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Homological codimension of modular rings of
invariants and the Koszul complex

By

Larry SMITH

Abstract

Let p : G q  GL (n, F) be a  representation o f  a  finite group over the field F
of characteristic p, and h ,,  • • •, h„, E F[11 0  invariant polynomials that form a regular
sequence in  F [ V ] .  In  th is note we introduce a  tool to  study the  problem of
whether they form  a  regular sequence in  F[V ] G  . Examples show  they need
n o t .  We define the cohomology of G  with coefficients in the Koszul complex

,0 )=(F[V ]® E (s -  'h ,,  • • 1 11„), 0(s -  h h i : i = 1, • • • , n),

which we denote by H *(G;(i , 0)), and use it to study the homological codimension
of rings of invariants of permutation representations of the cyclic group of order
p , for p #0, and to answer the above question in this case.

O. Introduction.

L e t  G  b e  a  f in ite  g ro u p  a n d  p:G  c GL(n, F )  a  representation o f  G
over the field  F .  Suppose th a t h 1 ,•••,h k eF[V ] G  a re  in v a rian t polynomials (we
assume familiarity with the basic ideas, definitions, and notations of invariant theory
of finite groups a s  found fo r example in  [22 ]) tha t form  a  regular sequence in
F [V ] .  W e pose the question: do they form  a  regular sequence in F [ V ] G ?  I n
general the answer will be n o .  F o r  example if F  is a Galois field of characteristic
p  and (4, 0 , • • l e FM '  the  Dickson polynomials (see [22] chapter 8), then

are certainly a  regular sequence in F[V ], but, are a regular sequence
in F[V ] G if  and  only if F[V ] G i s  Cohen-Macaulay, and this certainly need not be
the case (see e.g. [22] chapter 6 and [23] §4).

This study began in  a n  attempt to verify the depth conjecture of Landweber
and Stong in some concrete examples by using the methods (not the results) of [8],
even though the depth conjecture has been proved by other methods by Borguiba
a n d  Z a ra ti [3 ]  (see  a lso  [23 ] §6 ). T hese  computations appear in  §3  and  §4 .

I n  con trast to  [8 ], w here  th e  ground field is algebraically closed, we take
advantage of the fact that, over a  finite field F there is a universal ring of invariants
f o r  representations o f  degree  n ,  nam ely  t h e  D ickson  a lgeb ra  D * (n ) . Since
D*(n) F [ V ] G  is always a  finite extension, the homological codimension of F[V ] G
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a s  a  r i n g  is t h e  s a m e  a s  t h e  hom ological codim ension o f  F[V] G  a s  a
D*(n)-module. The Dickson algebra D *(n) is the polynomial algebra F[d„,„_ ,,•••,
d„, 0 ]  and hence has finite global dimension, so a  famous equality of Auslander and
Buchsbaum [1] allows us to convert the computation of the homological codimension
of F[V] 6  over D*(n) into an equivalent computation of the homological (i.e. projective)
dimension of F[V ] G  over D * (n ) .  For this we introduce a spectral sequence, which,
loosely speaking, is a Koszul-Serre dual to the one used by Ellingsrud and Skjelbred
in  [ 8 ] .  W e hope in  this w ay to m ake this circle of ideas available to a  larger
audience then seems to have been attracted by [8] alone.

L a plupart de  cette  travail a  é té  fa it pendant deux séjours de l'auteur au
Laboratoire de M athém atiques Emil Picard de l'U niversité  P aul Sabatier de
Toulouse. L 'auteur tient  à  rem ercier C laude Hayat-Legrand et Andre Legrand
pour leur invitation  à  participer dans la  vie du laboratoire, et toute l'équipe du
labo pour le soutien d'une atmosphere très supportive pour la  recherche.

