W | fEC. (G) } =B

Clearly we have IT(f) =T*(f) |s I for all f€C.(G), and, by Theorem 1, this
implies that the representation {§, T(x)} is essentially a Banach
representation.

1.2. Proof of Theorem 4. As is stated in Introduction, we want to
study on Banach representability for a group G=SXK where S is a compactly
generated abelian group. To do this we will often use Theorem 4 below. Our
aim here is to prove it.

Theorem 4. Let G be a locally compact unimodular group, S a closed
subgroup, and K a compact subgroup. Assume that G=SK, SNK={e}, and that
the decomposition is continuous. Let Ko be an open subgroup of K and assume Go=
SKo is a closed subgroup of G. Then every K -finite topologically tirreducible
representation of G is essentially a Banach representation if and only if so is every

I?o-finite topologically irreducible representation of G,.

First we take a left Haar measure ds(s) on S and the normalized Haar
measures dg(k), dg,(u) on K, Ko, respectively. Then d¢ (x) =ds(s)dx (k) (x=
sk), dg,(y) =ds(s)dk,(u) (y=su) are Haar measures on G, G, respectively.

Let us begin with the proof of ‘if’ part. Take an arbitrary K -finite
topologically irreducible representation {§), T (x)} of G. We have to show it is
essentially a Banach representation.

We choose 0o € K such that £ (d,) # {0) . Let 7,..,7; be all distinct

elements in I?o contained in do. Put

!
P=ZE (‘bv Tj)v
j=1
then it is clear that £ (d,) C P, Since K, has a finite index in K, the

Frobenius reciprocity theorem [0lx,: 7] = [Ind7: 6] means that the number of
Ko1K

elements 0 € K which contain a given TE K, is finite. This implies that the
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representation {f), T(x)} is K o-finite and hence dimP, <+ . Choose a
vector 1o €9 (Jo), vo#0. We decompose K into Ko-cosets

K= U Kok; (where ko=¢),
=0

and define vectors v; €$ (d,) as
v,~=T(k,~)v0 (Oétén)

Consider the family § of (not necessarily closed) proper subspaces of the

fundamental subspace §o which are invariant under E (, 7) for all TEEO and
T (h) for all hEC,(Go).

Lemma 1. For every X €, there exists at least one v;<EPK.

Proof. Assume PX contains all v; (0=i=u). Then v;€X (0<i<n) because
HDOPHA.

On the other hand, let T(f)vo(f € C.(G)) be an arbitrary vector in o,
then,

T(f)ve= [, SGBTE)T v ds(s)ax(®)

16 (Z": L e T 6t o e () )as ).

Here we put h;(su) =f (suk;) for s€S, u €K, then h;EC.(Go) and

(=7, (2 J s T (sw)ve o) )as )

i=0

Thus we have $o=2XH, a contradiction.

Lemma 2. There exists at least one maximal element in &, and it is closed

m vﬁo.

Proof. Let {#;} be a totally ordered subset in & By Lemma 1 there
exists a vector v; such that v; € PX; for all A. Since the subspace X = U;X;
satisfies PH = U,PH; Pv;, we know X €EF. Therefore, by Zorn's lemma, there
exists a maximal element K. in &. Choose v; such that v; € P ... We denote by
K the closure of K in . It is easy to see that K. N Ho is invariant under
T(h) (YREC: (Gy)) and E (§, ) (V¥ 1EK,). Moreover, XN Ho is a proper
subspace of £, because P (Hw N o) =PH . Pv;. Thus we obtain KN HEF,
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which implies H o N Ho=H .

By the above Lemma 2 we can pick up a maximal elemnt 4 in §, then it
is closed in §,. Denote by A the closure of X in 9.

Lemma 3. (i) H is Go- and Cc (Go) -invariant.
(iii) H is maximal in the family of C.(Go)-invariant proper closed
subspaces of .

Proof. (i) Easy.
(ii) Already proved in the proof of Lemma 2.
(iii) Suppose there exists a C.(Go) -invariant closed subspace ¥ of £

such that ;[C”Vg.b. " is clearly invariant under E(§, 7) (V 7€K,). Since ¥
is closed and ‘V%Sj), we have o T Y. Thus @02.5300‘1/3 @00.7(=ﬂ, but this

means o N ¥ = K because X is maximal in §. The K o-finiteness of the

representation {§), T (x)} implies E (9, 7) H T Ho. Therefore, for every € Ko,
we obtain

E® 1)VCTYNHo=H,
and hence

‘V=€BZE(&§, IV CH

€K,
which means V=X

Now, by Lemma 3, we can naturally define a topologically irreducible
representation of Go on $/# . We shall denote it by {§/#, T(y)}. This
representation is of course Eo—ﬁnite. Take TOEEO such that E (9, ) § T K
and choose a vector woEE (D, 7o) 9, wo K. We shall denote by w, the class of
wo, then the fundamental subspace for {-SZ)/;?[, f(y)} is given by

(.@/?{) 0= {f(h)ﬁo | hEC(Go)}.
Now we need the following general

Lemma 4. If a representation {9, T (x)} of G is K ~finite and topologically
irreducible, then, for every TGEO and wEH (1), w#0, we have

{T(h)w|hEC(Go)} THo.

Proof. There exist distinct 01,...0n €K such that wED X719 (6;). Let
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w=w+ - twn, wi€H(B) 0=i=m).

Each $(8;) is Ces(G) -irreducible, so there exists a function fi €Cc,s (G) such
that T (f;) wi =w; by Burnside’s theorem. Then the function fo=f1+ -+ s €
C. (G) satisfies

T (fow= i T(fi)wj=iT(fi)wa=w-

i,j=1
Therefore, for every function h €C,(Go), we have
T w=T n) T (f)w=T (h*fo) wE Do,
which completes the proof.

Let us return to our situation. Since Lemma 4 shows that {T (h) wo| h €
Cc (Go) } T Do, we know

(/K)o C Ho/ (HoNH) =Ho/A.
Let ¥ be the subspace of § such that ‘V%J‘( and that ¥/# = ($/H) . Then

Y is Cc(Go) -invariant, and also invariant under E(§, 7) for all €K, but
this implies ¥ =, because KX is maximal in . Thus we have

(@/-7_()0:@0/7(.

We now assume that every I?o-ﬁnite topologically irreducible
representation of Go is essentially a Banach representation. Then the

representation {{)/F(, ’1~‘(y)} defined above is also essentially a Banach
representation. So, by Theorem 3, there exists a topologically irreducible

Banach representation {8, A(s)} of S and a non-zero linear map B:(@/,’)‘—[) o
B such that

BT (s)=A(s)B (Vs€ES),
BT () =A(p)B (VY @EC(S)).

