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On spherically symmetric stellar models
in general relativity

By

Tetu MAKINO

1. Introduction

R ecently  H . R . B eyer [1 ]  a n d  S . S . L in  [7 ]  investigated th e  linearized
equation fo r  sm all perturbations near spherically sym m etric equilibria of a
self-gravitating gas in  th e  Newtonian i. e . ,  non-relativistic  theory o f  stellar
s t r u c tu r e .  F o r  a  lo n g  tim e  a s tro p h y s ic is ts  h a d  b e e n  b e lie v in g  th a t the
a sso c ia te d  d iffe re n tia l e q u a tio n  re d u c e s  to  a  S tru m -L io u v ille  eigenvalue
p ro b le m , a lr e a d y  f ro m  t h e  Eddington's w o r k  in 1 9 1 9 , w ithou t any
m athem atical proof. B ut th is w as not obvious, since  the coefficients of the
equation a r e  q u ite  s in g u la r .  H . R . B ey e r h a s  c lo sed  th is  g ap  i n  [1 ], and
independently S. S. Lin has in  [7] in  a  wider c o n te x t. T h e  aim of th is article
is to carry their results to the corresponding problem in general relativity.

In  order to  do  that, w e must investigate the qualitative properties of the
s t r u c tu r e  o f  s o lu t io n s  f o r  th e  e q u a tio n  w h ic h  g o v e rn s  t h e  spherically
sym m etric static configurations of self-gravita ting gas in  general relativity,
since th e  cefficients o f  th e  linearized equation fo r  sm all perturbations are
determined by these equilibrium configurations. The equation which governs
spherically sym m etric equilibria in  genera l re la tiv ity  is form ulated  by  J. P.
Oppenheimer and G . M. Volkoff i n  [11], 1939, and th is has been fam iliar in
astrophysical textbooks a s  th e  TOV e q u a tio n . B u t s till n o w  no qualitative
ana lysis  o f  th e  s t ru c tu re  o f  th is  e q u a tio n  c a n  b e  fo u n d  i n  mathematical
lite ra tu re s . E v e n  in  th e  non-relativistic  theory, in  w hich th e  equation for
equilibria under th e  equation o f state p = const.pr reduces to  th e  wellknown
Lane-Emden equation, no fully mathematically rigorous treatments were found
untill in  1972/73 the  w o rk  [6] by D. D. Joseph and T. S. Lundgren appeared,
although many numerical computations and good intuitive analogies had been
obtained a s  found in  th e  Chandrasekhar's fam ous textbook [ 2 ] .  Moreover
when the relation p = const.pr holds only in  asymptotic sense, for example in
the equation of state for white dwarfs, there were no mathematical proof of the
elementary fact that the radius of a solution obtained by the shooting methods
is  fin ite  untill th e  w o rk  [8 ] b y  th e  author, 1 9 8 4 . In  general relativity, the
author did not know any mathematically rigorous study of the structure of the
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TOV equation, when he began to study the problem . H ow ever, after w riting
the first version of th is  article, the author received letter from Professor B. G.
Schmidt of Max - Planck-Insitute fuer Gravitationsphysik of Potsdam, in which
he kindly drew  the attention of the author to  the p a p e r  [13], 1990, by  A. D.
Rendall and B. G. Schm idt. Therefore the f ir s t  part of th is  s tu d y  shoud be
regarded as another approach to the problem studied in [13].

Of course the author does not deny importance of approximate numerical
computations and rough analogies using quite plausible physical intuitions. If
one computes the density distribution p ( r )  b y  the shooting method from r =
+ 0  t o  the  righ t, he  cou ld  consider tha t he  found  a  fin ite  radius, say, the
surface of the star, w hen the out - put of the value of p  from  h is  computer
tu rn s  o u t to  be  su ffic ien tly  sm all or the com puter dow nflow s. O r, if p -
C onst.pr asymptotically, one could believe that the qualitative structure of the
equation should be the sam e to that of the case in which p=  C m st.p r  exactly.
In fact often the radius is fin ite  for the asymptotic case if i t  is  for the exact
case. (This analogy does hold whenr> 4/3, but the situation is no t so  simple
w h e n  6 /5  < r  4 / 3 . )  B u t  i n  a  m athem atica lly  rigorous sense  these
computations or analogies do not exclude the  possib ility  tha t p ( r )  is quite
small but remains still positive for all r—•+ 00.