§1. A  Motivational Example

Let p :G  q GL(n, F ) be a  representation of a finite group G over the field F. If
IGI E FX th e n  the Reynolds operator

itG ' T r G:F[ V] —F[V] G

IGI

defines a  splitting of the inclusion  F[ V ] 6  q  F [ V ] .  I f  h, , • ••,h k E F[V ] G  f o r m  a
regular sequence in  F[V] ,  then they are algebraically independent, and F [V ] is a
free F[h t , • ••, hi-m odule . S ince  F[ V]G  g  F [V ] is an F[ V] 6 -direct summand n G is
an F[ V] 6 -linear map (see [22] §2.4), it is also an  F [h ,,• • • ,h , j -d i r e c t  summand, and
hence pro jective  as an  F[h, , —,h k]-m o d u le . In  this graded connected context,
projective and free are the same thing, so FE  y] 6  is  a  free F[h, , • • k J-m odu le , and
therefore (see e.g. [22] 6.2) h, , •••,h k is a lso  a  regular sequence in F [V ] 6 . So the
question posed at the outset is only of interest in the modular case (for finite groups,
i.e., where the characteristic of the ground field divides the group order).

The following example, due to M.D.Neusel, brings out the subtle nature of the
problem.

Example 1 (M .D. N eusel). Consider th e  representation c l , :  Z/2 q GL(6, F),
obtained by letting Z/2 permute the two vector variables x, ,x 2 ,x 3 w ith y , , y 2 , y ,
where F is a field of characteristic 2. The Poincaré series of F [x 1 ,x 2 ,x 3 ,y 'Y2
can be com puted by using either M olien 's theorem  to  com pute the Poincaré
series over C and the last conclusion of [22] theorem 4.2.4 or [22] 4 .2 .8 . In  either
case we obtain:
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P(F[xi,x2,x3,Y1 Y2 ,Y3]z'2, t)"-=
1
2 (1— t) 3 (1 — t2 )3( 1  —  t ) 3 (1 — t2 )3

[0+0 3 +0 —0 1+3(23 

=1+31+12( 2 +28( 3 +

Therefore the  space of invariant linear forms has dim ension 3, the space of
invariant quadratic forms dimension 12, the space of invariant cubic forms dimension
28, etc. In degrees 1 and 2 it is relatively easy to find bases for the invariant forms:

/i = x i + y i=  1 ,  2 ,  3

is a  basis for the invariant linear forms, and the 6 products

/i t; 1  <  < j<  3

together with the 6 quadratic polynomials

i = 1, 2, 3

Q3 = XiX2 Y iY2,

Q2 = x1x3 +Y1Y3

Q4 = X2x3 +Y2Y3

form a  basis for the space of invariant quadratic form s. The relation

111213 = Q1!1 + Q2/2 + Q3/3 + 2 (Xi X2X3 +Y1Y2Y3)

in K[x 1 ,x 2 ,x 3 ,y 1 ,y 2 ,y 3 ] ,  for any field K, is due to M.D. Neusel, and shows that
in  F[x l ,x 2 ,x 3 ,y, ,y 2 ,y 3

] Z 1 2

 th e  linear form 1 3 i s  a  zero divisor modulo the ideal
generated by /, and 12 (recall F  has characteristic 2). However the forms /, ,1 2 ,13

are clearly a  regular sequence in  F[x 1 ,x 2 ,x 3 ,y 1 ,y 2 ,y 3 ].
The situation is  even  m ore complicated: in  sec tion  3  w e  w ill see  tha t the

homological codimension of F[x, , x 2 , x 3 ,y ,,y ,,y 3 ] z 1 2  i s  5 ,  a n d  therefore by the
theorem of Bourguiba and Zarati [3] the five Dickson polynomials of least degrees
d6 ,5 ,d 6 ,4 , 4 , 3 ,d 6 ,2 ,d 6 ,1 form a regular sequence in F[x, , X2 , X3 , y, ,y 2 ,y 3 ] 2  as well
as in F[x, ,x 2 ,x 3 ,y 1 ,y 2 ,y 3 ]. By contrast the five Dickson polynomials of highest
degrees d6 ,4  , d6 ,3 , d6 ,2 , d6 ,1 , d6 ,0  a r e  a  regular sequence in  F[x, , x2 , x 3 , y  , y2 , y3]

but not in F [x  , x2 , x3 , y  
, y 2 , y 3 ] z / 2 .

 W e w ill return to  this circle  of problems in
§5 after we have developed adequate tools in  the next sections.