As we saw above, we may consider that 3 is defined on /4. So, if we denote
by 7 the canonical projection of §o onto /K, then the non-zero linear map

a=por: H—B
satisfies
aT (s) = (Bo7) T (s) =BT (s) 7=A(s) (Boy) =A(s)a

for all s€S, and

aT (p) = (Bo7) T (@) =BT (@) r=A(p) (Bo7) =A (@)
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for all ¢ € C.(S). Therefore, by Theorem 3 again, the representation {9,
T (x)} turns out to be essentially a Banach representation.

Before starting the proof of ‘only if’ part of Theorem 4, we shall prove
two lemmas.

Lemma 5. Let {D, T(x)} be a K-finite representation of G, and T€ Ko an
equivalence class such that §(7) # {0} . Then we can find 6 € K and a
Cc (G) ~imvariant closed subspace # of  which satisfy the following conditions.

(i) 0 contains T.

(ii) #(0) =E(H, 6)# is a Cc.s(G) -irreducible non-zero subspace of #.

(iii)  For any vector vE K (0), v#0, the subspace

Ho={T (N)v|fEC.(G))

is C.(G) -invariant, dense in ¥, and independent of vE K (5), v#0.

(iv)  There exists the largest Cc(G) -invariant subspace K of # satisfying
E(®, 0) # =1{0}, and it is closed.

(v) E(®, A =A{0}.

Proof. We shall denote by 0.0, the all distinct elements in K which

contain 7 € Ko and appear in {9, T(xr)}. Take a vector v; in some
Ces: (G) -irreducible subspace of § (81), then the subspace

Ho={T(Hov.|fECG))

of  is C.(G) -invariant and closed (here the bar indicates the closure in §),
and the subspace E (9, 0,) #,, is clearly non-zero and C.gs (G)-irreducible.
Let A, be the union of all C.(G) -invariant subspaces X of #,, such that
E (9, 6;) X =1{0}. Then it is clear that #,, is closed and the largest one among
such subspaces K. If E(§, 7) #,,= {0}, then J, and #,, are just one of those
pairs we wanted.

If E(9, ©) Hy # {0}, then we can find one of 05,...0,, say 0s, such that
E(9, 0;) H, # {0} . We take a vector v, # 0 in some C.s, (G) -irreducible
subspace of E (9, 6,) X1 and get

Hu={T (Hv2| fEC.(G)}

which is a C.(G)-invariant subspace of §, and E(, J;) #,, is a non-zero
Cc.s,(G) -irreducible subspace of #,,. Let X, be the largest C.(G) -invariant
subspace of #,, which lies in the kernel of E($, 8,). Then K, is closed. If
E(9, ) H,,= {0}, then J; and #,, satisfy the conditions (i) ~ (v) in Lemma 5.
We have only to repeat this procedure at most m times to get what we need.

Lemma 6. Let {8, T(xr)} be a K ~finite topologically irreducible Banach

representation of G, and {8, O(y)} a Kofinite topologically irreducible
representation of Go. If there exists a non-zero linear map J : By—8 satisfying
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JT(h)=00)] (VhEC(Go)),
JE(B, 0)=E@8,1)] (VTEK,),
then the representation {8, O (y)} of Go is essentially a Banach representation.

Proof. Let us first prove that ker (J), the kernel of J, is closed in Bo. To
do this we denote by ker (J) the closure of ker (J) in 8. If ker (J) is not closed
in By, then we can find a vector v € Bo N ker (J) such that v & ker (J). Since
J(@) #0, E(8, 7)](w) #0 for some TEK,. This means

JE (B, 7) (ByNker (J)) #+ {0},

which contradicts the equality

JE (8B, 7) (ByNker (J)) =JE (B, 1) ker ()) =E (&, 7)] (ker (J)) ={0}.
Therefore, ker (J) is closed in By.
Since m is Go- and C.(Go) -invariant, we can naturally define a
representation of Gy on the Banach space @=Q§/m. We shall denote it by
{8, T(y)}. The Ko-finiteness of {8, T (x)} implies that of {8, T (y)}.

To show that {8, T(y)} is topologically irreducible, we assume the
contrary. Then there exists a closed Go-invariant subspace ¥ of 8 such that

ker (J) g‘i/g%. Then, for any TE Ko, we have E (B, 7) (BoN¥) =B () NE (B,

)Y =E(B, 1) V. Now choose 71 € Ko such that E (B, 71) ¥ & ker (J). Then,
denoting by J(B,N*¥) the closure of J(BoN¥) in &, it follows that

E(&, 7)](BoNY)=E (8, 71)] (BoNV) =]JE(B, 71) (BoNY)
=JE (B, r,) ¥ #{0}.
This means J (BoN¥) # {0}. On the other hand, if we choose 7, € K, such that
E (3, 2'2)”1/%?8(2'2) and B (7;) Tker (J), we have

E (8, Tz)/(%o NY)=E (8, Tz)f (BoN ‘V) =JE (B, Tz) (BoN "V)
=JE(B, 73) V%m (72)

=E (8, 12)] (By) CE (7).

From this we know J(B,NY) gé" Therefore, the C.(Go) -invariant closed

subspace J(BoN¥) of & is non-trivial. This contadicts the topological
irreducibility of {8, @(y)}.

Choose 7€ K, such that B () Tker (/) and a vector v EB (z), v&ker (),
and denote by v the class of v in 8B, then the fundamental subspace of {3,
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T(y)} is
Bo=AT (h) 7| hEC:(Go)}.
Since we know T (h) v € B, for all h € C.(Go,) by Lemma 4, and since By N
ker (J) =ker (J) as is shown above, we have
BoCBo/ (BoNker () =Bo/ker (J).

The linear map J: By—48 naturally induces a non-zero linear map
J: Bo/ker (J)—8,

and, if we denote by the same fthe restriction offon 5@0. the non-zero linear
map J: B¢—& is injective, and satisfies

JT()=0m)] (YheC.(Gy)).

Since J(#) € &(z), J@ # 0, algebraic irreducibility of & under the

C.(Go) -action implies J (8 ) = 8. Therefore, the linear map J: Bo— & is
bijective. This means, by Theorem 1, the representation {§, © (y)} of G, is

SF-equivalent to the Banach representation {8, T (y)}.

Now let us start the proof of ‘only if’ part of Theorem 4. Let {8, ©(y)} be

a fo-ﬁnite topologically irreducible representation of Go. We shall denote by
$°? the vector space of all §-valued continuous functions & on K satisfying

E(uk) =0 u) & (k) (Vu€Ko).

For a family of semi-norms {| * |.}.c; defining the locally convex topology of &,
we put

IEl=suple®)|,  (c€D),
keK

and give a locally convex topology in % by these semi-norms |+ [l. For every
T €G and £€H°, we define

[T°(x) €] (k) = O (0 (k) ) § (k (kx)),

where kx =0 (kx) £ (kx), o (kx) €S, & (kx) €EK as before. In this way we got the
induced reprepentation {£? T°(x)}.

Lemma 7. The induced representation {9°, T® (x)} is K-finite.

