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K3 surfaces with order five automorphisms

By

K . OGUISO and  D.-Q. ZHANG

Introduction

Let T be a normal projective algebraic surface over C with at worst quotient
singular points (= Kawamata log  terminal singular po in ts in  the  sense of [Ka,
K o ]). T is called a  log Enriques surface if the irregularity h1 ( T, (9T ) -= 0 and if a
positive multiple /K T  of the canononial Weil divisor K T is linearly equivalent to
z e ro . W ithout loss o f  generality, we always assume from  now  o n  th a t a log
Enriques surface has n o  D u  V a l singular points (see th e  comments after [Z1,
Proposition 1.3]).

The smallest integer / > 0 satisfying /KT — 0 is called the (global) index  of
T. It can be proved that / 6 6  (cf. [Z11). Recently, R. Blache [B1] has shown
that / <  21. H e also studied the  "generalized" log Enriques surfaces where log
canonical singular points are allowed.

Rational log Enriques surfaces T can be regarded as degenerations of K3 or
Enriques surfaces, which in  turn played im portant roles in  Enriques-Kodaira's
classification theo ry  fo r  s u r f a c e s . In  [Al, A .  Alexeev [A l h a s  p ro v e d  the
boundedness of families of these T. In 3-dimensional case, the base surfaces W of
elliptically fibred Calabi-Yau threefolds (P DI : X —4 W  w ith  D.c 2 (X )  0  are
rational log Enriques surfaces (cf. [01-04 1).

L et T  be  a  lo g  Enriques surface of index I. The Galois Z//Z-cover

I —1
7E : Y := Spec e.or (D i= 0  CT ( —iKT ) —> T

is called the (global) canonical covering. Clearly, Y is either an abelian surface or
a  K3 surface w ith  a t w orst D u  V a l singular p o in ts . W e no te  a lso  tha t it is
unramified over the  smooth p a r t T— Sing T.

W e say that T is o f Type Am  o r  D, if Y has a  singular point of Dynkin type
A„, o r  Dn ;  T  is  o f  actual T y pe ( 0 ,A,n ) 0  ( SD,,) ( 0 E k )  if  S ing  Y is  of type
(0 , A,n ) ( 0 D n ) t  (10Ek)•

A round 1989, M . R e id  an d  I .  Naruki asked the second author about the
uniqueness of rational log Enriques surface to  Type D 1 9 .  The determinations of
all isomorphism classes of rational log Enriques surfaces T of Type A 1 9 , D 1 9 , A l8
and D i g  have been done in [OZ1, 21 (see also [R1]). As a corrolary, the minimal
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resolutions X d of the canonical covers of such T  are isomorphic to the unique K3
surface of Picard number 20 and discriminant d for d = 3  o r  4 .  So there are only
two such Xd•

Here we consider the cases A r  and D 1 7 .  We will get some new K3 surface
other than X d  above (cf. M ain T heorem  3). O ur m ain results are  as follows:

Theorem 1. ( 1 )  T here is no rational log Enriques surface of Type D17.
(2) Each rational log Enrigues surface o f  Type A 17 has index 2 , 3 , 4  or 5.

Remark 2. The isomorphism classes of rational log Enriques surfaces of Type
A 17 and  index  2 , 3  o r 4  a re  determined in [Z3, Z4].

Main Theorem 3. (1 )  There are, up to isomorphisms, exactly two rational log
Enrigues surfaces of index 5 and Type A r .  These two are given as T(9), T(14) in
Example 2.1, and both of  them  are of  actual Type A17.

(2) L et Y (i) —> T(i) be  the canonical Galois ZI5Z-cover, g(i) : X (i) — > Y (i)
the minimal resolution and 4(i) := g(i) - 1 (Sing Y (i)) the exceptional divisor, which is
of  Dynk in type A17. W rite Gal( Y (i)1T(i))= <o - (i)>.

Then the pairs (X (i),<o - (i)>) are eguivariantly  isom orphic to each other and
the f ix ed locus (point wise) X (i) ( i )  i s  a disjoint union of 3 smooth rational curves,
which are  contained in  4 ( i) ,  and  13 points. M oreov er, rank Pic X (i) =  1 8  and
Idet (Pic Xi )1 = 5.

The pair (X (i), 0 - (i)>) above is characterised in the following result, which is
sort of the  generalisation of Shioda-Inose's pairs in [OZ1].

Main Theorem 4. There is, up to isomorphisms, only one pair (X . <a>) of  K 3
surface X  and an order 5 subgroup <a> of  Aut(X ) satisfying:

a*  acts non-triv ially  on non-zero holomorphic 2-form s, the f ix ed  locus X 6

contains no curves of  genus >2 , but contains at least 3  rational curves.
M oreover, (X , <a>) is eguiv ariantly  isom orphic  to  (X (i),<a(i)>) in M ain

Theorem 3.

Remark 5. In  [ 0Z 4 , Z 51 , w e  have  proved sim ilar results o n  K 3  auto-
morphisms o f  qu ite  arb itrary  order. In  particular, we proved that fo r each of
p  = 13, 17 and 19, there is, up to equivariant isomorphisms, only one pair (X . <a>)
of K 3 surface X  a n d  a n  order p  subgroup <a> of A ut(X ) (with n o  any other
conditions on X).

Main Theorems 3 and 4 imply that on the surface X  (with the automorphism
a) in Main Theorem 4, there are 2 divisors 4(i) (i = 1,2) of the  same Dynkin type
A r  such that the triplets (X , <a>, LI(i)) are not equivariantly isomorphic to each
other. B y v irtue  o f this phenomenon, we pose the following:

Question 6. I s  it t ru e  th a t  th e re  e x is ts  o n ly  o n e  K 3  su rfa c e  X  with
rank Pic X  =  18  and Idet(Pic X)1 = 5, which can be contracted to a normal K3
surface Y with a  type  A r  D u V al singular point?
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Remark 7. ( 1 ) In  Theorem 3.1 of §3, we shall determine the  isomorphism
class of Pic X, as an abstract lattice for the surface X  in Question 6 (see the proof
of Theorem 3.1). It turns out that there are two ways of contractions h, : X —> Y,
of type A 1 7  divisors A, such that Pic yi =  ZH, and  H? = 10, H  =  90.

(2) T he phenomenon of coexistence of these two h , o r  A , occurs because
there are two different embeddings of type A 1 7  lattice into Pic X : one is primitive
and the other is not (see the  proof o f Theorem 3.1).

The organisation of the paper is a s  fo llow s. In  §1 , we consider automor-
phisms a  of order 5 on K3 surfaces, and describe in detail the action of a around
points ly ing o n  linear chains o f  sm ooth  ra tional curves. A  precise relation
between the numbers of a-fixed isolated points and curves is obtained in  Lemma
1.4 by applying the fixed point theorem for holomorphic bundle, which was proved
by Atiyah, Segal and Singer in [AS!, 2].

In §2, we construct precisely two rational log Enriques surfaces T(9), T(14) of
index 5 and actual Type A 1 7 , starting from a nodal cubic curve and adopting the
so called Campedelli's approach in  the  terminology o f [R 1].

In the proof of Theorem 3.1, we determine Pic X  for X  in Question 6 and also
construct 5 Jacobian elliptic fibrations on X  (non-isomorphic to each other). To
construct a  Jacobian elliptic fibration, we define a divisor In in Pic X  who behaves,
from the viewpoint of intersection with other divisors, just like an elliptic fiber, and
prove the  nefness of ,  which is one  of the  hardest pa rt and  possibly a  "new
technique" applicable to  quite  a  lo t of general situa tions. Another technique in
proving the equivalence of the existence of any 2 of the 5 elliptic fibrations is to
fully apply T . Shioda's theory o n  Mordell Weil lattices [Shi.