For this reason the author devotes the first section to prove logically that
the radius of an equilibria is finite for many im portant cases. When presented
with the results of a large quantum calculation, Eugene P. W igner once said: "It is
nice to know  that the computer understands the problem . B ut I w ould like to
understand it , too." (Physics Today, July 1993, p .38). The author considers
t h a t  a  lo g ic a l p ro o f , if p o s s ib le , c a n  p ro v id e  a  d ir e c t  r o u te  to  good
understanding of the essential point of the problem.

In the following sections we will apply the argument of H. R. Beyer and S.
S. Lin to  the linearized theory of general-relativistic stellar pulsations. This
study  requires carefu l observation of the qualitative structure of the TOV
equation, and leads us to  a  sufficient condition in order tha t the spectrum of
the associated differential operator is purely discrete and a condition for the
stability.

T h e  a u th o r  e x p e c ts  th a t  a s tro p h y s ic is ts  c o n s id e r  th a t  t h e  present
handmade article m ay provide a  sound logical back-ground supporting their
more realistic numerical simulations which become more and more largescaled
d a y  b y  d a y . Of course astrophysicists can reject this article b y  the reason
that it does not contain abything new to them except for mathematical rigor.
But the author w ould like to w rite this article for the sake of the honor of the
human spirit.

2 .  Equilibrium configurations

I n  g e n e ra l r e la t iv ity  t h e  spherica lly  sym m etric  equ ilib rium  o f  a
s e l f - g r a v i t a t in g  g a s  is  g o v e r n e d  b y  the Tolman-Oppenheimer-Volkoff



Spherically symmetric stellar models 57

equation:

dm 
 = 4 7 r 2 p ,dr

\  G (m+47rr 3p/c 2 ) 
dr (p +1)1 C 2 j  r 2 (1 — 2Gm/c2r) •

For the derivation of this equation, see [14], [11], o r Chapter 23 o f  [9].
Here p is  the total m ass density including internal energy, p  the pressure, and
r(>  0) is  a  suitable rad ia l coord ina te . G  is  the  gravitational constant and c
the  speed of light ; they are  positive  constan ts. T he metric coefficients of the
space-time are given by the line element

ds 2 =e 1 ( r)c2dt 2 — e2 ( r)dr2 — r2 (d 0 2 + sin 2 0 d 02) ,

where
2Gm e 1
c2r
2 c_lk

dr p+ pc
2 dr

In  th is  article w e assume that p  is  a  given function of p. W e make the
assumption:

(A0) p = p ( p )  is a  sufficiently smooth function of p > 0  such that p > 0  and
c > 0 for p> 0 and p—.0 as p — .0.

Given the central density po> 0 and Po=P (po) >0, we must solve the intial
value problem:

dm 
 = 4 7 rr3dr p ,

, ,  2 G (m+47tr 3p/c 2 ) 
dr i()1-1)1 r2  (1 — 2Gml c2r)
m=0, p = p o a t r=  0 , (1)

in 0<r__ 5, 5 being a  sufficiently small positive num ber. P u tting  q=m/r3 , we
reduce the problem (1) to the integral equation

q=  
C r

1
- 4 n -r2 pdr,

r
3
 0

p=p0—
o  (P±P/c2)

G (

—

q +

2G

4

q

p /

/
c

c
: )  r r

rdr. (2)

W e consider this integral equation in  the  functional se t g= fq E C EO,,  p E
CEO, 0] 10 .4f-t Po, Po/2 Denote by 4 , p  th e  right-hand side o f  (2)
f o r  (q, p )  C  .7 . L et 2G1P05 2/c2 ..<1/2. T h e n  it  is  e a sy  to  s e e  th a t  (4, P)
belongs to g  for a n y  (q, p) E , choosing 5 sufficiently sm all. M oreover we
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have

1141-4211 4311- 11Pi — P211 LIIPi — P211,
11Pi— P211 - L52 (k i —  211 ± P — P211)

f o r  (q2, p2),  (qi , pi ) g  w ith  a  sufficiently large L . Here II • (denotes th e  sup
no rm . L e t u s  introduce a distance

Then

d ((q1, Pi) , (q2, P2)) = 21
1 , 1191—  q211+11P1— P211

d ( (41, P i )  (42, P2)) - 1-1113 1— P211-  L5 2 (1191—  q211+1(pi —  P211)
1< (-
2

+ 2 L2 52 ) d ((q1, P i ) ,  (92, P2)) .

