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Coliftings and Gorenstein injective modules

By

Edgar E. ENocHs and Overtoun M. JENDA

1. Introduction

Throughout this paper, R will denote a commutative noetherian ring.

We recall that an R-module M is said to be Gorenstein injective if and only if
for any R-module Q of finite injective or projective dimension, Extk(Q, M), Ext}(Q, M)
for all i>1 and Ext%(Q, M), Ext§(Q, M) vanish (see Enochs-Jenda [4] for equivalent
definitions). We note that Gorenstein injective modules are dual to Auslander’s
maximal Cohen-Macaulay modules. While the latter modules are studied in the
category of finitely generated modules, Gorenstein injective modules are rarely finitely
generated (see [4]).

The aim of this paper is to study Maranda type of results for Gorenstein
injective modules. We note that these type of results have been generalized to
maximal Cohen-Macaulay modules over R-algebras where R is a complete local
Gorenstein ring (see Auslander-Ding-Soldberg [1] and Ding-Soldberg [2]).

We recall that an R-module M is said to be strongly indecomposable if End(M)
is a local ring, and M is said to be reduced if it has no nonzero injective
submodules. We note that every strongly indecomposable module is indecomposable
and thus reduced.

If x is an R-regular element that is not regular on an R-module M, then r (M)
will denote the least integer r such that x"-Ext'( ,M)=0. We will show that if
r (M) is finite, r>r (M)>0 and M is a strongly indecomposable Gorenstein injective
R-module such that Hom (2, M) =Homg(:%, N) for some strongly indecomposable
Gorenstein injective R-module N with r>r (N)>0, then M=N or N=S(M)=S*(N)
(showing that N has periodic injective resolution of period 2) where S{(M) denotes
the i cosyzygy of M. Furthermore, if r (M) is finite and r>r (M)>0 and M is
strongly indecomposable, then Homg(:z, M) is indecomposable or Homg(:z, M)
= L®Sg,-r(L) for some indecomposable L (Theorem 3.3). This result is obtained
without requiring the Gorenstein condition on the ring. As an easy consequence,
we get that if x is R-regular, and E, E’ are indecomposable injective R-modules
with Homg(&, E)~Homg(&, E') #£0, then ExE’.

A linear map ¢ : M —» G where G is a Gorenstein injective R-module is said to
be a Gorenstein injective preenvelope if Hom(G,G'y - Hom(M, G') - 0 is exact for all
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Gorenstein injective R-modules G'.  If furthermore, f o y = for f € Hom(G, G) implies
fis an automorphism, then ¥ is called a Gorenstein injective envelope. 1t was shown
in Enochs-Jenda-Xu [8] that if R is n-Gorenstein (that is, the injective dimension
of R over itself is at most n), then every R-module has a Gorenstein injective
envelope. Gorenstein injective envelopes are unique up to isomorphism. Further-
more, since every injective module is Gorenstein injective, we see that Gorenstein
injective envelopes are monomorphisms. So if Y: M — G is a Gorenstein injective
envelope, we say that G, denoted G(M), is the Gorenstein injective envelope of
M. Likewise, E(M) will denote the injective envelope of M.

A linear map y:E— M where E is an injective R-module is said to be an
injective precover if Hom(E', E) - Hom(E', M) — 0 is exact for all injective R-modules
E'. If furthermore, Y o f=y for f e Hom(E, E) implies f is an automorphism, then
is called an injective cover. Injective covers were shown to exist over noetherian
rings in Enochs [3]. Again, injective covers are unique but they are not surjective
in general.

If R— S is a ring homomorphism and L is an S-module, then an R-module
M is said to be a colifting of L to R if

1) L=Homg(S, M)
2) Exth(S,M)=0 for all i>1.