§4  is devoted to the  proofs of the  theorems.

Acknowledgement. The present version of this paper was completed during
th e  first author's v isit to  S ingapore. T h e  au thors w ould  like  to  express their
gratitude to  the JSPS programme and the National University of Singapore for
the financial suppo rt. T he  authors would also like to thank the referee for very
careful reading.

1. Preliminaries

In  this section, we shall fix the following notation:
T  is a  ra tional log  Enriques surface of index / a n d  t : Y  T  the  (global)

canonical covering. g : X  Y is a minimal resolution and T := (Sing Y), the
exeptional locus.

N o te  t h a t  TC is a  G a lo is  covering  such  tha t G a l( Y IT ) = Z H Z  and
Y/(Z//Z) = T .  Clearly, there is a  natural action of Z//Z o n  X  such that the
minimal resolution g : X —> Y  i s  (Z//Z)-equivariant. W e  n e e d  th e  following
lemmas for the  later use.
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Lemma 1.1. L et T  be a  rational log Enriques surface of  index I w ith  Y  the
canonical cov er. T hen a*co ( i co for ex actly  one generator a  o f  Z I I Z ,  where

= exp(27W -1/1) and co is a non-zero holomorphic 2-form on  Y  or on  X.

P ro o f  The result follows from the definition of I.

Lemma 1.2. W ith the notations and assumptions in  L em m a 1.1, we have:
(1) The g-exceptional divisor r is  a-stable.
(2) Ev ery  singular p o in t  o n  Y  h as  a non-triv ial stabiliz er subgroup of

<a> = Z IIZ . In  particular, every connected component o f  F  is a-stable provided
that I is  prime.

(3) Every a i -fixed curve on X  where a i i d ,  is contained in  F and  hence a
rational curve.

P ro o f  (1 )  is true because the singular locus Sing Y is  a-stable.
(2) follows from our additional assumption that T  = Y /a  has no D u Val

singular poin ts. (3 ) is true because 7Z : Y —> T is unramified outside the finite set
Sing T.

Lemma 1.3. W ith the assumption and notation in Lem m a 1.1, assume further
th at I  = p q  f or positiv e  integers p , q . T hen Y 1 :=  Y I <o- q> is a rational log
Enriques surface of  index  p w ith the quotient morphism  Y  Yi as the canonical
cover.

P ro o f  Ths follows from the fact that the (global) canonical index is equal to
the 1.c.m. of local canonical indices.

Lemma 1.4. L et X  be a K 3 surface with an order f ive automorphism a  such
that a*co = C 5co (see L em m a 1.1 f o r notation). L e t N i ( i = 0, 1, 2, ...) b e  the
num ber o f  a-f ix ed curv es o f  g e n u s  i, le t N  := No — E i , , ( i-  1)N1, and le t

( i =1 ,2 )  b e  the num ber of  a-f ixed points at w hich a  can be diagonalized as
a t ( c -i ,

Then the 1-dimensional part o f  X  i s  a  nonsingular divisor. W e  h av e  M 1 =
3+  2N , M 2  =  1  +  N.

P ro o f  Since a*co =  (co, one has the diagonalization a t = C1+1) for
i = 0, 1 o r 2 , around a  a-fixed point P  with suitable local coordinates (x, y). I f

=  1 ,2 , P  is isolated in  X a ;  if  i 0  then X ' is equal to  { y = 0} and  hence
smooth.

We now calculate the holomorphic Lefschetz number L (a) in two ways as in
[AS 1, 2 ,  pages 542 and 5671:

L (a) = (-1)'Tr(a*1 f r(X ,C x )),
1=0

L (a) = a(P,)+ E b ( C ,) .
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Here
c -k c ,a(P1)  = 1/det(1 - a* IT p,) = 11(1 )(1 k+1 )

b ( g ) (1 g ( c i ) ) 1 0  _  c -4 )( c - 4  .12
) /

 (1 _

c ,where P, is  an  isolated a-fixed point with a t (c-k , k+i )= is the tangent
space to X  a t P,, g(Ci )  the genus of Ci  a n d  ( 4 th e  eigenvalue of the action a * on
the normal bundle of

The first formula yields L(a) = 1 + C -1  b y  the Serre duality H ° (X , (.9(Kx)) v

H 2 (X  , x ). Plugging this into the second formula for L (a) , we get:

1 + C - 1 _ ' ) ( l / 1/2 / c-2)2 + N o  ±  0 / 0  0 2.

M ultiplying this equality by denom inators w e obtain th e  following o n e  after
simplification:

c2 ± 2c-1 mi c- 1 ± m2 (1 c - 2 ) c2 c - 1 ) .

Using the re la tion E ;4. 0 C` = 0  w e can transform  th e  above equality  into the
following:

(- M 1 + M 2+ N  + 2) + (-M1 + 2N + 3 )  +  H M I + 2N + 3g 2

+ ( - MI + M2 ± N  + 2) =  O.

Since 1, C, C2 , C3 a r e  linearly independent over Q , the coefficients in the above
equality all vanish, and  hence Lemma 1.4 follows.

Lemma 1.5. L e t X , a, N  b e  as in  L em m a 1.4. T h en  w e have:
(1) T h e r e  a re  i n t e g e r s  ( s ,  t )  w i t h  s > 0 ,  t  > 1  and  s  + t < 5  su ch  th a t

N  = 4  -  (s + t), p(X ) = 22 - 4f and a t ha s th e fo llow in g diagonalizations, where T x

i s  the tran scen d en ta l la ttice  of  X  [B PV , p . 238]..

a t  (Pic X  0 C) = diag[/22_4(s+o, diag[C5, C5/] ° s ],

a t  (  T x  C) = diag[(5, a  a  ](13'1•

(2) N  = 3  if  and o n ly  if  p(X ) = 18 and a t  Pic X  = id.
(3 )

 
Suppose N  = 3. T hen  Idet(Pic X)1 = discr( X) = 5.

P r o o f  (1) We only need to show N  = 4  -  (s + t) and for the rest, we refer to
[N1, Theorem 3.11 and  the  fact that B2(X ) =  2 2 . Consider the topological Euler
number:

4
= E ( - 1 ) '  Tr(a * 1 H i (X ,C)).

i=o
O n  th e  o n e  h a n d , x wp (X a) = M  +  M2 ± 2No ,  2 N i (2 - 2i) = M 1  + M2 1-

2N = 4 + 5 N  (cf. L e m m a  1.4). O n  t h e  o th e r  h a n d , Tr(a*1 (Pic X )  C) =
(22 - 4s - 4t) - s, and T r(e l T x  C )  - t .  Thus 4 + 5 N 2  + (22 - 5s -- 4t) - t,
and N  = 4  -  (s + t).
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(2) follows from N  = 4  -  (s + t), t  1 and p(X ) = 22 - 4t.
(3) Suppose N  = 3. Then s = 0, t = 1. Note that T x  is a Z[<o-*>]-module.

The diagonalization of a* I (Tx C) C ) and the fact that 0 4 (X) = E', 0 X ' is  the
minimal polynomial of C5 over Q , imply:

CLAIM 1. g E Z{<0-* >1 annihilates t E Tx  - { 0}  if  and only  if  g = a0(o -*) for
som e a e Z .  H ence T x  is a f ree Z [0*>]-m odule, where d* = +  < 0 4 ( o -*)>.

