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On sufficiently connected manifolds
which are homotopy equivalent

By

Norio KOBAYAKAWA

§0. Introduction

Let M be a simply connected closed smooth m-manifold satisfying the
following hypotheses :

(H1) H{(M)=0 except for i=0, p, g, m=p+q O<p<gq),

(H2) The tangent bundle of M is trivial on its p-skeleton.

Here the second hypothesis is satisfied if p=3,56,7 (mod 8) or if M is a
n-manifold. Such manifolds as M are called (p,q)-primary in [11]. A p-sphere
bundle over the g-sphere and a connected sum of such bundles are (p,q)-
primary. There also exist (p,q)-primary manifolds which are essentially different
from such connected sums (cf.[5], [6]). In the classification of manifolds, primary
manifolds play an important and fundamental role. We are concerned with the
problem whether two (p,q)-primary manifolds which are (tangentially) homotopy
equivalent are homeomorphic or not in the metastable range 2p>¢g>1.

In this paper, we study the two cases (p,q)=(m—1,n+1) (n>5) and
(p,g)=(n—2,n+1) (n=>6). We show that in these cases, such manifolds as M which
are (tangentailly) homotopy equivalent are homeomorphic and diffeomorphic modulo
homotopy spheres in almost all cases. Furthermore, we show similar results for
(n—2)-connected 2n-manifolds (n>5) with torsion free homology groups. For
(n—1)-connected 2n-manifolds (n>2) (that is, if p=¢>2), we know such a property
as above without assuming (H2) by [31] and [19]. For (p,q)=(nn+1) (n>2),
such a property holds also if H,(M) is torsion free (cf [34]). For (p,q)=(n—4,n+1)
(n=10) or (n—5,n+1) (n>12), such a property holds also in almost all cases (cf.
[8]). Wenote thatif n—S<p<n—3,g=n+1, there exist certain manifolds satisfying
(H1), (H2) which are homemorphic but different from each other more than homotopy
spheres as to differentiable structures (cf. [8]). The hypothesis (H1) implies that
the homology groups are torsion free if p<g—1. For torsion cases, there exist
certain manifolds with torsion homology groups which satisfy the conditions similar
to (H1),(H2) and are tangentially homotopy equivalent but are not homeomorphic
(cf. Example 7.9 of [20]).

Henceforth manifolds are connected, closed, smooth, and oriented, and homotopy
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equivalences and diffemorphisms are orientation preserving. The proofs of the
theorems in this section are given in the following sections.

We have the following theorems. Here two m-manifolds M, M’ are called
tangentially homotopy equivalent if there exists a homotopy equivalence f: M — M’
such that the tangent bundle tM is stably equivalent to f*tM’). We say that M,
M’ are diffeomorphic mod ®,, if M is diffeomorphic to M'#X for some homotopy
sphere £ of ®,,. If M, M’ are diffeomorphic mod ®,,, then M, M" are homeomorphic.

Theorem 1. Let M, M’ be simply connected 2n-manifolds satisfying the hypotheses
(H1), (H2) for (p,q)=(n—1,n+1) (n=5).

(i) Let n=3,7 (mod 8). If M, M’ are tangentially homotopy equivalent, then
M, M' are diffeomorphic mod ©,,.

(i) Let n=8 or n=2,4,5,6 (mod 8). If M, M' are homotopy equivalent, then
M, M’ are diffeomorphic mod ©,,.

(i) Let n=0,1 (mod 8). If M, M' are m-manifolds which are homotopy
equivalent, then M, M’ are diffeomorphic mod ®,,.

Theorem 2. Let M, M’ be simply connected (2n— 1)-manifolds satisfying the
hypotheses (H1), (H2) for (p,q)=(mn—2,n+1) (n=6).

(i) Let n=3,7 (mod 8). If M, M’ are tangentially homotopy equivalent, then
M, M’ are diffeomorphic mod ©,, _, .

(i) Let n=0,2,4,5,6 (mod 8). If M, M' are homotopy equivalent, then M,
M’ are diffeomorphic mod ®,, _, .

(i) Letn=1(mod 8). If M, M’ are n-manifolds which are homotopy equivalent,
then M, M' are diffeomorphic mod ®,, _,.

In particular, using Theorem 3 of [5] and the splitting theorem of [3], we have
the following.

Theorem 3. Let M, M’ be (n—?2)-connected 2n-manifolds (n>5) which have
torsion free (n—1)-th homology groups and have tangent bundles which are trivial on
the (n— 1)-skeletons.

() Letn=8orn=3,4,7(mod8). If M, M’ are tangentially homotopy equivalent,
then M, M' are diffeomorphic mod ®,,.

(i) Let n=2,5,6 (mod 8). If M, M' are homotopy equivalent, then M, M' are
diffeomorphic mod ©,,.

(iii) Let n=0,1 (mod 8). If M, M' are n-manifolds which are homotopy
equivalent, then M, M’ are diffeomorphic mod ©,,.

In the above theorem, we note that the tangent bundles of M, M’ are trivial
on the (n— 1)-skeletons if n=0,4,6,7 (mod 8) or if M, M’ are m-manifolds.

It is still not known whether every (iii) of the above three theorems can be
valid or not without the assumption that M, M’ are m-manifolds.
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We have the following which is clear for the cases (ii), (iii).

Corollary 4. Let M, M’ be manifolds in Theorem 1, 2, or 3. In each case of
(i), (i), (iii) of the theorems, the following three are equivalent, where m is the dimension
of M, M', and M, M’ are mn-manifolds in case of (iii).

(a) M, M’ are homotopy equivalent, tangentially in case of (i).

(b) M, M’ are homeomorphic.

(c) M, M’ are diffeomorphic ©,,.

These results are obtained using the homotopy classification theorems of
[11]. The invariant defined there can be replaced by more computable one (Lemma
1.2). In order to compute the invariants, certain Whitehead products are studied
and some new facts which supplement the results of [24] are given (Lemma 4.1
and Lemma 4.2). The results of computations (Theorem 1.7 and Theorem 1.8) will
be used also in the subsequent paper to classify the above manifolds completely
up to homotopy equivalence.

I would like to express my thanks to professor H. Ishimoto who suggested
these problems and gave considerable help and advice to me.