To delve into the problems posed by this example we recall, [22] §6.2, that
h,,•••,h, e F [V ] G  i s  a  regular sequence if and only if the Koszul complex

,29 =-F[V] G OE(s - i h i ,•••,s'h,)

0(s - l h1) =h 1 fo r  i = 1, • • •, k
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is acyclic. For the sake of clarity here is the definition of the Koszul complex and
notation that we are using (see [22] §6.2, [21] part II §1).

Definition. Let A  be a graded connected commutative algebra over a field F
and a, •• •, a„ E A .  The Koszul complex of A  w ith respect to  a , , •••,ae A  is  the
differential graded commutative algebra

„Y (=,f (a, , •••,a„)=A QE(s - l a i ,•••,s - l an )

w h ere  E(s - a n )  deno tes a  graded'-exterior algebra w ith deg(s - 'a,)
= — 1 +deg(a,), and the differential a is defined by requiring

=o
a(s -  a i )=a, for i =1 ,•••,n

a(x .y )=a(x )y +(-1 )e l eg( x)xa(y) V x,y G X

Introduce the Koszul complex

.Y (=F[V ]C )E(s - i h i , •..,s -

a( s 'h i )=h, for i = 1, • ••,k.

The group G  acts on dr via the representation p  on F [V ] and trivially on
E(s - l h,,•••„v - l hk ). Moreover .99= Y( G . By hypothesis h ,,•••,h k e F[V ] is a regular
sequence, so ((, is  a c y c lic . H e n c e  the question at hand becomes: is (X . G , a) also
acyclic? More generally we would want to relate H*(Y l- , a r  and H * ( .* ,  0). O n e
w ay  to  do s o  is  to  note th a t M G =H ° ( G ;M )  for any  G-module M .  Since the
functor H ° (G; —) is not exact in general it is not suprising that the higher derived
functors (see e.g. [10]) of H ° (G ; —) enter into the discussion.

§2. Koszul Cohomology of a Group

As a tool to deal with the problems encountered in the introduction and §1 we
set u p  a spectral sequence 2 re la tin g  the cohomology o f a  G-cocomplex t o  the
cohomology of the fixed cocomplex. In order to keep the discussion as simple as
possible' we suppose tha t p :G  c G L (n ,F ) is a representation of a finite group G
over the field F  and that h i ,• • • ,h E F [V ] G are invariant polynomials which form
a regular sequence in F [ V ] .  Let ( (,ô) denote the Koszul complex

(=F[V ID E (s - l h ,,••• ,s - l lik)

T h is  is  the  totalization o f th e  Koszu l com p lex  bigraded a s  in  [21].
2  I n  fact th is spectral sequence is a  fo rm  of Koszul-Serre dua l, o r lo ca l cohomology dual, to  the spectral

sequence em ployed by Ellingsrud a n d  Skjelbred in  [8].
3  I t  w ill b e  im m e d ia te ly  c le a r  to  the experts th a t a  m uch  b roade r d iscuss ion  is  possib le, however, m y

a im  here  is  no t genera lity , b u t to  p ro v id e  a  too l to  m ake  concre te  com pu ta tion s  in  in va r ian t theory.
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0(s - l h1)=h 1 fo r  i= 1, • • k

with the extended action of G as in the previous sec tion . W e denote by F(G) the
group algebra o f G  over F and le t Y(G) —> F denote a projective resolution of F
regarded as an F(G)-module via the augmentation homomorphism  F, such
as for example the bar construction M G) of G over F (see e.g. [4] o r  [6 ] ) . Introduce
the double complex'

W= Hom, (G)(Y (G), S ) .

A  bit of care is needed with the gradings to  tu rn  th is in to  a n  acceptable double
complex, i.e., one satisfying the standard grading conventions (see e.g. [15]). The
differential d* coming from the projective resolution Y(G) appears in the contravariant
variable of Hom, ( G ) (—, —) and hence the differential d* induced by d o n  increases

the grading in coming from Y(G), i.e., d*:W" —>V + 1 . f . Therefore we must grade
the Koszul complex ./( compatibly, i.e., so that 0 (which appears in the covariant
variable of Hom F ( G ) (—, —)) also raises the resolution degree (this time in .Y() by 1,
and  the  induced differential on satisfies 0:ce" W " + 1 . T his is  the standard
grading of the K oszul com plex à la Eilenberg-M oore [21]. I n  other words, we
bigrade .Y(' by giving the elements of F [V ] resolution degree 0 (and internal degree
deg(f)) and the elements s- '111 the resolution degree —1 (and internal degree deg(k))
for i=1,•••,k. Doing so (ce,d*, a) becomes a double complex (of graded modules!
the grading (es.  ̀on coming from the grading of F[V]).