By Claim 1, T x  '"=-' ( Z [ < e > ] ) r  fo r  some r > 1 because Z[<6- *>] is  a  P.I.D.
Since 4 = rank T x  = 4 r, one has r  = 1 .  So there is a  Z [0 -*>]-module isomor-
phism: r : Z[<6-*>] -> Tx . Hence we have:

CLAIM 2. ei( i  =  1,2,3,4) f o rm  a Z -b as is  o f  T x  so  th at o - *ei =
ei+ i ( i = 1, 2, 3) and a*e4 = -  (el ez e 3  +  e4)•

S in c e  a* 1Pic X  -= id, t h e  natural iso m o rp h ism  T j,'IT x  H 2 (X ,Z )/
(Pic X  ( )T x )  (P ic  X ) v  /Pic X  [B P V , L em m a 2.5, p. 13] implies t h a t
u * I (T ; IT x )= id. N o w  for any x + T x  E T ; /T x , one has x  o- i *x (mod Tx)
for all i. Hence 5 x  0 4 (o -*)x 0  (mod T x ) .  So, TAY /T x  ( Z / 5 Z ) c ) r  for some
1 < r < 4 by noting that rk T x  = 4 and by [Ko, Theorem in §0] for <o-> H x  now
(cf. (2)).

We assert that TA 1Tx  = Z / 5 Z .  Indeed, for any x E  T ; -
Tx, one can write x = a1e115, where a, e Z . S in ce  o- *x -  x 0 (mod Tx),
we see that

a1 +a4, a l  -  a z  - az  - a3 - a4, a 3  -  2a4

a r e  a l l  0  (mod 5). Hence a, iai (mod 5 )  fo r  a l l  i = 1 ,2 ,3 ,4 . Thus x
al E i

4  i e 1I5 (mod T x ) .  Since x  is n o t  i n  Tx , g.c.d. (5,ai) =  1  a n d  hence
sx E i

4_1 ie i l5 (mod T x ) for some s e Z .  This proves the assertion.
Now (3) follows from this assertion and the fact that discr(X) = Idet(Tx)1=

TÀ,1 I T x l .  This completes the proof of Lemma 1.5.

Lemma 1.6 (5-Go Lem m a). L et X , a  b e  as  in  L em m a 1.4. A ssume that
C, is  a  linear chain of  a-stable smooth rational curves C i w ith  C 1 . C1 1 = 1.

S et P i := C,11 C1.
If  n  = 3, there is a  a-fixed curve D  w ith D .(C i + C 3) = 1. If  n  = 5, exactly

one of  C i is a-f ix ed, say  C r ,  and the quadruplet a*IP1, o - *IP2, a* P 3 , a*  P 4  of
diagonalized local a"-actions, is equal to the unique portion of the following recursive
sequence such that a' I P r =

(C, 1 ), ( ), (C-I
2) , ( c -2  c -2 ) , ( c 2 , c 1) ,

(C 
I ) ,

 ( 1 , C), (C- 1  , C), (C- 2 1 C- 2 ) , (C2 , C I )1

P ro o f  We use the observation at the first paragraph of the proof of Lemma
1.4 and the fact that if a* I =(Ç s .C 1) so that is the eigenvalue of o- w.r.t.
the tangent to Cl a t  P1_1 then a* P, = ,
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Lemma 1.7. L e t  X ,  a  be as in  L em m a 1.4. A ssume that 0 : X  — >13 1  i s  an
elliptic fibration and n is a  singular fiber consisting of  a-stable curves. T h e n  f i t s
one of  the follow ing 5 cases:

(1) n C „ w here C i .C1 ± 1 = C5n .C 1  =1 , is  o f  K o d aira type 15,, for
som e 1 < n < 3. M oreover, C 1 , C 6 , . . . , C 5 n - 4  a re  only o--f ixed curves in 17, after
relabelling.

(2) n = C1+ C2 + 2(C3 + C4, + + C5n+3) C 5 n + 4  C 5+5, where Ci.C3 =
C 53 .0  51 7+5  = C  C i± i = 1  ( i = 2, 3, ... , 5n + 3), is  of  K odaira ty pe 1 5*n f o r  some
n 0, 1, 2. M oreover, C3, C8, • • , C5n+3 are  only  a-f ixed curves in n.

(3) n is of Kodaira type IV *, III* (resp. II*). The branch component R (resp.
the branch component R and the tip com ponent furthest away from  R) is a-fixed.

(4) n = C1 + C 2  + C 3  is  o f  K odaira ty pe  IV . Each Cj  i s  a-stable but not
a-f ix ed . a  can be diagonalized as a* 1P0 = (c 2 , .7,-  2 )  a t  the  common point Po
c i n C2 n C 3 , and as o - * I = (1 ,( )  a t  the second a- f ix ed point Pi  on

(5) =  C 1  +  C 2 is of  K odaira type III. Each Cj  i s  a-stable but not a-fixed.
a can be diagonalized as a *  P 1) = (c - 1 , ( 2 ) at the common point Po := C1 fl c2, and
as o- *  Pi  = (C -

P ro o f  This follows from the  analysis of a*-action a t  po in ts in  X  as in
Lemma 1.6.

§ 2 .  Examples of index 5  and Type A 7

In the present section, we shall construct two isomorphism classes T(9), T(14)
o f  rational log  E nriques surfaces of index  5  and  actual T ype A 1 7  (cf. Main
Theorem 3).

Example 2.1. Let .E  a nodal cubic curve in P 2  w ith  P 1  as a inflexion
point and P2  as its  node . D eno te  by  H  (resp . /7 ) the tangent (resp. one of two
tangents) to  E 4'  a t P 1  (resp . P 2 ). W e p rove  the following lem m a. This lemma
and  the  precise construction of T (i)  below  w ill also be used in  proving Main
Theorem 3(1).

Lemma 2.2. A fter a change of  coordinates, the data above can be specified
as follows: L','4 is given by  Y 2 Z  = X 2 (X  + Z ), P 1 =  [0: 1: 0], P 2  = [0 : 0 : I], I  =
{ Z  = 0}, and IL; = { Y  —  X  = 0}.

P ro o f  First, w e m ay assume that P i =  [0 : 1: 0] a n d  I 1'6 = {Z  = 0} after
changing coordinates. N ow  E 't is  g iv e n  b y  Y 2 Z = X 3 +  aX 2 Z  +  la Z 2 +  cZ 3

[R2, E x . 2 .10 , p . 41]. M ay  assum e th a t the  node P 2  = [0 : 0 :  1]. H e n c e  b =
c = 0  and a  f  0. N o w  one  o f the  p ro jec tive  tran sfo rm ations (X .Y ,Z )=
(X ',+V aY ',Z ila)  will change the data to  those in  Lemma 2.2.

W e  now  take  th e  s e t  o f  d a ta  Z 't : Y 2 Z  = X 2 (X  + Z ), e tc . a s  in  Lemma
2.2. Let V: V  P 2  be the unique blowing-up of P1, P2 and 7 their infinitely near
points, such that v- 1 (E 't + H  + 1.'7) is given in Figure 1, where 14 = v/(E1), etc.,

-
2
) a t  the second a-fixed point Pj  on  C ,.
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Fig. 1

where E2=  — 1  and all other curves have intersection — 2. The relation
2/7 + 114 induces:

(2.1.1) := 3//3 + 2(//2 + + 116) + H i + H5 ± /17 := + Ea +

So are fibers of an elliptic fibration ço : V —*P I and E, E3 are cross-sections of ço
with E . l a =  E .H 7  = 1 . By the way, the only remaining third singular fiber 6  of
go is  of Kodaira type

Consider the relation

(2.1.2) ev (1  + 4 2) Cv(W ® 5 •

Consider the Galois Z/5Z-covering:

4: W = Spec(( , 0 , = 0 — ›  V.