P u t 5 so sm all that 2L2 2 < 1 .  Then th e  m apping (q, p) (4, p) i s  a
contraction g  into g  w ith respect to  the distance d. Therefore by the fixed
point theorem  (2) has a unique solution in g  which gives a  so lu tion  o f (1).
We note that the solution (m (r), p(r)), 0 , is sufficiently smooth and

4rm, 
 3  

p or' + (1 '5 ) ,

P (Po+Po/ c2 ) G (4 rpo/3 47rpoic 2 ) + 0  (r4),

= (P0+Po/c 2) G (47rp0/3+47rp0/c2 ) r± 0 (r3) (3)dr
as r—.0.

L et us prolong the solution m (r) , p (r) as long as possib le  in  the  domain
((r, m, p) I0 <r <+ 00, 0 <p < + co, 2Gm/c2r< 1). L et (0, R), where R  ±  cc,
be the right maximal interval of existence for th is solution.

W e a re  going to find sufficient condition for R  <+ co . T o  do  that we
make the following assumption:

(A l) p d p =T+C (pr-- 91 as p —>+0 w ith  4/3 < < 2.

Under the assum ption (A l), there is a positive constant a such that

p=apr (1+0 (pr - 1 )) as p—>+0. (4)

We introduce a new variable n=r) (p) by

(5)
P(o) dp

77 =  f  p + p h .

Then

ar  „7-1(
l +6 (Pr - 1 ) ) a s p —>+ O. (6)

T -1"
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and

p— (r — 1 ) r-1 1)7r-i i ( i+ o ( n)) a s 72, + 0( 7 )ar

Now le t u s  o b se rv e  th e  corresponding solution n = i  (r ), 0  <r <R , which
satisfies

 

G (m +4irr 3p/c 2 ) (8)dr r (1 — 2Gm/ c2 r)

Since dP/ dr< 0 , p (r) , p (r) , i  (r ) are motone decreasing. W e claim

Lemma. 77—>0 as r—*R.

Proof. W e prove this by reductio ad absurdum: Suppose 7) (r) >O.
Case I .  A s s u m e  R = + 0  .  Since p (r) I 51> 0, we see m (r) (47r/3) 5 1r3 for
0<r± 09 . This is  impossible, since 2Gm (r) <1. Case I I .  A s s u m e  R < + °°.
It should be the case tha t 2Gm (r)/c2r- 01 as r—  R, since otherwise the solution
could be prolonged to the right beyond R .  Then, since 1   E  [ 0 , R] , w e

see

2 Gm (r) 1 <Ci(R—r) ,
c2r

for R - 5 r < R .  T his implies

d   _ G (m +47rr3 p/c 2 )  < C 2  1 
dr r2 (1— 2Gm c 2 r) —r'

where C2 is a constant near GM/R2 w ith M=m (R) = f o
R  47rpr2 dr, so that

(r ) < 77 (R - 5 ) _ C2 f r   d r  
R - d R  — r

= 17 (R -5) - r)(R —  _  C2 -
C 1  g C I  1 ° g °

-  CO

as r— q?. This is  a  contrad ic tion . T his completes the proof.

Next, we introduce the new variables

=
' 
y = 4 7 r r '

17r P •

Then the equation turns out to be

dx
r c r r  a (77) y — x±x G  ( x + a )  ( 7))y/c 2) 

1- 2Gnx/c2

=Y (2 -)3 G (x+ co (12)y/ c.2)
1 — 2GrIx/c2  )

(9)



60 Tetu Makino

dr G  (x +  (n )  c 2 ) r
d r  

=
1— 2Gnx/c 2

(10)

Here

a (n )= -P - ---- T -1 -+ 0  ( i 7 )  ,77p T

POO= (-2 c± - - 1 ) (p+P/c 2 )77= 2 — r  +0 (77) ,dp p T -1

(0( ) = P 2  = 0  ( ). (n)
lip

Now we are ready to prove the following theorem.

Theorem 1. Under the assumptions (A 0) (A l), there exists a  finite R
for each central density po such that p(r) >0 for 0  r <R and p (r) 0 as r T R.

