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On spherically symmetric stellar models
in general relativity

By

Tetu MAKINO

1. Introduction

Recently H. R. Beyer [1] and S. S. Lin [7] investigated the linearized
equation for small perturbations near spherically symmetric equilibria of a
self-gravitating gas in the Newtonian i. e., non-relativistic theory of stellar
structure. For a long time astrophysicists had been believing that the
associated differential equation reduces to a Strum-Liouville eigenvalue
problem, already from the Eddington’s work in 1919, without any
mathematical proof. But this was not obvious, since the coefficients of the
equation are quite singular. H. R. Beyer has closed this gap in (1], and
independently S. S. Lin has in [7] in a wider context. The aim of this article
is to carry their results to the corresponding problem in general relativity.

In order to do that, we must investigate the qualitative properties of the
structure of solutions for the equation which governs the spherically
symmetric static configurations of self-gravitating gas in general relativity,
since the cefficients of the linearized equation for small perturbations are
determined by these equilibrium configurations. The equation which governs
spherically symmetric equilibria in general relativity is formulated by J. P.
Oppenheimer and G. M. Volkoff in [11], 1939, and this has been familiar in
astrophysical textbooks as the TOV equation. But still now no qualitative
analysis of the structure of this equation can be found in mathematical
literatures. Even in the non-relativistic theory, in which the equation for
equilibria under the equation of state p = Const.0” reduces to the wellknown
Lane-Emden equation, no fully mathematically rigorous treatments were found
untill in 1972/73 the work [6] by D. D. Joseph and T. S. Lundgren appeared,
although many numerical computations and good intuitive analogies had been
obtained as found in the Chandrasekhar’s famous textbook [2]. Moreover
when the relation p = Const.0” holds only in asymptotic sense, for example in
the equation of state for white dwarfs, there were no mathematical proof of the
elementary fact that the radius of a solution obtained by the shooting methods
is finite untill the work [8] by the author, 1984. In general relativity, the
author did not know any mathematically rigorous study of the structure of the
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TOV equation, when he began to study the problem. However, after writing
the first version of this article, the author received letter from Professor B. G.
Schmidt of Max-Planck-Insitute fuer Gravitationsphysik of Potsdam, in which
he kindly drew the attention of the author to the paper [13], 1990, by A. D.
Rendall and B. G. Schmidt. Therefore the first part of this study shoud be
regarded as another approach to the problem studied in [13].

Of course the author does not deny importance of approximate numerical
computations and rough analogies using quite plausible physical intuitions. If
one computes the density distribution p(r) by the shooting method from »=
+0 to the right, he could consider that he found a finite radius, say, the
surface of the star, when the out-put of the value of p from his computer
turns out to be sufficiently small or the computer downflows. Or, if p—~
Const.p” asymptotically, one could believe that the qualitative structure of the
equation should be the same to that of the case in which p= Const.0” exactly.
In fact often the radius is finite for the asymptotic case if it is for the exact
case. (This analogy does hold wheny>4/3, but the situation is not so simple
when 6/5 <7 <4/3) But in a mathematically rigorous sense these
computations or analogies do not exclude the possibility that o(r) is quite
small but remains still positive for all r—-+ 0,

For this reason the author devotes the first section to prove logically that
the radius of an equilibria is finite for many important cases. When presented
with the results of a large quantum calculation, Eugene P. Wigner once said: “It is
nice to know that the computer understands the problem. But I would like to
understand it, too.” (Physics Today, July 1993, p.38). The author considers
that a logical proof, if possible, can provide a direct route to good
understanding of the essential point of the problem.

In the following sections we will apply the argument of H. R. Beyer and S.
S. Lin to the linearized theory of general-relativistic stellar pulsations. This
study requires careful observation of the qualitative structure of the TOV
equation, and leads us to a sufficient condition in order that the spectrum of
the associated differential operator is purely discrete and a condition for the
stability.

The author expects that astrophysicists consider that the present
handmade article may provide a sound logical back-ground supporting their
more realistic numerical simulations which become more and more largescaled
day by day. Of course astrophysicists can reject this article by the reason
that it does not contain abything new to them except for mathematical rigor.
But the author would like to write this article for the sake of the honor of the
human spirit.