This W has 3  Du Val points of type <5,4> (resp. or <5, 1>, or <5, 2>) over the
3  intersection points in  2  (re sp . the 3  points //3 fl /7, for i = 2 ,4 ,6 ; or the 3
points H, n / 7 1  for i =  1 ,4 ,6 ) .  Resolving these singularities and blowing down
uniquely and smoothly curves lying over , we get a K3 surface X with an elliptic
fibration çLi : X —4 P I induced from yo, so that the fibers // I , 112 lying over i s  of
Kodaira type IV , /15, respectively.

Clearly, we may take a  generator a e Gal( W/ V) L.' Z/5Z such that cy*co =
5 (.0 where co is  a non-zero holomorphic 2-form on X  and =  exp(27 /5).

B y  th e  w ay , if  o n e  takes one fiber 173 o f  i4i ly in g  o v e r  6 ,  then 5  fibers
a ir73 (i = 0, 1, ,  4 )  of Kodaira type I  are only fibers lying over 6 .

Denote by F , T , the strict transforms on X  of E , E , for i = 3,4, a, b. T h e
graph of F + F 3  ±  + 11 2 is  g iven  in Figure 2. To be precise, one can write
uniquely in = F1+ T1+ r 2 so that F , ,  r l ,  r 2 l ie  over the points H3 n H i for
i = 6, 2, 4, respectively.

Clearly, each curve in F + T3+17 1 +17 2 is  a-stable (in fact, a* 1Pic X = id, see
Lemma 4.1) and the fixed locus

X ' = Supp(F4 + r 1 +roll{P1};=31,
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Fig. 2

where the first 12 P 's  are intersection points (not on F k  for a ll k  = 4, a, b) in
F + 1 7 3 +1/2 an d  P 1 3  is  a point lying on F1.

Now F1 + F 2  + F 3  + 1 2  contains exactly two divisors F(a), F(b ) of Dynkin
type A17:

-  F 2  -  F 3  -  •  •  •  -  1 7 16 - F17.

One is when (a, b) = (9,14) and the other when (a, b) = (14, 9). Let g: X  --* Y  (i)
be the contraction of F(i)  to  a point Q i .  Then the induced u-action on Y(i) has
Q i and the image of F fl F1 a s  only fixed po in ts. Clearly, T (i) = Y  (i)I a- i s  a
rational log Enriques surface of index 5  and actual Type A 1 7 .

Remark 2.3. In [Z2, Example 6.121,  we constructed a  rational log Enriques
surface T  of index 5 and Type A 17. I n s te a d  of T  we used ( V', D ') there . T o  be
precise, D ' is a union of the following two linear chains on the smooth rational
surface V ' and V' T  is  the contraction of D'

( 2 )  (  2 )  (  2 )  (  3 )  (  2 )  (  3 )  (  2 )  ( - 2 ) — ( - 2 ) ,  ( - 2 ) — ( - 3 ) .

Since the (-1)-curve in [Z1, Example 6.12 and Figure (8)1 links the only (-2 )-
curve in the second connected component of D ' to  one of tw o  (-3)-curves in
the first, the strict transform F  on X  of i s  a  smooth rational curve with
F T  = F .F 1 4 = 1 in  the notations o f the p ro o f  o f M a in  Theorem  3 ,  after
relabelling; hence this T  T ( 1 4 ) .

§ 3 .  A sublattice of type A17

In this section, we shall prove:

Theorem 3.1. L et X  be a K 3 surface of  Picard number 18 and Idet(Pic X)1 =
5. A ssume that there is a linear chain F of  17 sm ooth rational curves F's  on  X
w ith F i .F i ± i  =1 . T hen  w e  hav e:

(1) There is an elliptic fibration : X  ---+ p
i

such that iji has f ibers th and 112

of Kodaira types (13 or IV ) and / 1 5 , with F 3  as a cross-section (after relabelling F,
as  F i g _ i  if  necessary ), and ni = Fi + r1 + 1 7 2, - =  F 2  ±  7

4 Fi w here F,'s are
sm ooth rational curves w ith Fi V ; = F2  F I =  1 (i =1,2; j = 4,17).
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(2) There is a unique cross-section F of  tp such that F.F i = F . (r, + r 14 ) = 1.
(3) L et X  -> Y  be the contraction of  F, and let H denote the ample generator

of  Pic Y  and also its pull-back  on X.
If  F .F9 = 1, then H 2 =  10, and F (the one generated by  F t 's) is an index  3

sublattice of its primitive-closure t  in Pic X , so  that t  Z H  is a sublattice of index
2  in  Pic X.

If  F. F14 =1, then H 2 = 90 and  F is a primitive sublattice of  Pic X  such that
F C) Z H is a sublattice of  index  18 in  Pic X.

Rem ark 3 .2 .  I f  F . F9  = 1, w e  re lab e l i n  t h e  following w a y :  r::=
F, (i = 1, 2, 3, 4), r 5 := F 2 ,  11; = F23_j ( j = 6, 7, ... , 17). T hen F.I1 4  =  1. In
other words, by replacing F  by a  new r  of D ynkin type A 17 we can always
assume that F. /1 4 =  1  (or F .F ; = 1 by a  similar argument).

The proof of Theorem 3.1 consists of Lemmas 3.3-3.5 below . Let X , F =
E ,17

1 F „ H  be a s  in  Theorem 3.1. In  th e  sequel, we shall use the same F  to
denote th e  su b la ttic e  in  Pic X  generated by F 's. N o t e  th a t F 1  c Pic X  is
generated by the nef and big divisor H.

Lemma 3 .3 .  A ssume that F is a primitive sublattice in Pic X . T hen w e hav e:
(1) Suppose that h e Pic X  satisfies Pic X  = F + Zh (the ex istence of  such h  is

f rom  the primitivity of  F in Pic X ) .  T h e n  +h  h +  := A (H + 7 Z  iF i ) (mod T),
af ter relabelling F ; a s  F18_1 if  necessary . M oreov er, H 2 = 9 0  an d  'Pic X
F  Z H I  =  18.

(2) { TI, F2, , F 17 , h+ } form  a Z-basis of  Pic X , and the intersection form  of
this basis is given by : hi_ = -46 , h + .F17 = -7 , h + .F, = 0 (i =- 1, 2, ... ,16).

(3) T here a re  sm oo th  rational cu rv es F, F1 , F 2  s u c h  t h a t  F  2 h +  -

E ,1-7 1 iri+( r1 5 + 2 r , , + 3 F17) ,F 1 -  3h+ 1 1(3 + OF; + F1,F , - 3h +  -
E,L7 (4  +  i)F; + (3F1 + 2r2 + F3).

(4) Theorem 3.1 is true w ith F.T14 = 1, by  letting F, F1, F2 be as in (3) and
Fi + F1 + F 2 , 112 := F 2  ± E i l-74 r  t fr

P ro o f  (1) Let h e Pic X  so that Pic X  =  T +  Z h .  Claim (1.1) below can be
similarly proved as in (0Z11.

CLAIM 1. Set n 1Pic X  : y e Z 111. T hen w e hav e:
(1.1) A fter replacing h  by  - h  if necessary, nh H  (mod F )  and hence h
+ E,'', a,F,) f or some integers a,.

(1.2) n  divides id e t(F )  =  1 8 . Moreover, 5n2 =  18H 2 . Hence n = 6, 18.

N ote that ( a i ,  a2 , . . ,  a i l )  i s  the unique solution of the linear system:

)

X X , F 1 = 0  (j = 1, 2, ... , 17).
17

i=1
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17 18a
Since det(F ,.r; ) =  -1 8 ,  18a1/n e Z .  H e n c e  18H/n = 18h – = sH

for some integer s. S o 18/n =- s  and n I 18. The second assertion of Claim (1.2)
follows from the observation that I det(Pic X) In2 =  d e t ( F  Z H )  .