§1. Homotopy classification theorems

In this section, we study the homotopy classification theorem of simply connected
m-manifolds satisfying the hypotheses (H1), (H2) in the introduction.
We remember the following diagram which is commutative up to sign (cf. [13, I]):

0 Ma-i(SO) D 1, 1(S0,. 1)
(D1) 7,(S?) & ;

E
P np+q—l(Sp) - np+q(Sp+l)a

where P=[ ,1,], the Whitehead product with the orientation generator 1, of m,(S?),
and the lower sequence is exact if 2p>g—1. Let 4:S8(n,_(S0O,)) - n,,,_(S?)/Im P
be the homomorphism defined well by A(S¢)={J&}. Let 0 be an element of m,_(S?)
(p<g—1). Then the inclusion map i:S? - SPuU,D? induces the homomorphisms
L Tpyq—1(SP) =y ((SPUDY)  and  iTim,,, (SP)/IMP >, (STUDY/i,
(Im P). We define the homomorphism 1: S(ry—1(SO)) = 1y g 1(SPUDY /i (I P)
by I=i,°4

In [11], the invariant 1 is used to obtain the homotopy classification
theorem of manifolds is question. For an element Oen,_(S?) (p<q—1), the kernel
of 1 is closely related to the subgroup G(0) of n,-1(SO,4,) defined by
G(0)=S(J ~'(Im0,)), where the homomorphisms are as follows (cf. [13, IT]):

N J N
7Tp+q—l(5”1 l) = np+q— l(Sp) - nq—l(SOp) g nq— I(SOp+ 1)'

In fact, if there exists a p-sphere bundle over the g-sphere with 0 as the attaching
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map of the g-cell, then Im0,=Keri, (cf. (3.2) of [13, II] and Lemma 4.4 of [26]),
and so we have Ker /=G(0). But, such a bundle does not always exist. We have
the following lemma in a somewhat weak form.

Lemma 1.1. If p<q—1, 2p>q—1, and p,q>2, then
Im0,+ImP=Keri,+ImP
Jor iyimyq ((SP) =y 1(SPUeDTY) and P:m(SP) >,y —1(SP).

Proof. Let 0 be the orientation generator of 7 (SPU,D9, SP)= H(S"U,DY, SP)
~Z7Z. Then we have the follwing diagram which is commutative up to sign:

MpagDLSTTY) o myp (ST

I

X
e
np+q(Sq)\ Ja* 0,
1 STUDLSY) S Ty i(ST) 5 Mpaqo i (SPUGDTY,
where y, j are induced by shrinking S?, S77!, to a point respectively.

By the Blakers-Massey Theorem, j is surjective if p=g—2 and isomorphic if
p<q—2. So we have

M, 4 o(SPUEDY, SP)=Im 0, + Ker x

for p<gq—1, which is a direct sum if p<g—2. On the other hand, by the homotopy
exact sequence of Theorem (2.1) of [12], we know that. Kery=ImQ for the
homomorphism Q: 7, (S?) = n,, (S7UeD?, S¥) defined by oy =[0.y], YEM,1(SP),
the relative Whitehead product with 0. Hende we have

M, +1(SPUEDY, SP)=Im O, +1Im Q

for p<g—1, which is a direct sum if p<qg—2.

Thus, from the diagram, Keri,=Imd=Im0,+d(Im Q). Since d[0,y]=[a0,7]
=[0,y] for [0,y]eImQ, yem,,(S?), and E[0,y]=0 for the suspension homo-
morphism E, we know that E(d(Im Q))=0 and so d(Im Q) = Im P from the lower
exact sequence of the diagram (D1). So, we have Ker i, < Im0, +Im P, and therefore

Keri,+ImP c im0, +ImP.
Conversely, it is clear that Im6, < Keri, from the diagram, and so

Keri,+ImP > Im0,+ImP.

This completes the proof.

Lemma 1.2. If p<q—1, 2p>q—1, and p,q>2, then
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Ker I=G(0)=J ~'(Im(E0) )nIm S

Jor Jim,_ (SO, 1) = T,y (ST,

Proof. Since A=i,-A and Keri,=(Keri,+ImP)/ImP=(Im0,+Im P)/Im P
from Lemma 1.1, an element vem,_,(SO"*"') belongs to Ker 4 if and only if there
exists an element ¢ e m,_(SO,) such that S¢=v and JCeIm 0, +Im P. So, v belongs
to Ker 1 if and only if v belongs to S(J/ ~'(Im 0, +Im P)), that is, Ker /=S(J ~'(Im 0,
+1Im P)). Since P= —J o0 at the diagram (D1), it is easily seen that J ~!(Im 0, +Im P
=J '(Im0,)+J " '(ImP). So, we have

Ker £=5J"'(Im0,)+SJ ™ '(Im P).

Then, since J~'(ImP) = J '(Im(=J-0) = J '(JIm3) = Imd+J '(0), we have
SJ ™ Y(Im P)=S(Im d)+S(J ~1(0))=S( “1(0)) = S/~ (Im 0,). Thus we have Ker I
=577 (Im0,) = G(0).

The latter half of the assertion is known straightforwardly from the diagram
(D1) combined with the commutative diagram

E
np+q—1(Sp) - 71:p+q(S’p+1)
(D2) 0. | [ .

_y E
np+q—1(Sq 1) - np+q(Sq)
where we note that E:m,,,_ (S ") - m,. (S9 is surjective since p<g—1.

If 6=0 in particular, then i,, 7, are injective, and so we have Keri=
Ker X, Therefore, we have

Corollary 1.3. Let 2p>q—1 and p,q>2. Then
Ker A=G(0)=J " '(0)nIm S

Sor Jim,_ (SO, 41) = T, (SOP*Y).

In fact, we have J(n,_((SO,)/ImP=Im(E-J)=J(ImS) from the diagram
(D1), and so A is equivalent to —J|ImS. Therefore Keri=J '(0)nImS, and
G(0)=J " '(0)nIm S is known straightforwardly from the diagram (D1).