Proof. Assuming R = + 0 0
, we lead a contradiction.

At the moment suppose x (r) /G  for all rE (0, + 0 0 ) . Put ao -=info< n (o)
a (r )). Since a (7) > 0  f o r  n > 0  a n d  a— * (7' — 1) /r a s  r)— >0, w e see cr0 >0.
Choose ro such that IVY) (r)) > 0 fo r  all r ro;  i t  is  possible since go') (r)) '
(2—r)/ (T-1) >0 as r— , + 0 0 . Let us consider the function V (x, y )  =K +K x

— y, where Kis a  costant such that K > V a l) a n d  V(x (ro), y (ro) )  > 0 . We are
going to show that V(x (r), y (r)) >0 for all r ro.

Otherwise there would exist the  first r 1 > r0 such that V (x (ri) , y (ri )) =0,
V(x(r), y (r)) >0 for ri> r> ro. Then, at r=r i , we have

d =Kr— V (x y) dx dy r- - - rdr ' dr dr

= K  (a y —  x + x
G (x + coy c2) 

 ) y  ( 2  #
-G (x + coy/ c2 )  )

1— Gx 0c 21 — G x 0 c 2
> (Ka o —  2)y — Kx
= (Kao - 2)y (ri) +K —y(r i ) = (Kao - 3)y (ri) +K>0.

T his is  a  con trad ic tion . Therefore V (x (r) , y  (r)) >0 fo r all r ro. Since we
supposed x (r) 1/G, we know y (r) (1 + 1/G), t h a t  is, y (r) is bounded.
Then we see

dy _
1 7 ( G (x+ wy/e 2 )  )

1-2Gnx/e 21r

>
2-13(0) _   3 T - 4  

— 2 Y  2 (r - 1 )Y

for r ri, r1 being sufficiently la rg e . T h is  implies

Y (r) ..)1 (ri) (r/ri) 23( 4
'  + 0 0 .

This is a  con trad ic tion . Therefore there should exist r2 such that x (r2) >1/G.
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Then, by observing the differential inequality

dx — x+Gx 2 ,dr

it is clear that x (r) >1/G for all r_r 2 and  that x (r) blows up before r reaches
r2exp (1/G (x (r2) — 1/ G)) , that is, R < + 00  . This completes the proof.

Remark. A n  im p o r ta n t  b y -p ro d u c t o f  t h e  a b o v e  p r o o f  i s  the
observation: Under (AO) , if  we find Ro such that x (Ro) >1/ G, then we can claim
R  is  f in ite  a n d  enjoys t h e  estimate R <Roexp[1/ (Gx (Ro) — 1)] . T h i s  is
convenient to  u s e  f o r  num erical computations, since  x > 1 /G  i s  a  generic
condition which can be checked by a  rough computation, and we can consider
R=Ro when x (R0 ) »1.

N ow  w e know  R  is finite. T h e r e f o r e  m (r) I  M a n d  1—  2GM/ c 2 r—>1 —

2GM/ c2 R  a s  r i  R .  It is  easy  to  show th a t 1 — 2GM/c 2R > 0 .  Otherwise 77
— 0 0 as discussed in the proof of Lemma. Thus the limit dn dr—> — GM / R2 (1 —

2GM / c2 R ) is finitely definite, that is, 77 EC '  [O, R] . From the equation, we see

GM (R ( 1 + 0  — r)) ,=  
R2 -  2GMIc 2R)

p=C (1+C (R— r)),

p=aCT (R —r)T- r=i (1+ (R  — r)) ,
4p _  aCr (R —r)7 ( 1 +0  ( R — r)) ,dr T -1 (12)

where

C = [7 -1 GM ] , 1  

a y  R2 (1 — 2GM/ c2 R)

It is clear that m (r) E C i  [O, R] . Moreover, m (r) E C2 [O, R] , for

d 2 m  

 = 8 r r p  47t-r2 c 1 =  (p) +  ( pH - ) .

dr2d r

In the same way we see 17 (r) E C2 [0, R] .
Summing up, if we put

e =  (1 —  2GM c 2 R) e - 2 7  / C 2 ( 0  <  r < R )
=1— 2GM/ c2 r (R r ) ,

-

-  1  
e (0 <r <R)

1 — 2Gm (r) /c2r
1 

1 — 2GM/c 2r
(R_r) ,

these  m etric  co e ffic ien ts  a re  tw ice continuously differentiable fo r  a ll  r> O.
Here the metric in r> R  is the well-known Schwarzschild's exterior metric.
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Examples. The equation of state for white dwarfs is given by

p =  i cY (C) , p= 2c 3 (C2- 1) 3 1 2 ,

where

f ( ) = C(C 2 - 1) 1/2 ±31og (C4-  (C2
 — 1) 1/2 ) .

