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K3 surfaces with order five automorphisms
By

K. Oguiso and D.-Q. ZHANG

Introduction

Let T be a normal projective algebraic surface over C with at worst quotient
singular points (= Kawamata log terminal singular points in the sense of [Ka,
Ko)). T is called a log Enriques surface if the irregularity ' (T, 07) =0 and if a
positive multiple /K7 of the canononial Weil divisor K7 is linearly equivalent to
zero. Without loss of generality, we always assume from now on that a log
Enriques surface has no Du Val singular points (see the comments after [Z],
Proposition 1.3]).

The smallest integer I > 0 satisfying IK7 ~ 0 is called the (global) index of
T. 1Tt can be proved that I < 66 (cf. [Z1]). Recently, R. Blache [B1] has shown
that 7 < 21. He also studied the ‘“‘generalized” log Enriques surfaces where log
canonical singular points are allowed.

Rational log Enriques surfaces T can be regarded as degenerations of K3 or
Enriques surfaces, which in turn played important roles in Enriques-Kodaira’s
classification theory for surfaces. In [A], A. Alexeev [A] has proved the
boundedness of families of these 7. In 3-dimensional case, the base surfaces W of
elliptically fibred Calabi-Yau threefolds ®p : X — W with D.cy(X) =0 are
rational log Enriques surfaces (cf. [O1-0O4]).

Let T be a log Enriques surface of index I. The Galois Z/IZ-cover

n: Y = Spece, @i, Or(—iKr) = T

is called the (global) canonical covering. Clearly, Y is either an abelian surface or
a K3 surface with at worst Du Val singular points. We note also that 7 is
unramified over the smooth part 7T—Sing T.

We say that T is of Type A,, or D, if Y has a singular point of Dynkin type
A, or Dy; T is of actual Type (®Ayn) ® (®D,) ® (@®Ey) if Sing Y is of type

Around 1989, M. Reid and I. Naruki asked the second author about the
uniqueness of rational log Enriques surface to Type Dj9. The determinations of
all isomorphism classes of rational log Enriques surfaces T of Type A9, Dyg, A3
and D3 have been done in [OZ1, 2] (see also [R1]). As a corrolary, the minimal

Communicated by K. Ueno, April 4, 1997



420 K. Oguiso and D.-Q. Zhanyg

resolutions X, of the canonical covers of such T are isomorphic to the unique K3
surface of Picard number 20 and discriminant d for d = 3 or 4. So there are only
two such Xj.

Here we consider the cases 47 and Dj7. We will get some new K3 surface
other than X, above (cf. Main Theorem 3). Our main results are as follows:

Theorem 1. (1) There is no rational log Enriques surface of Type Di;.
(2) Each rational log Enriques surface of Type A7 has index 2, 3, 4 or 5.

Remark 2. The isomorphism classes of rational log Enriques surfaces of Type
A7 and index 2, 3 or 4 are determined in [Z3, Z4].

Main Theorem 3. (1) There are, up to isomorphisms, exactly two rational log
Enriques surfaces of index 5 and Type A\7. These two are given as T(9), T(14) in
Example 2.1, and both of them are of actual Type A;7.

(2) Let Y(i) — T(i) be the canonical Galois Z/5Z-cover, g(i): X(i) — Y (i)
the minimal resolution and A(i) := (i)' (Sing Y (i) the exceptional divisor, which is
of Dynkin type A\7. Write Gal(Y(i)/T(i)) = <{a(i)>.

Then the pairs (X(i),<a(i))) are equivariantly isomorphic to each other and
the fixed locus (point wise) X (i)”(i) is a disjoint union of 3 smooth rational curves,
which are contained in A(i), and 13 points. Moreover, rank Pic X (i) = 18 and
|det(Pic X;)| = 5.

The pair (X(i),<a(i))) above is characterised in the following result, which is
sort of the generalisation of Shioda-Inose’s pairs in [OZ1].

Main Theorem 4. There is, up to isomorphisms, only one pair (X,{o)) of K3
surface X and an order 5 subgroup {o) of Aut(X) satisfying:

o* acts non-trivially on non-zero holomorphic 2-forms, the fixed locus X°
contains no curves of genus >2, but contains at least 3 rational curves.

Moreover, (X.,{c)) is equivariantly isomorphic to (X(i),<{a(i))) in Main
Theorem 3.

Remark 5. In [OZ4, Z5], we have proved similar results on K3 auto-
morphisms of quite arbitrary order. In particular, we proved that for each of
p = 13,17 and 19, there is, up to equivariant isomorphisms, only one pair (X, (o))
of K3 surface X and an order p subgroup {(¢) of Aut(X) (with no any other
conditions on X).

Main Theorems 3 and 4 imply that on the surface X (with the automorphism
o) in Main Theorem 4, there are 2 divisors 4(i) (i = 1,2) of the same Dynkin type
A7 such that the triplets (X, <o), 4(i)) are not equivariantly isomorphic to each
other. By virtue of this phenomenon, we pose the following:

Question 6. Is it true that there exists only one K3 surface X with
rank Pic X = 18 and |det(Pic X)| =5, which can be contracted to a normal K3
surface Y with a type 4,7 Du Val singular point?
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Remark 7. (1) In Theorem 3.1 of §3, we shall determine the isomorphism
class of Pic X, as an abstract lattice for the surface X in Question 6 (see the proof
of Theorem 3.1). It turns out that there are two ways of contractions /4, : X — Y;
of type A7 divisors 4; such that Pic Y; = ZH; and H? = 10, H} = 90.

(2) The phenomenon of coexistence of these two h; or 4; occurs because
there are two different embeddings of type A7 lattice into Pic X: one is primitive
and the other is not (see the proof of Theorem 3.1).

The organisation of the paper is as follows. In §1, we consider automor-
phisms o of order 5 on K3 surfaces, and describe in detail the action of ¢ around
points lying on linear chains of smooth rational curves. A precise relation
between the numbers of o-fixed isolated points and curves is obtained in Lemma
1.4 by applying the fixed point theorem for holomorphic bundle, which was proved
by Atiyah, Segal and Singer in [AS], 2].

In §2, we construct precisely two rational log Enriques surfaces 7(9), T(14) of
index 5 and actual Type A7, starting from a nodal cubic curve and adopting the
so called Campedelli’s approach in the terminology of [R1].

In the proof of Theorem 3.1, we determine Pic X for X in Question 6 and also
construct 5 Jacobian elliptic fibrations on X (non-isomorphic to each other). To
construct a Jacobian elliptic fibration, we define a divisor #, in Pic X who behaves,
from the viewpoint of intersection with other divisors, just like an elliptic fiber, and
prove the nefness of #,, which is one of the hardest part and possibly a “new
technique” applicable to quite a lot of general situations. Another technique in
proving the equivalence of the existence of any 2 of the 5 elliptic fibrations is to
fully apply T. Shioda’s theory on Mordell Weil lattices [Sh].