Let #(p+q+1,k,q) be the set of handlebodies obtained by gluing g-handles, k
in number, disjointly to a (p+¢q+1)-disk. Then a simply connected m-manifold
M satisfying (H1), (H2) is represented mod ®,, (m=p+¢q) as the boundary of a
handlebody W of #(p+q+1,k.q) with k=rank H, (M), where we assume that
p<q—1 and 2p>q>1. In fact, killing the generators of H (M) by surgery, M is
modified to a homotopy sphere X, and so M#(—X) to the standard sphere. Therefore,
constructing conversely, M#(—ZX) is the boundary of a handlebody #(p+q+ 1,k,q).
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A handlebody W of #(p+q+1,k,q) (2p>g>1) is determined up to
difftomorphism by the invariant system (H;¢,x) defined by Wall[32]. Here
H=H,(W)is a free abelian group of rank k, ¢: Hx H — n(SP*1!) is a certain bilinear
form symmetric up to sign, and a:H —»n,_,(SO,,,) is a map assigning each
xe H=n, (W) the characteristic element of the normal bundle of the imbedded
g-sphere which represents x. o is a quadratic form with associated bilinear form
0o¢, 0:m(SP*") > m,_ (SO, .,) (cf. [32]).

Handlebody Classification Theorem (Wall[32]). Let W, W’ be handlebodies
of H(p+q+1.kq) (2p>q>1) with the invariant systems (H;¢p,a), (H';¢’ o)
respectively. Then W, W’ are diffeomorphic if and only if there exists an isomorphism
h:H—> H' such that ¢=¢ -(hxh) and a=a o h.

We note that ¢ is a homotopy invariant of the boundary of W by Propositon
1 of [7, I1].

Henceforce we assume that (p,q)=(n—1,n+1) (n>4) or (n—2,n+1) (n>6) and
put 6=n,_, or n2_, according as (p,q) is the former or the latter, where #,_,,
n?-, are the essential elements of n,_,(S?)=~ Z/2Z respectively. Let p:m,_,(SO, )
=1, 1(80,4)/G0), po:my_1(SO,44) = 1,_1(SO,,,)/G(0) be the canonical maps.
Let W,W’' be handlebodies of #(p+q+1,k,q) with the invariant systems
(H:;¢,a), (H';¢',a') respectively. In [7, LILIIT], [9], and [11], the homotopy
classification theorems for the boundaries of handlebodies were mentioned in terms
of invariant systems and the homomorphisms p,, p, 4, and J. Since KerlZ, Kerd
may be replaced respectively by G(0), G(0) by Lemma 1.2 and Corollary 1.3, we
can restate and unify the homotopy classification theorems as follows:

heorem 1.4. [If ¢, ¢’ are non-singular, then OW, OW' are homotopy equivalent
if and only if there exists an isomorphism h:H — H' such that ¢=¢ o(hxh) and
poa:po(a’oh)'

Theorem 1.5. Let rank ¢, rank ¢’ <k. Then 0W,0W’ are homotopy equivalent if
and only if there exist an isomorphism h:H — H' satisfying ¢=¢ o(hxh) and
a direct sum decomposition H=H,®H, orthogonal w.r.t. ¢ such that

(i) @|Hyx Hy=0 and ¢|H, x H, is non-singular,

(i) pooa=pgo(a'ch) on Hy and poa=po(ad'oh) on H,.

Remark. Since G(0) = G(0), (ii) induces that poa=po(a'oh) on the whole of
H. The canonical map p, is equivalent to A on Sn,_,(SO,) = n,_,(SO,,,), since
G(0)=S(KerJ) and we have Sm,_(SO,)/G(0)=n,_,(SO,)/Imd+KerJ=Jr, (SO,
/ImP. For J: nq_,(SO,,H)—rnp,,q(S”“), the maps p,, A are equvalent to —J on
ImScn,_ (SO, ).

From Handlebody Classification Theorem, we have the following.
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Corollary 1.6. Assume that G(0)=0. If dW,0W’ are homotopy equivalent, then
W, W' are diffeomorphic and so dW,0W" are diffeomorphic.

Thus the calculation of G(0) is an essential problem. We have the following
results which will be proved in §4, where we abbreviate Z/kZ as Z, and m(2/) is the
denominator of B,/4t, B, is the t-th Bernoulli number, and we put [2)=m(2t)/2.

Theorem 1.7. Let (p,q)=(n—1,n+1) and put 0=n,_, (n=4). Then G(n,_,)
is given by the following table:

n 4 S 6 7 8

n,(SO,) zZ,+27, Z, 0 z Z,+Z,+2Z,

Gn,_,) Z,+0 0 0 1202 0
n>9 4r—1 4t 41+1 4142
t:odd t:even —1 t:odd t:even t:odd t:even
n,(S0,) z zZ,+27, Z,+7Z2,+7, z, Z,+2Z, zZ,
Gin,_) | 2nz m(20)Z 0 0+0+2, 0 0+Z, 0

Theorem 1.8. Let (p,q)=(n—1,n+1) and put 0=n?_, (n=>6). Then G(ni_,)
is given by the following table:

n 6 7 8 9
n(SO,_)) 0 V4 Z,+Z, Z,+7Z,+2Z,
Gn?_) 0 60Z 0 0
n>10 4r—1 4t 4r+1 4142
t:odd t:even t:odd t:even t:odd t:even
(SO, _,) z z, Z,+Z, Z,+27, Z,+7Z,+2Z, Zg
Gn2_,) 20z | m2nZ 0 0 0 0+0+2, 0

§2. Proofs of Theorem 1 and Theorem 2

In this section, Theorem 1 and Theorem 2 are proved at the same time. Let
W be a handlebody of #(p+q+1,k,q) (2p>q>1) with the invariant system
(H;¢p,a). If g=4t (t>0), we have the following commutative diagram easily
from Lemma 1.1 of [16] and Theorem 35.12 of [28] (cf. also Lemma 9.2
of [5] and p.731 of [6]):
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o

Hq(W) - nq—l(S0p+l)

(D3) @m.> | | 2

z <X Z=m, (S0),
where iS:SO,,+1 — SO is the inclusion map, p,(W) is the t-th Pontrjagin class, and

. {2(21—1)! if £ is odd,
T lQe=1)  iftiseven.

Let W' be also a handlebody of #(p+q+1,k,q) with the invariant system
(H';¢',a'). It may be assumed that M=0W, M'=0W', mod®,, (m=p+gq), and
k=rank H (M)=rank H (M").