Note t h a t  ( E n  a,F,). =  n ( h . T J ) 0 (mod n )  for all j. Hence

–2a1 + az, a,_1 – 2a 1 + a/+ 1 (i = 2, 3, . , 16), a i6  –  2a17

are all 0 (mod n). S o  a i i a i( m o d  n) for all 1 < i < 17. Thus
2

2

n

-
2

(11 + iFi =  
n

1

2  
(H 2  — 18 x 174)

1 17

5 18 x 17a 2

18 n2 •

For the latter to  b e  an  integer, n = 18 and a l =  + 7  (m od  18) (cf. Claim  1.2)).
The above argument also shows that h h + + 7 E i l _ 7 1 i F i )  (mod F).

Since h_ A (H  + 7 E i
l_7 1 F 1 8 )  (mod F ) ,  the assertion (1) is proved.

(2) follows from the definition of h+  and a direct calculation.
(3) Use the same F, F1, F2  to denote 2h+  – iF 1 + (r15 + 21- 16 + 3r17),

3h+  –  E iL7
1 (3 + i)F i +  F i, 3h +  –  E i

117
1 (4 + i) r i +(3.T i + 2F 2  +  F 3 ), respectively.

We shall show that each of IF!, IF] I and IF2I contains a smooth rational curve as a
member.

A direct calculation shows Claims (2.1), (2.2) and (2.3) below.

CLAIM 2. ( 2 . 1 )  H.h +  =  5 ,  F 2 = = = – 2 ,  H .F  = 1 0 , H .F i= 15 =
H. F2 .

(2.2) The intersection num ber (0 or 1) between any  tw o distinct divisors of F,
F1, F2, I ', ( i = 1 ,2 ,...,1 7 ) are as discribed in Figure 2 w ith  (a,b )= (14,9), if ive
regard these divisors as irreducible curves, e.g. F 2T 4 =  F2 F17 =  F.F1 =  F .F 1 4  =  1,
F.F2 = F.F i = 0  ( 1  < i  17,i 1 4 ) .

(2.3) F 1  + +F 2  F 2  +  E i
l T , .

(2.4) IF! f 0 , 0  (i = 1,2). Hence w e assum e F > 0, F1 > O.

F 2 =  – 2  and the Riemann-Roch theorem imply that 0 ,  o r I –
Ø . S in c e  F.H  > 0, where H  is nef and big, we have 0 .  Similarly, we can
finish the proof of Claim (2.4).

CLAIM 3. S et G  := F1+ F1 + F2.
(3.1) G .F 3  = 1 , G .T ,=0  (1 17, i 3 ), G .F =1 , G .F 1 =0  ( i= 1 ,2 ) ,

G2 =  O.
(3.2) G  is a  numerically effctive divisor.

( 1 17
h + – a i )T ii s  an  integer, which is equal to
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Claim (3.1) can be verified easily using Claim 2. Suppose the contrary that
Claim  (3.2) is false. Then there is a  smooth rational curve El ($ r i fo r  any i)
such that G.Ei —  1  b y  n o tin g  th a t 1 G 1  0  (C la im  (2 .4 )) .

By the proof of Theorem 1(3) in [S, p. 573], there is an effective divisor N.
a  u n io n  o f  E l a n d  other sm ooth rational curves, such that P  G  —  N  i s  a
numerically (non-trivial and) effective divisor with P 2  = 0; to be precise, P is the
im age of G by a composite of reflections o f Pic X .  By [S, Theorem 1, p. 559 1,
P  m g, where ni e Z > 0  and ri is  an  elliptic curve.

W rite  N = nh +  + 1
I n iri, P = ph + + E Ï 7 p i r  w here n ,  n „ p ,  p i c Z.

Clearly, N , P are positive multiples of H, modulo F; in particular, p  > 1 and n > 1
because E i <  N .  O n  t h e  o th e r  h a n d  (n + p)h +  G  3h+  (mod T ) .  Hence
n + p = 3. T h u s  (n, p) = (1,2), (2,1).

Set c i :=  P. F, c Z > 0. W e have

CI =  P. 1 1 = — 2 P I  + P2 ,

C i=  P. F i = p i _i — 2pi + p i + i , ( i  =  2, 3, . ,  1 6 ) ,

C 1 7  =  P . r 1 7  =  — 7  +  P 1 6  -  2 P17 •

Solving this linear system, we obtain:

1 17 /- 1

P11 8  
7p + E(18 —  j)ci  ,  p i = ip i + E(i —  j)ci , (2 i < 17),

I J=I

7ip + 18p ; =
17

(18 — i)jci  — E i(18 —

We have also P.h +  = P.(H + 7 iiFi)118 = (5p +7 En ici )1 1 8 . Thus we can
calculate:

(

17 )
5p2 = 5p 2  — 18P2  =  5p 2 —  18P. ph +  + E p i F i

i=1
17 17 i-1 17 17

(7ip + 18p i )ci E (18 — + E  i(18 — Ac i ci

i=1 i= 2 j= 1 i= 1  j= i

16 17 17 jE (18 — + E E 418 —
j= 1  i= 1

I f  ci 1 ,  t h e n  2 0  5p 2( 1 8  — > j(18 — j ) ,  a n d  hence j  = 1, 17.
T h u s  ck = 0 (2 < k 1 6 ) ,  and  20  >  5p 2E i = 1 , 1 7 /(18 — / )c .  H e n c e  e ith e r
ci 1  and c i =  0  for all 2 < i < 17, or c17 = 1 and ci 0  f o r  all 1 < j < 16. But
then the equality (*) implies that 5p 2 =  17 , a  contrad ic tion . Hence Claim (3.2)
is  true.

The above argument also shows that G — mil for some ni e Z > o  and an elliptic
curve n. Since G . F 3  = 1 ,  ni —1 1 and F 3  is  a  cross-section o f the  elliptic fibra-

(*)
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tion 1// := O m . N ow  Il i : =  G = F1+ F1 + 12 and /72 :=  F2 ±7
4 T i are singular

fibers of te,.
First ri2, for otherwise =  / 2 contains 16 curves I ',  (i 3) and at least

two more cu rves. This leads to 18 = p ( X )  2 + (#,/, —  1) > 19, a contradiction
[Sb, Cor. 5.31. The same argument shows that #g, =  3, 407 2 = 15, each singular
fiber 17, (i > 3) is  of Kodaira type / 1 o r  / I ,  and the Mordell-Weil group of i,li is
torsion. Thus 112 is of Kodaira type /15 and th  is of type 13 or I V .  Hence F, is
irreducible and is  the unique member in  IF11, which is a  smooth rational curve.

T o finish (3), it still needs to show that 1F1 contains an irreducible member.
Here we may assume F > O. S in c e  F.G = I (Claim 3), F = F' +C  where F ' is a
cross-section of a n d  C  is contained in  fibers.

As in the proof of Claim (3.2), F = F' + C  does not contain either of F,
because F  21/±  (mod F )  w hile F, 3h±  (mod F ) .  N o w  0  F.F2  (Claim 2)
implies that F  = F '+ C  does not contain F4 or F 1 7 . Inductively, F .F ,= F E 1 =
F .F k  0  ( 1 =  4,5, ,  1 3 ;  j  = 17,16, 15; k  = 4 ,3 ,2 )  in  C la im  2 , im p lie s  th a t F
does not conta in  F 1 o r  F1 _ ,  o r r k _ i .  Hence F  does no t con ta in  any  of
F i (1 < i <  1 7 ) .  S o  C  is  a union of fibers. S ince — 2 =  F 2 =  (F' + C) 2 = —2+
C2 +  2CF' > —  2, C = 0 and F  F '  is an (irreducible) cross-section with F.1 - 14 =

= 1 (C la im  2 ) . This p ro v e  (3 ) . In  fac t, b y  the arguments s o  far (cf.
Lemmas 3.4 and 3.5), Theorem 3.1 for the present case is also proved.