This describes the grading convention we will employ throughout this manuscript.
Since ((e,d*,a) is  a  double  complex we can totalize it, i.e., we can form the

associated graded complex {Tot(ce)m = e V ' t Im e Z} with differential d* + 0. We
s+i=m

denote the cohomology of this complex by H*(G;(„Yt f,0)) and  refer to it laxly as
the cohomology of G with coefficients in the Koszul complex (X ' ,  a).

Associated to this double complex are two spectral sequences, [15] chapter XI,
which are  independent o f the  choice o f the  resolution Y (G ). Using the spectral
sequence where we first apply the Koszul differential and then the differential from
the projective resolution Y(G) we obtain:

Proposition 2.1. W ith the preceding hypotheses and notations the augmentation
m ap of  complexes

Vhi,•••,h0'13
F [ V ]  

4  See also [4] chapter VII section  5  fo r  a  sim ilar con s tru c tio n  in  connection w ith the  cohomology of
semidirect products.
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induces an  isomorphism

H *(G ;(.)4( ,0 ) ) - )  H * ( G ; 
 F [ V ]

  ) .
(h, , • • h k )

P ro o f  The map .11 is  an  equivalence of complexes, and hence so is

Horn, ( G ) (f!(G), -+ Horn, ( G ) ( ( G),  F [  1/3 

(h, , • • •,hk)

from which the desired conclusion follows.

The spectral sequence where we first apply the projective resolution differential
(e.g. bar construction differential) a n d  then  the K oszul complex differential will
become our m ain technical tool. If we denote this spectral sequence by {E,.,cir }
then a s  a  consequence o f  2 .1  ( •  denotes converges to)

F[V 3
Er  H  *  ( G  •

(h, , • -,h k )) .

Since G  acts trivially o n  E(s -
1h 1 ,•••,s -

i h k )  the  term E ,  of the  spectral sequence
takes the form

E l= 11 * (G; F[ V ])0 E (s -
1h i  • ••,

Therefore the term E2 may be identified with the cohomology of yet another Koszul
complex, namely for the elements

h ,,• • • ,h k e H ° (G ;F[1 1 )=F[V 3 G g  H * (G ;F[V 3).

Therefore, recalling that h l , •••,h k e F[1 1 6  a re  algebraically independent, we see

Esj ( = T ortr t h i , • • • ,h k i ( H
t(G ; F [ V

]
), F )

where H *(G ; F[17 3) is regarded as an  F[h, , • • •, /4]-module via the inclusion

F[h , , • ,14 ] F [ V ] G = H ° (G ; F[V ]) H  * (G  ; F[V ])

and the product in  group cohomology. To summarize, we have shown:

Proposition 2.2. With the preceding hypotheses and notations there is a convergent
second quadrant spectral sequence {Er , d r }  with

H * ( G•  F [V ]
(h, , • - •, hk)

=T ors, t h i . ;  F [ 1 7 ]), F).



Invariant theory and the Koszul complex 733

P ro o f  W e need only rem ark that convergence is  a  consequence of the  fact
that Esit =0 if s < —k.

This spectral sequence is a  precursor o f  Grothendieck's loca l cohomology
spectral sequence [11].

As a simple application of this spectral sequence we reprove a result of Landweber
and Stong [14], that serves as a model for further applications.

Proposition 2.3. Suppose that p:G q GL(n, F), n> 2 , is  a  representation of  a
f inite group G  over th e  f ie ld  F. If  h1 ,h2 eF [V ] G  a re  a  regular sequence in  F [V ],
then they are  a regular sequence in F [V ] G  also.