Proof of (i). Let g=n+1=4¢(r>1). Since 5 is injective in this case (cf.[34]),
the invariant « is determined by p(W). From the assumptlon, we have a tangential
homotopy equivalence f: M — M’, and by Theorem 2 of [27], we may assume that
fif a tangential homotopy equivalence from oW to 0W’. Let i, i’ be the inclusion
maps of W, W' into W, W’ respectively and let h: H=H (W) — H'=H (W) be the
isomorphism defined by h=i o f,ci;'. Then, p(W)=(i*""o f*oi'*p(W'), and
from the above diagram, it is easily seen that a=o'- h. On the other hand,
¢=¢ o(hxh) and by Proposition 1 of [7,1I]. Hence (H;¢,a) is isomorphic to
(H';¢',o) and so W is diffeomorphic to W' by Handlebody Classification
Theorem. Thus we have M=M'mod ®,,.

Remark 2.1. In the above proof, we may assume only that p(M)=f*p(M") for
the given homotopy equvalence f.

Proof of (ii). In these cases of n, we have G(,_,)=0 by Theorem 1.7 and
G(n?_,)=0 by Theorem 1.8. Therefore M=M'mod®,, by Corollary 1.6.

To prove (iii), we need the following.

Lemma 2.2. Let M be a simply connected m-dimensional n-manifold satisfying
the hypothesis (H1) of §0. Let k=rank H,(M) and suppose that H, (M) is torsion
free if p=q—1. Then, M(mod®,) bounds a parallelizable handlebody W of
H(p+q+1,kq) (p+g=m).

Proof. By killing the generators of H (M) (=nr,(M)) by surgery, M is modified
to a homotopy sphere £. Furthermore, by Lemma 6.2 of [18], we can perform it
by framed surgery (cf. §6 of [18]). That is, for a given trivialization g of the stable
tangent bundle of M, there exists a parallelizable (m+ 1)-manifold N with a
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trivialization ® of tN such that IN=MuU(—X) and g=6| M.

Then, giving a trivialization e to the stable tangent bundle of —X, we can
make the connected sum M#(— X) with the trivialization g=g#e. Hence, considering
the above construction again, there exists a parallelizable (m + 1)-manifold N bounded
by M#(—X) and (—Z)#Z=S". Let W=NuD"*! which is considered as a
handlebody of #(p+q+1,k,q). W has a trivialization of T W on its m-skeleton since

Hi(W,NU[i—1(Som+1))§Hi(Dm+laSm§ni—1(SOm+1)):0

for i<m. The obstruction to build up a trivialization of tW on the whole of W
using it lies in H™*'(W;n,(SO,,,,)=0. Thus W is parallelizable.

Proof of (iii). We may assume that M=0W, M'=0W’, mod®,, and W, W’
are parallelizable handlebodies of #(p+q+1,k,q) by Lemma 2.2, where k
=rank H,(M)=rank H,(M’'). Since W, W' are parallelizable, we know that i, o’
are trivial. In the present case, i3, maps the last direct summand of n,_,(SO,,,)
in the list of Theorem 1.7 and Theorem 1.8 isomorphically onto n,_,(SO)=Z, (cf.
Table 3 of [34]). Therefore «, o always take the values with trivial last
components. We note that G(y,_,), G(n2_,) are just the last direct summands of
m,-1(SO,+,) in each case of n of (iii) by Theorem 1.7 and Theorem 1.8.

Let M,M’' be homotopy equivalent. Then there exists an isomorphism
h:H— H' such that ¢=¢ o(hxh) and poa=po(d'oh) on H by Theorem 14,
Theorem 1.5, and the remark. Since p is injective on the images of o, o’ from the
above, we have a=a'ch on H, and so W is diffeomorphic to W’ by Handlebody
Classification Theorem. Thus M is diffeomorphic to M'mod®,,.

This completes the proof of Theorem 1 and Theorem 2.

§3. Proofs of Theorem 3 and Corollary 4

The following is essentially known by Theorem 5 of [31] partly and by [19]
as an application of the theory of surgery. However, we show it again since our
proof is elemental and complementary to [31].

Theorem 3.1. Let M, M’ be (n— l)-connected 2n-manifolds (n>3). Let M,M’
be homotopy equivalent, and suppose that the homotopy equivalence f: M — M’ satisfies
pM)=f*p(M’") if n=4t (t>0). Then M,M’ are diffeomorphic mod ®,,.

Proof. Let M=WuD?*, M'=W'uD?. We consider W, W' as handlebodies
of #(2n,k,n) (k=rank H(M)) with the invariant systems (H;¢,a), (H';¢’, o)
respectively. Let ¢:H,(M)x H, (M) — Z be the intersection form and let &: H (M)
- m,_,(S0,) be the map assigning each xe H,(M) the characteristic element of the
normal bundle of the imbedded n-sphere which represents x (cf. Theorem 1 of
[32]). Then, from the definitions, we have ¢=$n(i*x i), a=dci,, wherei: Wc M
is the inclusion map and i : H=H,(W)— H,(M) is an isomorphism. We define &',
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&, and i’ similarly for M’ and have ¢'=@' (i, x i',), &' =& of',.

Let f:M — M’ be a homotopy equivalence. Then we have ¢=¢ o (f, X[
Jod=Jo(d'o f,) by Lemma 8 of [31] (cf. also Proposition 5.1 of [7,1]), where
J:m, (SO,) = m,,_4(S") is the J-homomorphism. Since i,, i, are isomorphisms,
we can define an isomorphism h:H — H' by h=(") "< f,~i,. Then, easily we
have ¢p=¢ ~(hxh) and Joa=Jo(a'oh). So, if we show that a=o oh, then the
invariant systems of W, W’ are isomorphic. Hence W, W’ are diffeomorphic by
Handlebody Classification Theorem, are therefore M, M’ are diffeomorphic mod @,,,.

Let n#0 (mod 4). Then we have a=a oh immediately since J:m,_,(SO,)
— 7y, 1(S") is injective (cf. Proposition 2.1 of [34]). Let n=4¢ (¢>0) and suppose
that p(M)=f*p(M’). The isomorphism h=i*- f*o(i'*)~': H"(W') - H"(W) satisfies
o), x) =L@, h(x)) for xe H=H (W), pe H'(W')=Hom(H(W'),Z). So we have
PAW)=i*p(M)=i*o f*p(M')=i*o f*o (i) 'p(W)=hp(W') and therefore {p(W),
x)=<{p(W'),h(x)y for xeH. Thus, from the diagram (D3), we have 5oa
=o' oh) for iS:m, (SO)V=Z+Z > n,_ (SO)=Z (n=41).