Proof. For every €K and £€H°, we have

(£ (9%, )8 () = [ %) [7° () €] ()ax (&)
= [ 2008wk ax () = [ 15 6) € @) ax ).
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Let k—D (k) be a unitary matrix representation of K belonging to d whose
matrix coefficients are di; (k), d =d (8) the degree of J, and k,....k» the set of
representative elements of K modulo K, as before. Then it follows that

(E(5°, 6)&] (k) = Z ([ 2a0 6615 ) )as @)

ij=1

d
n+1

(ij;(odii(ukl)&(ukl)dxo(u))d‘.]. (k)

1=0

d
ij
d

+
LV (V) [ TR 000 k) o) s )

=1
ij=1 1=0

Note that, for each I, the vector

[ 21 Gk) € ) § (k) )

belongs to the direct sum of &(z)’s, for all 7 contained in 4, which is

finite-dimensional because {8, ©(y)} is Ko-finite. From this, it is easy to see
that the vectors E (9°, 0) & & € $° belong to some fixed finite-dimensional
subspace of 9°.

Now we fix 7oE K, such that & (7o) # {0}, then clearly £ (7,) #{0}. So we
can apply Lemma 5 to the induced representation {$°, T°(z)} and this 7, €K,.

Let § € K, C.(G)-invariant closed subspace # of $° and the largest
C.(G)-invariant closed subspace X of # satisfying E (9°, ) A = {0}, be all

given in the sense of Lemma 5 for {$®, T®(x)} and 7,EK,. Consider the linear
map B: #£—8& given by
B(&) =£(e) (E€#).

This map B is not identically zero, because, for §#0, we can find an element k
€K such that [T° (k) £] (e) =& (k) #0. The following equalities

BTé(h)=6(h)B (VhEC(Gy)),
BE($°, ©)=E (& )8 (V¥ rE€K,)

are also easy to check. Hence B(X) is a C.(Go) -invariant subspace of &. It can

be seen that B(#) =1{0}. In fact, assume B(H) # {0}.Then B(A) =& because of
the topological irreducibility of {8, ©(y)}. But the condition E (9°, 7o) # = {0}
means

8(t0) =E (8, 70) 8=E (8, 7o) B(X) =E (8, 7o) B(H) =BE (9°, 7o) X =10},

which is a contradiction. Therefore, the linear map 8: #—§& naturally induces
a non-zero linear map
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B: #/H—E.

We denote by {#/X, T® (x)} the topologically irreducible representation of G
on #/#. This representation is K-finite since {$® T®(x)} is, and clearly

BTe(h)=0)B (YheC(Go),
BE (#/H,7)=E (@8, )8 (VTEK,).

Now we assume that every K-finite topologically irreducible
representation of G is essentially a Banach representation, then {#/X, T®

()} is, too. Thus there exists a I?-ﬁnite topologically irreducible
representation {8, T(x)} of G and a bijective linear map I: Bo— (#/H) o such
that

IT()=T8 (N1 (VfEC(G)).

Since I satisfies

IE(B, 7)=E#/H, DI (VTEK,)
as is pointed out in Remark following Theorem 1, non-zero linear map
J=PBoI: B—§
clearly satisfies
JT(h)=6)] (YREC(Go)),
JE(B, 0)=E(&, 7)] (VTEK,).

Therefore, by Lemma 6, {8, @(y)} is essentially a Banach representation of
Go. This completes the proof of Theorem 4.

§2. Two steps of reductions for the group G=SXK

2.1. First reduction. Let G=SXK be a locally compact group which
is a semi-direct product of a compactly generated abelian group S and a
compact group K. It is well known that we may assume S = Z"FR™ (direct
product) for some m, n €N, where F is a compact abelian group [7]. (Z is the
ring of integers, R the real number field, and N the set of positive integers.)
Our aim in this paper is to prove that every K -finite topologically irreducible
representation of G is essentially a Banach representation.

Let {9, T()} be a oO-finite (accordingly K-finite in this case)
topologically irreducible representation of G. We note that kFk™' CF for any k
€K, because Z"R™ has no non-trivial compact subgroups. Therefore, FK is a
compact subgroup of G. We shall denote by # ($(d)) the FK-invariant
subspace of $ generated by $(J). Since the representation {9, T(x)} is
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(FK)"-finite, we have

HOHE=D Z 9 (o) (algebraic direct sum).

o€ (FK)"

Let 0y,..,0; be all distinct elements in (FK)” such that § (o;) # {0} and [ailx:
0] #0. Then it is clear that

£y (9) cH (a1) @@@ (a1).

From this, it follows that

dim # ($ (0)) Zdlm 9 (o) <+o0,

We now decompose the representation of F on # ($(d)) into a direct sum of

irreducible ones, and denote by Ai,..Aq € F all distinct characters which
appear in it.

Lemma 8. Put Ki={k€ K| (k7' vk) =A; () for all YEF)}, then Ko=
N{_1K; is an open normal subgroup of K.

Proof. Let wE # (H(0)) be a vector which satisfies T (7) w=A;(y)w for
all yEF, then T(y) T(R)w=T (k) T (k7 'vk) w= A; (k"'yk) T (k) w for any kEK.
Thus we know that the character 7+—A; (k7'7k) is also a member in {A;,...,4,}.

In this sense, K acts on the set {4;,..4,. So we get the inequality [K: K;] <q
and know that K; is an open subgroup of K.

Let # be an arbitrary element in K. If j is a number such that A; (¢7'yk) =
Ai () for all YEF, then, for any u €K,, we have

Ai (k™' ek ~tuk) = A; (k') = A; (ke ™) =i (1),
i.e., k" 'ukEK,, thus Ko is normal.

Now we put Go= S X Ko. As we have seen in Lemma 3, there exists a
maximal C.(G,) -invariant proper closed subspace X of $. Then £(5) ¢ X,
because $ (§) CH implies Ho K and hence X =§. Denote by T (y) (y €Go)
the naturally induced operator, from T (y), on the factor space 5235/11(. Then

the representation {.95, f(y)} of Go is I?o—ﬁnite and topologically irreducible. If
we observe the argument done in some paragraphs after the proof of Lemma 4,
we know that {§, T(x)} is essentially a Banach representation provided that

the representation {§, T (y)} of G, is.

Lemma 9. Let {9, T(y)} be the representation of Go defined above. Then
there exists a character AEF such that T () =2(9)Is (¥ yEF) where I5 is the
identity operator on 9. We have A (uyu™") =2 (7) for any TEF and u EKo.
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Proof. Since §(0) € A, there exists a Ko-irreducible subspace WC $ (4)
such that W& K. We take any non-zero vector wo € W. It is easily checked
that T(7) T(w) =T () T(y) (y€F, uE€K,) on the subspace # ($ (6)), so we
have T(7) T () wo=T () T (1) wo.

Denote by w, the image of w, under the natural map of § onto 65=~b/.1(.
The fundamental subspace (.55)0 of 5 is given by

(£)o=AT W) 1o | hEC.(Gy)).