If L is a direct summand of Homg(S, M) satisfying (2), then M is said to be a weak
colifting of L. We say that L is coliftable or weakly coliftable to R, respectively,
if there is such an R-module M. Clearly, every coliftable S-module is weakly
coliftable. But weakly coliftable modules need not be coliftable (see Example
43). We note that if M is Gorenstein injective, then Exti(S,M)=0 for all i>1
whenever pdpS<oo. Thus if M is Gorenstein injective and pdgpS< oo, then M is
a colifting of an S-module L if and only if L>~Homg(S, M).

If x is R-regular, then we will denote & by R. The aim of Section 4 is to
study coliftings of R-modules. We show that if M is a strongly indecomposable
Gorenstein injective module over an n-Gorenstein ring R and M is a colifting of a
nonzero R-module L such that x-Ext'( ,M)=0, then Sg(Homg(R,S '(M))) is a
reduced Gorenstein injective R-module and Gr(L)=M®S ~'(M) where Gg(L) and
S~ (M) denote the Gorenstein injective envelope of the R-module L and the kernel
of the injective cover of M, respectively (Theorem 4.2).

An R-module M is said to be an essential colifting of an R-module L if M is
a colifting of L and the R-imbedding L = M is an essential extension. We also
say that L is essentially coliftable. We argue that if R is n-Gorenstein and M is
an essential colifting of an R-module to R, then Homg(R, Gx(M))=Gz(Hom(R, M))
(Proposition 4.6). We use this Lemma to obtain an analog of Proposition 5.2 of
Auslander-Ding-Soldberg [1], namely that if L is essentially coliftable to R, then
Gi(L) and %&£ are also coliftable to R (Theorem 4.7). We then characterize
essentially coliftable R-modules over 2-Gorenstein rings in Theorem 4.9 giving us
an analog of Proposition 4.3 of [1]. Finally, we characterize weakly coliftable
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R-modules in Theorem 4.11.

2. Preliminaries

We start with the following easy

Lemma 2.1. Let 6: M — N be a surjective homomorphism of R-modules M and
N. If o factors through E(M), then N is a direct summand of §22.

Proof. Since ¢ factors through E(M), we have the following commutative
diagram

M < EM)
Gl ///,/
N* T

with o'(Kero)=0. So we have the followed induced commutative diagram

T

EM) - B

Kera

L
N

But then we have the following commutative diagram

0 0
l l

a

0> kere»> M - N >0
1o

N

0 - kerc - EIM) » EM 0

kera

! !
S(M) = S(M)
l l
0 0

where " ckoo=0"o1y=0'|y=0. Butoisonto. So¢”"-k=idy. Thus the result
follows.

Proposition 2.2 (Hilton [9]). Let 6:M —» N be a homomorphism of R-
modules. Then the following are equivalent.

1) o factors through an injective R-module.



244 Edgar E. Enochs and Overtoun M. Jenda

2) o factors through the injective envelope of M.

3) o factors through the injective cover of N.

4) ¢ Ext'(,M)=0

5) (0> M- EM)— S(M)—-0)=0 in Ext'(S(M),N).

Furthermore, if 6 is onto and factors through an injective R-module, then M)~ S(M)® N.

Proof. 1=2. Let o factor through an injective R-module E. Then the
diagram

M s EM)
LNy
N « FE

can be completed to a commutative diagram since E is injective. So (2) follows.
2=3. Let E— N be the injective cover of N. Then the diagram

M s EM)
al N ;
N - FE

can be completed to a commutative diagram. So (3) follows.
3=1 is trivial.