Let n=4¢and t>3. It is known that n,_,(SO,)=Ker5®Sn,_(SO,_)=Z+Z
for S:n,_,(S0,-1) > n,-,(SO,) induced from the inclusion SO,_, = SO,. Put
a:H—>m,_(S0,) as a=(x;,a,) and similarly o' as o« =(a),a3). Then, since i3 is
isomorphic on the second direct summand, we have o, =a) ~h from the above. On
the other hand, for the homomorphism n,=mn,_,(SO,) - n,_(SO""')=Z induced
from the projection, we have

700 (xX) =7 ,0(x) = x - x = P(x, x) = ¢'(h(x), h(x))
=h(x) " h(x)=n &' (h(x)) = o (h(x)) (xe H).

So «, =« oh since m, is injective on Kers if n is even. Thus we have a=a ch.

Let n=4 or 8. Then still n,_,(SO,)~Z+Z by a well-known basis {u,,u,}
such that Keri is generated by u,—2u,, u, comes from the generator of
n,_1(SO,_)=Z by the homomorphism S, and iSu, generates =, ,(SO)=Z.
Therefore the basis {u, —2u,,u,} gives again the above direct sum decomposition
of n,_,(SO,). Hence the argument is quite similar.

This completes the proof.

Proof of Theorem 3. Let M,M’ be (n—2)-connected 2n-manifolds (n>5)
with trosion free (n— 1)-th homology groups and tangent bundles which are trivial
on the (n—1)-skeletons. By Theorem 3 of [5], there exists a decomposition
M'=M$M;, such that M; is (n—2)-connected, H (M{)=0, and M, is (n—1)-
connected, H(M3)~H, (M’'). Let f:M — M’ be a homotopy equivalence and let
N/=M;—IntD? (i=1,2)so that M'=N{UN;, N;AN;=0N;=0N,=S5?"""'. Then,
by Theorem 1.1 of [3], there exist 2n-submanifolds of M such that M=N,UN,,
S=N,AN,=0N,=08N, and f is homotopic to a map g:(M,N,,N,,S)—(M',N},
N;,S?"~ 1) whose restrictions to respective manifolds are homotopy equivalences.
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Here § is a homotopy (2n— 1)-sphere but we can show that S is diffeomorphic
to the standard (2n— 1)-sphere. In fact, since N, is homotopy equivalent to Nj,
H{N,) is non-trivial only for i=0, n—1, and n+1, and those homology groups are
torsion free. So, since N,(= M) is parallelizable on its (n — 1)-skeleton, we can kill
the generators of H,_,(N,) by surgery so that §=0N, is the boundary of a
contractible manifold. Therefore § is diffeomorphic to the standard (2n— 1)-sphere,
and we have M =M $M, for M;=N,uD*, i=1,2.

Since g(dN))=0N; (i=1,2) we can extend g|N; to a homotopy equivalence
giM; > M (i=1,2). If f is tangential, then g is also a tangential homotopy
equivalence, and so p(N,)=(g|N)*p(N7) for n=4t—1 and p(N,)=(g|N,)*p(N;)
for n=4¢. Hence we have p(M,)=(g,)*p(M,) if n=4t—1 and p(M,)=(g,)*p(M})
if n=4t. Therefore, by Theorem 1, Remark 2.1, and Theorem 3.1, we obtain the
results according to the corresponding cases.

This completes the proof.

Remark 3.2. In the above proof, we may assume only that p(M)=f*p(M’)
for n=4t—1, 4t (t>1) for the given homotopy equivalence f.

Proof of Corollary 4. 1t is clear that (a), (b), and (c) are equivalent for the
cases of (ii), (iii) of Theorems 1, 2, and 3. For the case (i), it is sufficient to show
that (b) induces (a). Let f: M — M’ be an orientation preserving homomorphism.
Since H (M), H*M) are torsion free and so HXM;Q/Z) is of torsion, the
homomorphisms H(M;Z)— H(M;Q), i=n,n+1, are injective. This situation is
similar for M’. Hence, from the topological invariance of rational Pontrjagin
classes ([25]), we have p(M)=f*p(M’) for n=4t—1,41. Therefore, from respective
(i) of the theorems and Remarks 2.1, 3.2, M is diffemorphic to M'mod®,,. Thus
we have (c) and so (a) by Theorem 2 of [27].

§4. Calculations of G(1,_,) and G(n2_,)

In this section, we prove Theorem 1.7 and Theorem 1.8. Those are given by
calculating G(0) for (p,q)=(n—1,n+1), O0=n,_, (n=4) and for (p,q)=(n—1,n+2),
0=Ha_2 (n=6).

From the diagrams (DI1) and (D2), we have the following diagram which is
commutative up to sign and we frequently refer to it in our calculations:
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S(d) S(Jl S(Z) S(l)
7.':n(‘S’On - 2) - T[,,(SO,, -1 ) g nn(SOn) g nn(SOn +1 ) e 7.':n(SO)

J J4 J J& j J@ Jm J

E® E® E@ EM
_2 —_ &
71"2n—2(‘S”l ) = Top- I(Sn 1) g nln(Sn) - 7'[2"+1(S"+ l) - l-[n
(D4) [w,_z). [(n"_,)* [ n,). M, ) ny
E@ E® E@ EM

Mon-2(S"71) = My y(S") = mp,(S"TY)

[

7TZn+l(‘g”+2) - nn—l

[ln"_l)* [(n"), [ (U, o, )« Ny

n E® n+1 E® n+2 E™ n+3 N
7.[211—2(‘S) :) n2n—l(S ) :’ n2n(S ) ? 7th-l‘l(‘s ) ? Hn—Z

Here S, E® and J® denote respectively the homomorphism induced from the
inclusion map, the suspension homomorphism, and the J-homomorphism for each
i. The diagram can be extended to the left if necessary and E®:m,, ,(S""!)
— m,,_,(S") is surjective.