§4 is devoted to the proofs of the theorems.

Acknowledgement. The present version of this paper was completed during
the first author’s visit to Singapore. The authors would like to express their
gratitude to the JSPS programme and the National University of Singapore for
the financial support. The authors would also like to thank the referee for very
careful reading.

1. Preliminaries

In this section, we shall fix the following notation:

T is a rational log Enriques surface of index I and n: Y — T the (global)
canonical covering. ¢: X — Y is a minimal resolution and I" := g~!(Sing Y), the
exeptional locus.

Note that = is a Galois covering such that Gal(Y/T)=Z/IZ and
Y/(Z/IZ) =T. Clearly, there is a natural action of Z/IZ on X such that the
minimal resolution g: X — Y is (Z/IZ)-equivariant. We need the following
lemmas for the later use.
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Lemma 1.1. Let T be a rational log Enriques surface of index I with Y the
canonical cover. Then o*w = {jw for exactly one generator o of Z/IZ, where
{; =exp(2nv—1/I) and w is a non-zero holomorphic 2-form on Y or on X.

Proof. The result follows from the definition of I

Lemma 1.2. With the notations and assumptions in Lemma 1.1, we have:

(1) The g-exceptional divisor I is o-stable.

(2) Every singular point on Y has a non-trivial stabilizer subgroup of
Koy =Z/IZ. In particular, every connected component of I' is a-stable provided
that I is prime.

(3) Every o'-fixed curve on X where o' # id, is contained in I' and hence a
rational curve.

Proof. (1) is true because the singular locus Sing Y is o-stable.

(2) follows from our additional assumption that T = Y /o has no Du Val
singular points. (3) is true because n: Y — T is unramified outside the finite set
Sing T

Lemma 1.3. With the assumption and notation in Lemma 1.1, assume further
that I = pq for positive integers p, q. Then Y|:=Y/{c%) is a rational log
Enriques surface of index p with the quotient morphism Y — Y| as the canonical
cover.

Proof. Ths follows from the fact that the (global) canonical index is equal to
the l.c.m. of local canonical indices.

Lemma 1.4. Let X be a K3 surface with an order five automorphism o such
that ¢*w = {sw (see Lemma 1.1 for notation). Let N; (i=0,1,2,...) be the
number of o-fixed curves of genus i, let N :=Ny—3 . ,(i—1)N;, and let
M; (i =1,2) be the number of o-fixed points at which o can be diagonalized as
ot = (C_ivCH-I)'

Then the 1-dimensional part of X° is a nonsingular divisor. We have M, =
3+2N, M =1+N.

Proof. Since ¢*w = {w, one has the diagonalization ¢* = diag((™".¢{™*") for
i=0,1 or 2, around a o-fixed point P with suitable local coordinates (x,y). If
i=1,2, P is isolated in X7 if i=0 then X? is equal to {y =0} and hence
smooth.

We now calculate the holomorphic Lefschetz number L(o) in two ways as in
[AS1, 2, pages 542 and 567

N

L(o) = (-1)'Tr(e" | H'(X,0x)),
i=0

L(o) =Y _a(P) + Y _b(C)).

i J



K3 surfaces 423

Here
a(P;) = 1/det(1 — o™ | Tp) = 1/(1 = {F)(1 = ¢,

b(C) = (1—g(C)/(1 =) = (*CH/(1 -7,

where P; is an isolated o-fixed point with ¢* | P; = (C‘k ,C"“), Tp, is the tangent

space to X at P;, g(C;) the genus of C; and ¢* the eigenvalue of the action o, on
the normal bundle of C;.

The first formula yields L(o) = 1 + ' by the Serre duality H(X, O(Ky))¥ =~
H?*(X,0x). Plugging this into the second formula for L(o), we get:

L+ =My =1 =)+ Ma/(1 =2+ N+ /(1= 0%
Multiplying this equality by denominators we obtain the following one after
simplification:

=G+ =M M) FNCHE -,

Using the relation 37 ,¢' =0 we can transform the above equality into the
following:

(=M + My + N +2) + (=M + 2N + 3){ 4 (=M, + 2N + 3)¢?
+ (=M, + My + N +2)* = 0.

Since 1, ¢, (%, ¢ are linearly independent over Q, the coefficients in the above
equality all vanish, and hence Lemma 1.4 follows.

Lemma 1.5. Let X, g, N be as in Lemma 1.4. Then we have:

(1) There are integers (s,t) with s>0, t>1 and s+t<5 such that
N=4—(s+1), p(X) =22 —4t and c* has the following diagonalizations, where Ty
is the transcendental lattice of X [BPV, p. 238]:

o* | (Pic X ® C) = diag|ly 4+, diag(ls, (3,3, ¢4,
o | (Tx ® C) = diag[(s, (3,43, 04]®".

(2) N=3if and only if p(X) =18 and ¢*|Pic X = id.
(3) Suppose N =3. Then |det(Pic X)| = discr(X) = 5.

Proof. (1) We only need to show N =4 — (s + 1) and for the rest, we refer to
[NI, Theorem 3.1] and the fact that B,(X) = 22. Consider the topological Euler
number:

4
Xip(X7) =Y _(=1)'Te(a" | H'(X,C)).
i=0
On the one hand, x,,(X%) = M+ M>+2No+3>,,,Ni(2-2i)= M+ M+
2N =4+ 5N (cf. Lemma 1.4). On the other hand, Tr(¢*|(PicX)®C) =
(22 —4s—41t) — s, and Tr(c*|Ty ® C)=—t. Thus 4 + 5N=2+ (22 — 55 — 41) — 1,
and N =4 - (s+1).
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(2) follows from N =4—(s+1¢), t>1 and p(X) =22 —4¢.

(3) Suppose N =3. Thens=0,7=1. Note that Ty is a Z[{o*)]-module.
The diagonalization of ¢*|(Tx ® C) and the fact that ®4(X) =31, X' is the
minimal polynomial of {5 over Q, imply:

Cramm 1. g e Z[{c*)] annihilates t € Ty — {0} if and only if g = a®(c*) for
some ae€Z. Hence Ty is a free Z[{G*)|-module, where &* = o* + (D4(c*)).