2. Equilibrium configurations

In general relativity the spherically symmetric equilibrium of a
self-gravitating gas is governed by the Tolman-Oppenheimer-Volkoff
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equation:

=4mr?p,

m+47trp/c )
?(1—2Gm/c%)

For the derivation of this equation, see [14], [11], or Chapter 23 of [9].
Here p is the total mass density including internal energy, p the pressure, and
7(>0) is a suitable radial coordinate. G is the gravitational constant and ¢
the speed of light ; they are positive constants. The metric coefficients of the
space-time are given by the line element

ds?=¢""ctt*— AV dr*—1* (d 62 +sin® 0 d¢?),

am
dr
712 (o+p/ec 2)

where
e_,,:1_2(§m'
cr
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dr p+oc? dr

In this article we assume that p is a given function of p. We make the
assumption:

(A0)p=p(0) is a sufficiently smooth function of 0>0 such that p>0 and
E>0 for 0>0 and p—0 as p—0.

Given the central density 00>>0 and po=p (00) >0, we must solve the intial
value problem:

d

—dr%=47rr2p,

dp (4 G mtdmr’p/c?)

dr .(p ple ) 2(1—2Gm/c%) "’

m=0, p=p, at r=0, (1)

in 0<r<4, d being a sufficiently small positive number. Putting g=m/7, we
reduce the problem (1) to the integral equation

q=%j;r4mzpdr,

. [ 5 G(q+47rp/c2)
p=po fo(p+p/) S oCar e dr. (2)

We consider this integral equation in the functional set F={g€C[0, 8], pE
Cl0, 6110<q<%p0, po/2<p<po}. Denote by g, p the right-hand side of (2)

for (g, p) €F. Let 2GFpo0%/c?* <1/2. Then it is easy to see that (g, p)
belongs to & for any (g, p) €%, choosing 8§ sufficiently small. Moreover we
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have

4
llg: —l S%le — 0ol <Ly —psll,
b —p2ll < L6 (lg1 — g2l +llpr— pall)

for (g2, p2), (q1, pr) €EF with a sufficiently large L. Here || . ||denotes the sup
norm. Let us introduce a distance

d ((qu £2). gz p)) =5 s =+l — el
Then
d (G, p1), (G2 P2)) S%"Pl —pall+L5? (||41_42"+”P1 —pall)

< (%"‘ 2L20%d ((q1, p1), (g2 p2)).

Put § so small that 3 +2L% 8§ 2<1. Then the mapping (¢, p) ~ (g, p) is a
contraction ¥ into # with respect to the distance d. Therefore by the fixed
point theorem (2) has a unique solution in & which gives a solution of (1).
We note that the solution (m (r), p(#)), 0<r<§, is sufficiently smooth and

m=i3’£pors+@(r5),

p=po— (pot+po/c*) G (47’:00/3"'471'1)0/02)%4_@(,4)'
%: — (0o +po/c?) G (dmpo/3+4mpo/c?) r+0 (1*) 3)

as r—0.

Let us prolong the solution m (r), p(r) as long as possible in the domain
{(r,m, p)l0<r<+oc0, 0<p<+0c0, 26m/c’r<1}. Let (0, R), where R<+ o,
be the right maximal interval of existence for this solution.

We are going to find sufficient condition for R <+ . To do that we
make the following assumption:

(A1) §%=7+@<pr-l)/as 0 —+0 with 4/3<7<2.

Under the assumption (A1), there is a positive constant a such that
p=a0"(1+0(0"")) as p—+0. 4)
We introduce a new variable n=17 (o) by

?(0) dQ (5)

=J, o+p/c

Then

7)=T‘f_10"‘(1+@(p"1)) as 0 —+0. ©)
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and

p= DAt 146() as 7=+0 @

Now let us observe the corresponding solution = 75 (r), 0 <r <R, which
satisfies

G (m~+4mrdp/c?)
,z’l r(1—2Gm/c%) ®)

Since dp/dr<0,p(r), p(r), n(r) are motone decreasing. We claim

Lemma. n—0 as r—R.

Proof. We prove this by reductio ad absurdum: Suppose 7 (r) =3 >0.
Case I. Assume R=-+0o0. Since p(r) | §;>0, we see m (r) = (47/3) 6;7* for
0<y+oo. This is impossible, since 2Gm (r) <1. Case [I. Assume R<+oo,
It should be the case that 2Gm (r) /c*r—1 as r—R, since otherwise the solution
could be prolonged to the right beyond R. Then, since 1—222.&C'[0, R], we

see

2Gm (

CT

) 26m () <Ci(R—7),

for R—0<r<R. This implies

dn_ _Gmtdnr’p/c®) . Cp 1
dr ?(1—26m/c%) = CiR—

where C; is a constant near GM/R? with M=m (R) = [o® 4mwpr* dr, so that

() <n(R—08)— leR'_de_’r

n(R—0) —log(R— )—%logﬁ
1

— — 00

as r—R. This is a contradiction. This completes the proof.