% T
1=4. Leto: M — E—N be the factorization of ¢ through an injective R-module
E. Then we have the following induced commutative diagram

Ext'( ,N)

o, Ext'( ,M)

PN x

Ext!( ,E)=0

Thus ¢,=1,°¢,=0 and so o Ext'( M)=0.
4=-5. We simply note that 0 » M — E(M) — S(M) — 0e Ext'(S(M), M) and
50 6-(0 > M — E(M)— S(M)— 0)=0 in Ext'(S(M), N) since ¢-Ext!'( ,M)=0.
5=2. We again consider the exact sequenct 0 > M — E(M) - S(M)—-0. We
have the long exact sequence

0 - Hom(S(M), N) » Hom(E(M), N) - Hom(M, N) - Ext'(S(M), N) — ---

But ¢-(0 > M —» E(M) = S(M) - 0)=0 in Ext'(S(M),N). So the diagram
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M & EM)
al ‘/'

N

can be completed to a commutative diagram and thus (2) follows.
Now suppose 6: M — N is onto and factors through an injective R-module. Then
o factors through E(M) by the above. So EM>~S(M)@N by Lemma 2.1 above.

Corollary 2.3. Let x be R-regular and M be an x-divisible R-module. If
x-Ext'( ,M)=0, then ot s5=SIM)OM.

Proof. Let multiplication by x on M be the map ¢ in the Proposition
above. Then ¢ is onto since M is x-divisible. So the result follows immediately
from the Proposition.

Corollary 2.4. Let x be R-regular and M be an x-divisible R-module such that
Hompg(R, M) € M is an essential extension. If x-Ext’( ,M)=0, then S(Homg(R, M))
~SM)®eM.

Proof. We simply note that in this case E(M)= E(Homg(R, M)) and so the
result follows from Corollary 2.3.

3. Gorenstein injective modules and regular elements

If x is an R-regular element and M is a Gorenstein injective R-module, then
Ext'(R, M)=0since pdR<1. Thus we have the exact sequence 0 —» Homg(R, M) - M
). q R

— M — 0. In particular, we have that Gorenstein injective modules are x-divisible.
We start with the following

Lemma 3.1. Let x be R-regular and M be a reduced Gorenstein injective
R-module such that Homg(R, M)#0 and x-Ext'( ,M)=0, then Homg(R M) is an
essential R-submodule of M.

Proof. We first note that E(M)=~E(Homg(R, M))@E for some injective
R-module E. And so by Corollary 2.3, we have that S(Homg(R, M))®E=S(M)® M.
If M is reduced, then S(M) is reduced. It is then easy to see that S(M)@®M is
also reduced. Hence E=0 and E(M)=~EMomg(R M)). So the result follows.

We also need the following

Lemma 3.2. Let x be R-regular and L be an R-module. Then L is weakly
coliftable to R if and only if
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Hom(R, Sg(L)) = L®S(L).

Proof. Let M be a weak colifting of L to R. Then we have the following
commutative diagram

0O0->L-> M - % - 0

I l l
0 L > BL) - Sg(L) » 0

We now apply Homg(R, —) to the diagram to get

OLIO - L - HomR(R,M) - HomR(R,%) - L 590

I | | I
Y.:0 > L — Homg(R, E(L)) - Homg(R,SgL) - L — 0

since Homg(R, L)~ Extk(R, L)~ L.

But Hompg(R, E(L))=Ex(L). So Exth(L,SzL))~Exti(L,L). Furthermore, we
note that 0., , represent the same elements in ExtX(L,L). But i is a split
monomorphism by assumption and so 0, is zero in Ext3(L,L). Therefore, y, is zero
in Extg(L,Sg(L)). That is, 0 — Si(L) - Homg(R, Sg(L)) » L — 0 is split exact and
so the result follows.

The converse is trivial.

If x is R-regular but not regular on an R-module M, then for r>0, we sct

rdM)=min{r:x"-Ext'( ,M)=0}.

If there is no such r, we set r(M)= o0. We note that r (M)=0 if and only if M
is an injective R-module.
We are now in a position to state the following Maranda type of result.

Theorem 3.3. Let x be R-regular and M be an x-divisible R-module such that
r{M) is finite and r>r (M)>0. Then

1) If Homg(Es M)=~Homy(B: N) for some x-divisible R-module N with
r>r(N)=>0 and Homg( Rz, M) = M and Homy( R, N) = N are essential extensions,
then M®S(M)=N®S(N).

