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On sufficiently connected manifolds
which are homotopy equivalent

By

Norio KOBAYAKAWA

§ 0 .  Introduction

L et M  b e  a  simply connected closed smooth m-manifold satisfying the
following hypotheses

(H1) H i(M )= 0  except for i = 0, p, q, m = p + q (0 <p <q),
(H2) The tangent bundle of M  is trivial on its p-skeleton.

H ere  the  second  hypothesis is satisfied if  p  3, 5, 6, 7 (m o d  8 )  o r  i f  M  i s  a
it-manifold. Such manifolds as M  are  called (p,q)-primary in  [11]. A  p-sphere
bund le  ove r th e  q -sp h e re  a n d  a  connected sum  o f  such  bundles a r e  (p, q)-
prim ary. There also exist (p, q)-primary m anifolds which are  essentially different
from such connected sums (cf.[5], [6]). In the classification of manifolds, primary
manifolds play an important and fundam ental role. W e are  concerned with the
problem whether two (p, q)-primary m anifolds which a re  (tangentially) homotopy
equivalent are homeomorphic or not in  the metastable range 2p>q> 1.

I n  t h i s  p a p e r , w e  s tu d y  t h e  t w o  c a se s  (p, q) = (n — 1, n +1) (n 5 ) and
(p,q)=(n — 2, n +1) (n> 6). We show that in these cases, such manifolds as M  which
are (tangentailly) homotopy equivalent are homeomorphic and diffeomorphic modulo
homotopy spheres in  alm ost all c a se s . Furthermore, we show similar results for
(n —2)-connected 2n-manifolds ( n  5 )  w ith  torsion  free  hom ology groups. For
(n —1)-connected 2n-manifolds (n >2) (that is, if p =q> 2), we know such a  property
a s  above without assum ing (H2) by [31] a n d  [1 9 ] . F o r  (p,q)=(n,n +1) (n 2),
such a property holds also if Hp (M) is torsion free (cf [34]). F o r  (p,q)=(n — 4, n +1)
(n> 10) or (n— 5,n +1) 12), such a  property holds also in  almost all cases (cf.
[8]). We note that if n — 5 <p n —  3, q =n + 1, there exist certain manifolds satisfying
(H1), (H2) which are homemorphic but different from each other more than homotopy
spheres a s  to differentiable structures (cf. [8]). T he hypothesis (H1) implies that
the  homology groups are torsion free if p <q —  1. For torsion cases, there exist
certain manifolds with torsion homology groups which satisfy the conditions similar
to (H1),(H2) and are tangentially homotopy equivalent but are  not homeomorphic
(cf. Example 7.9 of [20]).

Henceforth manifolds are connected, closed, smooth, and oriented, and homotopy
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equivalences a n d  diffemorphisms are orientation preserving. T h e  proofs of the
theorems in  this section are given in the following sections.

W e have the following theorem s. Here two m-manifolds M , M ' are called
tangentially homotopy equivalent if there exists a  homotopy equivalence f  : M  M '
such that the tangent bundle TM is stably equivalent to f *(x ill). W e say that M,
M ' are diffeomorphic m od O m i f  M  is diffeomorphic to  M'ItE for some homotopy
sphere E of Om . If M, M' are diffeomorphic mod ® m , then M, M' are homeomorphic.

Theorem I. L e t M , M ' be simply connected 2n-manifolds satisfying the hypotheses
(HI), (H2) for (p, q) = (n — 1, n + 1) (n 5).

(i) Let n 3,7 (m od 8 ). I f  M , M ' are  tangentially homotopy equivalent, then
M , M ' are diffeomorphic mod 02„

(i) L e t n=8  or n=2 ,4 ,5 ,6  (m od 8 ). If  M , M ' are hom otopy  equivalent, then
M , M ' are diffeomorphic mod 0 2 ,,

(iii) L et na-- 0 ,1  (m o d  8 ). I f  M , M ' a re  7E-manifolds which are homotopy
equivalent, then M , M ' are dffeomorphic mod 0 2 „

Theorem 2. L e t M , M ' be sim ply  connected (2n-1)-m anifolds satisfy ing the
hypotheses (H1), (H2) for (p, q)= (n — 2,n+ 1) (n 6).

(i) Let n - 3,7 (m od 8 ). If  M , M ' are  tangentially homo topy equivalent, then
M , M ' are diffeomorphic mod 0 2 „_ 1.

(ii) L et n 2,4, 5,6 (m od  8 ). If  M , M ' are hom otopy  equivalent, then M,
M ' are diffeomorphic mod 02 n _  .

W O  Let n 1  (mod 8 ). If  M , M ' are 7E-manifolds which are homotopy equivalent,
then M , M ' are diffeomorphic mod 02n

 — 1
 .

In particular, using Theorem 3 of [5] and the splitting theorem of [3], we have
the following.

Theorem 3. L e t  M , M ' be (n-2)-connected 2n-m anifolds (n>5) w hich have
torsion free (n-1)-th homology groups and have tangent bundles which are trivial on
the (n-1)-skeletons.

(i) Let n= 8 o r n  3, 4, 7 (mod 8 ). If M, M' are tangentially homotopy equivalent,
then M , M ' are diffeomorphic mod 0 2 „

(ii) Let n  2 ,  5,6 (mod 8 ). If  M , M ' are hom otopy equivalent, then M, M' are
diffeomorphic mod ®2n.

(iii) L et n -- -0 ,1  (mod 8). If  M , M ' are  n -m an if o lds w hich are homotopy
equivalent, then M , M ' are dif feomorphic mod0 2 „.

In  the above theorem, we note that the tangent bundles of M , M ' are trivial
on the (n-1)-skeletons if n 7 (mod 8) or if M , M ' are it-manifolds.

It is still not known whether every (iii) of the  above three theorems can be
valid o r not without the assumption that M , M ' are it-manifolds.
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We have the following which is clear for the cases (ii), (iii).

Corollary 4. L et M , M ' be manifolds in Theorem 1, 2, or 3. In each case of
(0, (ii), (iii) of the theorems, the following three are equivalent, where m is the dimension
of  M , M ', and M , M ' are it-manifolds in case of  (iii).

(a) M , M ' are homotopy equivalent, tangentially in case of  (i).
(b) M , M ' are homeomorphic.
(c) M , M ' are diffeomorphic

These results a r e  obtained using the hom otopy classification theorems of
[11]. The invariant defined there can be replaced by more computable one (Lemma
1.2). In  order to compute the invariants, certain Whitehead products are studied
and some new facts which supplement the  results o f [24 ] a re  given (Lemma 4.1
and Lem m a 4.2). The results of computations (Theorem 1.7 and Theorem 1.8) will
be used also in  th e  subsequent paper to classify the  above manifolds completely
up to horn otopy equivalence.

I w ould  like  to  express m y thanks to professor H. Ishimoto who suggested
these problems and gave considerable help and advice to me.

§1. Homotopy classification theorems

In this section, we study the homotopy classification theorem of simply connected
m-manifolds satisfying the hypotheses (HI), (H2) in the introduction.

