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1. Introduction

Let P(x, D) be a differential operator of order m defined in an open set Q in
R” with principal symbol p(x,&) which can be factorized as

m

p(, &) =[] ai(x.&), a(x.&) =& —4(x.¢&)
j=1

where ¢;(x,&) are real valued pseudodifferential symbol of order 1 and x =
(x1.x") = (x1,x2,...,%,), &E=(6,8)=(&,&,...,&,). We assume that the
characteristics of g¢; intersects normally and non-involutively each other, that is

{gi.q;} #0 ongi=¢q; =0 fori#j

where {g;,q;} denotes the Poisson bracket of ¢; and g;.

According to Iwasaki [2], we define the signature of a triplet (g;,q;,qx) at
2% where ¢;(z°) = ¢;(z°) = qx(z°) = 0. Let us say that three real numbers a, b, ¢
have the same sign if they are simultaneously positive or simultaneously negative.
We say sgn(gr. 4. q)(=") = + if {41, 4}(="), {4} (="). {gu4:}(=") have the same
sign and sgn(q;, q;, qx)(z°) = — otherwise.

When m = 3, in [2], Iwasaki proved that in order that the Cauchy problem of
P(x.D) is well posed the lower order terms must verify additional conditions at z°
more than Ivrii-Petkov condition if sgn(qi,¢2,¢3)(z") = +. On the other hand,
in [3] we proved that if the propagation cone at every triple characteristic is
transversal to the doubly characteristic set and the lower order terms verify the
Ivrii-Petkov condition then the Cauchy problem is well posed.

Here we recall that the localization p.» of p is the first non-trivial term in the
Taylor expansion of p at z° which is a hyperbolic polynomial on T.o(T*Q) with
respect to @ = —H,, € T.o(T"Q) (see [1]) where H; denotes the Hamilton vector
field of fe C*(T*R2). The propagation cone at z° is the dual cone of the
hyperbolic cone I'(p.o, @) (for the definition, see [1]) with respect to the canonical
symplectic structure on T.o(7T*Q) induced by the 2-form d¢& A dx.

Communicated by K. Ueno, December 17, 1996



416 Tatsuo Nishitani

In this note we show that, when m = 3 the condition sgn(qi,q2,¢3)(z°) = —
is equivalent to that the propagation cone at z° is transversal to the doubly
characteristic set (Corollary 2.4). Let m > 3. At z% where gj(z0) =0, 1 <j <m
we can induce an order relation on the set {q,...,qn} provided that
sgn(qi, g, qx)(z°) = — for every triplet (g;,q;,qx). Using this order relation we
give another formulation of the condition that the propagation cone at z° intersects
transversally to the doubly characteristic set (Theorem 2.3).

2. Result

Let ¢;(x,&) be classical pseudodifferential symbols of order 1 defined near z°
where ¢;(z%) = 0 and assume that the differentials dg; are linearly independent at
20, We also assume that {q,,q,}(z°) # 0 for every pair u,v,u# v. Let

m

2.1) p(x.&) = [[ai(x.&)
Jj=1

and assume that p(x,&) is (microlocally) hyperbolic with respect to ®. Thus we
may suppose that g;(x,&) are real-valued and dg;(®) > 0 at z°. Then it is clear
that

I(p.0,0) = {X € T.a(T*Q) | dg;(X) > 0, ¥}

Denoting by C(p,,©) the propagation cone at z we easily see that

C(p.n,0) = {X eT.o(T*Q) | X = Zaquj(zo), > 0}.

To simplify notations we write I'.o and C, for I'(p,,0) and C(p..,O)
respectively. Let S; = {(x,&)|qi(x,&) = gj(x,&) =0} for i#j and define the
map 7;;

my: Teo(TR) 3 X = (dgi(X).dg;(X)) € R”.
Then we have
Lemma 2.1. We have
(2.2) CoNT.oS; = {0}
if and only if nj;(C.0) is a proper cone in R2.  Moreover this is equivalent to
_H(‘,(],'+l‘ij(Zo) €l
with some c;, c¢j € R.

Proof. We assume that C.oNT.S; = {0}. We examine that 7;(C.) is a
proper cone in R%2.  Otherwise n;(C.0) would contain a line. Thus there exist
0# Xi =Y ogumij(Hy,), k=12 such that X; + X, =0. This implies that

Y = (o + ) Hyy € TooSy.
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Since Y (a1, +az) >0 and hence Y #0 this contradicts the assumption.
Conversely assume that 7;;(C,) is a proper cone in RZ Let X = S H,, (%) €
C.oNTyS;. From dgi(X) = dgj(X) =0 it follows that

Za,,nij(Hqﬂ) =0.

Since 7;(H,,) # 0 we have a, =0 and hence X =0. That is C.o N T.0S; = {0}.
We next assume that Z = —Hp,,,,ﬂiqj(zo) € I'.o with some c¢;,¢; € R so that

dq/l(z) = dqi(qul) + Cj dq](Hq;t) > 07 V/'t

This shows that 7;(C.) is a proper cone in R2. Conversely we assume that
m;j(C,0) is a proper cone. Then we can choose ¢;,¢; such that

{(civ¢j),m(Hy,)> = (cidqi + ¢;dg;)(Hg,) > 0, Vu
This proves —Heqg,+c,4,(z°) € I';0.  Hence the assertion.

Let us set a,, = {qu, q+}(z°) and we express the condition (2.2) in terms of
a,. Note that Z = a,sH, + ap,H,, + ayuHy, € T0Sy5 where

Supy = {(x,8) | gu(x, &) = qp(x, &) = gy(x,&) = 0}.

If a.p, ag,, a,x have the same sign then it follows that Z € C,o which contradicts
to C,o N T8, = {0}. Thus if (2.2) holds for every pair i,/ (i # j) then one has
sgn(qa,q,g,q,,)(z") = — for every triplet (o, f,y) (cf. Lemma 4.1 in [4]).

We say that g, » gp if agg > 0 or a = . Assuming that sgn(qy, g5, q,)(z%) = -
for every triplet (a,f,y), the relation > becomes an order relation which is easily
verified.

Lemma 2.2. Assume that sgn(qa, qp.q,)(z°) = — for every triplet (a,p,y). Let
gi » qj. Then m;j(C.o) is a proper cone if and only if

Ayj Aui

— > ol

Ay Ay
Sor every q,, q, with q, < q; < q; < q,.

Proof. Recall that n;;(H,, ) = (a.,a.). Note that (a.,a,;) lies in the first,
the third and the second quadrant if ¢; « g, ¢« « ¢; and ¢; « ¢, « g; respectively.
Let

X ai a, i
min 2 =%
Gudi<qu Ay Auyi

Then it is easy to see that the condition
Layjs —auyi), (aviyay)d = ayjay — ayiay <0

for every v with ¢, « ¢; is necessary and sufficient for 7;;(C.0) to be a proper cone.
This proves the assertion.



(1]
(2]
(3]

[4]

Tatsuo Nishitani

Theorem 2.3. Let m > 3. Then the following two conditions are equivalent.
CoNT,S; = {0} for every i,j (i # j).

sgn(gi, g, qx)(z°) = — for every triplet (i,j k) and for every quadruplet
(o, B,7,0) with qy < qp < g, < g5 we have

{qu, 4y} (2°) o {99,0,}(=°)
{005} (2%) ™ {g5,95}(2%)"

Proof. 1t is clear from Lemma 2.2.

Corollary 2.4. Let m =3. Then the following two conditions are equivalent.
CoNT,oS; = {0} for every i,j (i # j).
sgn(q1,42,43)(2°) = —.
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