Lemma 3.4. A ssume that F  is a not a primitive sublattice in Pic X .  Let t be
the primitive closure of  F  in Pic X . W rite  -F -L = F -L = Z H  with the nef and big H.
Then we have:

(1) : Fi = 3, a n d  I det(f)1 =  2. M oreov er, H 2 =  10 a n d  1Pic X
(T  Z H ) I  = 2.

(2) Suppose that 6 c t  satisfies t = F + Z 6 . T hen + ô 6+  :=
(mod T ) .  Hence 6+ , T , (i = 2, 3, ... , 17) f orm  a  Z-basis of  t.

(3) S uppose  t h a t  h E Pic X  satisfies Pic X  = T  +Z h . T h e n  h h+ :=
(H +6 + ) (mod f ').

(4) 0 + ,1 '2 , • • , r1 7 ,h+ }  f orm  a Z-basis of  Pic X , and the intersection matrix
o f  th is  b a s is  i s  g iv e n  b y : 6+

2 =  — 34, 6+ .F1 = 0 (2 < i < 1 6 ) , 6+ Fi7 = —6,
,(5+ . h+  = —17, h =  —6, h+=  0  (2  <  <  1 6 ) , h+ . F 17 = —3.

(5) T here are  sm ooth rational curv es F, F 1 , F7  su c h  th at F — 26 + +
E ,1-7 1o(i — 9 )Fi + h+, F1

, -, —66+  +E ;_7
 2 (2i — 3)T 1 + h+, and F 2 -• ,‘ -36+ +

7_5 (i — 4)F 1 + h+ .
(6) Theorem 3.1 is true w ith F .T 9  = 1 , by letting F, F1, F 2 be as in  (5) and

:= F1+ T 1+ F2, 112 := F 2 +  E/1114 Fi , : =

P ro o f  The first p art o f (1 ) follow s from  the fact that 18 = Idet(F)1 =
Idet(f)1 It :112 .

(2) Let 6 E t  so that t = F + Z (5. By (1), ô = a,T , for some integers
ai . Note that

36.F 1 = — 2a, + a2, 36.F ; = (4_1 — 2a + (4+1
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are  a ll 0  (m o d  3 ) . H e n c e  ai i a i  (m o d  3 ) . T h u s  6 i f ',  (m o d  F).
3

Since 6 0 F, a l+ 1  (mod 3). Now (2) follows.
(3) Set n := IPic X  : (I;  Z H ) I .  A s  in  L em m a 3 .3 , w e can  prove that

h = -,(H + ai6 +  +  ;
17

2 a i r i )  for some integers ai ; moreover n  divides Idet(t)1 =
2. The latter, together with 2H 2 = Id e t( f- Z H ) 1 =  n 2 Idet(Pic X)1= 5n 2 , implies
that n = 2  and H 2 =  1 0 .  This proves the second part of (1).

W e  s h a l l  u s e  th e  ca lcu la tion  tha t 6 +
2 =  — 34, 6 ± .F17 = —6, 6+ .F1 = 0

(1 i 16). Note that

2h.F 1 =  6 2 ,  2 h .F 2 =-- —2a2 + a3, 2h. F1 = a,_1 — 2a1 + a1+1 (3 < i < 16)

a r e  a l l  0  ( m o d  2 ) .  H e n c e  a, 0  ( m o d  2 )  fo r  a ll  2  <  i <  1 7 .  S o  h
(H + ai6 + ) (mod F).

T o  finish (3), w e have only to  show that al 1  (m o d  2 ) . In fact, if a l  is
even, then h H/2 (m o d  t)  and hence H/2 E F -L g  Pic X , a contradiction to  the
fact that H  is  a  generator of F -L . This also proves (3).

(4) is from  a direct calculation.
(5) A s in Lemma 3.3, we can prove Claims (1.1)—(1.5) below.

CLAIM 1. (1.1) H .F = H .Fi = 5 (i =  1 ,2 ) , 6+ . F = 3 , 6 + .F1 = 1, 6 + . F2 = 7,
h+  F = 4 , h+ . F1 =  3 , h ± .F2 =6; F 2 =  F,2 = —2 (i = 1,2).

(1.2) The intersection number (0 or 1) between any two distinct divisors of F,
F1, F2, F i (i =- 1 ,2 ,... ,1 7 )  are as discribed in Figure 2  w ith (a,b) = (9.14), if  we
regard these divisors as irreducible curves, e.g. F2 . F 4  = F2 .r i , = F. F1 = F. F9 = 1,
F. F2 = F.F ,= 0 (1 1 7 ,  i 9).

(1.3) F 1  +  F i + E2 F 2  + Ft •
(1 .4 ) IFI 0 ,  I
(1.5) Fo r G  := F1+ Fl + F 2 ,  o n e  h a s  G .r 3 = 1, G . T i = 0 (1 < i <17,

3), G.F =1, G.F, 0  ( i= 1,2), G 2 = 0.
(1.6) G  is a  numerically effective divisor.
(1.7) I t  is  impossible that F > F, f o r i = 1 or 2.

Suppose the contrary  that C la im  (1 .6) is fa lse . Then, as in  Lemma 3.3,
G = P + N  so that P p h + (mod f"), N n h +  (m od t )  for some positive integers

n. Hence (p+n)h +  G  F 1 h +  (m od f ) ,  and p + n 1, a contradiction.
So Claim (1.6) is true.

For i = 1  (resp. 2), 3(F — F,) = J i bi r i  w here  b. ; E Z  and b8 = —7 (resp.
— 4). Hence IF — 0  for the Kodaira dimension K(X  , F) = 0. This proves
Claim(1.7).

Now (5) and (6) can be proved similarly as in Lemma 3.3. (cf. Lemmas 3.3
and 3.5).

L em m a 3 .5 . W ith the assumptions and notations in Theorem 3.1, there is a
unique sm ooth rational curve F such that F.F = F.(F9 + r14) = 1 .

P ro o f  The existence of such F is proved in Lemmas 3.3 and 3.4. Suppose
the contrary that there are two different cross-sections F', F" each of them having

(i = 1,2).
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intersection 1 w ith  F  an d  a lso  w ith  F 9  +  F 14 . T here  a re  3  possible cases:
F'.F 9 =  F".T 9 =  1 , or F'.1"14 = =  1 , or P .T 9 =  F".F 14 =  1. But then
i f  letting F 18 := F' —  F", w e  have respectively det(F i .FJ ) = 36(2 + F '.F " ) > 0,
36(2 + F '.F " ) >  0 , and 7 + 36(F'.F") > 0, a contradiction to  the fact that Pic X
has signature (1 , 1 7 ) . This proves Lemma 3.5.

Proposition 3 . 6 .  L e t  X  b e  a  K 3  s u rf ac e  o f  P ic ard  num ber 1 8  and
1det(Pic X)1 = 5. Then the existence of  a Jacobian elliptic f ibration 0 on X  with a
cross-section Po  having two .fibers }  of  one of  5 K odaira types (i) { H*,///*} ,
(ii) (iii) { I5*,IV *} , (iv) {I ,  I2  or III} , (y ) {1 j5 ,13 or IV } , im plies the
existence of 4 new Jacobian elliptic fibrations having fibers fnç,nn- of  the remaining
4  types; in other words, the ex istence of  one type will imply the existence of  all 5
types.

Moreover, in each of  5 cases, any singular fiber n i ,n 2 ) has K odaira type
or II.