P ro o f  The polynomial algebra F[h 1 ,h2 ] has global dimension 2, so the functors
, —) are identically zero for s< —2. T h e  following diagram representing

E2

U

•• 0 3

: 0 2

. 0  ,,, , , , ,c/2 1

: 0 E2-1'' 0
*

- 3 - 2 -1 -O

Figure 2.1. E 2 in the dimension 2 case

shows that there is no way that a  nonzero differential can either arrive a t o r leave
from E2-  " .  T he elements o f E2-  "  have negative to ta l d eg ree . H*(G ; ( n ) ) is
zero in negative degrees, and hence E `  is also zero in negative degrees. Therefore

0 = E2-

 1.° = TOrFuL . h2 f(H ° (G ; 411), F) = T or FE1,,m (F[ V] G , F)

and the result follows.

§ 3 .  Vector invariants of Z/ 2

In this section we will apply the spectral sequence of 2.2 to  rings of invariants
in characteristic 2. To see why this case is particularly amenable we begin with a
number of general rem arks. If p:G q GL(n,F) is a  representation of a finite group
G over the field F of characteristic p and P=Syl p (G) G is a p-Sylow subgroup of
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G then one has by [23] 4.6:

horn — codim(F[ V] G ) > horn — codim(Fr Vr).

So to establish low er bounde fo r the  homological codimension we may restrict
ourselves to the case of p-groups, and henceforth we assume G = P   to  b e  a  finite
p-group. W e also assume that F is a Galois field with q  p "  elements. The Dickson
algebra (see e.g. [22] §8.1) D*(n) is  a  subalgebra of F[V ]" and the extensions
D*(n) g  F[V ]" g  F[V ] are finite. Therefore (see the do it yourself k it [5] exercise
1.2.26)

horn — codimp.0 0 (F[ 11 1') = horn — codim(F[ V]").

The Auslander-Buchsbaum equality [5] 1.3.3

n = horn — codimD.()(4 = hom — codim 0 .0 0 (F[

in turn allows us to convert the original homological codimension computation to
one of the homological dimension of F[V ]" as D*(n)-module. It is here  that the
spectral sequence

Er H *(P ;F[V]
G L ( n , F ) )

=T ors„. ( f l ) (Ht(P ; F[ V]), F)

can be of use. (We have written F [ V ] G L (n , F )  
for F[110  "„ )F for the ring of coinvariants

of the group GL(n,F) which coincides with standard notation.)
Notice th a t  H *(P ; F[V]G L ( n , F ) )  

is  zero for *  <O a n d  therefore there are no
elements of negative total degree in E .  I n  other words, as the following diagram
shows

2

—2 —1

Figure 3.1. The vanishing area s+ t< 0  for E or,

the terms Esc,;" for s + t < 0  a re  all ze ro . T h is is a  key fact that will be exploited in
com putations. The terms on the border of the vanishing area, i.e., where s +t=0
(referred to as the vanishing line) are connected with the stable invariants introduced
in [12] and studied in [16].

T o  w ork  w ith  th is spectral sequence w e need to obtain information about
H *(P ; F[V]) and how the  Dickson algebra acts o n  i t .  It would seem that since
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we do  not know  FEV1P =H ° (P;F[V ]) that this would be a  hopeless undertaking.
However, in  any case, it is natural to  start w ith the smallest exmple P=Z Ip , the
cyclic group of order p .  If y e Z ip  is  a  generator then the periodic complex [6]

a
rzi°

( -  F(Z p) 4— F(Z p) T4-  F(Z  p) F(Z p) 4—  • • •

where:

(i) F(Z Ip) is the group algebra of Z ip  over F,
(ii) e is the augmentation homomorphism,
(iii) a denotes multiplication by the element 1 —ye F(ZIp), and
(iv) T rz /P=aP - 1  denotes multiplication by 1 +y + ••• +yP - 1 eF(Z Ip),

i s  a  free resolution o f  F  as F(Z /p)-m odule . Therefore applying the functor
Hom, (z ip ) (—, F[ V ]) to this complex we see that H *(Z Ip;F[V ]) is the cohomology
of the cocomplex

a
TrziP—> F[17 ]—> F[V] F[V ]— > F[V ]

and hence

0 for i <0
F[V ]z 'P for i -= 0T IA Z Ip;F[V ])=
F[V ] z IP Ilm(Trz IP) for i even and i > 0
ker(Trz iP)/Im(a) for i  odd and i > 0

(N .b. w e have used  tha t F[ V ] z iP = ker(0) in  th e  preceding form ula for the even
cohomology groups.) In  particular when p  2 we have

(*2) M Z 1 2 ;  v]) =
0 for i<0

v]zi2 for i =0.
F[V ] z /211m(Trz o) for i>0.