It is easily seen that the assumptions (A0) (A l)  hold with r= 5 / 3 . In fact

p =-
8

Kil(2-5"p5/3 (1+ [Ki 2 1 3 p2/3 / cf]1) ,5

w here E • ]i stands for a convergent power series starting from the first order
term.

The equation of statefor neutron stars is given by

p =  3c5f (C) , p =K 3c3g (C) ,

where

g (C) = 8C (C2 1)3 f 2 f (C)

T hen (A0) (A l )  hold with r = 5/3 and
1  

P  2011 
2/3p 5

1
3 1  ±  [K -3-2/3p 2/3/c 9

3

N ote th a t p “ )  as +  0 0  . I t  i s  s a id  t h a t  i n  unpublished w ork at
Cambridge in 1935 John von Neumann integrated the  equation of equilibrium
for the case p= (c2/3) p. H e should have found that R  =  M  =  0 0  f o r  this
c a s e . A  proof of this fact is given in Appendix.

Remark Let us compare the conclusion of Theorem 1 w ith the result
of A. D. Rendall and.B. G. Schmidt, [13].

They consider the problem under the equation of state of the form

p (p) = pr (1+ sg  (pr - 1) pr - 1) ,

where K  is  a positive constant and g  is  a  smooth function on R .  Their result
is that, for 6/5 <r<2 and for a  fixed central density po, the  stellar model has
the finite radius provided that 6 and K  are  stufficiently sm all ( [13], Theorem
4 ) .  T hey proves th is resu lt by  considering  th e  problem as a  perturbation
from the  Newtonian model with p = Kpr , which is reduced to the Lane-Emden
equation . T herefore  the restric tion t h a t  E  and K  a re  sm all is  crucial, and
th is  restriction can be replaced by that p o  and  1/c a re  suffic ien tly  sm all. If
w e  consider th e  w id e r  r a n g e  (6/5 , 2 ) f o r  y ,  su c h  a  re s tr ic t io n  m ay be
in ev itab le . In  contrast w ith  that, w e restric t y  i n  (4/3, 2), but suppose no
restriction on the smallness of p o  and 1/c.
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3. Newtonian approximation

L et us observe the behavior of solutions for fixed po as c— > 0 0 , under
the following assumption on the equation of state which depends upon c:

(A l)'. = r + 1/c2) as p—> + 0 w ith 4/ 3<r <2, where Q ( t , s)
is continuous in Q (0, e) = 0 and Lipschitz continuous with respect to
1.1 0 uniformly for

W e deno te  th e  so lu tio n s  b y  m(c ) (r), p (c ) ( r ) , e tc ., f o r  each co, and

m ( - ) (r) , p ( - ) (r) stands for the solution of the limiting Newtonian equation

dm 
 = 4 7 r

,

r
2

dr p ,

dp  _ Gm 
dr —  P

 1 .2 •
Now we consider q=m /r3 and w = p / p . Then the equation is

dq 
r  dt = 4p-3q,

dw
r —dr ( 1 — P - cdp c) ( 1 i v 2 )  G  ( q  4 - 4 1— — r 2v  ( . 2 )p 1— 2Gqr2/c 2

The initial condition at r= 0  is
4 r

q= po, w=wo=w (Po).