We remember the following diagram which is commutative up to sign (cf. [13, l]):

a 1
q - 1( p)n g _ i (S0 p , i )

(Dl) nq(SP) 1 r
if

P  1t p + q -1 (S P ) 7rp+q(SP

where P=[ , il ], the Whitehead product with the orientation generator ip  o f  7rp (SP),
and the lower sequence is exact if 2p> q —1. Let A: S(irq _ ,(S0 p )) —> 7Ep + q _  l (S P V IM  P
be the homomorphism defined well by A (S )=  {J} . L e t  0 be an element of 7E q  _ ,(SP)
(p < q -1 ) .  Then the inclusion m ap i: SP —> SPu o Dg induces the homomorphisms

T p+ q_ 1(5 P ) l ( S P  O p q )  and i.:n p  q - l (S P )/IM P itp 1(5P I
(1m P). We define the homomorphism SOrq _ ,(S0 p )) —n p + q _,(SPLr o Dq)li.(1m P)
by X=F. ,

In  [1 1 ] , th e  in v a r ia n t  I  i s  u s e d  t o  o b t a in  the homotopy classification
theorem of manifolds is question. For an  element 0 e 7Cq  _ ,(SP) (p <q— 1), the kernel
o f  I  i s  c lo s e ly  r e la t e d  t o  t h e  subgroup  G (0 ) o f  7Eq_

1
(SO

p  +  1
)  defined by

G(0)= S(J (1m 0 .)), where the homomorphisms are as follows (cf. [13, Il]):
0n p+q-1(Sq-1)—t TE p  q _ 1(S P ) 4- 7E q - 1(S0 7 rq _ 1 (S 0 p + i).

In  fact, if there exists a p-sphere bundle over the q-sphere with 0 as the attaching
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map of the q-cell, then Im 0* = Ker i* (cf. (3.2) of [13, II] and Lemma 4.4 of [26]),
and so we have Ker G(0). But, such a  bundle does not always exist. We have
the following lemma in  a  somewhat weak form.

Lemma 1.1. If  p <q —1, 2p> q —1, and p,q> 2, then

Im 0* + Im P = Ker i* + Im P

fo r  i * :np + q _ 1 (S P ) —). go- q - i (SPu o Dq) and P:n g (SP) —* q -  1 ( S P ).

P ro o f  Let (7 be the orientation generator of nq(SPL.),Dq, Hq(SPu0Dq, SP)
Z .  Then we have the follwing diagram which is commutative u p  to  sign:

irp + p q , s q - 1 )

np +  q (s la*J o *
n p ,q ( s P u e D q ,s P ) p +9- 1 (SP)

p + q - 1
(S P U 0 D q ) ,

where x, are induced by shrinking SP, Sq - 1 , to  a  point respectively.
By the Blakers-Massey T h e o re m , is  surjective if p=q — 2  and isomorphic if

p <q — 2. So we have

np + ,(SPu oDq, SP)= Im (7* + Ker x

for p < q —1, which is a direct sum if p <q — 2. On the other hand, by the homotopy
exact sequence o f  Theorem  (2.1) o f  [12], w e  k n o w  th a t Ker x = Im Q  fo r  the
homomorphism Q:n p + ,(SP) —* np +  q (SPu e Dg, SP) defined by Q(y)=[(r,y], yen p + ,(SP),
the relative Whitehead product with a. Hende we have

np+ i(S P uoD q , SP)= Im (7* +1m Q

for p <q — 1, which is a direct sum if p<q — 2.
Thus, from the diagram, Ker i* = Im a =im O + a(Im Q ).  Since 0[U, y]=[0(7,y]

= [0, y ]  fo r  [0", y] e1m Q, ye n,,+  ,(SP), a n d  E[0, y] = 0  for the suspension homo-
morphism E, w e know  that E(0(Im Q))= 0  and so  0(Im Q) c  Im P  from the lower
exact sequence of the diagram (D 1 ) .  So, we have Ker i* c Im 0* +ImP, and therefore

Ker i * +Im P  Im Im P.

Conversely, it is clear that Im 0* c Ker i* from  the diagram, and so

Ker i* + Im P  Im 0* + Im P.

This completes the proof.

Lemma 1.2. If p <q —1, 2p> q — 1, and p,q> 2, then
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Ker 1= G(0)= 1 (Im(E0)„) nIm S

f o r J :Trq _ i (S0 p +  i ) rp  ,(S P ') .

P ro o f  Since I = i o  A  and  K er =  (K er Im P)/Im P =(Im 0„ +1m P)/lm P
from Lemma 1.1, an  element y i(S O P') belongs to Ken / if and only if there
exists an elem ent e n q _ ,(SO) such that g  = y and g  Elm 0, + Im P .  So, y belongs
to Ker / if and only if y belongs to S(J -  1 (Im 0 + Im P)), that is, Ker I= S (J 1 (Im
+ 1m P)). Since P= — Jo a at the diagram (D1), it is easily seen that J - '(1m0„+ Im P
= J -  1 (Im  0 )+ J 1 (Im  P). So, we have

Ker 1= S,1 -  1 (Im 0, )+ SJ -  1 (Im P).

Then, since 1  - (Im  P) = J 1 (Im (—  e  0 )) = J (Jam = + J  1 (0), we have
S J  (Im P)= S(Im a)+ S (J (0)) = S (J '(0)) S J  1 (1m 0 e ) .  T h u s  w e  have K er 1
= SJ - 1 (Im 0 „)= G(0).

The latter half of the assertion is known straightforwardly from the diagram
(D1) combined with the commutative diagram

7t
p + q -  I

(S P ) IT p -F q (S P + 1 )

(D2) (E0).

n
p + q -  1

(S q - 1 ) irp+q(Sq)

where we note that E: 7C p1 ( 5 q -  1 ) —> n p + q (S q )  is surjective since p <q —1.

If 0 =0 in  p a r t ic u la r , t h e n  Ç ,  Ç  are  in jec tive , and  s o  w e  have Ker A.=
Ker 1. Therefore, we have

C orollary 1.3. L et 2p> q —1 and p,q> 2. Then

Ker A = G(0) = J - (0) n Im S

for J: n q  _ ,(SO p  1 ) n  p  q (S0P +

In  fa c t , w e  h av e  J(rtq  _ i (S0 p ))/Im P J(Im S )  from  th e  diagram
(D1), a n d  s o  A  is  equ iva len t to  — J 11m S. Therefore Ker 1 = J 1 (0) nIm S, and
G(0) = J 1 (0)n Im S  is known straightforwardly from the diagram (DI).

Let ,Ye(p + q + 1, k, q) be the set of handlebodies obtained by gluing q-handles, k
in  number, disjointly to a  (p+q+1)-d isk . Then a  simply connected m-manifold
M  satisfying (Hi), (H2) is represented mod O m  (m =p +q )  a s  th e  boundary of a
handlebody W  of Y f(p + q + 1, k, q) w ith  k = rank H p (M ), w here w e assume that
p<q—  1 and 2 p >q >1 . In fact, killing the generators of H p (M ) by surgery, M  is
modified to a homotopy sphere E, and so M1#(—E) to the standard sphere. Therefore,
constructing conversely, 111#(—E) is the boundary of a handlebody Ye(p + q + 1, k, q).
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A  h a n d le b o d y  W  o f  A lp +q +1 ,k ,q )  ( 2 p >q >1 )  is d e te rm in e d  u p  to
diffeomorphism by the  inva rian t system  (H ;(k ,a) defined by W all[32]. H ere
H= H p(W) is a free abelian group of rank k, 4): H x H n q(SP+ 1 ) is a certain bilinear
form  sym m etric  up  to  s ig n , an d  a:H —■nq _,(S 0 p .,_,) i s  a  map assigning each
x  e l l ï r q ( W ) th e  characteristic element o f the  no rm al bundle o f  th e  imbedded
q-sphere which represents x. a  is  a  quadratic form with associated bilinear form
ao 0, a :g q (sP+ i) 7Eq_ i(SO p + 1) (cf. [32]).