By Claim 1, Ty = (Z[<a*>])®" for some r > 1 because Z[(5*)] is a P.LD.
Since 4 =rank Ty = 4r, one has r=1. So there is a Z[<F*)]-module isomor-
phism: 7:Z[<{g*)] — Ty. Hence we have:

CrLamM 2. e =1(6™) (i=1,2,3,4) form a Z-basis of Ty so that c*e; =
eiv1 (i=1,2,3) and o*es = —(e1 + €2+ €3 + e4).

Since o*|PicX =id, the natural isomorphism Ty /Ty =~ H*(X,Z)/
(PicX @ Ty) =~ (PicX)" /PicX [BPV, Lemma 2.5, p. 13] implies that
6*|(Ty /Tx) =id. Now for any x+ Ty € Ty /Ty, one has x = ¢™x(mod Tx)
for all i. Hence 5x = @4(0*)x = 0 (mod Ty). So, Ty /Tx = (Z/5Z)®" for some
1 < r <4 by noting that rk Ty = 4 and by [Ko, Theorem in §0] for (o) < Hy now
(cf. (2)).

We assert that Ty /Ty = (Zle ie;/5)y = Z/5Z. Indeed, for any xe Ty —
Ty, one can write x = Z?:l aje;/5, where a; € Z. Since o*x —x = 0 (mod Ty),
we see that

a1 +as, a—a—ay, ar—az—as, az—2a4

are all 0 (mod5). Hence a; =ia; (mod5) for all i=1,2,3,4. Thus x=
aj Zf:, ie;/5(mod Tx). Since x is not in Ty, gcd.(5a)=1 and hence
sx = Z?:l ie;/5(mod Tx) for some seZ. This proves the assertion.

Now (3) follows from this assertion and the fact that discr(X) = |det(Ty)| =
|Ty /Tx|. This completes the proof of Lemma 1.5.

Lemma 1.6 (5-Go Lemma). Let X, o be as in Lemma 1.4. Assume that
S°iL, Ci is a linear chain of a-stable smooth rational curves C; with C;.Ciyy = 1.
Set P; .= C;iNCiyy.

If n =3, there is a o-fixed curve D with D.(C; + C3) =1. If n=15, exactly
one of C; is o-fixed, say C,, and the quadruplet c*|Pi, c*|Py, 6*|P3, 0" | Py of
diagonalized local 6*-actions, is equal to the unique portion of the following recursive
sequence such that " | P, = (1,{):

1), (1,0, N3 (R @A,
(SN R N (N N (e N(CN oL R

Proof. We use the observation at the first paragraph of the proof of Lemma
1.4 and the fact that if *| P,_y = ({1, (%) so that {{ is the eigenvalue of ¢ w.r.t.
the tangent to C; at P;_; then o*|P; = ({5°, §+1).
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Lemma 1.7. Let X, ¢ be as in Lemma 1.4. Assume that & : X — P! is an
elliptic fibration and n is a singular fiber consisting of o-stable curves. Then 1 fits
one of the following 5 cases:

(1 qzzfg, Ci, where C;.Ciy = Cs,.Cy =1, is of Kodaira type Is, for
some 1 <n<3. Moreover, Cy,Cs,...,Cs,_q are only o-fixed curves in n, after
relabelling.

2) n=Ci+C+2(C3+ C4+ -+ Cspp3) + Cspys + Cspys, where C1.C3 =
Csn43.Cspys = Ci.Ciyy =1 (i=2,3,...,5n+ 3), is of Kodaira type I, for some
n=20,1,2. Moreover, C3,Cs,...,Cs,i3 are only o-fixed curves in 1.

(3) n is of Kodaira type 1V*, III* (resp. II*). The branch component R (resp.
the branch component R and the tip component furthest away from R) is o-fixed.

(4) n=Ci+ Cy+ Cs is of Kodaira type IV. Each C; is o-stable but not
o-fixed. o can be diagonalized as o*|Py= ({7%,(7%) at the common point Py :
CiNGC NG, and as o* | P; = (1,{) at the second a- fixed point P; on C;.

(5) n=Ci+ C; is of Kodaira type IIl. Each C; is a-stable but not o-fixed.
o can be diagonalized as ¢* | Py = (C",Cz) at the common point Py := C; N Cy, and
as ¢*|P; = ({2,07%) at the second o-fixed point P; on C;.

Proof. This follows from the analysis of g*-action at points in X? as in
Lemma 1.6.

§2. Examples of index 5 and Type A7

In the present section, we shall construct two isomorphism classes 7'(9), T(14)
of rational log Enriques surfaces of index 5 and actual Type A;7; (cf. Main
Theorem 3).

Example 2.1. Let X} be a nodal cubic curve in P? with P, as a inflexion
point and P, as its node. Denote by II¢ (resp. I17) the tangent (resp. one of two
tangents) to X, at P, (resp. P;). We prove the following lemma. This lemma
and the precise construction of 7(i) below will also be used in proving Main
Theorem 3(1).

Lemma 2.2. After a change of coordinates, the data above can be specified
as follows: Xy is given by Y?Z =X*(X+Z), Py=[0:1:0], P, =[0:0:1), IT{ =
{Z =0}, and IT; = {Y — X = 0}.

Proof. First, we may assume that Py =[0:1:0] and IT¢ = {Z = 0} after
changing coordinates. Now X is given by Y2Z = X3 +aX?Z 4+ bXZ? + cZ?
[R2, Ex. 2.10, p. 41]. May assume that the node P, =[0:0:1]. Hence b =
c=0 and a#0. Now one of the projective transformations (X,Y,Z)=
(X', ++/aY',Z'/a) will change the data to those in Lemma 2.2.

We now take the set of data Xj: Y2Z = X?(X + Z), etc. as in Lemma
2.2. Letv: V¥V — P? be the unique blowing-up of P;, P, and 7 their infinitely near
points, such that v=!(Z} + IT¢ + I1}) is given in Figure 1, where X4 = v/(Z}), etc.,
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Fig. 1

where E? = X% = —1 and all other curves have intersection —2. The relation
24 ~ 20§ + IT; induces:

(2.].1) & = 3”3+2(”2+H4+”6)+H1 +Ms+ 17 ~ & =24+ 2,+ 2.

So & are fibers of an elliptic fibration ¢ : ¥ — P! and E, X3 are cross-sections of ¢
with E£.X, = E.Il; = 1. By the way, the only remaining third singular fiber &; of
¢ is of Kodaira type I;.

Consider the relation

(2.1.2) Oy(E +48) = 0y(¢)%.

Consider the Galois Z/5Z-covering:
n: W = Spec, @?:0 O(—i&) > V.