W e note that p = (1/a) r -1 1W r-1 1 (1 + Qi (W, 1/C 2 ) )  and k
p t̀, = 1

7.+522(w, 1/c2), Qi,
Q2 being functions w ith th e  sam e properties a s  Q  in ( A l)  '. Therefore the
right hand  side  o f  th e  equation is Lipschitz continuous re q <c 2/2Gr2 ,  0 ..<w
uniformly for c c o . W e extend the solution beyond R =- R ( c ) by putting q( c ) (r)

Al 172c2Gmm,:/f/2,2,7=  ( c ) 1r3 and  w (c ) (r) = — c2 [1 (1 R  )  2;1 ]  for r >  R .  By the method of
construction of local solutions at r= +0, it is clear that for a  sufficiently small

q(c) (r) — q( - ) (r) , w  w( - ) (r) uniformy on 0 5 .  Hence, by Theorem
4 .3  o f  C h a p .  1  o f  [ 3 ] ,  the  convergence  is  u n ifo rm  o n  each bounded
subinterval o f  [5, + co ).

L et us estimate R .  T o  do tha t w e observe the equation  ( 1 0 ) .  Under
t h e  assum ption (A l)  '  t h e  r ig h t  h a n d  s id e  o f  (1 0 )  is  lo c a lly  Lipschitz
continuous in  x, y  a n d  770 .  W e  c a n  assum e x (c) (5) — > x( - ) (5 ), y (c) (5) —

y ( - ) (5), r) ( c ) (5) — ' r) ( - ) (5). Since x( - ) — > + co  a s  r—  q?( - ) ,  there  ex ists ri (5,
R ( - ) )  such  tha t x ( - )  (ri) 3/G . T hey  by  th e  continuity argument applied to
(10) we see that x(c) >_2/G for large c. Then from the differential inequality

dxr— > — x+Gx 2

dr —
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is follows that R ( c ) riexp [1/ (Gx ( c ) (ri) — 1)] th a t is  R ( c )  is bounded as c
— co. Using this, we can see M(c " 0 " ) and

Theorem. 2. Under the assumptions (AO) (A I) ', there exists a constant
C such that

e y e ,  r 3/171(c) ) m (c) (r) /r (13)

for 0 R(c) and c-co.

4 .  Spectrum of spherically symmetric pulsations

T h e  lin e a r iz e d  e q u a t io n  w h ic h  g o v e rn s  a  spherically sym m etric
perturbation from the equilibrium is

a, E
- H911 =0,
at2

(14)

whith

[ a (r ip r4e
(3

2 
aa!t.{ 7 ,3 (4e ( ,v + ,0 ,2  p' (3ripe(11-1-2) /2) ')

e (3 2  + v )/ 2  (p+p/ c2 )r 4a r

+  1  4 e ( 1 ) + 2 ) / 2  (8rGe 2P (p+ P/ c2)
,) 2

\ I "
) ( 15)

C 2 p+p/c2
Here

--=e
- v / 2

— (16)

w ith hr being the change of the r-coordinate of a  given fluid element, and the
prim e stands for the derivative w ith respect to  r. W e keep the  assumptions
(AO) (Al) and fix a  equilibrium configuration with p (r) , p (r) , 1.)(r), (r ) ,  0 < r
<R, which evaluates the coefficients of  S o ,  r is confined in  th e  interval
(0, R ) .  The quantity Ti=ri. (p ) is defined by

F i =  p dp .

p±p/c 2 LIL

By (AO) T i i s  a  sufficiently smooth function of p > 0 .  F or the  derivation of
this equation, see [10] or Chapter 26 o f  [9].

From the formal differential operator si we define the operator Ao in the
Hilbert space X of all square integrable functions on (0, R ) w ith respect to  the
measure e

( 3 ) ) + 2 ) / 2  
(p +

p /c 2 ) R̀ Idr, while the  domain of Ao is  0 (0 , R), the set of
all compactly supported C2 - functions in  (0, R ) .  In the next step we choose a
self-adjoint extention A  of A o in  X .  The following discussion will be carried
out in the same way a s  in  [1] a n d  [7].

For the simplicity we make the following assumption.

(A2) As p O, we h a v e  dari,‘ Pap
p d d p  (pp rd/  ) 0

1
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Following the argum ent of [1], we transform the  equation (14) to  the
standard form . This is done by the change of variables

f
0

 r

 P + 13/ 0 )1/2e Gi-v1/2d r ,
• r iP

z —  (rip ( p± p/ c 2) ) 114r2e(2-1-14/2. (17)