Next, we introduce the new variables

_m 207
777 L y=d4nr IE 9)

Then the equation turns out to be
Gltwln)y/c?)
1—2Gnx/c?

(o GGatwlny/c?)
y(2—B(n) 1—2Gns/c?

=a(n)y—x+x

e s
< < |x
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A w0
Here
aly) = 'an IT—+6(77)
B = (2802 (o+p/ehn=2T+0 (),
w(m:;?:@(n). (11)

Now we are ready to prove the following theorem.

Theorem 1. Under the assumptions (A0) (A1), there exists a finite R
for each central density po such that o(r) >0 for 0OXyr<Rand p(r) | 0 asrTR.

Proof. Assuming R =+ 0, we lead a contradiction.

At the moment suppose x (r) <1/G for all rE€ (0, +). Put @y=infy<y <50
a(n). Since a(n) >0 for >0 and a—(y — 1) /r as n—0, we see ap>0.
Choose 7, such that B(n(r)) >0 for all = it is possible since B(n(r))—
(2=7)/(y—1) >0 as =+, Let us consider the function V(x,y) =K-+Kx
—y, where Kis a costant such that K>3/, and V(x (ro), v (r5)) >0. We are
going to show that V (x (r), y(r)) >0 for all r=>7,.

Otherwise there would exist the first r,>>7, such that V (x (r;), y (r;)) =0,
V(x(r),y()) >0 for n>r>r. Then, at r=r,, we have

d d
ri Vi) =K1

_ L Gltay/D o 2Clatwy/c®)
Klay=xtsx 1—Gxn/c? ) =y(2=8 1—Gxn/c? )

> (Kao—2)y—Kx

= ( _2)y (1’1) +K"'y (1’1) = (Kao—3)y (1’1) +K>0.

This is a contradiction. Therefore V (x (r), y (r)) >0 for all ¥=7,. Since we
supposed x(r) <1/G, we know y(r) <K (1 +1/G), that is, y(#) is bounded.
Then we see

dy _ G (x+wy/c?)

r-&% 2= Bl 2Gnx/c*

2—8(0) _ 37—4
2Ty YT =1)?

for r=1,, r, being sufficiently large. This implies

y (1) 2y (n) (r/n) 26=H—~+ oo,

This is a contradiction. Therefore there should exist 7, such that x (r2) >1/G.
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Then, by observing the differential inequality

x> —x+Gx?,
dr
it is clear that x(r) >1/G for all =7, and that x (r) blows up before r reaches
r2exp (1/G (x (rz) —1/G) ), that is, R<+0o0. This completes the proof.

Remark. An important by-product of the above proof is the
observation: Under (A0), if we find Ro such that x (Ro) >1/G, then we can claim
R is finite and enjoys the estimate R <Roexp[1/(Gx(Ro) —1)]. This is
convenient to use for numerical computations, since x> 1/G is a generic
condition which can be checked by a rough computation, and we can consider
R=R, when x (Ro) >1.

Now we know R is finite. Therefore m(r) T M and 1— 2GM/c*r—1—
2GM/c*R as v T R. It is easy to show that 1—2GM/c?R>0. Otherwise 5 |
—oogs discussed in the proof of Lemma. Thus the limit dy dr——GM/R*(1—
2GM/c®R) is finitely definite, that is,  €C*[0, R]. From the equation, we see

— GM _ i
1= a = scaer) R ATOR=N),

o=CR—7)TTQA+0R-7)),
p=aC"R—1) 7T (1+O0[R—7)),

3172: _?_LlaCT(R—r)rl_l(l"‘@(R_”))y (12)
where
Cc= [T_l GM ]'rlTI

ay R*(1—2GM/c*R)
It is clear that m (r) €C'[0, R]. Moreover, m (r) €EC?[0, R], for

d? d -
d:g =8nrp +47rr2—d‘g= 0 (p) +0 (055).