This W has 3 Du Val points of type {5,4) (resp. or {5,1), or <{5,2)) over the
3 intersection points in &, (resp. the 3 points [13NII; for i =2,4,6; or the 3
points I1; NI,y for i = 1,4,6). Resolving these singularities and blowing down
uniquely and smoothly curves lying over &;, we get a K3 surface X with an elliptic
fibration y : X — P! induced from g, so that the fibers 5, #, lying over &,, &, is of
Kodaira type IV, Is, respectively.

Clearly, we may take a generator ¢ € Gal(W/V) >~ Z/5Z such that o*w =
{sw where w is a non-zero holomorphic 2-form on X and (s = exp(2nv/—1/5).
By the way, if one takes one fiber n; of Y lying over &;, then 5 fibers
a'ny (i=0,1,...,4) of Kodaira type I; are only fibers lying over &;.

Denote by F, I'; the strict transforms on X of E, 2; for i =3,4,a,b. The
graph of F+I's+ 7, +#, is given in Figure 2. To be precise, one can write
uniquely #, = Fy + I'y + I', so that Fy, Iy, I'; lie over the points II3NII; for
i =6,2,4, respectively.

Clearly, each curve in F + I's + 5, + 1, is o-stable (in fact, ¢* | PicX = id, see
Lemma 4.1) and the fixed locus

X7 =Supp(I's + Ta+ Iy) [ [P,
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Fig. 2

where the first 12 P;’s are intersection points (not on Iy for all k =4,a,b) in
F+TI3+4+n +n, and P13 is a point lying on I'}.

Now I'y + I'y + I's + 17, contains exactly two divisors I'(a), I'(b) of Dynkin
type Ai7:

r-r,—rIs—--—Ie—TIny.

One is when (a,b) = (9, 14) and the other when (a,b) = (14,9). Letg: X — Y (i)
be the contraction of I'(i) to a point Q. Then the induced g-action on Y (i) has
0 and the image of FNF, as only fixed points. Clearly, T(i) = Y(i)/o is a
rational log Enriques surface of index 5 and actual Type A4,7.

Remark 2.3. In [Z2, Example 6.12], we constructed a rational log Enriques
surface T of index 5 and Type A;7. Instead of T we used (V',D’) there. To be
precise, D’ is a union of the following two linear chains on the smooth rational
surface V' and V' — T is the contraction of D’

(=2)—(=2)—=(=2)—(=3)—=(=2)—(=3)—(-2)—(-2)—(-2), (-2)—(-3).

Since the (—1)-curve F, in [Z]1, Example 6.12 and Figure (8)] links the only (—2)-
curve in the second connected component of D’ to one of two (—3)-curves in
the first, the strict transform F on X of FJ is a smooth rational curve with
F.Ir =F.I''y =1 in the notations of the proof of Main Theorem 3, after
relabelling; hence this T = T(14).

§3. A sublattice of type A7

In this section, we shall prove:

Theorem 3.1. Let X be a K3 surface of Picard number 18 and |det(Pic X)| =
S. Assume that there is a linear chain I' of 17 smooth rational curves I';’s on X
with I';.T'iyy = 1. Then we have:

(1) There is an elliptic fibration \y : X — P such that  has fibers n, and n,
of Kodaira types (I or IV) and Is, with I'y as a cross-section (after relabelling I';
as I'\g_; if necessary), and ny, =F,+I'1+ T3, n,=F + Z:; I'; where F;’s are
smooth rational curves with F\T'i=FT;=1(i=1,2;j=4,17).
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(2) There is a unique cross-section F of  such that F.Fy = F.(I'g + I'i4) = 1.

(3) Let X — Y be the contraction of I', and let H denote the ample generator
of Pic Y and also its pull-back on X.

If F.I'g =1, then H*> = 10, and I' (the one generated by I';’s) is an index 3
sublattice of its primitive-closure I' in Pic X, so that I’ ® ZH is a sublattice of index
2 in PicX.

If F.T\4=1, then H> =90 and I' is a primitive sublattice of Pic X such that
I' ® ZH is a sublattice of index 18 in Pic X.

Remark 3.2. If F.I'y=1, we relabel in the following way: I'|:=
ri(i=1,2,3,4), I's:=F, F; =In_j(j=6,7,...,17). Then F.I'ily=1. In
other words, by replacing I by a new I’ of Dynkin type 4,7, we can always
assume that F.I'j, =1 (or F.I'y=1 by a similar argument).

The proof of Theorem 3.1 consists of Lemmas 3.3-3.5 below. Let X, I' =
S, T, H be as in Theorem 3.1. In the sequel, we shall use the same I' to
denote the sublattice in PicX generated by I';’'s. Note that I L < PicX is
generated by the nef and big divisor H.

Lemma 3.3. Assume that I' is a primitive sublattice in PicX. Then we have:

(1)  Suppose that h € Pic X satisfies Pic X = I' + Zh (the existence of such h is
from the primitivity of I' in PicX). Then +h=hy = ll_s(H + 72,-!1 il';) (modI),
after relabelling I'; as I'is_; if necessary. Moreover, H 2=90 and |PicX :
I ®ZH| =18

(2) {I'1,Ta,...,T7,hy} form a Z-basis of Pic X, and the intersection form of
this basis is given by: h* = —46, hy '\ = =7, hp. I =0 (i=1,2,...,16).

(3) There are smooth rational curves F, F\, F» such that F ~2h, —
S i+ (Mis + 206 + 37017), Fi~3h =S 3+)i+ Ty, F~3h, -
S @+ i+ (3T + 20 + T3).

(4)  Theorem 3.1 is true with F.I'y4 = 1, by letting F, F\, F, be as in (3) and
mi=Fi+ T+ Ty ny=F+ Y0, i =0y

Proof. (1) Let h e Pic X so that PicX = I'+ Zh. Claim (1.1) below can be
similarly proved as in [OZ]].

CLaM 1. Set n=|PicX : I ®@ZH|. Then we have:
(1.1)  After replacing h by —h if necessary, nh = H (mod I') and hence h =
L(H+ S Iy for some integers a;.

(1.2) n divides |det(I')| = 18. Moreover, 5n> = 18H?. Hence n = 6,18.

Note that ,'—1(a1,a2,...,a|7) is the unique solution of the linear system:

17
<h—Zx,T,«) ri=0 (j=12,..17).
i=1 )



K3 surfaces 429

17 180,‘
i=1"

Since det(l;.I';) = —18, 18a;/neZ. Hence 18H/n=18h—3" i =sH

for some integer s. So 18/n =s and n|18. The second assertion of Claim (1.2)
follows from the observation that |det(Pic X)|n? = |det(I" @ ZH))|.