From the relation T (7) T ) wo=T () T (7) wo we know that T (7) commutes

with all T (y) (y €G,). Therefore T(7) =2 () I5(yEF) for some AEF.
The second statement is clear.

Since kerA is a Ko-invariant subgroup of S, K, naturally acts on S/kerA=
Z" (F/kerA) R™. In this sense we may write Go/kerd = {Z" (F/kerA) R™} XK,
and consider {9, T(y)} as a Ko-finite topologically irreducible representation
of Go/kerAd. By the way, the group F/kerA is either a finite group or
isomorphic to the 1-dimensional torus T. Therefore, our original problem, that
is, to prove that the representation {§, T(x)} of G is essentially a Banach
representation, is reduced to the same one for following two types of locally
compact unimodular groups G=SXK. One is when S=Z"TR™ (direct product)
and K acts on T trivially, and another is when S=ZR™ (direct product) where
Z is a finitely generated discrete abelian group.

2.2. Second reduction. To proceed the second reduction we shall deal
with the above two types of locally compact groups G=SXK at the same time.
So, we assume here that S = ZTR™ (direct product) where Z is a finitely
generated discrete abelian group, and T is {e} or 1-dimensional torus T on
which K acts trivially.

Since Z is discrete it holds that kR~ *C TR™. We now put
krk =1k, 1)k (),

where rER™, 7(k, v) ET, and k (r) ER™. Because, for each zE€Z, the subgroup
{r €K|kzk™' € zTR™)} is open in K, and because Z is finitely generated, the

subgroup Ko={kE€EK | kzk"'€zTR" for all zE Z} is an open subgroup of K. By
Theorem 4 we have only to do our work for the group Go= S>X K, Thus we
may assume from the begining that

kzk™1€TR™ for all zEZ.

Let z,.., 2, be the generators of Z. We define continuous R™-valued
functions 7; (k) and T-valued functions 7; (k) on K by

kzik '=2zT; (k) 7; (k).
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It follows from

krkoziky ki =kiziT; (ko) 1i (ko) k!
=zi7i (k1) 71 (k1) Ti (k2) T (e, 7i (k2) ) bor (4 (R2))
=27 (ky, 7i(k2)) Ti (k1) Ti (ko) By (7 (2) ) 7 (1)
that

7i(kakz) =y (r; (2) ) 7; (k1)

for k1, k2 €K. Now if we put
7= [ r@axe),

we clearly have 7;=Fk (7;) 7; (k) , and therefore

ket =zt (b, 71) T (R) b (7) i (k) =2i7 (b, 7)) i (R) 7 E 2 T
for 1 <i<#n’. Now we denote by Z' the discrete subgroup of S generated by
{z77:]1 <i <u’}. Then Z' is isomorphic to Z and S=ZTR™=Z'TR™ (direct
product). Here we note that kz’k™'€2'T for all kEK and Z €Z’. Therefore our
group may be considered as one of the following two types.

(a) G=SXK where S=Z"TR™ (direct product). T is contained in the
center of G, and kzk ' €T, kER™k'CTR™ for all kEK, zEZ".

(b) G=SXK where S=ZR" (direct product). Z is a discrete subgroup
contained in the center of G, and kR™k"'CR™.

Now assume G is as in the case (b). Let {H, T(x)} be a K -finite
topologically irreducible representation of G. Then T(z), z € Z, is a scalar
multiple of the identity operator on . This implies that, taking y only in the
subgroup R” XK, {9, T(y)} is K -finite and topologically irreducible as a
representation of R” X K, and that it is essentially a Banach representation if
and only if the representation {§), T (x)} of G is. Therefore, in our position,
we may assume that G = R™ XK. If {9, T(zx)} is a K -finite topologically
irreducible representation of G =R™ XK, then it is considered as that of the
group G'=Z"TG (direct product) by defining T (zt) =I; for any zt €Z"T. It is
clear that the former is essentially a Banach representation of G if and only if

the latter is also essentially a Banach representation of G'. Since G’ is a
special case of type (a), our problem remains only in the case (a).

§3. Algebras on the group G = (Z"TR™) X|K

By the two steps of reductions in §2, we may assume that our group is G
=SXK where S=Z"TR"™ (direct product), and that

kzk~' €T (Vz€Z"),
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kt=tk (VtET),
ER™:"1CTR™
for any k€ K. For the sake of simplicity of notations, we put Z=2Z" and R=
TR™.
3.1. Algebra C*(G). For any k€K and rER”™, we define elements 7 (k,
7) €T and k (r) ER™ by

ke '=1(k, 1)k (r),
and, for any k€K, zE€ Z, we also define an element (b, z) ET by
kzk'=2z7(k, 2).

Then k is a linear transformation on the vector space R™, and, for any fixed &,
the map r—7(k, r) is a continuous character on R™. Since the action of K on T

is trivial, the transformation 7+~ krk™! on the Lie group R =TR™ is infinitely
differentiable. The automorphism on the Lie algebra v of R corresponding to r

— krk™' is denoted by Ad(k), which can be naturally extended to an
automorphism on the universal enveloping algebra %U(xc) of the
complexification tc of t.

When we consider @« €U (xc) as a right (and left) invariant differential
operator on R, af denotes the image of f€C*(R) by a. On the other hand we
may regard a as a distribution f>af(e) on R. In this case we write

a(f)= [ fDdat) =ar().

The element &€ (rc) is defined by the equality

[ 1waa=[ jmaat)  (G0)=reH).

Defnition. We shall denote by C*(G) the space of functions f on G
such that, for any zEZ and k€K, r—f(z2rk) are infinitely differentiable on R.
The subspace of functions in C*(G) with compact supports will be denoted by

czG).

A function f on G is in C* (G) if and only if, for any x €G, r—f(rx) is

infinitely differentiable on R, and if and only if r—f (xr) is. Put flx)=f™),
then f€C~(G) if and only if f€C~(G). Following notations will be used when
convenient.

fraly) = fR FlarVdal) = fR Flan)dal),
akf@) = [ forz)aan = [ sex)aai),
af(x)=j;f(rx)da(r)=(1*f(:c).
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When we compute integrals, we often need the following Lemma 10. We
will omit the proof which is quite elementally.

Lemma 10. (i) For any fEC(G) and a €EU(xc), both f* a and a*f
are in C=(G).

(i) If at least one of fEC™(G) and 9 EC(G) is compactly supported, then
both f*g and g *f are functions in C*(G), and for any a €U (xrc) we have

ff*g(rlmz da(r) =fg(y )de ( y)f flewry dalr),
fg*fxlrxzda fg dcy)ffy xirxs)da (7).

(iii) If fis in C*(G), then f° belongs to C*(G), and for any a €U (xc) we
have

[ r@mdaat) = fax) [ ez aa).

By Lemma 10 we know that CZ(G) is an algebra over C with the
convolution product. For every €K, the subspaces C7 (G) * x5 and C5 (G) =
%5 % C? (G) % x5 are subalgebras of CZ°(G), and Its(G) =15 (G) NC*(G) is a
dense subalgabra of I.s(G). Here we consider the usual inductive limit
topology in C.(G), that is, Cc(G) is the inductive limit of Banach spaces, with
the supremum norm, of continuous functions on G, whose supports are
contained in arbitrarily given compact subsets of G.