In the same way we see 7 (r) €C?[0, R].
Summing up, if we put

= (1—2GM/c*R) 27" (0<r<R)
=1—2GM/c* (R<y),

2_ ].
= 0<r<R
¢ 1—2Gm (r) /¥ (0<r<R)
1
= R<y),
—2cmiey ESY

these metric coefficients are twice continuously differentiable for all r> 0.
Here the metric in r>R is the well-known Schwarzschild’'s exterior metric.
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Examples. The equation of state for white dwarfs is given by

p=Kic*f (), p=Kx*({,—1)%?

where

(O =C(C2—1)Y2+3log (C+ (L2—1)172).
It is easily seen that the assumptions (40) (A1) hold with y=5/3. In fact

p=%K1K2—5/3p5/3 (1 _+_ [K2—2/302/3/Cﬁ l) ,

where [ - ]; stands for a convergent power series starting from the first order
term.
The equation of statefor neutron stars is given by

p=Kx¥(0), p=Kx’s(0),

where

g(0) =8C(*—1)**—£ (0.
Then (40) (A1) hold with y=5/3 and
P=21_0K;2/305/3( 1 + [K§2/302/3/CZ] 1) .

Note that p ~5p as p— + . It is said that in unpublished work at
Cambridge in 1935 John von Neumann integrated the equation of equilibrium
for the case p= (c*/3) p. He should have found that R =M = + o for this
case. A proof of this fact is given in Appendix.

Remark Let us compare the conclusion of Theorem 1 with the result
of A. D. Rendall and.B. G. Schmidt, [13].

They consider the problem under the equation of state of the form

p(p) =Ko (1+eg(o™™Hp™™"),

where K is a positive constant and g is a smooth function on R. Their result
is that, for 6/5<y<2 and for a fixed central density 0o, the stellar model has
the finite radius provided that & and K are stufficiently small ([13], Theorem
4). They proves this result by considering the problem as a perturbation
from the Newtonian model with p =Kp", which is reduced to the Lane-Emden
equation. Therefore the restriction that € and K are small is crucial, and
this restriction can be replaced by that po and 1/c are sufficiently small. If
we consider the wider range (6/5, 2) for 7, such a restriction may be
inevitable. In contrast with that, we restrict 7 in (4/3, 2), but suppose no
restriction on the smallness of po and 1/c.
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3. Newtonian approximation
Let us observe the behavior of solutions for fixed oo as ¢c— + °©, under

the following assumption on the equation of state which depends upon c:

(A1) 22=94+Q (0", 1/c?) as p—+0 with 4/3<y<2, where Q (1, €)
is continuous i =0, €20, Q(0, €) =0 and Lipschitz continuous with respect to
1 =0 uniformly for 0<e<1/c?,.

We denote the solutions by m@(r), p*“(r), etc., for each ¢= co, and
m™ (r), p* (r) stands for the solution of the limiting Newtonian equation

dm

ir —==A4mr?p,
ap__ Gm
dr 0 2

Now we consider g=m/r® and w=p/p. Then the equation is

d - —
rg‘f—émp 3q,

dw _ o _p dpy_,_w)Glgtdmqu/c®) ,
"ar 1 pdp)( 02) 1—2Gq/ct

The initial condition at »=0 is

_A4r _
=300, w=wo=w(po).

We note that o= (1/a) 71wr1 (1+Q; (w, 1/c?)) and 22=1+Q, (w, 1/c?), Q.
Q; being functions with the same properties as Q in (41)'. Therefore the
right hand side of the equation is Lipschitz continuous re g <c?/2G7*, 0 <w
uniformly for c=>c,. We extend the solution beyond R =R by putting ¢* (r)
=M/ and w° (r) = —c*[1— (%) Iz__rl] for ¥=R'“. By the method of
construction of local solutions at ¥= 0, it is clear that for a sufficiently small
0, 49 (1)—¢™ (), w' (r)>w"™ (r) uniformy on 0<r<g. Hence, by Theorem

4.3 of Chap. 1 of [3], the convergence is uniform on each bounded
subinterval of [d, +0).

Let us estimate R©. To do that we observe the equation (10). Under
the assumption (A1) ' the right hand side of (10) is locally Lipschitz
continuous in x, y and = 0. We can assume x*(6)— 2 (5), ' (6)—
3 (8), n©(6)—n“(5). Since x'*'— + 0 as r—=>R™, there exists rn € (4,
R™) such that £ (r;) = 3/G. They by the continuity argument applied to

(10) we see that x©°=>2/G for large c. Then from the differential inequality

1z—x>—x+Gx
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is follows that R‘“ <rexp[1/ (Gx (r;) —1)] <rse, that is R is bounded as ¢
—oo.  Using this, we can see M“—=M* and R©—R™,

Theorem. 2. Under the assumptions (A0) (A1)°, there exists a constant
C such that

p(c)/p(c)’ rs/m(c) (7) (c) ( )/7<C (13)

for 0<7r< R and ¢ =co.