Note that (37, a;I;).I'; = n(h.T';}) = 0 (modn) for all j. Hence
—2a;+ay, ai-y—2ai+ay (i=23,...,16), aje— 2a7

are all 0 (modn). So a =iy (modmn) for all 1<i<17. Thus

2
(h+12,-1=71(ia1 — a,~)1",-> is an integer, which is equal to
n

2
1 17 . 1
- <H+a| Z}::r,) = E(H2 — 18 x 174%)

5 18x 174}
18 n? '

For the latter to be an integer, » = 18 and «; = +7 (mod 18) (cf. Claim 1.2)).
The above argument also shows that h = hy := 5 (H + 72};7] il';) (modTI).
Since h_ = %(H—{-7Z,'=71 I'i3_;) (mod I'), the assertion (1) is proved.

(2) follows from the definition of 4, and a direct calculation.

(3) Use the same F, F,, F, to denote 2h, — Z,‘L iri+ (I'ys+ 26+ 3017),
3hy =SB4+ )i+ Ty, 3hy — S (44 )i+ (3 + 2, + T'3), respectively.
We shall show that each of |F|, |F|| and |F;| contains a smooth rational curve as a
member.

A direct calculation shows Claims (2.1), (2.2) and (2.3) below.

Ciamm 2. (2.1) Hhy =5 F*=F?=F}=-2, HF=10, HF =15=
H.F.

(2.2) The intersection number (0 or 1) between any two distinct divisors of F,
F\, /, I'i (i=1,2,...,17) are as discribed in Figure 2 with (a,b) = (14,9), if we
regard these divisors as irreducible curves, e.g. b Ty = F, 'y =F.Fy=F.I'4=1,
FFE=FTI=0(1<i<]17,i#14).

23) F+Ti+Th~FB+Y), T

(24) |FI1#£ O, |Fi|# & (i=1,2). Hence we assume F >0, F; > 0.

F?= -2 and the Riemann-Roch theorem imply that |F| # &, or | — F| #
. Since F.H > 0, where H is nef and big, we have |F| # . Similarly, we can
finish the proof of Claim (2.4).

CLamm 3. Set G:=F,+ T+ 1T,

B.1) GIz=1, GIi=0(1<i<17,i#3), G.F=1, G.F=0(i=1.2),
G*=0.

(3.2) G is a numerically effective divisor.
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Claim (3.1) can be verified easily using Claim 2. Suppose the contrary that
Claim (3.2) is false. Then there is a smooth rational curve E; (# I'; for any i)
such that G.E; < — 1 by noting that |G| # & (Claim (2.4)).

By the proof of Theorem 1(3) in [S, p. 573], there is an effective divisor N,
a union of E; and other smooth rational curves, such that P:= G- N is a
numerically (non-trivial and) effective divisor with P? = 0; to be precise, P is the
image of G by a composite of reflections of PicX. By [S, Theorem 1, p. 559],
P ~ mn, where me Z~o and 7 is an elliptic curve.

Write N = nh, + Z,Z, nl;, P= ph,+ Z,le,-]“,-, where n, n;, p, p,eZ.
Clearly, N, P are positive multiples of H, modulo I'; in particular, p > 1 and n > 1
because E; < N. On the other hand (n+ p)hy = G =3k, (modI"). Hence
n+p=23. Thus (n,p)=(1,2), (2,1

Set ¢;:=P.I'ye Z-,. We have

ci =PIy =-2p + p,,
¢i=PTi=p_,=2pi+pi, (=23,...,16),
ci7 =PI =-Tp+ pig—2p17-

Solving this linear system, we obtain:

i—1
p=- 18<7P+Z(18 /)cj) pi=ipi+ > (i-jg (<i<17),
j=1

i—1 17
Tip+18p; = — > (18 = i)j; = > i(18 = j)e;.
j=1 J=i
We have also P.h, = P.(H+71%.,ir;)/18 = (5p+73.\), ic;)/18. Thus we can
calculate:

17
(x) Sp*=5p*—18P% = 5p> — 18P. (,;h+ + Zp,f,-)
i=1

i—

17 i-1
:—Z Tip + 18p;)c; ZZ 8—1)jc,c,+221(18 Jcic;

i=1 i=2 j=1 i=
17 J
—Z Z 18 — i)jcic; + Z i(18 — j)cic;.
j=1 i=j+1 j=1 i=1

If ¢g>1, then 20 > 5p? > (18 — j)¢jjc; > j(18 — j), and hence j=1, 17.
Thus ¢ =0(2<k<16), and 20>5p>> Y, ;j(18 —j)c;. Hence either
co=land¢i=0forall2<i<17, orc¢7=1and ¢;=0forall 1 <i<16. But
then the equality (x) implies that 5p? = 17, a contradiction. Hence Claim (3.2)
is true.

The above argument also shows that G ~ my for some m € Z and an elliptic
curve . Since G.I'; =1, m=1 and I'; is a cross-section of the elliptic fibra-
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tion Y :=®,. Nown :=G=F +I1+1I;and n,:=F+ Z,-Z,; I'; are singular
fibers of .

First , # n,, for otherwise #, =y, contains 16 curves I'; (i # 3) and at least
two more curves. This leads to 18 = p(X) > 2+ (##, — 1) > 19, a contradiction
[Sh, Cor. 5.3]. The same argument shows that ##5, =3, ##, = 15, each singular
fiber #; (i > 3) is of Kodaira type I; or II, and the Mordell-Weil group of  is
torsion. Thus 7, is of Kodaira type I;s and #, is of type I or IV. Hence F; is
irreducible and is the unique member in |F;|, which is a smooth rational curve.

To finish (3), it still needs to show that |F| contains an irreducible member.
Here we may assume F > 0. Since F.G =1 (Claim 3), F = F' + C where F' is a
cross-section of y, and C is contained in fibers.

As in the proof of Claim (3.2), F = F'+ C does not contain either of F;
because F =2h, (mod ") while F;=3h; (modI'). Now 0= F.F, (Claim 2)
implies that F = F’ + C does not contain I'4 or I'j7. Inductively, F.I'j=F.I; =
FIry=0(=4,5...,13j=17,16,15k =4,3,2) in Claim 2, implies that F
does not contain I'jy; or Ij_; or I't_;. Hence F does not contain any of
Fi(1<i<17). So Cis a union of fibers. Since —2=F2 = (F'+ C)*= -2+
C?4+2CF'> —2,C=0and F = F'is an (irreducible) cross-section with F.I"14 =
F.Fi =1 (Claim 2). This prove (3). In fact, by the arguments so far (cf.
Lemmas 3.4 and 3.5), Theorem 3.1 for the present case is also proved.