Now we shall denote by 4°(rc) the subalgebra of all(rc) consisting of
elements a=a° where

a°=fKAd (k) dg (k).

We take a basis Xo, Xi,..., Xm of t. Then Ad(k) can be represented by a real
matrix with respect to this basis. From this, it is easily checked that

A= (G4 +X2)° Zq,,XX

i,j=0

for some positive definite matrix @= (g;;).

Lemma 11. Let 4 € U°(xc) be as above. If a function f € C*(R) is a
solution of the differential equation (A—2)'f=0 for some integer 1>0 and 1€C,
then f is analytic on R.

Proof. By the general theory on elliptic differential operators, we know
that (4—2)'~! f is analytic on R since (4—21) (4—2A)'"Yf=(4—2)'f=0. This
means that (4 — A) ‘"% is analytic since (4—2) (A—2)""¥=(A—2)'7Y.
Repeating this procedure we know that f is analytic on R.
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3.2. Algebra £,(G). We consider the vector space £ (G) =C.(Z X K)
QcU (vc), where C.(Z X K) is the vector space of compactly supported
continuous functions on the product space Z X K. We define transformations
Ad(k), kEK, on £(G) as

Ad (k) (Z<p,~®a,~) = Z(pi®Ad (k) .

When we consider the element § = 2,0, ® a; € £(G) as a U (rc) -valued
function defined on the product space Z X K, we write

EeB)=) iz Da

Therefore,

[Ad () €] (2. 6) =) (e, 1) Ad (k) v =Ad () €z, B)).

Now we fix a character uei‘ and define
[(Exn] (2, k) =LxKﬂ(T(k1. 21'2) ) E(z1, k1) [Ad (k1) 1] (212, k1) d 2 (21) dk (k1)

for & nE€¥(G), where dz(z) is the Haar measure on Z normalized in such a
way that each point has volume one. Then it is easy to see that £¥n €L (G).
When we want to emphasize the product * in £(G), we write £,(G) instead
of £(G).

Lemma 12. £,(G) is an associative algebra over C.

Proof. We prove the associativity. For & n, and { in €,(G), we have
[(§x7n) %] ( k)

= [ (el 57 2)) (€% ) (oo k) [Ad (k) €] (72, K50z () s (k)

=) g 2 (T2 22'2) ) (T (ks 21722) ) € (2, k) [Ad (k) ] (a2, B 2)
X [Ad (ko) €] (232, kz'k)dz (21)dz (22) di (k1) di (k)
= [ ks 222 (b, 2) e, ) [Ad (k) 1) (o k)
X [Ad (krks) €] (23272, b7k ) d 2 (21) d 2 (22) dk (ky) di (B2)
= sz # (T 272 € )

X Ad (k) {u (7 (ky, 23'2172) ) 1 (22, k2) [Ad (k) £] (22212, k3'kik) }
dz(z1)dz(z2) dk (k1) dg (ks)

=Lxxﬂ(r(kl' 27'2)) E(z1, k1) [Ad (k) (n % Q)] (212, ki'k)dz (21) dk (k1)
=[x (n*{](z k)

which is the associativity of the convolution.
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Extend any function ¢ €C (K) to a function in C.(Z X K) in such a way
that ¢ (e, ) = ¢ (k) and ¢ (z, k) =0(z+#e¢), then the mapping ¢~ ¢®1 is an
isomorphism of the convolution algebra C(K) into £,(G). From this point of
view we may consider C(K) as a subalgebra of £,(G). So, for any 6 €K,
regarding X as an element in £(G) =%,(G), both £,(G) * %, and x;* £,(G)
% %5 are subalgebras of £, (G).

For any element EE%,(G), we define

&G0 = uzlh2) (Ad0) ) (o heh)dx h),

then £~ £&° is a projection of £,(G) onto Z; (G) ={£°|6€ £,(G)}. 1t is clear

that & belongs to € (G) if and only if
1 (z(n, 2)) [Ad(h) €] (2, k™ kh) =E (2, k)
for all h, kEK. ¥;(G) is a subalgebra of £,(G) since direct calculations show
(Exn°) = (E%n)°=E%n°
for any & n€%,(G). We also have a subalgebra
5 (G)=%;(G) Nxs* L, (G) *%s

which plays an important role in this paper.
We put u%C*(G) ={u*f|f€C(G)} where

ki@ = [ u O D)ar ),

dr(t) is the normalized Haar measure on T. For £é= 2,0, Qa; € £, (G) and fE€
u*C=(G), we define

[r@ae@=Y[  rlw)oic v e nax),
then it holds that |
[r@aexn @=[ janic@an,
[ r@at@ = j@ae@.
For any function f in % C*(G) and £€E£,(G) we define
ex/@)= [ 1y wag),

which is a new element in i£% C*(G). We easily have

(En) kf=E* (n*/)
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for § nE€%,(G) and fFEZ* C*(G). It is also easy to see that EkfE 1% CZ(G)
if f belongs to Z* C? (G).

3.3. Representations of £,(G) obtained from those of G. Let {§,
T(x)} be a representation of G such that T(t) =pu(t) Iz (Y tET), where I
denotes the identity operator on §. The space 9 is, as in §1, a locally convex
Hausdoff topological vector space. We shall denote by § the dual space of £.
The pairing on § X H’ will be denoted by (*,*).

Definition. The linear subspace generated by all vectors T (f)v, where
fEE*CY(G) and vE P, is denoted by H.

Lemma 13. The function ¢y,(x) =T (x)v, w) for v EH™ and w E H’
belongs to u*C=(G).

Proof. For v=T (f )v1 €™ where fEZ*CZ (G) and v, € H, the equality

Buw @) = (T @ T (Doa, wy = [ (Txy)vn, w)f)ds )
= buw *f:(x)
implies that ¢, belongs to ¢% C*(G) by Lemma 10.

For T(f)vEDH” (fEU*CF(G)), wE D', and €U (xrc), we have

[ 0T (v wiat) = [ guurinaaw
=L¢v.w(x)dc(x)_/;f'(x“r)da(r)=<T(a*f)v, w).

Since a*f is in g% CZ (G), we can define a linear operator T (&) on $= which
satisfies

T(@)T(Hv=T(a*f)v

for all FEa@* CZ (G) and vE H. It is easy to see that T(aB) =T () T(B). For &
€%,(G) we also define a linear operator on § by

TOT v, w) = (L@ T (v, w)aE ).

Then the following lemma is clear.
Lemma 14. (9>, T(E)} is a representation of the algebra £,(G).