2) If M is a strongly indecomposable Gorenstein injective R-module such that
Hom (R, M)~ Homg(:8:, N) for some strongly indecomposable Gorenstein injective
R-module N with r>r(N)>0, then M=N or N=S(M)=S?*N).

3) If M is a strongly indecomposable Gorenstein injective R-module, then
Hom (& M) is indecomposable or Homg(Ez M)~ L®SR(L) for some in-
F
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decomposable Bz-module L.

Proof. 1) easily follows from Corollary 2.4.

2) If M, N are strongly indecomposable, then Homg(:Zz, M)= M and
Homg(;2z, N) S N are essential extensions by Lemma 3.1 and so M@ S(M)=N®S(N)
by part (1). But S(M), S(N) are also strongly indecomposable. So the result
follows by the Krull-Remak-Schmidt-Azumaya Theorem.

3) Suppose Homg(:Xs, M)=L@®L'. Then S(Homg(:Zz, M))=S(L)®S(L). But
S(Homp(:Xe, M) = S(M)®M by Corollary 2.4 and Lemma 3.1 and S(M) is also
strongly indecomposable. So we may assume that M=~S(L). But L is weakly
coliftable and so Homg(z, M) =Hom p(:Xz, S(L)=L@S (L) by Lemma 3.2. But
M is a strongly indecomposable Gorenstein injective R-module and therefore so is
S(L). But then L is indecomposable.

Corollary 3.4. Let x be R-regular and E, E' be indecomposable injective R-modules
with Homg(R, Ey~Homg(R, E)#0. Then ExE'.

We now state the following easy properties of r (M).

Proposition 3.5. 1) Let 0-M">M—>M" -0 be an exact sequence of
R-modules such that r (M") and r (M’) are finite, then r (M)<r (M")+r (M’).

2) If M is an R-module with r (M)< oo, then r (S(IM))<r (M).
3) If M=®;_M,, then r (M)=max{r(M))}.

Proof. 1) We consider the long exact sequence --- »Ext'(—,M") - Ext!(—,
M) - Ext' (=, M) > . lfr(M")=m and r(M')=n, then x"*"-Ext'( ,M)=0 and
so r(M)<m+n.

2) If r(M)=m, then x™ Ext'( ,M)=0 and so x™:M — M factors through
E(M) by Proposition 2.2. So we have the commutative diagram

0> M - EM)-> SM)—-0
PR R

0> M — EM)—> SM) -0

Thus x™: S(M) — S(M) — factors through E(M) and hence x™ - Ext!( ,S(M))=0.
That is, r(S(M))<m.
3) This follows from the fact that Ext'( , M)~ @3- Ext'( ,M)).

Corollary 3.6. Let x be R-regular but not regular on a reduced Gorenstein
injective R-module M. If r (M)<oo, then r (M)=r(S(M)=r (S~ '(M)).
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Proof. If r(M)<oo, then r (S(M))<r(M) by Proposition 3.5. If m=r(S(M)),
then x™: S(M) — S(M) can be factored through the injective cover E(M) — S(M). So
x":M — M can be factored through E(M) as in the proof of the Proposition
above. So r(M)<r(S(M)). Thus r(M)=r[(S(M)).

Furthermore, M=S(S~'(M)) since M is reduced and so r(M)=r(S~"(M)).

4. Coliftings over n-Gorenstein Rings

We start with the following result.

Lemma 4.1. Let R be an n-Gorenstein ring, x be R-regular, and M be a
reduced Gorenstein injective R-module such that x is not regular on M. Suppose
S(Homg(R, S ~'(M))) is a reduced R-module. Then S(Hom &(R, S~ Y(M))) is Gorenstein
injective if and only if S(Homg(R, S ~'(M)))= G(Homg(R, M)).