P ro o f  W e shall proceed in  the w ay "(y) (i) (ii) (iii) (iv) (y).
We shall fully apply [Sh]. Let E  = E (0) denote the Mordell-Weil lattice spanned
by all cross-sections of tfr, E° = E(0) ° the torsion-free and index-finite sublattice
{ PE E 1 P and P o m eet the same irreducible component in  each fiber}, T  the
sublattice of N S (X ) generated by the zero section P o a n d  all irreducible com-
ponents in  all fibers of 0.

CLAIM 1. (1.1) In  Cases (i)— (v), we have respectively, rk(E) = 1, E  Z/2Z,
rk(E) = 1, rk(E) = 1 a n d  E  Z/3Z.

(1.2) T he last assertion o f  Proposition 3.6 is  true.

In Cases (ii) and (v ), the calculation rk(E) = p(X )—  rk(T) = 18 — rk(T) <
16— (#17 1 — 1) — (#q 2 — 1) = O [S h , Cor. 5.31,  implies Claim (1.2) and rk(E) =
O. B y  [Sb, Th 8.7 and Def 7.3], 1E1 2 = det(T)/det(NS(X)) = det(T)/5 = 2 2. 3 2

respectively. Hence Claim (1.1) is  true.
In Cases (i), (iii), (iv), we have rk(E) 1 as above; and if Claim (1.2) is false,

i.e., if rk(E) = 0 then t/i has a fiber /73 w ith 2 components and every fiber n, for
i =  1,2 ,3) is irreducible, which leads to that 1E12 = det(T)/5, a contradiction to
an easy calculation that det(T ) is not divisible by  5  [Sh , D ef 7 .3 ]. This proves
Claim 1.

"(y) (i)". Assume tha t 0, F, )12 fit C ase (v ). Take a torsion element
P 1  E — { Po } . Then, by [Sh, Th 8.6, Table(8.16) and the proof of Th 8.41,  the
height pairing

O = =2x((9x)+2(131.P0)— contr„(p, ) .

Thus, P 1 .P0 =  0 , Po and P1 meet different irreducible components in  112 ,  and
contains a  linear chain of 4  curves linking the irreducible components of
meeting Po and P 1. It is  e a sy  to  see  th a t th e re  is  an  elliptic fibration ti/ so
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that Po + P 1 + 171 + //2 contains a  cross-section of Ill / a n d  two fibers of fitting
Case (i).

"(i) ( d ) " .  Assume that tfr, F, n i , 712 fit Case (i). By [Sb, Table (8.16)1, for
any P1 E E—   {Po}, one has <Pi Pi> = 4 + 2(Pi.Po) —(0 o r  3/2) >0, whence P1
is not torsion [Sb, proof of Th 8.41. So E  is torsion free of rank 1. Thus we can
write E = Z Pi, E0 = n Z P I . By [Sh, T h  8.7 and (8.17)],  h

2
<P1, P I>  = det(E ° ) =

det(NS(X))1E : Eo1 2 /det(T) 5 n 2 / 2 .  T h u s 5/2 = P I>  =  4 + 2(PLP0) — 3/2
(hence P1 and Po meet different tip components of ri2 ), and PIT° =  0 .  Then there
is  a n  elliptic fibration t//' so that Po + P1 + q i +172 ,  together with a n  auxiliary
smooth rational curve, contains a  cross-section of 1//' and two fibers of 1// fitting
Case(ii).

Assume that 0 , F, n i , 7/2 fit Case (ii). Take a torsion element
P1 E E — {Po}. Then 0 = <Pi, Pi> = 2X(ex) + 2(Pi.Po) — E, contro (Pi) = 4+
2(P1P0) — i(10 — i)/10 — (0 or 3/2) for some 0 < i < 9. Hence (P1.P0) = 0, i = 5
and we choose 3/2 instead of 0, whence Po and Pi meet different tip components
of /72 , and /II contains a  linear chain of 4 curves linking the irreducible components
o f  th  m e e tin g  P o  a n d  P 1 .  N ow  there is a n  elliptic fibration 1// so that
Po + P1 + + 1 7 2 contains a  cross-section of 1//' and two fibers of fitting Case
(iii).

"(iii) (iv)". Assume that 0 , F, 772 fit Case (iii). Clearly, there is an
elliptic fibration t// so that Po + q i + q 2 contains a  cross-section of t//, a fiber riç of
Kodaira type I I

*
0 a n d  a  curve F 2  disjoint from nç• L e t be the  fiber o f  1//

containing F2. If # (17)3 ,  then, a s  in  Claim  1, (#77;) =  3, rk(E) =  0 and
1E12 = det(T)/5 = 4 x 3/5, a contradiction. Thus # = 2 and 1// fits Case (iv).

"(iv) ( y ) " .  Assume that i/J, F, n2 fit C ase  (iv ). L e t n := : E
°
I.

CLAIM 2. E t„  Z/2Z.

Suppose the contrary that E  is to rsion  free . Then we can write E = Z Pi,
E

°
 =  n Z P i .  B y [Sh, T h  8.7], n 2 <P1, P i  = det(E ° ) 5 n 2 / (4  x  2 ) . This implies

that 5/8 = <Pi, Pi> = 2Z((9x)+ 2(P i . P0 ) — contr,(P1) = 4 + 2(PI.Po) —(0 o r
1 o r  7/2) — (0 o r  1/2), which is impossible (by multiplying by 8).

Suppose the contrary that Pi P 2  a re  two torsion elements in  E .  Then
0 = <Pi , P i > = 4 + 2(P,.P0) —(0 o r  1 or 7/2) —(0 o r  1/2), w h e n c e  P i .P0 = 0,
we choose 7/2 a n d  1/2, a n d  P ,  and  Po meet different components of a n d
P ,  a n d  Po m eet tip com ponents o f  r h  sprouting from different branchs.
O n  t h e  other hand, 0  =  <PI, P2> = Z ((Q x )+  (P i.P o)+  (P 2 .P o) —  (P1 .P2)
- E v contrt,(Pi, P2) = 2— (P1.P2) — (7/2 or 3) — 1/2< 0 ,  a  contradiciton. This
proves Claim 2.

By C laim  2 , we can write E = ZP3 OE ZPI. E
°
 = — Z P3, where P 1 i s  the

2

unique torsion element (of order 2). Now 5n2 /8 = det(E ° ) = —

n 2  

<P3, P3> implies
4

th a t  5/2 = <P3, P3> = 4 + 2(P3 Po) — (0 or 1 or 7/2) — (0 o r 1 / 2 ) . Hence either
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Case (iv-a) PIP°  = 0, P 3  and Po meet different components of th  and P 3  and Po
meet two neighbouring tip components of o r  C a s e  (iv-b) PIP() =- 1, P 3  and Po
meet the same component in  th  and P 3  and Po m eet two tip com ponents of q i

sprouting from different branchs.
On the other hand, 0  =  <PI  P 3 >  =  X(ex) (P1 .P0) ±  ( P 3 .P 0 ) (PI •P3) —

E, contr,(PI, P3 ) = 2  +  ( P3 Po) — (Pi . P3) —  ( 1/2 + 1/2 in Case (iv-a); 7/2 + 0 or
3 + 0 in Case (iv-b)). Thus, in Case (iv-a), P I .P 3  = 1; in Case (iv-b), P I . P 3 =  0

and P I  and P 3  meet two neighbouring tip components of ii,. T h e n  th e re  is
an elliptic fibration o' so  that Po + Pl+ P3 + /71 + 112, together with an auxiliary
smooth rational curve, contains a  cross-section of 0 ' and two fibers of 0  fitting
Case (v). This proves Proposition 3.6.

Corollary 3 .7 .  L et X  be as in Theorem 3.1. Then for each 1 < i < 5, there is
a Jacobian elliptic fibration having fibers fq i ,q 2 1 f itting Case (i) in Proposition 3.6.