Handlebody Classification Theorem (W all[32]). Let W , W ' be handlebodies
o f  Y r(p +q +1 ,k ,q )  (2 p > q >1 ) w ith  th e  inv ariant sy stem s (H ; 0,a), (H' ;4)',a')
respectively. T hen W , W ' are diffeomorphic if and only if  there exists an isomorphism
h: — > H ' such that 4)= 4)' o (h x h) and a= a' oh.

We note that 4) is a homotopy invariant of the boundary of W  by Propositon
1 of [7, II].

Henceforce we assume that (p, q)= (n —1,n + 1 ) (n  4) or (n — 2,n + 1) (n > 6) and
p u t 0 =q „_ , or th,2 _ 2  according a s  (p,q) is  the form er or the latter, where
1n- 2 are the essential elements of nq _ i (SP).- Z12Z respectively. Let p:n 4 _,(S 0 p + ,)

7tq _,(S 0 p + 1 )1G(0), p o : 7Eq _ 1(S0 p + i) ---+ 7tq _ i(SO p 1 )/ G (0 ) b e  th e  canonical maps.
L e t  W , W ' be  hand lebodies o f  Y e(p +q +1 ,k ,q )  w ith  th e  in v a r ia n t  systems
(H ;49,a), (H' ; 0',a') respectively. I n  [ 7 ,  ULM ], [9 ] ,  and [11], the hom otopy
classification theorems for the boundaries of handlebodies were mentioned in terms
of invariant systems and the homomorphisms po , p , A, and I. Since Ker Z, Ker A
may be replaced respectively by G(0), G(0) by Lemma 1.2 and  Corollary 1.3, we
can restate and unify the homotopy classification theorems as follows:

Theorem 1.4. If  4), 4; are non-singular, then aw , a W ' are homotopy equivalent
if  and only  if  there ex ists an isomotphism h:H — * H' such that 4)-  (hx  h) and
p o a= p o (a' oh).

Theorem 1.5. Let rank 0, rank 0' < k .  Then 0 W, a W ' are homotopy equivalent if
an d  on ly  i f  there ex ist a n  isomorphism h: H — ) H' satisfying 4)=4)' o(h x h) and
a  direct sum  decom position H=H o C ill, orthogonal w.r.t. 4) such that

(i) H 0 x H 0 =0 and  O H , x H , is non-singular,
(ii) po o a=- po  o (a' oh) on H o  and pol=p 0(a' oh) on H ,.

Remark. Since G(0) c G(0), (ii) induces that p  o  -= p o (a' h) on  the  whole of
H .  The canonical map p o  is equivalent to A on Sn q _ ,(S0 p ) c  7r4 _,(S0,,,,), since
G(0)— S(Ker J)  and we have Sg q _ 1 (S0 p )1G(0)::'—' Trq _1(S0)/IM a Ker 1(S0p)
I Im  P . For J: _  i(S 0 p +  i) -± 7r p + q (S P ±  1 ),  the maps po , A are equvalent to  — J on
Im S  7Eq _ 1 (50„ +  1).

From Handlebody Classification Theorem, we have the following.
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Corollary 1.6. A ssume that G (0)=0. If  avv, 0W' are homotopy equivalent, then
W, W' are dif feom m phic and so  a w,aW' are di eornmphic.

Thus the calculation of G(0) is an essential problem . W e have the following
results which will be proved in §4, where we abbreviate Z Ik Z  as 4, and in(2t) is the
denominator of B ,I4t, B , is  the t-th  Bernoulli number, and w e put l(20=m(2012.

Theorem 1.7. Let (p, q)= (n — 1,n +1) and put 0 = f ln- ( 0  4 ) .  Then G(1H- 1)
is given by  the following table:

n 4 5 6 7 8

n„(S0) Z2+ Z2 Z2 0 Z Z2+ Z2+ Z2

G ( , I n _ 1 ) Z 2 + 0 0 0 120Z 0

n >9 4 1 - 1 41 41+1 41+2

t: odd t : even : odd 1: even t : odd t : even

ir„(SO„) Z2+ z2 Z2+ Z2+ 7,2 z2 Z2+ Z2 z ,

G(r _ i ) 1(21)Z m(2t)Z 0 0 +0+ Z2 0 o + Z2 0

Theorem 1.8. L et (p ,q )=(n -1 ,n+1) and  pu t 0= re_ 2 6). Then G(L,2 - 2 )

is given by the following table:

6 7 8 9

it,( SO  _ 1 ) 0 Z2+ Z2 Z2+ Z2+ Z2

G( re, _ 1 ) 0 60Z 0 0

n>10 41 - 1 4t 4t + 1 41+2

t: odd t : even t : odd t: even t: odd t: even

n„(S0,,_ i ) Z Z2 Z2+ Z2 Z2+ Z 2 Z2+ Z2+ Z2 Z8

G(re,_ 2 ) 1(21)Z m(2t)Z 0 0 0 0+ 0 +Z 2 0

§2. Proofs of Theorem 1 and Theorem 2

In this section, Theorem 1 and Theorem 2 are proved at the same time. Let
W  b e  a  handlebody o f dr(p+ q + 1, k, q) (2p > q > 1) w ith  the invariant system
(H ;0 ,1 ) .  I f  q = 4 t  (t > 0 ) , w e  have the following commutative diagram easily
from  L em m a 1 .1  o f  [1 6 ]  and Theorem  35.12 o f  [2 8 ]  (cf. also Lem m a 9.2
of [5 ] and p.731 of [6]):
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Hq ( W) ,(SO„ i )

(D3) 0),(w),> I is.*

where is :S0 p + , —> S O is the inclusion map, p (W ) is the t-th Pontrjagin class, and

2(2t — 1)! if t is odd,
c= +

- 1 ( 2 1 -  1)! if t is even.

L e t W ' b e  a ls o  a  handlebody o f ir (p + q + 1 ,k ,q ) w ith  the invariant system
(H' ;(/)%ce). It m ay be assum ed that M=0 W, W ' ,  m o d  O m  (m = p + q ), and
k= rank H (M )=  rank H (M ).

Proof of  (i). Let q = n + 1 = 4 t (t> 1 ). Since is* is  injective in this case (cf.[34]),
the invariant ot is determined by p t ( W ).  From the assumption, we have a tangential
homotopy equivalence f : M  M ' ,  and by Theorem 2 of [27], we may assume that
f  if a tangential homotopy equivalence from OW to  O W '. Let i, i' be the inclusion
maps of a w, a W' into W, W' respectively and let h:H=1-14 ( W)—> H'=1-1,?( W ) be the
isomorphism defined by h=i'* 0 f* oi; 1 . Then, pt ( W )=(i* - 1  o f*oi'*)p,(W '), and
from  the above diagram, it  is  e a s ily  se e n  th a t oc= o t '-h . On the o the r hand,

0'.(h x h) and b y  Proposition 1 of [7,11]. Hence (H;(/),a) is isomorphic to
(H ';0 ',a ') and so  W  is  d if fe o m o rp h ic  to  W ' b y  H a n d le b o d y  Classification
Theorem . Thus we have M = M ' mod 0,„.

Remark 2.1. In the above proof, we may assume only that p,(M )=f*p ,(M ) for
the given homotopy equvalence f

Proof  of (ii). In these cases of n, w e have G(q„_,)=0 by Theorem 1.7 and
G(ii- 2) = 0 by Theorem 1.8. Therefore M= M' mod O m  by Corollary 1.6.