Proof. Since M is Gorenstein injective, the injective cover E— M is
surjective. So we have the exact sequence 0 » S~ '(M)—> E—- M —»0. Thus we
obtain the following commutative diagram

0 0
| |
0 - Hom(R, S '(M)) - Hom(R, E) - Hom(R, M) - 0
[ | l
0 - Hom(R,S™'(M)) » E(Hom(R,S '(M))) - S(Hom(R,S '(M))) - 0
| l
S(Hom(R,E) = L
| |
0 0

But idgHom(R, E)< 1 since Hom(R, E) is an injective R-module. So L is an injective
R-module. Thus pdL <o since R is n-Gorenstein. Consequently, if S(Homg(R,
S~(M))) is Gorenstein injective, then Hom(R, M) < S(Homg(R,S (M) is a
Gorenstein injective preenvelope and hence Sg(Homg(R,S ™ '(M)))=Gr(Homg(R,
M)@E' for some injective R-module E’. But then E'=0 since S(Homg(R, S ~'(M)))
is reduced. The converse is trivial.

Theorem 4.2. Let R be n-Gorenstein, x be R-regular and M be a reduced
Gorenstein injective R-module that is a colifting of a nonzero R-module L. If
x-Ext'( ,M)=0, then Sg(Homg(R,S ~'(M))) is a reduced Gorenstein injective R-module
and Gg(L)=M®S ~'(M). In this case, r (Gg(L))=r(M).

Proof. We first note that x-Ext'( ,M)=0 if and only if x-Ext'( ,S~'(M))=0

since M —- M factors through the injective cover E,—» M —0 if and only if
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S Y(M)— S (M) factors through the injective envelope 0—S (M) E,.
Furthemore, S~ !(M) is also a reduced Gorenstein injective R-module. So
S(Homg(R, S " '(M))2M@S (M) by Corollary 24 and Lemma 3.I. Hence
S(Hompg(R, S ~'(M))) is a reduced Gorenstein injective R-module since M®S ~ (M)
is such. So Gg(L)yxM@®S ™ '(M) by the Lemma above.

Example 4.3. Let R=k[[x% x3]] with k a field Then R is a Gorenstein local
ring since {0,2,3,4,---} = N is symmetric (see Kunz [11]). In fact, R is a 1-Gorenstein
domain.

Now let G=k+kx~'+kx~%+.... Then G is a divisible R-module and thus
it is Gorenstein injective since R is 1-Gorenstein. Moreover, Homg(G, G)=k[[x]].
Hence G is a strongly indecomposable Gorenstein injective R-module. Furthermore,
Homp(:¥ G)=k +kx~'=Socle(G). Also k+kx ' < G is an essential extension
(where we recall that x2- x~3=0). Hence G is an essential colifting of the £z-module
k+kx~'. We also note that E(G)= E(k)®E(k). So G is not an injective R-module.

We now recall from Northcott [12] that Egk)=k+kx 24+kx 34 .-- where
x2-x7*=0. So the imbedding G = E(G) is given by

(1,x)
G - Ek)@®E(Kk)
where 1: G < E(k) maps x~! to 0 but is an identity on 1,x~2,x73,-.. and x-x~2=0.
We now consider kx~' = G. We get the imbedding ;& < Ek)®EY. But
w1 E(k). So we have that the sequence 0 — ;&1 — E(k)@E¥ - ERQER _, () j5 split
exact. But kx~! c Homg(:%:,G) = G. So the sequence

G _, EWSEK)  EKDEK)

- 0
Homg(%r, G) Homg(Ex G) G

is split exact. Therefore,

EW®EK) | EKDEK)

0-G->
Homg(:8:, G) G

0

is also split exact. But then we have the following commutative diagram
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0 0
! l
0 - Homy(&r G) - G x—) G -0
I | !
E(k)® E(k)
0-H R G) > El - T
omg(53g, G) (k)@ Elk) Homg( £z, G)
| |
BROEK) _ EK®EK)
G G
| !
0 0

with the last vertical sequence split exact. Hence x?-Ext'( ,G)=0 and so
ra(G)=1. Thus

R
Gr(Hom o 5, G) = Grlk +kx ™) = Splk +kx ™) =GOG
X

by Lemma 4.1 and Theorem 4.2 since S(G)~S '(G)~G. Moreover, it follows
from the above and Theorem 3.3 that every R-module N with r(N)=1 and
Hompg(R/x*R,N)=k+kx~" is isomorphic to G.