Then (14) reduces to the standard form

z„ — z,,±Q  (h)z=  O,( 1 8 )

where Q=Q (h) is given by

r i p  
e

i)_
2

 ( Q 0 +  Q i +  ( 2 2 )  ,
p + p / c

2

Q0= r
l
ipr [ (3 r ,  4 ± 3Pd

d
r
p  ) ( 3Fip311 2

+  +

+  (8 7 rG e 2p (p±p/c 2 ) (fl) 2 ) ]  ,
P+P/c

2

Qi= 116 [8r + 2  ( 2 ' ±  +  P
io
' ±± Pp/7: 22 +  (1 + -PIT ddrpl ) f , ]  X

x  [ 8 + 4 1 ) , p'±p7c 2  + 3  ( 1 _4 _  d r i ) -1,

p±p/c2 dp  ' p

r_ 8 + 2  ( 2 „±  it )  +  p" - FP"/c2 ( id + P 7 c 2 )2+
4 L r

2p + p / c 2 p+p/c
d  ( _p_ d r i )  ( ) 2+  ( 1 ± _p_ d r i ) 4 2 )1
dp dp p r i  dp p p  ' "  •

Here, since

( P ± P / C 2 ) 1/ 2e ( 2 - 1 4 / 2 — Const. p —Const.(R—r) - 1 / 2

T ip
as r—q? — 0, we see that

H_ fR (P+19 /c2  )112e u-vv2 d r
Jo

is finite and the r-interval (0, R ) is mapped onto the h-interval (0, H).
We are going to observe the asymptotic behaviors of Q (h) as and h—q-1.

(h—>0): It is easy to see Q0 0(1), Q1 - 4/r2, Q2 — — 2/r2 . Therefore
F i( p o ) p o  

 ( e v - À )
2r=0

Po ±Po/c2r 2 .

On the other hand

h ( PO I-PO /C .2)1/2 (e ci-o/2) r  o r .- (Po)P0

Thus we have Q — . N o te  2 > 3 /4 .
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(h— >H) : Recall (A 2 ) and note that I -1— > T. Moreover p'/ p —  7-71•

Then we can see that Q0= 0 ( (P7 P) , Q1 —  ( -f +1) (— 3) (P7P) 2, Q2( , +
(p'/ p) 2. Here we have used the following calculations:

▪ (12( P ) )  ( ) 2+ ( P )
P P P
▪ (P±I(LcIP) kcIL+2(_kdP)2±0(k)) (P1)2+0 (.)
p dp p  dp p  dp p  dp ' P P

Therefore

Q— rPp
1 (3- y ) (1+ y )  ( )  2

- r 'R 1 6 r 2

On the other hand, if (R — r ) 7 f  and p  a p r  , then

1 C' 1-1. 2 (e ( 2 - / 2 ) r-R(R — r)H—h— 1/2.
1/2(ar)

Thus we have
1  (3 -7 )(1 + y ) 1 

Q  4 ( T - 1) 2( H —  h)

Note that ¢ -(1
7:_) (1

1)+2 r ) >3/4 for y<2.

As the conclusion, the operator associated with — Q is  in  the limit
point case both at 0 and H by Theorem XIII. 6.23 o f  [4] and Theorem X.10 of
[12], and is essentially self-adjoint ( [1 2 ]). Furtherm ore by [5] it follows
that the Friedrichs extension of this operator has a  purely discrete spectrum.
So, we have:

Theorem. 3. Under (AO) (Al) (A2), we can take Ag' as A , which is the
Friedrichs extension with a purely discrete spectum.

5. Stability

Now we are  going to discuss the stability of the equilibrium under the
assumptions (A O) (A 1) '(A 2) .

T a k e  (7') =1, which is easily seen to be in the domain of the operator A
=-A'cr. Then we have

A e 1 P  Xp + p /c2 r

[(3F1 —4 + 3 p ' ) P ; )  3 F 1  + c
. --

27, (87rGe'' (p+p/c2) p  (p
( P
H: p)  c 2 ) ) ]

> G (m+ zirr 3p/ c 2 ) ( a r i  4 + 3 ,d   ) 1 2

1-2Gm/c 27 (11) c
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where

F=9r1 P + 3 1 1 ---PP-4 7 rp d-p/c 2 p +10/c2 2Gm /r3 +47rp/c 1 m/c2r2 ± r2  (1 9  ± P / c 2 )  G  m / r 3  4 7 1 - P / c  2