To prove (iii), we need the following.

Lemma 2.2. Let M  be a simply connected in-dimensional ri-manifold satisfying
the hypothesis (H1) of § 0 .  Let k= rank Hp (M ) and suppose that Hp (M ) is torsion
f r e e  i f  p = q - 1 .  Then, M(mod Con )  bounds a  parallelizable handlebody W of
,Ye(p + q + 1, k, q) (p + q = m).

P ro o f  By killing the generators of //p (M) ( np (M )) by surgery, M  is modified
to  a homotopy sphere E. Furthermore, by Lemma 6.2 of [18], we can perform it
by framed surgery (cf. §6 of [1 8 ] ) . That is, for a given trivialization g of the stable
tangent bundle  o f M , there  ex ists a  parallelizable (m+1)-manifold N  w ith  a
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trivialization 0 of TN such that aN = M u(—E) and g =  I M.
Then, giving a  trivialization e to  the stable tangent bundle o f —E, we can

make the connected sum M ( —E) with the triv ia liza tion  =  g#e. Hence, considering
the above construction again, there exists a parallelizable (in + 1)-manifold AT' bounded
b y  M ( — E) and (—E)ItE = S m . L e t W=RuDm + 1 ,  w hich is considered as a
handlebody of .Yr(p + q + 1, k,q). W has a trivialization of t Won its m-skeleton since

H i( W,R;n i _ i (SO„, + ,)) H i(Dm+ 1 ,Sm; lti_ i(SO n , 1 ))=  0

for i < tn .  The obstruction to  build  up a trivialization of T W on the whole o f W
using it lies in Hm+ I ( W;n m (S0,„ ± ,)) = 0 .  Thus W is parallelizable.

Proof  o f  (iii). W e m ay assume th a t M =  W, AP—a W', mod O m  and W, W'
are parallelizable handlebodies o f  Ye(p+q+1,k ,q ) b y  L e m m a  2 .2 , w h e re  k
= ra n k  1,(M )=  rank H p (M ) .  Since W, W' are parallelizable, we know that is,cc,
are trivial. In  th e  present case, i m a p s  the last direct summand of Trq _
in the list of Theorem 1.7 and Theorem 1.8 isomorphically onto nq _ ,(S0)-_-  Z 2 (cf.
Table 3  o f  [3 4 ]) . Therefore a , oc' a lw ay s tak e  the values w ith  trivial last
com ponents. W e note th a t G(1„_,), G(1„2 _ 2 )  are just the last direct summands of
Trq _ i (S0 p +  ,) in each case of n of (iii) by Theorem 1.7 and Theorem 1.8.

L et M , M ' be  hom otopy  equ iva len t. T hen  the re  ex is ts  an isomorphism
h : H  H '  such  tha t 0  =  0 '. (hx h) and po ot= po(ce .h) on H  by Theorem 1.4,
Theorem 1.5, and the rem ark. Since p is injective on the images of ot, a' from the
above, we have oc=oc' oh on H , and so W  is diffeomorphic to W ' by Handlebody
Classification T heorem . T hus M  is diffeomorphic to M' mod O m .

This completes the proof of Theorem 1 and Theorem 2.

§3 . Proofs of Theorem 3 and Corollary 4

The following is essentially known by Theorem 5 of [31] partly and by [19]
as an application of the theory of surgery. However, we show it again since our
proof is elemental and complementary to [31].

Theorem 3.1. Let M , M ' be (n —1)-connected 2n-manifolds (n> 3). Let M , M '
be homotopy equivalent, and suppose that the homotopy equivalence f : M  M '  satisfies
p i (M )= f*p t (M )  if  n=4 t (t >0 ). Then M ,M ' are diffeomorphic mod

P ro o f  Let M = W uD 2 , M '= u D 2 . We consider W, W' as handlebodies
o f  ,Y (2n , k , n) (k = rank H „(M )) w ith  the invariant system s (H ; (/), oc), (H' ; , oC)
respectively. Let i/; : H (M ) x H(M) —› Z be the intersection form and let 3 :H„(M)

n„-1(,50„) be the map assigning each xe H„(M) the characteristic element of the
normal bundle of the imbedded n-sphere which represents x  (cf. Theorem  1 of
[3 2 ]) . Then, from the definitions, we have 0 = V (i .  x where j: W c  M
is the inclusion map and i H„(147)— II„(M ) is an isomorphism. We define Cr.',
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d', and i ' similarly for M ' and have 4)'= x oc' =
Let f : M --+ M' be  a hom otopy equivalence. Then we h a v e  -.rfi= ifi'.(f* x f * ),

J o i = J . ( i 'o f )  by  L em m a 8  of [31] (cf. a lso  Proposition 5.1 of [7,1]), where
J:7r,,_,(SO„) 2n— l(S " )  is  the f-hom om orphism . Since i,,,a r e  isomorphisms,
we can define a n  isomorphism h : H  H ' b y  h = f * ,  i  *  .  Then, easily we
have tt, =0' , (h x h) and  Joor=.1.(or'.h). S o, if  w e show  that a  =a' o h , then  the
invariant systems of W , W ' are isomorphic. Hence W , W ' are diffeomorphic by
Handlebody Classification Theorem, are therefore M , M ' are diffeomorphic mod 0 2e .

L e t n O 0  (m o d  4 ) . T h e n  w e  have at = h  immediately since J : ir„_ ,(SO„)
7r2 „_ 1(S") is injective (cf. Proposition 2.1 of [34]). Let n=41 (t> 0) and suppose

that p,(M)=f*p i(M ) .  The isomorphism i* o f* :1 1 "(W ')— > H "(W ) satisfies
<17((p), x> = <cp,h(x)> for x eH =H  n(W), rpe H"( W') = Hom(H„( W'), Z ) .  S o w e have
p,( W )= i*p,(M) i*. f  *p,(M ')= i* f* o(i'*) - 1 p,( W ')=fip,(W ') a n d  therefore <13,(W),
x>=<p,(W ),h(x )> f o r  x  H .  T h u s , f ro m  t h e  d ia g ra m  (D 3 ), w e  have
= i o

 ( a '  o  h) for is
* : it,,_ Z +  Z  Z  ( n = 4 t ) .

Let n=4t and t > 3. It is known that tc,,_ ,(S0,,)= Ker PI@ 4571n _ i(S  _ Z  Z
fo r  S : _  ,(S O „ 1 )  7 C H  _  i(S O n ) induced from  the inclusion SO„_, S O „. Put
at : H —* n„_,(SO„) as a = (a, , oc2)  and  similarly a' as a' =(cz'1 , a'2 ). T h e n ,  since is

* is
isomorphic on the second direct summand, we have a 2 = a'2 • h from the a b o v e . On
the other hand, for the homomorphism n,,, =n„_,(SO„)—> n„_,(S0" - 1 )= Z  induced
from the projection, we have

tr * a ,(x)= na(x) = x • x = 0(x, x)= 0'(h(x),h(x))

h(x) • h(x)= n * or'(h(x))= n * cr',(h(x)) (x E H).