We finally note that the ,fz-module k is weakly coliftable to R. If k were
coliftable to R, then it is not hard to see that k~Hom(k, E(k)) would be liftable to
R. But R=k[[x2 x*]] is not a discrete valuation ring. So k is not liftable to R
(see Example 2 of Auslander-Ding-Soldberg[1, Proposition 3.2]), and thus k is
weakly coliftable but not coliftable to R.

We now study properties of essential coliftings. We start with the following.

Proposition 4.4. Let L be an R-module. Then

1) Every essential colifting of L is isomorphic to a submodule of Sg(L).
2) If M is an essential colifting of L, then Sg(M) is an essential colifting of Sg(L).

Proof. 1f M is an essential colifting of L to R, then E(M)=E(L) and so we
have the following commutative diagram
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0
|
0 Ker f
| |
0—- L - EM)- SUL) -0
| I L
0> M- EM) > S(M) -0
|
0

© «— X «—

with M=~Ker f and so (1) follows.

But Ext}(R, M)=0 by assumption. So we have an exact sequence 0 - Hompg(R,
M) — Homg(R, E(M)) » Homg(R, S(M)) = 0. Furthermore, Ez(L)=Homg(R, E(M)).
So Sz(L)~Homg(R, S(M)). Moreover, Exti(R, Sg(M))=Exty" (R, M)=0 for all i>0
and so (2) follows.

Lemma 4.5. Let R be n-Gorenstein and M be a colifting of an R-module. Then
pdgHomg(R, %) < co0.

Proof. By Iwanaga [10], idg %8 < 0o since pdg €< 00. So let 0 - Y2 — E°
—+E'5 ... E"»0 be an injective resolution of €M . Then the sequence
0 —» Homg(R, ¥M) - Homg(R, E®) - --- - Homg(R,E") - 0 is exact since Exti(R,
Sy ~ Extir {(R,M)=0 for all i>1. But for each i, Homg(R,E’) is an injective
R-module. So idgHomg(R, M) <oo. But then the result follows since R
is also Gorenstein.

Proposition 4.6. Let R be n-Gorenstein and M be an essential colifting of an
R-module. Then

Homg(R, Go(M))= Gz(Hom (R, M)).

Proof. Homg(R, M) is an essential R-submodule of M by assumption and M
is a Gorenstein essential submodule of G(M) by Enochs-Jenda [7, Theorem 3.3]. So
it is easy to argue that Homg(R, M) is a Gorenstein essential submodule of G(M). But
Hompg(R, M) =€ Homg(R,G(M)) =€ G(M). So Hompg(R, M) < Homg(R,G(M)) is a
Gorestein essential extension as R-modules and hence as R-modules.

Since M is a colifting, we have the exact sequence

G(M)

0 — Homg(R, M) » Homg(R, G(M)) > Homg(R," )0
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But pdgHomg(R, €4 < co by Lemma 4.5 above and Homg(R, G(M)) is a Gorenstein
injective R-module by Enochs-Jenda [6, Lemma 3.1]7. Hence Homg(R, G(M)) is a
Gorenstein essential Gorenstein injective extension of the R-module Homg(R, G(M))
and so is the Gorenstein injective envelope by Theorem 3.3 of [7].

The following result is dual to Proposition 5.2 of Auslander-Ding-Soldberg [1].

Theorem 4.7. Let R be n-Gorenstein and L be an R-module. If L is essentially
coliftable to R, then Gi(L) and Gx(L)/L are coliftable to R.