P_. 9F1 + 3 T ip.047t-- +
1-2Gm /c2r(Po+Po/c2) Gm  / r+  4 7 r2 Po/c 2 

From Theorem.2 there  is a constant C such that F =F ( c) (r) for 0 R(`) and
c _ c o .  Thus we get the conclusion as fo llo w s . Suppose

(A3): info<p<po. [3ri — 4+ 3p d r i  ] > 0dp

T hen fo r  sufficiently large c  w e have A 0  for =  1 .  T h is  implies the
neutral stability (see Lemma 3.7 o f [7]). Thus we have

Theorem  4. U n d er the  assum ptions (A 0) (A l)' (A 2 ) (A 3 ) , the
equilibrium is neutrally  stable in the linearized sense for large c.

6. Appendix

W e integrate the  Tolman - Oppenheimer - Volkoff equation for the  equation
of state p= p. F o r  t h e  sake of simplicity we take G =c= 1. W e stat w ith a
local solution m (r) —47rr2p 0, p (r )  —1-po a t  r =  + 0 .  Let us prolong this solution
as long  as possib le  in  {0 < p, 2m/r <1} , a n d  le t  (0, R ) be th e  right maximal
interval o f ex istence . W e shall show R = + 00.

Let us introduce the variables

u= —

m

, v =4n-r2p.

Then the functions 77:(r) =m (r) / r, 27,(r) =47-cr2p (r) satisfy the equation

dur— =v — udr
d v  2 v 2r— = (1 4 u - -

3
v).d r  1 — 2u

Change the independent variable from r to t by

drt = t (r) = f  (1  z i ( r ) )  r

P ut T = lim r- Rt (r) . Then t -= t (r) , 0 <r <R, has the inverse function r=r( t ) ,
— 0 0  <t <T  , and the functions u (t) ( r  ( t ) )  ,  y  (t) = /7(r ( t) )  satisfy the plane
autonomous system

du—
d t

= (v —  u) (1-2u)
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—

d v  

=2v ( 2
dt 3

to which the geometric theory of plane dynamical system can be applied.
W e a re  considering th e  pa th  E : (u (t) , y  ( t ) )  such  tha t u poet, y —

47rpoe ' as — 0 0 . N ow  it is easily  seen that the  path E is confined in the
bounded region D = {(u, y)I0Gu <1/ 2, 0 < < 3 / 2 } .  Therefore T = + 00 . Let
u s  determine th e  co -lim it se t o f the  path E .  In  th e  closure of D  there  are
critical points: 0 (0, 0), P (1/2, 0 ) and  Q (3/14, 3/14). T he  critical points 0
a n d  P  a r e  s a d d le  p o in t s .  T h e  p a th  E  is a  s e p a r a t r ix  o f  O .  The
characteristic roots of Q are  ( - 3 ± .X 7 i) /7 ,  so that Q is  a stable focus. B y
th e  theorem  of B endixson, the co  -lim it s e t  o f  E  fa lls  u n d e r th e  following
ca teg o rie s , a )  a  s in g le  c ritica l p o in t ;  b )  a  c losed path; c) a  pathpolygon
w h ic h  is  a  boundary o f  a  2-cell containing E .  I t  is  e a sy  to  e x c lu d e  the
possibility o f  th e  c a se  c ) , since  there  a re  n o  path-polygon confined in  the
closure of D .  In  fact, the stable separatrix  of P , u  =1/2, is unbounded. W e
go to exclude the case b) by showing that there are no closed paths in D .  To
d o  tha t, w e  in troduce  the  variab les a  =  log (1  —  2u), b = logy. T h e n  the
equation reduces to

da
1— ea

 — 2eb

dt
—

d b
= — 2±4ea - -

4

e
b

.dt 3

We see

a ( cici a (db,
a — 4  I '0a \ di-a b  d t —  e 3 e <O.

Hence, by the criterium of Bendixson, D contains no c losed  pa ths. T hus a )  is
the  only  possible case, and w e know  that (u  (t) , y  ( t ) )  tends sp ira lly  to  the
focus Q . Therefore R  = exp [.f o +-  (1 — 2u (t) dt] = 00, a n d  ù ( r ) — 3/14,
tT(r) — +3/14 as r— + co. I n  other words, p (r) exists to be positive for a ll r> 0
and p (r) m  ( r )  - -AT as r—>+ 0 0 . T h i s  was to be shown.
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