The homotopy groups of rotation groups are known by [17] and [2]. There
exists a splitting exact sequence

05 Ty s 1 (Vo nrm) 2 1,(SO, ) 53 7,(50) - 0

for n>8, r <4 except the cases n= 14 and n=8s+ 7, r =3, where m is sufficiently large.

If n=2,4,5,6 (mod 8), then n,(SO)=0 and we determine the generators of
n,(S0,_,) by those of n, . {(V,,4,—,.m) carried by the isomorphism 4. If n=0,1 (mod
8). then there exists the largest number ro>r such that i5:7,(SO,_,) - n,(SO) is
isomorphic. So we adopt the element of n,(SO,_,,) corresponding to the generator
of n,(SO) as its generator. Then, the generators of m, . (V,,4+,—,.m) T,(SO,_, ) carried
by ¢and S:n,(SO,_,,) = n,(SO,_,) are designated as the generators of (SO, _,). For
n=3§, confer p.782 of [7, I1I]. Those generators are temporarily denoted by u, v,
w, etc. with numbers suffixed if necessary. For n=0,1 (mod 8), we assign the final
number to the generator which corresponds to the generator of n,(SO) by i,.

For the cases n=3,7 (mod 8), we can also set the generators of n,(SO,_,) in
a canonical way (cf. pp.8, 9 of [8]), and the notations are similar. For n=14, we
know 7,4(S0,0)=74(SO0,)=2Zg, 1,4(S0,,)=2Z,+Z,, by [15].

The following lemmas supplement the results of Nomura[24] (cf. also Lemmas
2.3, 3.3 of [7, III]).

Lemma 4.1. [fn=0,1,2 (mod 4) and n>5, n#6, then [n,,1,] does not belong
to Im("n)* for (’7»)* : nZn(S"+ ]) - nZH(S")‘

Proof. For n=0,1 (mod 4), the result is due to [24]. Let n=2 (mod 4),
n>6. Then we have
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S(:&) S(Z)
7["(50"_ 1) - T["(SO") - n,,(SO,,+ l)

II l I
Zgw Zy Z,u

and S®Pw=v, S@Pv=u (cf. [34]). Suppose that [1,,1,]=(,) B for some fen, (S"*").
Since S@(2v)=0, by the diagrams (D1), (D4), we have [1,,1,]1=J?(20)=J?S®2w)
=E®J32w). Let f=E®yforsomeyen,,_,(S". Then [n,,1,]1=0,)B=01)Ey
=E¥n,_,),y and so EPJI2w)=E®(y,_,),y. So we have JO2w)—(n,-).
eKer E®=([n2_,,1,_11>. Let JSP2w)—(n,- 1), y=clni-1.1,-1], ¢=0or 1. Since
Tyn— (S =2Z[1,,1,]®En,,_,(S""") for even n (n#2,4,8), the element y is given by
y=d[1,,1,]+ES for some integer d and dem,, ,(S"""). Therefore (1,_,),»
=d[N,— 1 YMn-1]1+4,-1°ES. Thus we have

JO)(Z“’):C['If—l Y [ N I I MY )

Therefore J®(4w)=2J32w)=0. Since J® is injective by Propositon 2.1 of [34],
this is a contradiction.

Lemma 4.2. If n=1,2 (mod 4) and n>5, n#6, then [n2_,,1,_,] does not
belong 1o Tm(n2_,), for (N2— 1)y Tan—1(S"*") = mp0_1(S"7).

Proof. For the case n=1 (mod 4), the result is due to [24]. Let
n=38s+2 (s>0). Then we have

1(S0,_y) 5 1(50,-,) S n,(50)).

[ I I
Zyx,+2Z,4x, Zgw Zw

Here S“(x,)=w, S¥(x,)=0 (cf. p.6 of [8]), and S®Pw)=0v (cf. [34]). So
0:my e (S""H)=Z,, - n,(S0,_,) is injective and we can take x, as x,=0dv,_,, where
v,_, is the generator of =, ,(S"” 2.

We heve the following diagram commutative up to sign:

T[n(SOn—Z)
0 Ty
(D5) Zy=m, (8" / J@ X n (S~ = Zyu (n>7),
AN Z
Man—2(S""2)

where 7, is induced from the projection and H is the Hopf homomorphism. We
note that n, is sujective for n=_8s+2 (s>0) since in the exact sequence
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1,(50,_3) B3 1,(S0,_3) > m,_(SO,_3) > m,_,(SO,_,),

S:inge+1(SOgs—()=Z,+Z, — 1g, . ((SOg)=Z,+ Z,+Z, is injective by Diagram 2
(p.786) of [7,111]. By (5.32) of [33] and from the diagram (D5), we have
My (X,) =7, (0v, =) = HI®(0v,_ ) =H[V,_5,1,-,]=+2v,_;. Since =, is surjective,
this implies that m,(x,)= tkv,_; for some odd integer k, 1<k<11. Hence the
order of m(x,) is just 8.

Suppose that [n2_,.1,_,1=(n2_,),B for some B m,,_,(S"*") and let B=E?y,
y€M,,_3(S"1). Then by the diagrams (D1), (D4) we have J3dw)=[n2_,,1,_,]
=2 ) Ey=E“n:_,).Ey and JP4w)=J3SW(4x,)= E¥J®(4x,). Therefore we
have J@(4x,)—(n2_ ) EyeKerE® = ([v,_,.1,_,]> = {J®(x,)>. Here J¥(x,)
= —[v,_3.1,_,] has the order 24 by 2.14 of [29]. (/" is also injective by Proposition
3.2 of [8]). Then we have J“(4x,)—(n2_,),Ey=cJ®x, for some integer ¢, which
must be 0 or 12 (mod 24) since the left-hand side is of order 2. Thus,
applying the Hopf homomorphism to it from the diagram (DS5), we have