  

So for p = 2 ,  a n d  need only determine the quotient of F [ V ]' 2 b y  the image of the
transfer to compute H '(Z I2;F[V ]) for i>0.

By using the Jordan form (or otherwise) one can see that a  representation Z/2 of
2  over a  f ie ld  o f  characteristic  2  is alw ays a  perm uta tion  representation. A
permutation representation o f  Z /2  decomposes into a  sum  of trivial and regular
representations. The trivial part will cause us no problems and  from  [24], as a
consequence of the remarkable lemma 3.1 of [17], we have for sums of the regular
representation:

Theorem 3.1. L et F be a f ield of  characteristic 2 and Tm : Z I2 c GL(2m, F) the
representation of  ZI2 implemented by the permutation matrix
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0 I
1 0

o

o 0 1
1 0

GL(2m, F).

L e t x 1 ,•••,x„„y 1 • • • ,y „ ,  b e  the standard basis f o r th e  dual v ector space V * of
V= F 2 m. Then

(i) Im (T r z /2 )  is a prim e ideal of  height m  in F[ V ] , and
F[v]Z12 IIM (Tr Z 1 2 ) F [q i  ,•••,q,,,] is a polynomial algebra on the quadratic forms

qi =--x iy i , i= 1, • ••, m.

W ith  th e  a id  o f  th is result w e can com pute Tor„. ( 2 4 1 1 1 1
Z 1 2

/Im(Trz 1 2 ), F)
for the representation t n , as follows: the ideal Im(Trz /2 ) in F [x i , • • • , x „ „ y i  . . 5 y n r 2
is the vector space spanned by the binomials

X
A

y
B  

X
B
y

A

where A = (a l  , - - , a m )  and B = (b i ,•••,b„,) are distinct index sequences of nonnegative
integers', i.e. A  B .  The subalgebra F[q, , • • q„,] c F[x , • • x„, , y , • • • , y r 2 is the
linear span o f the  monomials .xc c  w here  C = (c i  , • ••,e„) is  an index sequence of
nonnegative integers, and therefore F [q i ,•••,q m ]  intersects the ideal Im(Trz 1 2 ) in the
zero ideal (0). The prime ideal (1,, • ••,1m ) F [ x i ,••• ,x „ ,,y ,,••• ,y m ] ,  where /i = x i + y ;

for j=1, --•,m , lies over Im(Trz /2 )  and the map

n :F [x 1 ,•••,x m ,y ,,••• ,y „ ,] 2 11m(Tr z /2 ) F [x 1 ,•••,x m , y 1 ,•••,y m ]1(1 1 ,•••,1„,)

i s  a  monomorphism. W e m ay  iden tify  F[x i ,•••,x„„y i ,•••,y„,]1 (1 ,,•••,1„,) with
F[u, , • —,u m ]  in  such a  w ay  tha t I t  m aps q i t o  u 7  fo r i = 1, • • - , m .  T he Dickson
algebra D * (2 m )c  F [x 1 , • • • , x , y 1 ,•••,y,,,r 2 i s  a  subalgebra of the  tensor product

D*(2)0 ••• OD*(2), which is in turn a subalgebra of F [x l , •••,x„,,y i , •••, y m ] z i2 . The

m ap it sends th e  Dickson polynomials d2 ,0 ,d2 ,1 i n  t h e  i-th  factor to  0  a n d  te
respectively, for i = 1 , • - • ,m .  Therefore the map induced by n

D * (2 )®  • • • D *(2) F[x , • • • , x„,,y,, • • • , y„,]z 12 I lm (T r z 1 2 ) =F[u, , • • • , u„,]
m

maps onto the subalgebra F[q, , •••,q m ]  and has kernel the Borel ideal' generated
by the m  elements 1® ••• Od2 ,0 0 ••• 01, where d2 ,0  occurs once in each factor. A