So oci = a', o h  since n,,, is  injective on Ker is*  i f  n  is even . T hus w e have oc = oc'

Let n =4 o r  8 .  Then still n„_,(SO„) - Z +Z  by  a  well-known basis {u, , u2 }
such  tha t K er is

* is  g e n e ra te d  b y  u  — 2u2 , u 2 c o m e s  f ro m  th e  generator of
tr,,_ ,(SO„ _ b y  the hom om orphism  S ,  a n d  iso 2 generates tt„_  ,(SO) Z.
Therefore the basis {u, — 2u2 , u2 } gives again the above direct sum decomposition
of 7r„_ 1(S O„). Hence the argument is quite similar.

This completes the proof.

Pro o f  o f  T heorem  3. Let M , M ' b e  (n-2)-connected 2n-manifolds (n > 5)
with trosion free (n — 1)-th homology groups and tangent bundles which are trivial
o n  th e  (n-1)-sk eletons. B y T heo rem  3  o f  [ 5 ] ,  there  ex ists a  decomposition
M' =  M i #M 2 such  tha t M i is  (n-2)-connected, H„(Mi)= 0 ,  a n d  .1112  i s  (n — I)-
connected, H„(M 2):H„(M '). Let f  M  M ' be  a hom otopy equivalence and let
N; = M; — I nt D7n (i = 1, 2) so that M ' =N i u  N 2, N i N 2=0N i= Na _  s  2n — . Then,
by Theorem 1.1 of [3], there exist 2n-submanifolds of M  such that M =N 1 uN 2 ,

N, n N 2 = aN, = aN 2  and f  is homotopic to a  map g:(M ,N ,, N 2 , (M',Ni ,
N ,S 2 "-  I )  whose restrictions to  respective manifolds are homotopy equivalences.



Sufficiently connected manifolds 759

Here g is a homotopy (2n— 1)-sphere but we can show that g is diffeomorphic
to  the standard (2n —1)-sphere. In fact, since N , is hom otopy equivalent to N ,
11,(N 1 ) is non-trivial only for i =0, n - 1, and n+1, and those homology groups are
torsion free. So, since 1■11 (c  M ) is parallelizable on its (n - 1)-skeleton, we can kill
th e  generators o f  11_ 1(1V1 )  b y  su rg e ry  so  th a t g = 3 N 1 i s  th e  boundary o f a
contractible m anifold . Therefore g is diffeomorphic to the standard (2n— 1)-sphere,
and we have M—M 1 I#M 2  fo r  M i =N i u D2 ", i= 1, 2.

Since g(8N1)=ON1 (i=1, 2) w e can extend gllY , t o  a  hom otopy equivalence
:  M, (i = 1,2). If f  is tangential, then g  is  a ls o  a  tangential homotopy

equivalence, and  so p,(N ,)= (g I N 1 f o r  n=4t — 1 and p,(N 2 )=(g1 N 2 )*p,(N )
for n = 4 t .  Hence we have p,(M ,)=(g,)*p,(M ) if n =4 t - 1  and p 1(M 2 )=(k 2 )*p,(M)
if n = 4 t .  Therefore, by Theorem 1, Remark 2.1, and Theorem 3.1, we obtain the
results according to the corresponding cases.

This completes the proof.

Remark 3 .2 .  In  th e  above proof, we may assume only that p,(M)=f *N M ')
for n=4t —1, 41 (1> 1) for the given homotopy equivalence f

Proof o f  Corollary 4. I t  is  c le a r  th a t  (a), (b), and (c) are equivalent for the
cases of (ii), (iii) of Theorems 1, 2, and 3. For the case (i), it is sufficient to show
that (b) induces (a). Let f :M  —> M ' be an orientation preserving homomorphism.
Since H ( M ) ,  H * (M ) a re  to rsion  free a n d  s o  H *(M ;Q IZ ) i s  of torsion, the
homomorphisms Z )  W (M ;Q), i=n,n+ 1, are injective. This situation is
similar fo r  M '.  H ence, from  th e  topological invariance of rational Pontrjagin
classes ([25]), we have p t (M )=f  *N M ') for n=4 1 — 1,4t. Therefore, from  respective
(i) of the theorems and  Remarks 2.1, 3.2, M  is diffemorphic to M'mod O m . T h u s
we have (c) and so (a) by Theorem 2 of [27].

§ 4 .  Calculations o f G( 1„_ 1 ) and G( 1„2 _ 1 )

In  this section, we prove Theorem 1.7 and Theorem  1.8. Those are given by
calculating G(0) for (p,q)=(n — 1,n + 1), 0 = ( n  4) and for (p,q) —(n — 1,n + 2),

6).
From  the  diagrams (D1) and (D2), w e have the following diagram which is

commutative up to  sign and we frequently refer to it in  our calculations:
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7r„(son _2 ) S '''
nn(son-i) nn(so„) n n (son + i )  — >  7c„(so)

I pa)

Ea)
n2„- 2(S n  - 2 )

(D4) Icn„_24

7r2„-2(S n

1. (n„_,)*

E(4 ,

7r2n-2(S")

j(31 I Jo) I

n2„-1(S" - 1 ) F2-3; n2(Sn) 7r21+ 
1(S+  1

)  
If ;

f (n,d,, Î (n„,,). I P I*

E
(2)

E " '
n2 .-1 (S ") E 2 -:' 7

r 2 „ ( S
" +  1

) 

▪  7

r2„-H(S" + 2 )  - +  n „ - )_-_-, ,

f(IQ* 1 (q„ , ,)* f (q„ , 2)* f q *

E( 3 ,E ' 2 ' Em
n2„- 1 (S" + 1 ) —> n2n(S n +  2 ) — ' n2n+11, 5 " + 3 ) n„--2

,

Here Su ) ,  Eu ) ,  and 0 ) denote respectively the hom om orphism  induced from the
inclusion map, the suspension homomorphism, and the f-hom om orphism  for each
i. The diagram  can  be  ex tended  to  the left i f  necessary and Eu):n2n-3(Sn-

n2 „_ 2 (S") is surjective.
The hom otopy groups of rotation groups are known by [1 7 ] and [ 2 ] .  There

exists a splitting exact sequence

,

0 nn + 1( Vtn-l-n-r,rn1 n o l(a
0

n -  r )  
4  nn(S 0 ) 0

for n> 8, r <4 except the cases n = 14 and n= 8s + 7, r = 3, where m is sufficiently large.
If n 2,4 ,5 ,6  (m od 8), then  n„(S 0)=0 and we determine the generators of

n (S 0 „„)  by those of n„+ ,(V„, + „_,.,„,) carried by the isomorphism 0. If n  0, 1 (mod
8), then there exists the largest number ro > r  such that is,:n„(S0„„)— > m(SO) is
isomorphic. So we adopt the element of nn(S O „,)  corresponding to the generator
of ;(S O )  as its generator. Then, the generators of n„,..,(V„, + „,„,) ,n (S 0 „_ ro ) carried
by 0 and S: n„(SO„,)— > n„(S O„,) are designated as the generators of n„(SO„ _ r ) .  For
n =8 , confer p.782 of [7 , Ill]. Those generators are temporarily denoted by u, y,
w, etc. with numbers suffixed if necessary. For n O, 1 (mod 8), we assign the final
number to the generator which corresponds to  the generator of n„(S0) by is* .

For the cases n =3, 7  (m od 8), we can also set the generators of n„(S 0„„) in
a canonical way (cf. pp.8, 9 of [8]), and the notations are similar. For n=14, we
know n 1 4 (S 0 1 0 )=  ( S O =Z8 , n 1 4 (S0 1 2 )= Z 4 + Z 2 4  b y  [15].

The following lemmas supplement the results of N om ura[24] (cf. also Lemmas
2.3, 3.3 of [7, III]).