Lemma 3.4. Assume that I is a not a primitive sublattice in PicX. Let I be
the primitive closure of T in Pic X. Write I'* = I't = ZH with the nef and big H.
Then we have:

(1) |[[:T=3, and |det(I')|=2. Moreover, H?>=10 and |PicX :
(T®ZH)| =2.

(2) Suppose that e I satisfies ' = +7Z5. Then +0 =0, := %Zgl il
(modI'). Hence 6., I'; (i =2,3,...,17) form a Z-basis of T.

(3) Suppose that hePicX satisfies PicX =TI +Zh. Then h=h, =
L(H +6,) (modT).

4) {04+,I2,...,T17,h} form a Z-basis of Pic X, and the intersection matrix
of this basis is given by: 5i =-34, 0, I'1=0(2<i<16), 0,117 =-6,
Syhy=—17, h2 = -6, hy I'' =0 (2<i<16), hy I';7=-3.

(5) There are smooth rational curves F, F\, F, such that F ~ —20, +
S =NTi+hy,  Fi~—6, +00,02i—3) i+ hy, and Fy~ —36,+
Silsi— )i+ hy.

(6) Theorem 3.1 is true with F.I'y = 1, by letting F, F\, F, be as in (5) and
m=F+IT 1+ n:=FK +Z,-l:741—',', Vo= ¢|'I||‘

Proof. The first part of (1) follows from the fact that 18 = |det(I")| =
|det(D)| | : )2

(2) Letdel sothat I'=I+2Zd. By (l),d= %2,127, a;I'; for some integers
a;. Note that

30.' = —2a) +az, 30.I'i=ai_y —2a; + aiy
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are all 0 (mod 3). Hence a; = ia; (mod 3). Thus 5:— ,1271 il'y (mod I').
Since ¢ I', a; = +1 (mod 3). Now (2) follows.

(3) Set n:= |PicX (T ®ZH)|. As in Lemma 3.3, we can prove that
h=YH+aé, + 31, a;I';) for some integers a;; moreover n divides [det(I")| =
2. The latter, together with 2H? = |det(I" ® ZH)| = n?|det(Pic X)| = 512, implies
that n =2 and H? =10. This proves the second part of (1).

We shall use the calculation that 62 =34, &,y =—6, 6,1 =0
(1 <i<16). Note that

2h.Ty=ay, 2h.Tr=-2ay+a3, 2h.Ti=a;_)—2a+ay 3<i<16)

are all 0 (mod 2). Hence ;=0 (mod 2) for all 2<i<17. So h=
1(H+ad;) (modT).

To finish (3), we have only to show that a; =1 (mod 2). In fact, if a; is
even, then 4 = H/2 (mod I') and hence H/2 € I'* < Pic X, a contradiction to the
fact that H is a generator of I't. This also proves (3).

(4) is from a direct calculation.

(5) As in Lemma 3.3, we can prove Claims (1.1)—(1.5) below.

Ciamm 1. (1.1) HF=H.F,=5(i=1,2), 6, F=3, 6, Fi =1, 6, F, =1,
hiF=4 h Fi =3, hy b =6, F*=F}= -2 (i=1,2).

(1.2) The intersection number (0 or 1) between any two distinct divisors of F,
Fi, K, I'i(i=1,2,...,17) are as discribed in Figure 2 with (a,b) = (9,14), if we
regard these divisors as irreducible curves, e.g. F;.I'y = F,.I'l7=F.F\ =F.T'9g =1,
FFR=FTI=0(1<i<17,i#9).

(13) R+N+ N ~F+ YT

(1.4) |F|#¢, |Fi| #¢ (i=1,2).

(1.5) For G:=Fy+ T+ T, one has G.I's=1, G.Ih=0(1<i<]17,
i#3), G.F=1 G.F=0(i=1,2), G?=0.
(1.6) G is a numerically effective divisor.
(1.7) It is impossible that F > F; for i =1 or 2.

Suppose the contrary that Claim (1.6) is false. Then, as in Lemma 3.3,
G = P+ N so that P = ph, (mod I'), N = nh, (mod I') for some positive integers
p, n. Hence (p+n)hy=G=F =h, (mod I'), and p+n=1, a contradiction.
So Claim (1.6) is true.

For i =1 (resp. 2), E le where b; € Z and by = —7 (resp.
—4). Hence |F - F| = ¢ for the Kodalra dimension K(X I'y=0. This proves
Claim(1.7).

Now (5) and (6) can be proved similarly as in Lemma 3.3. (cf. Lemmas 3.3
and 3.5).

Lemma 3.5. With the assumptions and notations in Theorem 3.1, there is a
unique smooth rational curve F such that F.I' = F.(I'g+ I'4) = 1.

Proof. The existence of such F is proved in Lemmas 3.3 and 3.4. Suppose
the contrary that there are two different cross-sections F’, F” each of them having
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intersection 1 with I" and also with I'9+ I'j4. There are 3 possible cases:
F’.Fg =F”.F9 =1 or F'.\-T'\4w=F"T4= 1, or F'.I'y=F".I'ny =1. But then
if letting I'\g:= F' — F", we have respectively det(I';.I;) =362+ F'.F") >0,
36(2+ F'.F") >0, and 7+ 36(F'.F") > 0, a contradiction to the fact that Pic X
has signature (1, 17). This proves Lemma 3.5.

Proposition 3.6. Let X be a K3 surface of Picard number 18 and
|det(PicX')| = 5. Then the existence of a Jacobian elliptic fibration \ on X with a
cross-section Py having two fibers {n,,n,} of one of 5 Kodaira types (i) {II* III*},
(ii) {ho, II*}, (iii) {I&,1V*}, (iv) {1}y, or III'}, (v) {Is,1I5 or IV}, implies the
existence of 4 new Jacobian elliptic fibrations having fibers {n\,n3} of the remaining
4 types; in other words, the existence of one type will imply the existence of all 5
types.

Moreover, in each of 5 cases, any singular fiber (# n,,n,) has Kodaira type I
or I

Proof. We shall proceed in the way *““(v) = (i) = (if) = (iii) = (iv) = (v).
We shall fully apply [Sh]. Let E = E(y) denote the Mordell-Weil lattice spanned
by all cross-sections of y, E° = E(\//)0 the torsion-free and index-finite sublattice
{PeE|P and Py meet the same irreducible component in each fiber}, T the
sublattice of NS(X) generated by the zero section Py and all irreducible com-
ponents in all fibers of .

Cramm 1. (1.1) In Cases (i)—(v), we have respectively, tk(E) = 1, E =~ Z/2Z,
tk(E)=1, tk(E) =1 and E ~Z/3Z.
(1.2) The last assertion of Proposition 3.6 is true.