Proof. 1f M is an essential colifting of L to R, then Gg(L)=~Homg(R, G(M))
by Proposition 4.6 above and so Gg(L)/L=Homg(R,S4%). But Exti(R,%M)
~Exti (R,M)=0 for all i>0. Thus G(M) and ¥ are coliftings of Gz(L) and
Gal) to R, respectively.

As a consequence, we get the following Gorenstein version of part 2 of Proposition
4.4 above.

Corollary 4.8. Let R be n-Gorenstein and L be an R-module. If L is coliftable
to an R-module whose Gorenstein injective envelope is an essential extension of L,
then Gg(L) and %™ are essentially coliftable to R.

To prove the converse of this corollary, we need the following easy

Lemma 4.9. Let L be an R-module. Then L is an injective R-module that is
essentially coliftable to a Gorenstein injective R-module if and only if L
~Homg(R, Eg(L)).

Proof. 1f L is coliftable to R, then L=~Homg(R, G) for some Gorenstein injective
R-module G. But idgL=1 since L is an injective R-module. So Exth(EE, G)=0
and thus E(L) is a summand of G. But then G=E(L) since L < G is essential.

Conversely, L is an injective R-module and E(L) is an essential colifting of L.

Theorem 4.10. Let R be 2-Gorenstein and L be an R-module. Then L is
coliftable to an R-module whose Gorenstein injective envelope is an essential extension
of L if and only if Gx(L) is coliftable to a Gorenstein injective R-module that is an essential
extension of L, Gxg(L)/L is essentially coliftable to R, and the image of the lifting of
the natural map Gg(L)— %8 to R has finite projective dimension.

Proof. The only if part is essentially Corollary 4.8 above.

We now prove the if part. If idR=1, then idzgR=0 and so Gg(L)=L. Thus
L is coliftable to a Gorenstein injective R-module that is an essential extension of
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L by assumption. If idR=2, then idzgR<1 and so C=%8L) is an injective R-module
by Enochs-Jenda [5, Theorem 3.3]. Hence the injective envelope of C is its colifting
by the Lemma above. Now let G be a Gorenstein injective colifting of Gz(L) to
R with L < G essential. Then we have the following commutative diagram

0

l
L

l
0- Gr(l)y > G -: G -0
! \ I
05 C - BC) > EC) - 0

!
0

So we have an exact sequence 0 —» L — Ker f— Ker f—» 0. Thus L=>~Homg(R, Ker f)

and Ext!(R,Ker f)=0. Moreover, Exti(R, Ker /)=0 for all i>2 since pdR<1. So
Ker fis a colifting of L. But pdfiG)< oo by assumption. So G=G(Ker /)@ E for
some injective R-module E. But then E=0since L < G is essential. So we are done.

We now conclude the section by characterizing R-modules that are weakly
coliftable to Gorenstein injective R-modules.

Theorem 4.11. The following are equivalent for an R-module L.

1) L is weakly coliftable to a Gorenstein injective R-module.
2) L is a direct summand of Hompg(R, Gg(L)).

Moreover, if R is 1-Gorenstein, then each of the above statements is equivalent to
3) Hompg(R, Sp(L))= L@ Sk(L).

Proof. 1=2. Let M be a Gorenstein injective R-module that is a weak colifting
of L. Then we have the following commutative diagram

0> L - Gg(L) » 93 -0

[ 1 1
0-L-> M —)%—»O

We now apply Hompg(R, —) to the diagram to get the following commutative diagram
since Homg(R, L)~ Extk(R, L)~ L.



254 Edgar E. Enochs and Overtoun M. Jenda

0 » L — Homg(R Gg(L)) » Homg(R,98L) L - 0

I l l I

But L is a direct summand of Hom(R,M). So L is a direct summand of
Hompg(R, Gr(L)).

2=1 follows from the definition.

1 =3 follows from Lemma 3.2.

3=1 is trivial since Sg(L) is a Gorenstein injective R-module because R is
1-Gorenstein.
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