HI®(4x)=4HJ ¥ (x|)=4n (x,) #0
since m,(x,) has the order 8, and

H('I,%—z)*E)’:HE(S)(Uf—3)*?=0~
H(cJ¥Wx,)=cm (x,)= +2cv,_3=0.
This is a contradiction.
Let n=8s+6 (s>0). If s=1, then n,,_(S"*")=I1,,=0 and so Im(y2_,),=0
for (17- 1)y :7an—1(S" ") = 7y, (S" 7). Since [n7_;,1,-,]1#0 by Lemma 5.1 of [4],

this means that [#2_,,1,_,] does not belong to Im(y2_,), for n=14.
Let s>1. Then we have

nn(SOn - 2) TC"(SO,, - 1) S—(il nn(Son)'

| I I
Zyx+Z gx,+2Zyx, Zgw Z,w

Here SP(w)=v again and S¥ is surjective since n,:m,(SO,_,) = n,(S"~?) is trivial
for n=8s+6 by Lemma 2.2 of [6]. Now we may assume that S®(x,)=w as
follows: Let S™(x,)=m,w, S®(x,)=m,w, and let S, x,+/,x;)=w for some
integers m,, m,, and [, I,. Then w=(/;m, +/,m,)w and so [/,m,+Il,m,=1 (mod
8). Since x, is of order 4, we have $'¥(4x,)=4m w=0, and m, must be even. Hence
l,, m, must be odd. Since (m,,8)=1, there exists an odd integer m} such
that mym,=1(mod 8). Let x, =m5x,. Then S“(x})=m,S¥(x,)=nm,w=w and
x}, is another generator for x, since (3, 16)=1. Thus we may assume that S*(x,)=w
(This holds also for s=1, 1,4(S0,,)=Z,x,+ Zgx,+ Z3x;).
We have the following exact sequence for n=8s+6 (s> 1)
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T, n—3 i N
TC,,(SO,, - 2) - 7[,,(S ) — T,- I(Son - 3) - n,_ I(Son - 2)‘
I [ I I
Zx+Z gx3+ Zyxy Zgh, 3+ 230, Z,+ 2, Z,+7,

Since Imd=KerS=2Z,+0 (cf. p.6 of [8]), we know that Imn, =Kerd=<{2¥,_;)
+<o,_>=Z,+ Z,.

Now suppose that [n2_,,1,_1=(2_,),B for some Ben,, (S"*"), n=8s+6
(s>1), and let B=E?y, yemn,,_5(S"""). Then we have [n2_,.1,-,]1=J%4w)
=4I x)) =4EDID(x;) and (- ) B=(n-)E>y=E®(n:_,)4(Ey). Hence we
have

4J(4)(x2)'—(’13— 1)*E7€ Ker E(4)=<‘7"_2,I”_2]+[1X"._2,l”_2]>.

Here [¥,_,,1,_5], [®,_».1,_,] have the orders 8, 3 respectively (cf. [21] and p.8 of
[8]). Since J¥ is injective by Proposition 3.2 of [8], the left-hand side of the
above is of order 4, and so

4J(4'(x2) _(’73— D Ey=1 2[0,_5,1,- 2]

Thus applying the Hopf homomorphism to it and by the diagram (DS5), we have
the following:

H(4J®(x,))=4HJ ¥ (4x,)=4n,(x,)=0
since m,(x,) belongs to (27¥,_;>=Z, as shown in the above.
Hng- ) Ey=HE(n;_3),,y=0,
and by (5.32) of [33],
HQ2[V,-5,1,-,])= 47, _5.

Since 47,_ is of order 2, this is a contradiction.
This completes the proof.

Proposition 4.3. Let n=4t (t:0dd>0).
(i) Gn,-,)=0ift>1and G(n;)=Sn4(SO5)=Z,v, ,where n,(SO,)=Z,0, + Z,v,.
(i)  Gny-,)=0.

Proof. (1) For n=4t (t:0dd>0), we have

nn(SOn - l) S_m> 7["(S0") i{z" nn(SOn + l)»

I I I
Zzw ZZUI+ZZUZ Zzll
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where SPw=0, and S®v,; =0, S®v,=u (cf. [34]). So v,=dy, for d:m,,,(S")
- n,(S0,). Since JPv, =J%dn,=[n,.1,], which does not belong to Im(z,), by
Lemma 4.1 for n>4, we have J?~'(Im(y,),) nIm S*®=0. Hence G(n,_,)=0if n>4
by Lemma 1.2. Let n=4. Then the homomorphism (n;),:n,(SY)=Z+Z, - n,(S?)
~Z, maps v, generating the free part of n,(S*) to v ons which generates m,(S3)
(cf. (5.9) of [30]). Since J® is isomorphic (cf. Proposition 2.1 of [34]), we have
Gln3) =S (Im(n;),) = SV ny(SO3) = Z30, .

(i) Since $W:m,(SO,_,)— n,(SO,_,) is trivial for n=4t (t:0dd>0) (cf. [8]
pp.6-7), we have the conclusion from the definition of G(y2_,).

Proposition 4.4. Let n=4t (t:even>0).
(i) G, =2Z,v5 if t>2 and G(n;)=0, where n,(SO,)=2Z,v,+Z,v,+Z,v;.
(i) Glni-,)=0.

Proof. These are already known by Propositions 4.2,4.3,and 5.2 of [ 7, III].

Proposition 4.5. Let n=4t+1 (t:0dd).
(]) G(rln—l)zofo’ 1>0.
(i) Gn2_,)=0 for t>1.

Proof. We have

1(S0,_,) 5 1(80,.,) 5 m,(50,).

I I I
Zyx\+Z,x, Zyw +2Z,w, Z,

where S®x, =0, S¥x,=w,, and S®w,=0, S®w,=v (cf. [8] p.6 and [34]). Since
n(S0,,,)=Z, we have S»v=0 and so v=2n, for d:n,,,(S") - n,(SO,). Hence
JPy=JP0n,=[1n,,1,], which never belong to Im(y,), by Lemma 4.1. Thus we
have G(n,_,)=0 by Lemma 1.2.

Similarly we know that w,=dn?_, for 0:m,, (S" ") > n,(SO,_,) and that
J, =[n2_,,1,_,] which does not belong to Im(n}_,), by Lemma 4.2. Hence
we have G(n2_,)=0 similarly.

Proposition 4.6. Let n=4t+1 (t:even>0).
() G(n,-,)=2Z,v,, where n,(S0,)=Z,v,+2Z,v,.
(i) Gi_y)=2Z,w,ift>2and G(n3)=0,where n,(SO,_|)=Z,w,+Z,w,+Z,w;.