Now we assume that the representation {§, T (x)} is d-finite for some &
€K, ie, 0<dim $ () <+ . Since x5 * C*(G) CC(G), the dense subspace
$> of § is invariant under E (9, d), and hence we know 9 (d) =E (9, §) H=
E(9, 0) H*C H™. Thus the subspace $(J) lies in the domain of T(4), where
A€ (rc) was given in Lemma 11, and is invariant under T (4). Then we can
find a constant A€C, a positive integer I, and a non-zero vector vE 9 (4) such
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that (T(4) —A)' v=0. Now we know that the infinitely differentiable function
Gow(r), wEH', is analytic on R since

[(A_A)I¢u,w] (1’) = <T (7) (T (A) _Z)I’U, w> =0

(see Lemma 11). It follows from this observation that @, (r) are analytic for
all vEH () and wE H'.

Theorem 5. Let {§, T (x)} be a 0-finite representation of G for some S EK,
such that T (t) =u(t) I for tET. Then the function ¢vw(x) = (T (x)v, w), for any
vE Y (6) and wE ', is analytic with respect to rER.

Proof. The equality T (k) T(z) =pu(r (k, 2)) T (z) T (k) means that T (z)

$(8) is invariant under T (k). Thus there exist some vectors v; €9 (0,), ;€K
for i=1,...1, such that T (2) T (k)v=v,+--+v,. Therefore the function

Buw &) = (T DT ()T ()0, 1) = ) o )

is analytic with respect to 7.

Let {§, T(x)} be a J-finite topologically irreducible representation of G
such that T(t) =pu(t) I for t €T. Then it is clear that the subspace 9 (0) is
invariant and irreducible under the action of ¥; % £, (G) * X3 Any operator
on 9(6) which commutes with all T(k)|sw (k € K) is equal to some

T (&) |p@ where € is an element in €55 (G).

Theorem 6. Let Us(x) be a spherical matrix function of type O of height p.
Then all matrix elements of Us(x) are analytic on R if they are comsidered as
Sfunctions on ZXR XK. If we put

Us© = [ Us @),

then E—U; (§) is an irreducible representation of the algebra £5.5(G).

Conversely, let U(x) be an M(p, C)-valued function on G whose matrix
elements are analytic on R when they ave considered to be defined on ZX R XK. If
it satisfies U(x) = Ulx) and if € U(E) is a p-dimensional irreducible
representation of €55 (G), then U(x) is a spherical matrix function of type 0.

Proof. The first half is clear by the definition of spherical matrix
function. So we will prove the second half. Since X; is in £;,;(G) and X * £=

€ for every E€¥,5(G), we have U(x3) U(E) =U (x5% &) =U(E) which implies
that U(x3) is the unit matrix. Thus, for any £€%,(G), it follows that

_/;U*Xa(x)dé(x) :j;(xcU(xk_l)Xo(k)dx(k)dg(x)
:LXGU(.I‘)d(S*%) @) =U((Ex75)°) =U (£ % 75)
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=U(E)U(xs) =U(8).

From this, together with the analyticity of U % xs(zrk) and U (zrk) as functions
of 7, it follows that U% xs="U.
Next we take an arbitrary E€%,(G) and put

)= [ Uayag @)

then V (zrk) is analytic with respect to 7. By the equality
Vi) =Um*&)=Us*kn"*E % %) =U(Xs*n°)U(E"*xs) =U(n) V()
for any n€¥%,(G) we know V(x)=U(x)V(e), ie.
[vaat @) =v@ [ vt @) =u@ue.

Since this equality holds for all £€%,(G) we obtain

[ U kg ax ) =U @ U G).

Moreover, it is clear that {U (z) |z € G} is an irreducible family of matrices,
hence U(x) is a spherical matrix function of type 0.

Definition. For a K-finite representation {9, T(x)} of G such that T (¢)
=u(t)ly (VEET), we put

@K=@Z© (0) (algebraic direct sum).

ek

The subspace ¥ is contained in H because § (§) CH= for all FEK. So
it is in the domain of the operator T (&) for E€Z,(G).

Lemma 15. For any K-finite representation {9, T (x)} of G which satisfies
T(t) =u(t)Is for t ET, the subspace H¥ is invariant under T (§) for all EE
£,G).

Proof. First we will show that $¥ is invariant under

T () =fm<p (2, k) T (2k)dz(2)dk (k)

for any ¢ €C.(ZXK). Let {z1, z2,..., 2} be all distinct elements in Z such that
¢ (zi, k) are not identically zero as functions on K. Then the calculation

TOT(Q) = [ 0 k)T ek dz &) dx (k)

= Z fxfp (2, ko) (7 (k, 20)) T (zikeker) d i (er)
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shows that T (k) T(¢)$ () is contained in the finite-dimensional subspace

q
Y'7(2) $() for all kEK. This means T(¢)$(3) 5%, or, T(¢) $* ¥
i=1

Next we will show that $¥ is invariant under T (@) for all a €U (rc). We
take an arbitrary vector v in § (8). Since $(5) CH”. there exists a function f
€ *Cy(G) and a vector v; € $ such that v=T(f)v;. Then, putting f* (xr) =

f(kxk), the equality

TER)T(@v=T® T(@T(Nvi=T %) T(a*x)v,=T ((Ad (k) @) *f*) T (k) v,
=T(Ad(k)a) T (k) T(f)v,;=T (Ad (k) @) T (k) v

holds. Since Ad(k)a remains in a finite-dimensional subspace of U (xtc)
independent of k€K, this equality shows that T (a) 9 (6) C H¥.

Theorem 7. Let {9, T(x)} be a I?—fim’te topologically irreducible
representation of G such that T(t) =u(t) I (Yt ET). Then {H%, T(E)} is an
algebraically irreducible representation of £, (G).

Proof. At first we prove that the subspace #,= {T (§)v|E€ ¥,(G)}, for
any non-zero vector v € $¥, is dense in . Assume w € §’ be a vector such
that (T (§)v, w) =0 for all € £,(G). Then, for all  EC.(Z XK) and a €
9 (x.), we have

[ 0T @, waat) =0,

This implies that @¢rew (r) =0 because the function @rwww (r) is analytic
(see the proof of Lemma 15, and Theorem 5). Since this is true for all ¢ €
C.(ZXK), we get ¢vw(x) =0 for all x €EG. Then the topological irreducibility
of {9, T(x)} implies w=0. Thus we know that #, is dense in §.

The dense subspace #, is invariant under E (§, 8) since X5 %* & belongs to

2,(G). Hence $ (8) C#, for all EK. This implies #,=HX.

3.4. Linear map ¥. We take a 0 €K, denote by d its degree, and fix an
irreducible unitary matrix representation k—D (k) of K which belongs to 6.

We shall denote by & the space of all d X d matrices whose matrix
elements are in the algebra Cc(Z) @cl (vc). When we consider an element A €
4 a function on Z, with its value in the set of d X d matrices whose matrix
elements are in U (rc), we write A (z) = (a;; (2)). For A (z) = (as;;(2)) and B(z)
= (b;j(2)) in A, we give the convolution product by

A%B() = [ AG)BG2)dz @),

here, A (21) B (27'2) is the formal matrix product of A (z;) and B (z7'%2).