Lemma 4.1. If  n 0, 1,2 (mod 4) and n> 5, 6, then [11„,t,J does not belong
to  Im(q„) *  for (;1„),,:n2n(S" + 1 ) n2 „(S").

P ro o f  For n 0 ,  1 (m od 4), the result is due t o  [ 2 4 ] .  L et n = 2  (mod 4),
n> 6. Then we have
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„(son  i ) 54) n„(son) 54n ' n„(son , i )

Z8 W Z
4

V Z2 u

and S ( 3 1 w =  S (21 v = u (cf. [3 4 ]). Suppose that [ti n , = (ri„),,13 for some fie n2„(S" + 1 ).
Since S (21 (2v)=0, by the diagrams (D1), (D4), we have [ri„,i„]=J (21 (2v)=J (21 S (31 (2w)
=E ( 3 1 J (3 1 (2w). Let fi = E13)y for some y c it 21 l (S " ).  Then [n n , i n ]  = ( ,1n)4 6 =liln) * E (31Y
= E ( 3 ) (rin - ) 4 y a n d  s o  E ( 3 1 J ( 3 1 ( 2 w ) = E ( 3 1 ( 1 7 , 1 4 Y .  S o  w e  have  J (31 (20 — (r/n- 1)4Y
EKer E (31 = ,i , , _ Let J (31 (20— (n,_,) * y = c[17,2  _ ,t„_ ,], c = 0 o r 1. Since
7E2n-1(5 ) =44T , in] eEn2n-2(SH - 1 ) for even n  (n  2,4,8), the element y is given by
y  d [ ; ,  , i„] + ,E 6  f o r  so m e  in te g e r  d  a n d  6 e 2 „ _ 2 (S" - 1 ). Therefore (ti n  _  0 4,Y
= d[rb, _ , r _ 1 ] +ti n _ , . E S .  Thus we have

J( 3 )(2w)= c[rin2 - iH  - I ]  + d [q n -  1, 11n-  t] + _ E6

Therefore J (31 (40= 2J (31 (2w )=0 . Since ,/( 3 ) i s  injective by  Propositon 2.1 of [34],
this is a contradiction.

Lemma 4 .2 . I f  n l,2  (m od 4) and  n  5, n 0 6 , then Pln2 -1, 1n- i ]  does not
belong to Im(n„2 _,) *  fo r n2„ - t(S" + 1 ) n 2n — 1(5 "—  I

) .

P ro o f  F o r  t h e  c a s e  n = 1  (m o d  4), t h e  r e s u l t  i s  d u e  t o  [2 4 ]. Let
n = 8s + 2 (s> 0). Then we have

so,
nn (S0„- 2) n(50,,- 1) 7En(SO„).

Z 8 X  Z 2 4 X 2 Z
8
W Z4 v

H e re  S (41 (x 1) = w, S (41 (x2 ) = 0  (cf. p.6 o f  [8 ]), and S 3 (w )= v  (cf. [3 4 ]). So
Thit +1(S " 2 ) Z 2 4  — › n „ (S O  2 ) is injective and we can take x2 as x2 =3v„_ 2 , where
v 2 i s  the generator of n„ +  , (S " ') .

W e heve the following diagram commutative up  to  sign:

nn (S0„_ 2)

(D5) Z 2 4  nn + 1(Sn  2 ) I j ( 4 )

 \ c * 
nn(Sn- 3 ) Z  ( n > 7 ) ,

P\

it 2n - 2(S" 2 )

where n*  is induced from the projection and H  is the Hopf homomorphism. We
note that n*  i s  sujective for n=8s+2 (s>0) since in the exact sequence
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nJ , 5 0 „- 2) nn(S 0 „- 3) 
2

. 1(SOn — 3) 
4

 n„-i(SO„- 2),

S :  n g s+  1(S0 8s— 1) = Z 2  + Z 2  + ,  n 8 , ± ,(S0 8 s )= Z 2  +  Z 2  + Z 2  is  injective by D iagram  2
(p.786) o f  [7 ,III]. B y  (5.32) o f  [33] a n d  fro m  th e  d iagram  (D5), w e  have
n* (x2 ) = n * (av„_ 2 )=H J ( 4 ) (av_ 2 )= 1-1[v „ _ 2  ,/„ _  2 ]  =  +  2v„_ 3 . Since n ,  i s  surjective,
this im plies that n„(x ,)= +kv„_ 3  f o r  some odd integer k, I  <k < 11. Hence the
order of n ( x 1 )  is  ju st 8.

Suppose th a t Ett - , in -  i] =(17 . - for some /3 n2 „_ ,(S"'") and  le t 13 = E2y,
y  n 2 „_ 3 ( S " ') .  Then by the  diagrams (D1), (D4) w e have J( 3 ) (4w)= [rd_ 1 ,/„_ i ]
--(rd_ 1 )* E 2y = E ( 4 ) (i1 _ 2 ),Ey  and J( 3 ) (4w)=J ( 3 ) S ( 4 ) (4x 1)=E ( 4 ) J( 4 ) (4x 1). Therefore we
have ./ ( 4 ) (4x 1 )—(rd_ E Ker E ( 4 ) = <b)„_ 2  , 1 „ _ 2 ] >  =  <J( 4 ) (x2 )>. Here J 4 (x2 )
= — [v„_ 2 , 2 ] has the order 24 by 2.14 of [29]. (J ( 4 ) is also injective by Proposition
3.2 of [8 ]). Then we have J( 4 ) (4x,)—(n,2,_ ,) * E'y =c./ ( 4 ) x 2 fo r  some integer c, which
m u s t b e  0  o r  12 (m o d  24) since  th e  le f t-h an d  s id e  is  o f  o rd e r  2 . Thus,
applying the Hopf homomorphism to it from  the diagram (D5), we have

HJ ( 4 ) (4x ,)= 4HP 41(x 1 )= 4m ,11(x 1 )  0

since n ( x 1 )  h a s  the order 8, and

2 ),Ey = H E ( 5 ) (n „2 _ 3 ) „y = 0,

H(c.J( 4 ) x 2 )= cn ,(x 2 ) = + 2cv„ 3 =0.

This is a contradiction.
Let n = 8s + 6 ( s > 0). I f  s= 1, then n 2 „_ i ( S " ') =  n, 2 = 0 and so  Im(re,_ ,)* = 0

for (n„2 _1)*: n211 - 1(S" + ) n2„- '(S " -
 1 )• S i n c e  [ ' i -  1 1 ]  0 0  by Lemma 5.1 of [4],

this means that Pe_ 1 , i„_ i ]  does not belong to Im(e_ 1 )*  fo r  n = 14.
Let s> 1. Then we have

7r„(SO„

 

n„(SO„ _ ,) s 2; n n (SO„).