In Cases (ii) and (v), the calculation rk(E) = p(X) — rk(T) =18 —1k(T) <
16 — (#n, — 1) — (#n, — 1) =0 [Sh, Cor. 5.3], implies Claim (1.2) and rk(E) =
0. By [Sh, Th 8.7 and Def 7.3], |E|* = det(T)/det(NS(X)) = det(T)/5 = 22, 32
respectively. Hence Claim (1.1) is true.

In Cases (i), (iii), (iv), we have tk(E) < 1 as above; and if Claim (1.2) is false,
ie., if rk(E) = 0 then ¢ has a fiber #; with 2 components and every fiber (# 5, for
i=1,2,3) is irreducible, which leads to that |E|> = det(T) /S, a contradiction to
an easy calculation that det(7) is not divisible by 5 [Sh, Def 7.3]. This proves
Claim 1.

“(v) = (i)”. Assume that ¥, F, u,, n, fit Case(v). Take a torsion element
Py e E—{Py}. Then, by [Sh, Th 8.6, Table(8.16) and the proof of Th 8.4], the
height pairing

0=<P1, P1) =2x(Ox) +2(P1.Py) = Y _ contr,(P)).
v
Thus, Py.Py =0, Py and P, meet different irreducible components in #,, and 7,

contains a linear chain of 4 curves linking the irreducible components of 7,
meeting Py and P;. It is easy to see that there is an elliptic fibration ¥’ so
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that Py + Py + 7, + 7, contains a cross-section of ¢’ and two fibers of ' fitting
Case (i).

“(i) = (if)”. Assume that , F, n,, 1, fit Case (i). By [Sh, Table (8.16)], for
any P e E— {Py}, one has (P, P> =4+ 2(P, Py) — (0 or 3/2) > 0, whence P,
is not torsion [Sh, proof of Th 8.4]. So E is torsion free of rank 1. Thus we can
write E = ZP, Ey =nZP,. By [Sh, Th 8.7 and (8.17)], n*{(Py, P;) = det(E®) =
det(NS(X))|E : Eo|*/det(T) = 5n%/2. Thus 5/2= (P, P> =4+ 2(P\.Py) —3/2
(hence P; and Py meet different tip components of #,), and P; Pp = 0. Then there
is an elliptic fibration ¢ so that Py+ Py +#, +7,, together with an auxiliary
smooth rational curve, contains a cross-section of ' and two fibers of ' fitting
Case(ii).

“(if) = (ii)”. Assume that ¢, F, n,, 5, fit Case (ii). Take a torsion element
P eE— {P()}. Then 0=<Py, Py =2x(0x) + 2(P;.Py) — Zv contr,,(Pl) =4+
2(Py.Py) —i(10 —i)/10 — (0 or 3/2) for some 0 <i<9. Hence (P| Py)=0,i=5
and we choose 3/2 instead of 0, whence Py and P, meet different tip components
of 7,, and #, contains a linear chain of 4 curves linking the irreducible components
of 7, meeting Py and P;. Now there is an elliptic fibration ¥’ so that
Py + Py + 1, +n, contains a cross-section of ¢ and two fibers of y' fitting Case
(iii).

“(iii) = (iv)”. Assume that y, F, 5, n, fit Case (iii). Clearly, there is an
elliptic fibration ¢’ so that Py + 5, + 7, contains a cross-section of ¥, a fiber 5| of
Kodaira type Ij; and a curve F, disjoint from #{. Let 7} be the fiber of '
containing F,. If #(n5) >3, then, as in Claim 1, (##;) =3, rk(E) =0 and
|E|* = det(T)/5 = 4 x 3/5, a contradiction. Thus # (15) = 2 and ¢’ fits Case (iv).

“(iv) = (v)”. Assume that ¥, F, ,, n, fit Case (iv). Let n:= |E: E"|.

CLamm 2. E,, ~Z/2Z.

Suppose the contrary that E is torsion free. Then we can write E = ZP;,
E° = nZP,. By [Sh, Th 8.7], n®(P;, Py = det(E®) = 5n%/(4 x 2). This implies
that 5/8 =<P, P> = 2)(((9x) +2(P1.P0) — ZU contrU(Pl) =4+ 2(P|.P0) - (0 or
1 or 7/2) — (0 or 1/2), which is impossible (by multiplying by 8).

Suppose the contrary that P; # P, are two torsion elements in E. Then
0=(P;,P>=4+2(P;.Py)—(0orlor7/2)—(0or1/2), whence P;.Py=0,
we choose 7/2 and 1/2, and P; and P, meet different components of #, and
P; and Py meet tip components of #, sprouting from different branchs.
On the other hand, 0= (P}, Py)=x(Ox)+ (Pi.Py)+ (P2.Py)— (P1.P;)
— >, contry(P1,Py) =2 — (Py.Py) —(7/20r 3) = 1/2 <0, a contradiciton. This
proves Claim 2.

By Claim 2, we can write E=ZP3 @ ZP,, E° =gZP3, where P is the

2
unique torsion element (of order 2). Now 5r%/8 = det(E®) = %<P3,P3> implies

that 5/2 = (P3,P3> =4+ 2(P3Py)— (0 or 1 or 7/2) — (0 or 1/2). Hence either
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Case (iv-a) P3 Py =0, P3 and Py meet different components of #, and P; and Py
meet two neighbouring tip components of #,, or Case (iv-b) P3 Py =1, P3 and Py
meet the same component in #, and P3 and Py meet two tip components of #,
sprouting from different branchs.

On the other hand, 0 = (P, P3) = y(Ox) + (P1.Py) + (P3,P0) — (P1.P3) —
Y-, contry(Pi,P3) =2+ (P3Py) — (P\.P3) — (1/24+1/2 in Case (iv-a); 7/2+0 or
3+ 0 in Case (iv-b)). Thus, in Case (iv-a), P;.P3 = 1; in Case (iv-b), P|.P; =0
and P; and P; meet two neighbouring tip components of x,. Then there is
an elliptic fibration ¢’ so that Py + Py + P3 + 1, + 77,, together with an auxiliary
smooth rational curve, contains a cross-section of ¥’ and two fibers of ¥’ fitting
Case (v). This proves Proposition 3.6.

Corollary 3.7. Let X be as in Theorem 3.1. Then for each 1 <i <5, there is
a Jacobian elliptic fibration having fibers {n,,n,} fitting Case (i) in Proposition 3.6.