Definition. A linear map ¥': €,(G) * %3 —d is defined by
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V(©) = [ £ 0)'D()ax (k) = Z( [ 01 0D ax®) )eu

for £=2,0:.Qa; €L, (G) * %5.
It is easy to see that the linear map ¥ is bijective and its inverse is given by
[T-1(4)] (2, k) =d - trace[D (k) A (z)].

Lemma 16. For E€ %,(G) * x5 and 7 € £5,(G) we have ¥(E*x n) =
T *xU(n).

Proof. First we calculate §% 5 for E€EL,(G) * %, and n E€ZL;.5(G);
§%1(z k)
:Lxx ﬂ(T(kl, 2r'z)) 5(21. k) [Ad (kl) T}] (2712, kl‘lk)dz (Zl)dl( (kl)

2’[2"" ulelh, &%) )ms (21, k1) n (2172, kETY) d 2z (21) dk (Ry)
= fME (21, k1) 1 (272, kETY) d 7 (21) dg (Ry) .

So, it follows that
[T(E*xn)] (2)
= & (a1, k1) n (212, kkT")'D (k) d 2 (z1) di (k1) d i (k)

ZxKxK

= [ &l k) 7 (e, D (6)'D (k) dz o) de (i) dic )
ZxKxK

=[S £t 00D ax ) }{ [ 12, 1D Wax (o) iz (2

=T *x¥(n] &),

which is the equality we wanted.

§4. Proof of the main theorem
We are now in a position to prove the following main

Theorem 8. Let G =S XK be a locally compact group which is a semi-
direct product of a compactly generated abelian group S and a compact group K

acting on S. Then every K ~finite topologically irreducible representation {§, T (x)}
of G 1is essentially a Banach representation.

To prove Theorem 8 we may assume that S is just the one given in §3,
and we keep any other notations in §3.

Let {9, T(x)} be d-finite (J€K), and T(t) =p(t)I5(VtET). Let Us (x)
be the corresponding spherical matrix function of type 0 of height p. By
Theorem 6 we know that Us(z7k) is analytic with respect to r €R. It is clear
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that Us (tx) =Us (xt) = (t) Us (x) for all tET.
Now we put

Us(A) =Us(T~1(4))

for all A €4. By Lemma 16 the linear map A~ Us(A) gives a p-dimensional
representation of the algebra o° = ¥(¥;:(G)). Moreover it is irreducible
because the representation & Us (&) of £;,5(G) is irreducible (Theorem 6).
Note that the algebra & has the unit E= ¥ (x;&®1) and it is in &°. Here we

should understand that X, is the extended function on Z X K as in §3, and that
E is the function on Z taking the d Xd unit matrix as its value at z=e¢ and 0 at

z#e. The mapping
a(2) 0

a—a*E(2) =fza (20)E (27'2)d 2 (21) = .
O a(z)

of Cc(Z) @cU (rc) into & is an injection.

To aviod confusion let us denote by ‘(C?) the vector space of
p-dimensional column vectors with components in C. Now we take an
arbitrary non-zero vector v €*(C?) and put

A,={AEd°| Us(4)v=0},

then U, is a maximal left ideal in 4°. Moreover we put

M,={4€d | U;(BA)v=0 for all BE}.
Lemma 17. M, is a left ideal in A such that M, N A°=2U,.

Proof. If A is in M, N A°, then Us (4)v=UsI4A)v=0. Thus 4 is in YU,.

Conversely, let A=¥ (&) be an arbitrary element in ¥, where E€E %5 (G).
Then, for any B=¥ (), we have Us BA)v=U;(p* &) v=Us(n* E)v=U;(n°
% &) v=Us(n)Us (§)v=0. Therefore A belongs to M, N A°.

Let M be an arbitrary maximal left ideal in & containing IM,. It is easy to
see U, CMN A° gd°, which implies ™, =M N A°. Therefore, we can regard

4°/U, as a subspace of &/M. We denote by [I (4) the natural action of A €
4 on /M. Then the subrepresentation A — [[(4) of #° on A°/YU, is
irreducible, and is equivalent to A—Us (A).

We shall denote by E;; the element in & such that Ey;(e) is the d X d-matrix

whose (i, ) -matrix element is 1 and the others are 0, and that E;;(z) =0 for z
#e. Then we have a direct sum decomposition
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A/M=T11(En) (/M) D---DII (Esa) (/M)

Since each subspace [l (E:) (/M) is invariant under [ (a % E) for any
element a € C.(Z) ®cU (xrc), we get d representations of C(Z) Qcl (xc) on
[1E:y) (/M) (1<5i<L4).

Lemma 18. The representations of C.(Z) QcU (xc) on 1 (Ei) (/M) are
algebraically irreducible and mutually equivalent.

Proof. The operator [ (Ei;) is clearly an intertwing operator of II (Ej;)
(/M) onto Il (Eiy) (4/M). So we have only to show the irreducibility.
Assume that [l (Ey) (/M) be reducible, then there exists a non-trivial
invariant subspace H; of [l (E11) (/). We put

H=H®II (E») HD---D (Es) H:.
Then, for any A= (a;;) =4, we have

@u*E)H= ). Tl (ay*E) T (E,)H

N
i,jd=l i,j=1
Y

[NAH

(ai;*E) [l (En)chzn (En)Hi=H,

i=1

which contradicts the irreducibility of the natural representation A~ [l (4) of
4 on A/M.

Now we must find out how an algebraically irreducible representation of
the algebra C.(Z) ®c (rc) can be given. To do this, we find another algebra
which is isomorphic to C.(Z) @cl (xc).

Let Xo be a basis of the Lie algebra of T, and X,... X a basis of the Lie
algebra of R™ Here we can take X;(1 <i <m) as the partial differential
operator with respect to the i-th coordinate on R™. Then X, Xi,....Xm form a
basis of the Lie algebra t of R=TR™, and % (xc) is the algebra of polynomials
B=C[Xo,..Xn]. When we emphasize an element a €% (t¢c) is a polynomial of
Xo,...Xm, we write a=a (Xo,...Xm).

On the other hand, we take n variables Yi,...,Y, and put

o= {J rivinCl,,.. v,

Jredn20

where jy,../» are non-negative integers. Then £ is an algebra with the obvious
operations of sum and product. The algebra of polynomials of Yi,..Y, Xo,
Xi,..., X will be denoted by C[Y, X] for short.

Since a function a € C.(Z) is defined on Z = Z" we write a =a(z) =
a(z1,....zn) where z= (z1,...,.2,) € Z". We now define an isomorphism " of the
algebra C, (Z2) QcU (rc) onto DQcPB by
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(a®a) A (Yl,...,yn, Xo,...,Xm)
= Y4 1) Vi Vi (Ko X

zeZ
Lemma 19. Algebraically irreducible representations of C.(Z) @cU (xc) are
one-dimensional. They are parametrized by 6= (64,....6,) € (C*)" (C*=C—{0})
and v= (vo, V1,....um) EC™ and given by

A"'”(Za;@ai)=2(a:®ai)"(01,...,0n, Vo, V1o Um) .