4. Spectrum of spherically symmetric pulsations

The linearized equation which governs a spherically symmetric
perturbation from the equilibrium is

aa 9 | ge=, (14)
whith
dE= 1 [__ ( 4,(3v+0)72 55) +{ (4e(3y+1)/2 p (3Flpe(3u+x)/2) /)
o BHV)/2 (p+p/cz)
L0 8o (0 /) —5% ). (15)
Here
g=endl (16)

with Ar being the change of the r-coordinate of a given fluid element, and the
prime stands for the derivative with respect to . We keep the assumptions
(A0) (A1) and fix a equilibrium configuration with o(r), p(r), v(r), A(r), 0<r
<R, which evaluates the coefficients of &. So, 7 is confined in the interval
(0, R). The quantity I1=11(p) is defined by

_ptp/c dp
lpdp

By (40) I is a sufficiently smooth function of p>0. For the derivation of
this equation, see [10] or Chapter 26 of [9].

From the formal differential operator & we define the operator A, in the
Hilbert space X of all square integrable functions on (0, R) with respect to the
measure ¢®*Y72 (0 +p/c?) R*dr, while the domain of Ao is C3(0, R), the set of
all compactly supported C*-functions in (0, R). In the next step we choose a
self-adjoint extention A of Ay in X. The following discussion will be carried
out in the same way as in [1] and [7].

For the simplicity we make the following assumption.

(42) As 00, we have £ pa (B4, pa (242)—0.



Spherically symmetric stellar models 65

Following the argument of [1], we transform the equation (14) to the
standard form. This is done by the change of variables

h= 'j;r (Q_';Elp/cz) V2,Q-0724,

2= (Fd) (p+p/cz))mrze“+”)/2§. (17)
Then (14) reduces to the standard form
zn_zhh+Q (h)2=0, (18)

where Q=Q (k) is given by

= tip s (Q+Q:1+Q2),

ot/
Qo= LGN+ 3% (=) —3rp >4+
+E BrGep(o+p/e) — L],
Q1:11_6[%+2(X'+1/) +%£;//LCC;+ (1+-]%%1—;l)%1 X
x [%H”'_%%H(H% ey,

_ 1 8 ” ” p// +p”/c2 p/+pr/cz
=+[—S+2+v) + — 24
QZ 4[ 1’2 ( V) p+p/62 (p+p/()2)

d (p dly @ b Al
g B Gy ar ) & - ),

Here, since

2 -7
(Q‘*I'%{C ) 1/2,@=072_ Copt. plz ~Const. (R—r) 72
as R —0, we see that

Hzﬁk(g"'l'_%{cz)l/zeu—w/z dr

is finite and the r-interval (0, R) is mapped onto the h-interval (0, H).
We are going to observe the asymptotic behaviors of Q (k) as h—0 and h—H.
(h—0): 1t is easy to see Qo=01(1), Q;~4/7*, Q*~—2/7. Therefore

— rl (QO) EO v=-21 2
Q 0ot po/c? ( )r=07’2'

On the other hand

(0 D/ PN s e
h (le (.00)170) (e )r=07-

Thus we have Q~2. Note 2>3/4.

2
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(h—H) : Recall (A2) and note that I'™7. Moreover p'/p ~ — F17=.
Then we can see that Q=0 ((p"/p)?), Qu~3% (f+1) (—3+3) ¢'/p)% @*~1 (&
—1) (/p)%. Here we have used the following calculations:

L~ <f;;§+@<ﬂ>> oL,
LA
0

d (b do, ﬂi+z<ﬂl>2+@<%>><%’>2+@<%>

dp PdP o dp o dp

Therefore

v-1) - A+ .
Q 7‘% r—R16 ')’2 (P)

On the other hand, if p~C(R—r)ﬁ and p~ap”, then

H—h~ C—lz (A- v)/2 =R(R—r) 1z
(a ) 2
Thus we have
o~1 B—pa+y 1
4 -1 H-w*

Note that 413_—7zull)_tn>3/4 for y<2.

As the conclusion, the operator associated with —d,z +Q is in the limit

point case both at 0 and H by Theorem XIII. 6.23 of [4] and Theorem X.10 of
[12], and is essentially self-adjoint ([12]). Furthermore by [5] it follows
that the Friedrichs extension of this operator has a purely discrete spectrum.
So, we have:

Theorem. 3. Under (A0) (A1) (A2), we can take AF as A, which is the
Friedrichs extension with a purely discrete spectum.