§ 4. Proofs o f Theorems

We first prove Theorem 1. Theorem 1(1) is proved in [Z 4 ] . Now we prove
Theorem  1(2). Let T  be a  rational log Enriques surface of Type A 17 and index
I. By [Z3, Z4], / = 2, 3, 4, 5 or 10. Suppose the contrary that / =  10. W e shall
use the notations in L em m a 1 .1 . N o w  Y /a 2  ( re sp . Y /a 5 )  i s  a  rational log
Enriques surface of Type A 17 and index 5 (resp. 2), and hence p(X ) = 18 (resp.
p(X ) 19) by Lemma 4.1 below and [Z4, Lemma 3.1 and Corollary 3.41. W e
reach a contradiction. So Theorem 1(2) is true.

Next we prove Main Theorem  3(1). Let T be a rational log Enriques surface
of index 5 and Type A 1 7 . We employ the notations at the beginning of §1 and in
Lemma 1.1:

n: Y  —+ T, g : X  — > Y  , F = g - 1 (Sing Y ), <a> = Gal( Y/ T), =  ( 5 w.

W e  d e n o te  b y  F (1 )  =  E I r ,  w here F i .F, ± 1 =  1, the unique connected
component of F  of Dynkin type A17.

Lemma 4 . 1 .  L e t T  be a  rational log Enriques surface of  index  5 and Type
A17. Then we have:

(1) T he Picard num ber p(X ) = 18 and a* 1Pic X  =  id.
(2) T  is of  actual Type A 17 , i.e ., F = F ( 1 ) .  The f ix ed locus X ' is equal to

S upp(F + F9 ± F14) 11
IPI, P1,21 P2,3 , P5,6 , P6,7 , P7,8 , P10, it  P11,12• P12, 137 P15, 16 , P16,17 , P17 , (11•

where p o ± i  -= F i n r i,,, p ET. ] , an d  q  is  a point not on F.
Moreover, a* can be expressed as (( 5

- 2 , ( 5
- 2 ) (resp. (( 5

2 , ( 5
- 1 )) around the 4 points

Pi, 2 ' P6,7' P11,12 , P 1 6 ,1 7  (resp. t h e  9  other isolated points in  X 6r), with suitable
coordinates.



436 K. Oguiso and D.-Q. Zhang

P r o o f  By Lemmas 1.1 and 1.2, the hypotheses in Lemma 1.5 are satisfied,
and we shall use the notations there. So 4t = rank Tx = 22 — p(X ) < 4 because X
contains F(1) which is of Dynkin type A 1 7 .  Thus t =  1  and p (X )= 18.

On the other hand, each component T , of F(1) is a-stable because ord(o -) = 5
while the graph-automorphism group of F (1) has order 2  (cf. Lem m a 1.2). So
(22 — 4s — 4t) 1 7  and hence s = 0  (cf. L em m a 1.5). This proves (1).

1 #  (F) < p (X ) = 18 implies that T  = F ( 1 ) .  The rest of (2) follows from
Lemmas 1.4-1.6.

W e now  continue the proof of M ain Theorem  3(1). In  view of Lemmas
4.1 and 1.5, w e can apply Theorem  3.1. W e shall use the notations tfr, F,

(i = 1,2), e tc . there . C learly , the isolated a-fixed point g  n o t on T , equals
F n F i ,  and hence X '  Supp(rh +'12).

Since a* I Pic X  =  id ,  a perm utes fibers o f  tp. Since the cross-section F
contains only two a-fixed points F n 77, (i = 1, 2), (i = 1 ,2 ) are only a-stable
fibers o f tP. Now 24 = x (X )= Er x ( q , )  where II, runs over the set o f all
singular fibers, implies that rh, th are of Kodaira type IV , 1 1 5 (Theorem 3.1), and
that if we let 113 be any singular fiber other than th, th then ri 3 is  of Kodaira type
/ 1 a n d  only

171, 112, 0 - J * 1 /3 (0 < j  < 4)

are singular fibers of
Resolving 13 quotient singularities of X /a (under 13 isolatetd a-fixed points)

and blowing down uniquely and smoothly some curves under th (i = 1,2) we get
a  rational surface S  s o  th a t  ip  induces a  relatively minimal elliptic fibration

: S P I whose only singular fibers C, (i = 1,2,3) (under lb) are of Kodaira type
IV * , 13, II.

Let E, E , ( i = 3,4, 9,14) be the image on S  of F, T i . Then E  F 3 +  1
is given in Figure 1  where (a , b) = (9,14) o r (14,9) if  F.F9  = 1  or F.F14 = 1
accordingly (cf. T heorem  3 .1 ). N ow  L em m a 2 .2  and  the uniqueness of the
blowing-down y : S —> P2 t h e r e  show th a t  th e  ra tional lo g  Enriques surface
T Y lo- is isomorphic to T(9) or T(14) in Example 2.1 accordingly. This proves
Main Theorem 3(1).

Theorem  3(2) follow s th e  proof o f Theorem  3(1), L em m a 4.1  and the
construction of T (i) in  Example 2.1.

Finally, we prove Theorem 8 below which will imply Main Theorem 4.

Theorem 8. There is, upto isomorphisms, only one pair (X, a) of  K3 surface X
and an order 5  subgroup <a> of  A ut(X ) satisfying:

o- *w =  for a non-zero holomorphic 2-form co where C5 = exp(271V-1/5), and
the number N  = No — >,> (i — 1)N1 defined in  Lemma 1.5 satisfies N  > 3.

P r o o f  By Lemma 1.5, N  = 3, p (X )= 18, o- *  Pic X  =  id , [(Pic X) v  /(Pic X)I
= Idet(Pic X)1 = 5. By [N2, Cor.1.13.51, Pic X =  U S T  and hence there is an
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elliptic fibration tir : X —> P  with a  cross-section F. Note that a  stabilizes F and
permutes fibers of tir because a* I Pic X  = id.

Since no elliptic curve has an  order 5 automorphism with a  fixed point, a
general fiber n of 11/ is not a-stable for otherwise a e Aut(ri) fixes F fl n. Thus the
cross-section F  P ') is no t a-fixed  and hence has exactly two a-fixed points
which lie  on  fibers ?h, r/2 s a y .  Therefore, we have:

CLAIM 1. O nly  th, th are a-stable f ibers of tit. H ence X ' g Supp(rh + 172 ).
In particular, N i = 0 f o r all i 2  and N o = N  = 3.

Claim  1, Lemma 1.7, AT0 = 3 and E OE=  z (X ) = 24, where l c,  runs over
the set of all singular fibers o f 0, imply:

CLAIM 2. Only th, 112 , o- "n 3 (0 i 4) are singular fibers of where 113 is  of
K odaira type I ,  and {rh,172 } has one of  the follow ing K odaira types:

(8-1) { 11%1111, (8-2) {/10, HP}  , (8-3) {/5*,
 I V * } ,  (8-4) {40 , /1 /} , (8-5) 1/15, IV Y

In  view  of Proposition 3.6, w e m ay assume that 0 fits C ase (8-5). Then
F -1-th+n 2 c o n ta in s  a  lin ear ch a in  o f  1 7  (orderly) smooth rational curves
F  =E ,17

i F i . By Lemmas 1.4-1.6, X ' is  a disjoint union of 3 curves F4 , r9 , F14
and 13 isolated points (12 of them are on F ) .  Let X —> Y  be the contraction of
F .  Then Y/o- is  c le a r ly  a  rational log  Enriques surface of index 5  and Type
A17. Thus, (X , <a>) is  equivariantly isomorphic to (X (9) , <a(9))') i n  Theorem
3(2). This proves Theorem 8.
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