Proof. (1) We have
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S S(2l S(l)
T[,,(SO"_ 1) —_— TE"(SO") - 7tn(SOn+ 1) - TI”(SO),

[ I I I
Zw,+Z,w,+Z,w, Z,v\+2Z,y, Zu,+Z,u, Z,t

where S®w, =0, S®w,=0v,, S®w;=0,; SPv, =0, SPv,=u,; SMu; =0, SVu,=1
(vf. p.786, Diagram 2 of [7]I1]). Since S®v,;=0, we have v,=0y, for
0:m,4,(8") = n(S0,). SoJPv,=JPdn,=[n,,1,], which does not belong to Im(x,),
by Lemma 4.1.

On the other hand, it is known that Jtr belongs to Im(n?), if 1>2 by
[21]. Therefore, as is shown in the proof of Assertion 2 of Proposition 5.3 of [7,
I11], we know that J®v, belongs to Im(n?), and so belongs to Im(y,), for >2. 1If
t=2 (n=9), Jt=v? by [14] and v =n-¥ for a basis element v of [I;~Z,+Z,. So
Jrelmpy, for t=2. Then, replacing n2 by #,, an argument similar to the proof of
the same Assertion 2 induces that J®v, belongs to Im(n,),, where we note that
E®:n, (S" ") > n,,_,(S" is surjective since n is odd.

Thus we have J®v,elm(y,), for even (>0 and therefore we know that
G(n,-,)=Z,v, by Lemma 1.2.

(i) is already known by Proposition 5.3 of [7,III].

Proposition 4.7. Let n=4t+2 (t>0). Then G(,_,)=0 and G(n?_,)=0.

Proof. Since 7,(S05)=n(S0¢)=0, the assertion is clear for r=1. Let
t>1. Then we have

1(S0,-) 5 1,80 S 1,50, ).

[ I I
Zgw Zw Z,u

where S®w=v, SPv=u and J?:n,(SO,) > n,,(S"), J¥:n,(SO,_,) = 15— (S"™H
are injective (cf. [34]). Since the elements of Im(n,), , (1), : T2,(S"+") = 7,,(S™), have
order 2, only the element J®(2v) may possibly by in Im(n,),. However, we have
2v=2ay, for d:m,, ,(S") = n,(SO,) since SP(2v,)=0, and therefore JP(2v)=J%dn,
=[n,,1,], which does not belong to Im(n,), by Lemma 4.1. Hence we have
ImJ®nIm(n,),=0. Thus G(n,-;)=0 by Lemma 1.2. A similar argument holds
also for G(n?_,) by Lemma 4.2.

The situation of the case n=4r—1 (1>1) is a little different from those of the
other cases. Let m(2t) be the denominator of B,/4t, where B, is the t-th Bernouli
number, and let /(2f)=m(2¢)/2. We have the following.

Proposition 4.8. Let n=4t—1 (1>1).
() If t is odd, then G(n,_,\)=I120Z, G(ni_,)=I21)Z.
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(i) If t is even, then G(n,_,)=m(20Z (t>2), G(ne)=120Z, G(n?_,)=m(2)Z
(t>2), and G(n?)=60Z.
Here, n,(SO,)=Z and n,(SO,_,)=Z for t>1.

Proof. Let t>2. We have

S(J) S(Zl S(ll
nn(SOn—l) - T["(SO") - 7.l"n(Son-f'l) - nn(S0)5

[ I [ I
Zw VA) Zu,+Zu, Zt

where SPw=v, SPv=u,, SMVu; =0, SMu, =1 (cf[34]). Since S®, S® are injective,
E:ny, (S" Yo 1,,(S") and ED:7,,(S") = 15,4 ,(S"F?) are also injective by the
diagram (D1). Furthermore, since n+1 is even and n>7, we have m,,, (S"*?)
=[ns 13 JOEP My, (S™). So EWimy,, ((S"1) = My, 4 5(S"+?)=T1,,, which is sur-
jective, is isomorphic on the image E®mn,,(S") since Ker EV=([1,,,,1,+,1>.
Therefore ,,(S™), n,,_(S"~") are mapped injectively (ismorphically in fact) to II,
by suspensions. Thus, from the diagram (D4), we have the following diagram which
is commutative up to sign:

7SO, - 1) v 1,(S0,)—=. 1,(50)=Z

J* J J@ J
Tam (S ) 2 m (57 = I,
[(rr”), N
M?_)s TS"* ) - I,
/M
"2n—1(S"H) I,,_,

So we have Im J®~Im J® ~Im J, Im(n,), ~Imn, ,and Im(y2_,), =~ Imn%, and hence

) {ImJ‘z’nlm(nn)*gImelm N s

ImJ®AIm (2. ,),=ImJnImni.

ImJ is isomorphic to the cyclic group Z,,, by Theorem 1.5 of [1], and the
elements of Imn, , Imn?2 are of order 2. Hence ImJnImp, and ImJnIm#n} are
isomorphic to 0 or Z,. Let t=2s+1 (s>0). Then, by Proposition 4.2
of [21], there exists an element ¢ e ImJ c T, ; with the order 8 such that 4¢&,=n%p,
for a certain element u,e g, ;. This means that InJnlmny, =ImJnImni=Z,.
Hence, we have (i) by (1) and Lemma 1.2, where we note that S“:n(SO,_,)
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- 7n,(S0,_,) is surjective (cf. [8], p.8).

Let t=2s(s>1). We use Adams’ invariants (cf. [1]). Since ec(t - 0)=d(Eb)ec(n)
for any Oell,_, (n=8s—1, s>1) and d.=0 by Proposition 3.2 (c) and Proposition
7.1 of [1] respectively, we have ec(n-0)=0 for any 6€ll,_;. Here, ec=egx by
Proposition 7.14 of [1]. So we know that Im#n, = Keregz. On the other hand,
Theorem 1.6 of [1], [22], and the remark (p.284) of [23] show that

Mg, =ImJ®Kereg.
Hence we have
) ImJnlmy,=ImJnImyZ=0

since Imn2 < Imy, < Kereg. Thus we have (ii) from (1), (2) and by Lemma
1.2.  The results for t=2 (n="7) are already known by Propositions 4.1, 5.1 of [7, III].
This completes the proof.
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