Z 8 w

 

Z 4 X 1  Z1 6 X 2  Z3X3

Here S ( 3 ) (w)= t) again and S ( 4 ) is  surjective since 7E* : n„(S0„_,)—* n n (S" -  2 ) is trivial
fo r n =8s+ 6 by L em m a 2.2 o f  [6 ] .  N ow  w e m ay assume th a t  S( 4 ) (x2 )= w as
follows: L e t S ( 4 ) (x 1)= m i w , S ( 4 ) (x 2 ) = m 2 w , a n d  le t  S ( 4 ) (11 x 1 +12 x2 )= w fo r  some
integers in , , m 2 ,  and 1,, 12 . Then w =(/,m, + 12 m2 )w and so 1,m 1 + 12 m2 :=_ 1 (mod
8). Since x, is of order 4, we have S ( 4 ) (4x 1 ) = 4m w =0, and i n ,  must be even. Hence
/2 , m 2  m u s t  b e  o d d . S in c e  (m2 , 8)= 1, there  exists a n  odd  in teger m'2 su c h
that mm 2 1  (mod 8 ). Let x'2 =m'2 x2 . Then S ( 4 ) (x )= m'2 S ( 4 ) (x2 )-= m'2 m 2 =  w and
x', is another generator for x2 since ( i n ,  16)= I. Thus we may assume that S( 4 ) (x 2 ) = w
(This holds also for s = 1, 

n 1 4 , 5 0 1 2 ) =
 +  Z 8 x2 + Z3 x3 ).

W e have the following exact sequence for n= 8s+ 6 (s> 1):
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a7rn (S0,,_ 2 ) ir„(Sn— 3 ) — 3) 7En — I (S°n — 2)-

Z 4 X 1  Z 1  6 X 2  Z3X3 Z8 V, , _ 3 + 3 z2 + z2z 2  +  z 2

Since Im = Ker S= Z2 + 0 (cf. p.6 o f [8]), w e know  that Im Ker = (2i.j„ _ 3 >
+<at„_ 3 > Z4 +Z 3 .

N ow  suppose th a t [rj„2 _ , ,I„_ j=  (le _ ,) * 13 fo r some 13E n2 „_ ,(S" ±  1 ), n = 8s + 6
(s> 1), and  le t  f =  E 2 y, y e  TE2„ _ 3 (S" - 1 ). T h e n  w e  have [ j  _  J ( 3 ) (4w)
=4J ( 3 ) S( 4 ) (x 2 )=4E ( 4 ) J ( 4 ) (x 2 ) and (I'd_ 1), 13 _ ti2  1 ) * E 2 y  E(4)( t in2  2 ) * (E y) Hence we
have

4J( 4 ) (x2 ) —(q„2 _ i )* Ey E Ker E ( 4 ) = O n _ 2 , l f l 2 ]  +  [ a n _ 2 '

Here [iYn _2 ,/„_ 2 ] ,  [ CX„-2 ,1„— 2 ] have the orders 8, 3 respectively (cf. [21] and p.8 of
[8]). Since ,/( 4 ) i s  injective b y  Proposition 3.2 o f  [8 ], th e  left-hand side of the
above is of order 4, and so

4 J ( 4 ) (x2) — (rN2 -2) * EY= ± 2  in —

Thus applying the  Hopf homomorphism to  it  and  by the diagram (D5), we have
the following:

H(4J(4)(x2))= 4HJ ( 4 ) (4x2) = 4n(x 2 ) = 0

since 7t4 (x2 ) belongs to <21.7„_ 3 > -L-2- Z4  a s  shown in the above.

1-1(rd _ 2) * Ey = HE( 5 ) (q,_ 3 )* y = 0,

and by (5.32) of [33],

H(2[17,  2 , i n  2]) = + 4iY„ _ 3 .

Since 4fi„_ 3 i s  of order 2, this is a contradiction.
This completes the proof.

Proposition 4 .3 .  L et n=4t (t: odd > 0).
(i) )= O if t > 1 and G(r73 )= Sn4 (S0 3 )= Z 2 v , where rc„(SO„)= Z 2 v + Z 2 v 2 .
00 G01! - = O.

P ro o f  (i) For n=41 (t : odd> 0), we have

nn(S0„_ ,) n„(SO„) , ,),

Z 2 w Z2v1+Z2v2 Z 2u
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where S m w = v , a n d  S( 2 ) v1 =0, S ( 2 ) v2 = u  (cf. [34]). S o  y 1 =8ri n  f o r  a : ; , ( S " )
— n„(SO„). Since J( 2 ) 1,1 =J ( 2 ) 8ri„ = [q„,/„], w hich  does no t be long  to  Imfil„), by
Lemma 4.1 for n> 4, we have J( 2 ) - 1 (1m(q„),,,)n Im S ( 3 ) = O. H e n c e  G(iI„_,)= 0 if n> 4
by Lemma 1.2. Let n = 4 .  Then the homomorphism ( /3 )* :n7 (S 4 ) -Z + Z 2 —>n7(S 3 )
= Z 2  maps y4  generating the free part of n 7 (S 4 )  to  y' o  /16  which generates n 7 (S 3 )
(cf. (5.9) of [30]). Since .1( 3 ) is isom orphic (cf. Proposition 2.1 o f [34]), we have
G(/ 3 )=S ( 3 ) J ( 3 ) - 1 (ImO73 4 ) =S ( 3 ) n4 (S 0 3 )=Z 2 v 1 .

(ii) Since s(4): ; ,(SOn _ 2 ) —n„(S0„_,) is  trivial for n=4t (t:odd> 0) (cf. [8]
pp.6-7), we have the conclusion from the definition of G( in

2 _ 2 ).

Proposition 4 .4 .  L et n=4t (t:ev en> 0).
(i) G(ri„_,)= Z 2 1,3  i f  1 > 2 and G(n 7 )=0 , where n„(SO„)=Z 2 v1 +Z 2 v2 +Z 2 y3 .
(ii) G01„_ 2) = 0.

P ro o f  These are already known by Propositions 4.2, 4.3, and 5.2 of [7, III].

Proposition 4.5. L et n=4I+1 (t:odd).
(i) G(17„_ 1 )=0 f o r t> 0.
(ii) 2) = 0 f o r t>!.

P ro o f  We have

S3)
n„(SOH- 2) .5±4;  ir„(S0 „-i) 

Z 2 X 1 ± Z2X2 Z2W1+/Z2W2 Z2v

where S (41 .7c1 =0, S ( 4 ) x2 = w, , and S ( 3 ) w 1 =0, S (3 1 w2 = v (cf. [8] p.6 and [34]). Since
, , ) = Z ,  w e have S( 2 ) v= 0 and  so  y = ari n  f o r  a:n„,.,(S")— n„(S O„). Hence

J ( 2 ) v =J ( 2 ) 017„= [ri„,i n ] ,  w hich never belong to Im(qn ) .  by Lem m a 4.1. Thus we
have G(ln-t)= 0 by Lemma 1.2.

Sim ilarly  w e know  that w 1 =  arg_ 1 f o r  8:7 + 1 (S" - 1) —n n (S0 1 )  a n d  that
J( 3 ) w1 = [q_ , /„_ 1 ]  w hich does not belong to  1m (_ 1) by L em m a 4.2. Hence
we have G ( _ 2 )= 0 similarly.

Proposition 4 .6 .  L et n=4t +1 (t :even> 0).
(i) G(!7n-1)— Z 2 v2 , where n„(SO„)—Z2v1+Z2v2•
(ii) G('d- 2) = Z2w3 if t > 2 and G(11-3)= 0, where n„(SO. - 1) = Z 2w 1 + Z 2w 2 + Z 2w 3 •

P ro o f  (i) W e have
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S ( ' S(2) S ")
n(S C

 f t  -  i) n n ( S ° ) n (0 ,-z + - + nnlo L 1 1,

Z 2 W  Z 2 W  2  ±  Z 2 W 3 Z2f1 -1 -Z2v2 Z141 Z  2 t1 2 Z2T

where S ( 3 ) w1 =0, S ( 3 ) w2 =v 1 , S ( 3 ) w3 = v2 ; S ( 2 ) v1 =0, S ( 2 ) v2 =u 2 ; Sw u, =0, S ( 1 ) u2 =T
(vf. p .786 , D iag ram  2  o f  [7,111]). S in c e  Smv, = 0 ,  w e  h a v e  v, =OIL for
a : ir„+  ,(s") n n( s o n ). so J( 2 )v 1 =J( 2 )aqn = which does not belong to Im(rin),
by Lemma 4.1.