5. Stability

Now we are going to discuss the stability of the equilibrium under the
assumptions (A0) (41)°(42).

Take &£(r) =1, which is easily seen to be in the domain of the operator A
=A& Then we have

1
AE= —A+v X
§=e ST/
WA

[(31‘1 4+3pdr1)( ~”—) —3r 22 +C—12r(87rGe‘(p+p/c2)

o]
>e'“"1 G m+4mr’p/c?)
- 7 1=2Gm/c%

[@h— 4+3de> = FL
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where

— p po 1 o m/r+dmp/c?
=9 + 4 2o+
F Flp-i-p/cz 3Flp-l-p/cz nm/r3+47rp/c2 rlotp/c)G 1—2Gm/c*r

m/r+47r? po/c?
1—2Gm/c*r

39F1%+3F1p047f£+ (po+P0/CZ)G

From Theorem.2 there is a constant C such that F=F (r) for 0<r<R* and
c¢<c¢o. Thus we get the conclusion as follows. Suppose

(A3): info<y<p. [317 —4+3pdd—1;] >0

Then for sufficiently large ¢ we have A €>0 for £ =1. This implies the
neutral stability (see Lemma 3.7 of [7]). Thus we have

Theorem 4.  Under the assumptions (A0) (A1)’ (A2) (A3), the
equilibrium is neutrally stable in the linearized sense for lavge c.

6. Appendix

We integrate the Tolman-Oppenheimer-Volkoff equation for the equation
of state p=%2p. For the sake of simplicity we take G=c=1. We stat with a
local solution m (r) ~47mr?p,, p (r) ~300 at r=—+0. Let us prolong this solution
as long as possible in {0<p, 2m/r <1}, and let (0, R) be the right maximal
interval of existence. We shall show R=+o0,

Let us introduce the variables

m
u=-"-v =4mr?p.

Then the functions u (*) =m (r) /7, & (r) =4mr?o (r) satisfy the equation

du _
Ty vTu
dv _ v 2
rd—r—l—ZM(l 4u gv)

Change the independent variable from 7 to ¢t by

_ _ (" d
t=t0) = | T2ty

Put T=1lim,-gt(r). Then t=t(r), 0<r<R, has the inverse function r =7(t),

— 00 <t<T, and the functions u (t) =u (r(t)), v(t) =v (#(t)) satisfy the plane
autonomous system
du

T (v—u) 1—2u)
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dv _ 2
dt—2v(1 4u §”)'
to which the geometric theory of plane dynamical system can be applied.

We are considering the path E: (u(t), v(t)) such that u ~ *F o', v ~

4mpe® as t— — . Now it is easily seen that the path E is confined in the
bounded region D= {(u, v) |0<u <1/2, 0<v<3/2}. Therefore T=4+. Let
us determine the w -limit set of the path E. In the closure of D there are
critical points: O (0, 0), P (1/2, 0) and Q (3/14, 3/14). The critical points O
and P are saddle points. The path E is a separatrix of O. The
characteristic roots of Q are (—3=%,47i)/7, so that Q is a stable focus. By
the theorem of Bendixson, the w -limit set of E falls under the following
categories. a) a single critical point; b) a closed path; ¢) a pathpolygon
which is a boundary of a 2-cell containing E. It is easy to exclude the
possibility of the case c), since there are no path-polygon confined in the
closure of D. In fact, the stable separatrix of P, u=1/2, is unbounded. We
go to exclude the case b) by showing that there are no closed paths in D. To
do that, we introduce the variables a = log(1 — 2u), b = logv. Then the
equation reduces to

da

—1—,9-—_9,b
it 1—e®—2e
ab_ a4,
T 2+4e 3¢
We see
ii‘i _a_@ .__a_ib
3¢ Car) T a0 Cap) = ¢ —3¢°<0,

Hence, by the criterium of Bendixson, D contains no closed paths. Thus a) is
the only possible case, and we know that (u(t), v(t)) tends spirally to the
focus Q. Therefore R =exp [ [ot* (1 — 2u(t) dt] = + o, and u (r)— 3/14,
v(r)—3/14 as r—+00. In other words, o(r) exists to be positive for all r>0
and o (r) ~sez 5, m (r) ~1;7 as =+, This was to be shown.
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