§4. Proofs of Theorems

We first prove Theorem 1. Theorem 1(1) is proved in [Z4]. Now we prove
Theorem 1(2). Let T be a rational log Enriques surface of Type A7 and index
1. By [Z3, 7Z4], I =2,3,4,5 or 10. Suppose the contrary that 7 = 10. We shall
use the notations in Lemma 1.I. Now Y/a? (resp. Y/a°) is a rational log
Enriques surface of Type 47 and index 5 (resp. 2), and hence p(X) = 18 (resp.
p(X) > 19) by Lemma 4.1 below and [Z4, Lemma 3.1 and Corollary 3.4]. We
reach a contradiction. So Theorem 1(2) is true.

Next we prove Main Theorem 3(1). Let T be a rational log Enriques surface
of index 5 and Type 4;7. We employ the notations at the beginning of §1 and in
Lemma 1.1:

n:Y—T, g:X—=Y, I=g!SingY), <(od=Gal(Y/T), o¢'w=/_w.

We denote by I'(1)= ,'=71 I'; where I';.I;;) =1, the unique connected
component of I of Dynkin type 4,7.

Lemma 4.1. Let T be a rational log Enriques surface of index 5 and Type
A17.  Then we have:

(1) The Picard number p(X) =18 and o*|Pic X = id.

(2) T is of actual Type A7, ie.,, I = I'(1). The fixed locus X° is equal to

Supp(I'a + I'o + I'a) [ |

{PnaP|,27P2,3aP5,67 P6.7: P18, P1o,112 P11,125 P12,135 P15,165 P16,17> P17-4}

where p; .y = T'iN T, pyely, and q is a point not on I'.

Moreover, a* can be expressed as (C;z,Cs_z) (resp. (Cg,{g')) around the 4 points
P1,2:P6.7- P11,12> P16,17 (resp. the 9 other isolated points in X7), with suitable
coordinates.
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Proof. By Lemmas 1.1 and 1.2, the hypotheses in Lemma 1.5 are satisfied,
and we shall use the notations there. So 4t = rank Ty = 22 — p(X) < 4 because X
contains I'(1) which is of Dynkin type A;7. Thus t=1 and p(X) = 18.

On the other hand, each component I'; of I'(1) is g-stable because ord(s) = 5
while the graph-automorphism group of I'(1) has order 2 (cf. Lemma 1.2). So
(22 —4s5s—41) = 17 and hence s =0 (cf. Lemma 1.5). This proves (1).

1+ #(I') < p(X) = 18 implies that I" = I'(1). The rest of (2) follows from
Lemmas 1.4-1.6.

We now continue the proof of Main Theorem 3(1). In view of Lemmas
4.1 and 1.5, we can apply Theorem 3.1. We shall use the notations v, y;, F,
F; (i =1,2), etc. there. Clearly, the isolated o-fixed point ¢ not on I', equals
FNF;, and hence X7 < Supp(n; + #,).

Since ¢*|PicX =id, o permutes fibers of . Since the cross-section F
contains only two o-fixed points FNy; (i=1,2), 5, (i =1,2) are only o-stable
fibers of . Now 24 = y(X) =73, x(n;) where n; runs over the set of all
singular fibers, implies that #»,, #, are of Kodaira type IV, I}s (Theorem 3.1), and
that if we let #; be any singular fiber other than #,, #, then #; is of Kodaira type
I} and only

nny oy (0<j <4)

are singular fibers of .

Resolving 13 quotient singularities of X /o (under 13 isolatetd o-fixed points)
and blowing down uniquely and smoothly some curves under #; (i = 1,2) we get
a rational surface S so that y induces a relatively minimal elliptic fibration
¢ : S — P! whose only singular fibers ¢; (i = 1,2,3) (under #,) are of Kodaira type
w- L, I.

Let E, 2; (i =3,4,9,14) be the image on Sof F, I';, Then E+ '3+ &, + &
is given in Figure 1 where (a,b) =(9,14) or (14,9) if F.I'9y=1 or F.I'4 =1
accordingly (cf. Theorem 3.1). Now Lemma 2.2 and the uniqueness of the
blowing-down v:S§ — P2 there show that the rational log Enriques surface
T = Y /o is isomorphic to T(9) or T(14) in Example 2.1 accordingly. This proves
Main Theorem 3(1).

Theorem 3(2) follows the proof of Theorem 3(1), Lemma 4.1 and the
construction of T'(i) in Example 2.1.

Finally, we prove Theorem 8 below which will imply Main Theorem 4.

Theorem 8. There is, upto isomorphisms, only one pair (X, o) of K3 surface X
and an order 5 subgroup (o) of Aut(X) satisfying:

a*w = {5 for a non-zero holomorphic 2-form w where {s = exp(2nv/—1/5), and
the number N = No — .5 (i — 1)N; defined in Lemma 1.5 satisfies N > 3.

Proof By Lemma 1.5, N =3, p(X) =18, ¢*|Pic X =id, |(Pic X)" /(Pic X)|
= |det(PicX)| =5. By [N2, Cor.1.13.5], PicX =U@® T and hence there is an
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elliptic fibration  : X — P! with a cross-section F. Note that o stabilizes F and
permutes fibers of y because ¢*|Pic X = id.

Since no elliptic curve has an order 5 automorphism with a fixed point, a
general fiber # of Y is not g-stable for otherwise € Aut(y) fixes FN#x. Thus the
cross-section F (=~ P') is not o-fixed and hence has exactly two o-fixed points
which lie on fibers #,, 7, say. Therefore, we have:

CLamM 1. Only n,, n, are o-stable fibers of . Hence X° < Supp(n, + 7,).
In particular, N; =0 for all i >2 and Nyp = N = 3.

Claim 1, Lemma 1.7, No =3 and }_, x(1,) = x(X) = 24, where 7, runs over
the set of all singular fibers of y, imply:

CLAM 2. Only n,, n,, 6™*n5 (0 < i < 4) are singular fibers of i, where 15 is of
Kodaira type I) and {n,,n,} has one of the following Kodaira types:

(8-1) {II*, III*}, (8-2) {Lio, III*}, (8-3) {I2, IV*}, (8-4) {I}y, IIT}, (8-5) {hs.IV}.

In view of Proposition 3.6, we may assume that  fits Case (8-5). Then
F +#n, +7n, contains a linear chain of 17 (orderly) smooth rational curves
I = E,.zl I';, By Lemmas 1.4-1.6, X7 is a disjoint union of 3 curves I'y, I'g, 4
and 13 isolated points (12 of them are on I'). Let X — Y be the contraction of
I'. Then Y/o is clearly a rational log Enriques surface of index 5 and Type
Ay. Thus, (X, (o)) is equivariantly isomorphic to (X (9),<o(9)>) in Theorem
3(2). This proves Theorem 8.
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