O n  th e  o th e r  h a n d , i t  is  k n o w n  th a t  Jr b e lo n g s  to  Im(g 2 ),,, i f  t> 2  by
[2 1 ]. Therefore, as is shown in the proof of Assertion 2 of Proposition 5.3 of [7,
III], we know that J ( 2 ) v2 belongs to Im(1)„2 ). and so belongs to Im(t)„). for 1> 2. If
1=2 (n=9), JT = V 3 b y  [14] and f o r  a  basis e lem ent of Z 2 +  Z 2  .  So
Jr elm for t = 2 .  Then, replacing rd by ilk , an argument similar to the proof of
the same Assertion 2 induces that J( 2 ) v2 be longs to  Im()),,),, where we note that
E (4 ) : n2.- 2(s" - 1 ) - 4  n2n -  

1(S") is surjective since n  is odd.
T h u s  w e  have J( 2 ) v2 e lm (i)), fo r  even  1>0 a n d  therefore w e know  that

G(n„_,)= Z 2 V 2  by Lemma 1.2.
(ii) is already known by Proposition 5.3 of [7,III].

Proposition 4.7. L et n=4t +2 ( (>0 ) . T h e n  G(11„ - 1)= 0  and G (1n2- 2)= 0 .

P ro o f  S ince  nn (S 0 5 ) =n 6 (S 0 6 )= 0 ,  th e  a sse r tio n  i s  c le a r  for 1 = 1 .  Let
1> 1 .  Then we have

i t „ ( s o _ , )  54 ) 71„(son) nn(Sv , i ).

Z8W Z41) Z21.1

where S( 3 ) w=v, 5 ( 2 ) v =u  and  J ( 2 ) : n„(SO„)— ). n(S"), J (3 ) :n„(S0„_,) m2  - 1 (S "  1 )
are injective (cf. [34]). Since the elements of Im(ri„),, (17.4: 7E2n(Sn + 1 ) — ) 7r2n(S"), have
order 2, only the element J 2 (2v) may possibly by in l m ( ) .  H ow ever, w e  have
2v= ar,„ for a: n ,, i (S") n , 1(S O ) since S ( 2 ) (2v 1) =0, and  therefore J( 2 ) (2v)= .1(2 ) 011„

w hich  does no t be long  to  Im(ri„), by  L em m a 4.1. H ence w e have
Im J( 2 )  n Im(rin)* = 0 .  Thus G(n 1)=0  by Lemma 1.2. A  similar argument holds
also for G (r_ 1) by Lemma 4.2.

The situation of the case n = 41 —1 (1 > 1) is a  little different from those of the
other cases. L e t m(2t) be the denominator of B1I4t, where B , is the t-th Bernouli
number, and let /(20=m(20/2. We have the following.

Proposition 4.8. L et n=4t — 1 (t>1).
(i) If  t is odd, then G( L -1 )= 1(2 0Z, G(i1,1- 2)= l(2t)Z.
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(ii) I f  t  is even, th en  G ( 1 1 H - 1 ) = m ( 2 1 ) Z  (I>  2), G(16)= l 20Z, G ( / p 1 - 2 ) =  m(2t)Z
(t > 2), and G(ni)= 60Z.
Here, it(S O ) = Z  and n„(SO„ _ 1 )= Z  for t >  1.

P r o o f  Let t > 2. W e have

so) so)n„(S0„_ 1 ) -+ n„(SO) —■ niilSOn+ n„(S0),

Zw Z l l Z U  + ZU1 2 ZT

where S ( 3 ) w= v, S ( 2 ) v= u2 , Smu t =0, Sm u 2(c f . [3 4 ] ) . S in c e  S ( 2 ) , S ( ' ) are injective,
E (31-  1 1 S " nzi(Sn) and E ( 2 ) :n 2 „(S") n 2 + 1 ( 5 1 1 +  1 )  are also injective by the
diagram (D1). Furthermore, since n + 1  is  ev en  and  n >7 , w e have n 11S" +
= [In+ I 'In+ E ( 2 ) n 2 JS ") . S o

 E " ) : n 2 n +
 1(S 1) n + 2(S n +  2 )= n„ , which is sur-

jective, is isom orphic o n  th e  im a g e  
E ( 2 ) 1 T 2 n ( S " )  s ince  K er E ( 1 )

n + 1 ,1 n + I D •
Therefore n 2 „(S"), n2p, - are mapped injectively (ismorphically in fact) to  n„
by suspensions. Thus, from the diagram (D4), we have the following diagram which
is commutative up  to  sign:

s(3) is
nnl)S0 . - Tc„(SO„)--. n„(S0)= Z

I  J o) j(2)
j

E Ea)
n2u— l ( S n 1 ) 

o )

7r2n( S n ) n„

  

1(q).

7c2.(sn+') nn-i

   

n.

F1 2rt —2

 

So we have ImJ ( 3 ) L-- Im J( 2 )  = Im J,Im (n „) , Im ri , and Im(n_ 1) ''-' I mn 2
*  , and hence

{

Im J ( 2 ) n Im (n„),,':--- 'Im J n Im n, ,
Im ,I ( 3 )  n Im li1ii2 -114,-_'' Itn J nlm  ri, .

Im J  is isomorphic to the cyclic group Z,,, ( 2 0  by Theorem  1.5 of [1], and the
elements of Im n  Im  142 a re  o f  order 2 . H ence Im Jn Im  n*  and Im  Jn  Im1/ 2  are
is o m o r p h ic  to  0  or Z 2 .  L e t  t =  2s+  1  (s > 0). T h e n ,  b y  Proposition 4.2
of [21], there exists an elem ent s E Im J ,  n „ +  3  with the order 8 such that Ll s = n 2 p,
for a certain element its  E l l „ +  i  .  This m eans that Im Jn Im n * = Im J nIM q 2,  ' ' '  Z 2.

Hence, we have (i) by  (1) a n d  Lemma 1.2, where we no te  th a t  S ( 4 ) : n„(S0,,_ 2)

(1)
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n„(S0„_ i ) is surjective (cf. [8], p.8).
Let t =2s (s> 1). We use Adams' invariants (cf. [1]). Since ec ( i o 0)= dc (E0)e,(i1)

for any Oc II ,, _ (n = 8s —  1, s> 1) and 4-0 by Proposition 3.2 (c) and Proposition
7 .1  o f  [1 ]  respectively, we have ec (r/ 0)= 0  fo r  any O EH 1 . Here, e c = e ', by
Proposition  7 .14 of [1]. So we know that Im  K e r  e', . O n  the  other hand,
Theorem 1.6 of [1], [22], and the remark (p.284) of [23] show that

ni 8 s  -  1  =  
IM Ker e', .

Hence we have

(2) Im Jn  lm  =1 m  J n Im  = 0

since Im Im „ OE Ker e', . T h u s  w e  have (ii) from  (1), (2) a n d  by Lemma
1.2. The results for t = 2 (n = 7) are already known by Propositions 4.1, 5.1 of [7, III].

This completes the proof.
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