Proof. By the above observation it is enough to give all algebraically
irreducible representations of £ @c®B, or equivalently, all proper maximal
ideals in it.

Let X be a maximal ideal in Q&cB. Then X,=XNC[Y, X] is an ideal in
ClY, X], and it is easy to see

2= rieviiE,
Jrengn20

Suppose there exists an ideal 9o in C[Y, X] such that %G 9<C (Y, X], then

@: U Yl—il...Y;ingo

Jrjn20

is an ideal in Q&cP, and satisfies f%@ This implies 9 = &cR. Hence it

follows that Po=9 N CLY, X] =C[Y, X]. Therefore, we know that X, is a
maximal ideal in C[Y, X]. As is well known, there exists 6= (6,,....6,) €C”"

and v= (vo, v1,..,.um) EC™! such that
X,={PeC[Y, X]|P(6, v) =0}.

If 6;=0, then Y;E¥,. But this means that 1=Y;'Y;E X, a contradiction. So, 6

must belong to (C*)”. Conversely, if 6 belongs to (C*)”, then X is a proper
ideal since it can not contain 1. As a result, we have proved that

X={PEQQR | P(6, v) =0},

and that every maximal ideal is given in this way.

Thus every algebraically irreducible representation of Q&¢P is given by
P—P (6, v) €C for some pair (6, v) € (C*)" X C"*. Since @Qa) @Qa)”
is an isomorphism of C.(Z) @clU (tc) onto Q&®cPB, this proves the statement of
the lemma.

By Lemmas 18 and 19, the natural representation A = [[(4) of 4 on
4/M is equivalent to the irreducible representation on *(C?) given by
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r d

ZA”"’(du)vi
] [ A |[n] | Z
G0 I ol A
V4 A% (ag) = A% (agy) Ilva -
Z/lo’” (aai)vi
]

Ci=1

for A= (ai,-) €4 with ai; €C, (Z) ®Cou (fc) .

Lemma 20. There exists a p-dimensional subspace # of *(C?), invariant
under w(A) (V A € A°), such that the representation A — w(A) |xof A° is

equivalent to A U, A4).

Proof. Since the representation A —U;s(A) of 4° was equivalent to A—

I1(A) realized on the subspace #°/¥U, of #/M, our statement is clear by the
definition of .

Recall X5 as an element in C.(ZXK) and put Ao= (33®Xo)Is. Then A, is
an element in &, and it satisfies

Us (Ao) =Us (T (A0) = Us (Xs@Xo)
= f Us (210 T (2. k)dz (2) d Xo (1) (1)

- fT A OUs BT ()dXo () dx ()
=4t (Xo) 1,

where ££(X,) =%/J (exp tXo) |t=0. From this we obtain

1 (Xo) 0 A5 (:®Xo) 0
=T (A 0) = .
0 1(Xo) 0 AP (X, ®Xo)

that is, u(Xo) = A% (35 @ Xo) = vo. So, vo = u(X,) is determined by the
representation {9, T (x)} (and X,) . Now we pick up a 1-dimensional
representation

Aa.v (ztr) — 6121 .. 0:'1# (t) env|+~~-+rmwn

of the group ZR = Z"TR™, where 2= (2),...2,) €EZ" tET, r= (r,...tm) €ER™.
Then the above 1-dimensional representation A%’ of the algebra C.(Z2)
®cU (t¢c) is obtained by



Spherical matrix functions 199

H*@®a) = [ N (n)aDdz Dda).
We put W (zrk) =A% (2r)'D (k) and define
We (zrk) = fK W (hzrkh V) dg(h) = j; A% (hzrh™)'D (hkh™Y) dg (h).

For any E€%55(G) put A= (&) = (a;;) E4°, then

w@=w©=[ waatw=[  1%e)'D®k)at e

A% (au) o Ao,v (ald)
= : ., : =r(4).
A% (adl) e A% (add)

From this equality and Lemma 20, it follows that the p-dimensional irreducible
representation £ Us (&) of €55(G) is equivalent to &~ W* (€) |x, where # is
the p-dimensional subspace of *(C?) stated in Lemma 20.

The fact that # is invariant under W°(x) is easy to prove, and we give
the proof for the sake of completeness. Let w be any element in the dual space
of *(C?) such that (v, w) =0 for all vE#. Then, for any vE# and £E€ZL,(G),
we have

[ w@vwae@ = [ W@ waiE @)

:Lm(W(xk")v, w) x5 (k)d&E° (x)dk (k) =fG(W(x)v, wd (E°%75) (x)
= (¥T(E°*Xs))v, w) =0,

which means (W°(x)v, w) =0 because (W (x)v, w) is analytic with respect to
rER. Thus we get W* (x)vE L.

Since Us(e) and W°(e) |# are both the identity operator, Us(x) is
equivalent to W°(x) |#, that is, there exists an invertible operator P on # such
that Us (x) =P~ (W° (x) |#) P. The function W* (z)|x is clearly quasi-bounded,
and hence Us;(x) is also quasi-bounded. In other words, the representation
{9, T(x)} is SF-equivalent to a subquotient of the Banach representation

induced from 1-dimensional representation A%’ of the subgroup S = ZR =
Z"TR™ (cf. [12]). Therefore, the proof of Theorem 8 is now completed.

Added in proof. The proof of Lemma 19 is not valid, because the
equality Yo=Y N C[Y, X] is not always true. So, we show here how to find 6
= (01 ..... 07,) € (Cx)n and v= (Uo, Vlyeeoy Vm) eCcnt,

Let C[Y, Y, X] be the algebra of polynomials of Yi,..., Y, Yi.., Y and
Xo, X1,..., Xm with complex coefficients. We denote by I the ideal in C[Y, Y/,
X] generated by Y,Y;—1.., Y,Y,—1. Then the homomorphism ¢: C[Y, Y/,
X]—=9OQcP such that ¢ (V) =Y, o (Y) =Yi'(1<i<n), o (X)) =X;(0<j<m)
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naturally induces an isomorphism of C [Y, Y’, X] /I onto O ®cPB. So, any
maximal ideal ¥ in £ @cP corresponds bijectively to a maximal ideal 9 =

¢ (%) in C[Y, Y, X] containing I. Now there exist uniquely 8= (..., 6,) €
C", = (6,..., 6, €C", and v= (v, vi,..., Um) EC™*! such that

9={reCly, Y, X] | P(6, ¢, v)=0}.

Since V;Yi—1 (1<i<n) are in 9, we have 6;6;=1 (1<i<n). Therefore €
(C*)™ and we clearly have

E¥={PeQQP | P(6, v) =0).

Conversely, it is easy to see that, for every (6, v) € (C*)” X C™*!, the right
hand side is a proper maximal ideal in Q&cRB.
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