5 F or an  index  sequence E= ( e ,  ,  •  •  . , e „ , )  of nonnegative in  integers we write x E =.xy •••
6  A  Borel ideal is an  ideal generated by a  regular sequence.
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standard change of rings argument [21] therefore yields:

Proposition 3.2. W ith the preceding hypotheses and notations we have

T  or:„. (2)(Frx , • • • , x„,,Y1,—,Ym] z / 2 /Im(Trz / 2 ), F) = E(v t , • • •, v„,)

where v, has homological degree-1 (and internal degree 3) f or i =1, • • •, m .  In particular

Tors.,,,(2)(F[x, , •••, x„,, y, j / Im (T r z /2 ), F )=0

f o r s <

Corollary 3.3. W ith the preceding hypotheses and notations w e hav e f or all
t>0

Tort. ( 2 ,,,)(1P(Z/2; F[x , • • • , y  , • • • , y„]), F)= [0 D*(2) I D *(2m)] E(v , • • • , v„,)

where vi has homological degree-1 (and internal degree 3) f or i =1, • • •, m .  In particular

Tors„,, ( 2 „)(11`(Z 12; F[x , • • • ,x,y , • • • , y „,]), F)= 0

f o r t  >0  and s <  —m.

P ro o f  O D *(2) is a free D*(2m ) module, and the result follows from a standard

change of rings argument and the formula (* 2 ) for flt(Z 12; F[x, , • • • , x„„ y , • • • , y„,])
when t>0.

Theorem 3 .4  (Ellingsrud a n d  Skjelbred [8]). L e t  p :Z I 2  c G L (n ,F ) b e  a
representation of the cyclic group Z 12 of order 2 over afield F of characteristic 2. Then
hom-codim(F[ V] 2 ) = miti{n, 2 + dimF ( V z /2 )}.

P ro o f  Let V = P .  Using the Jordan form (or otherwise) one sees that it is
possible to choose a  basis x 1 ,• • • ,x ,„,y „•• • ,y „,,z ,,• • • ,z , fo r  V * such that Z/2 acts
o n  V * by interchanging the  vector variable (x 1 , •••,x„,) w ith  th e  vector variable
(y, ,•••,y,„) and fixing z 1 , •••,z ,. Therefore

v ] z i2 _ Fr,
m L — i , — , X m 4 1 , ' " , Y r n ]

Z / 2  OF[Z i  , • •

a n d  hom-codim(F[V]z/
2 ) =hom-codim(F[x 1 , •••,x„,, y, , ••-, y„,] z /2 ) + k  a n d  we may

suppose k = 0  and n = 2 m . The case m =1 being elementary, we also may suppose
m>1.

Consider the spectral sequence of 2.2 in  this case, for which we have
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Er H  *(Z ; F[V ]cL(2.,F))

EV =T or „*( 2 0 (H t(Z  2 ; 411),F).

From  3.3 it follows that

E V = 0  for s< — m and t>0

E2- "" 00.

This leads to the following picture for E2

v

.
... 3

:
...

2

: E2-m
d2 ...

1

:•

------„ . . .
E2, + 2.0

...
0

—M. — M  ± 1 —/1/ + 2 0
*

It follows that none of the terms E2- m  l ' °  can be the target of a nonzero
differential. Since all differentials starting on  the  s-axis are zero, if any of these
terms were nonzero, it would represent nonzero elements o f  negative degree in
H *(Z 12;4 V] G " 2 ,,,,19) which cannot exit. Hence we conclude E2

- 2 m'° = • • • =
E 2 - m +  1 , 0

= 0 .  The term E2
- 7r "  is  n o n z e ro  and the indicated differential is the only possible

nonzero differential either originating, or terminating, at E2-  "1' 1 . Since E  " "  =0  it
follows that d2 E 2' . 1 E 2

- m+  2 '°  m ust be an isom orphism . In  particular

0 0  E m  2 9 0  = TOrD,721;n1(4 v i z 12) ,  F )

so  hom -dim n .(2 „0(F[V ] z 12) = m — 2 from which it follows that hom-codim(F[V] z /2 )
-= m + 2 as required.

§ 4 .  Permutation Representations of Z ip  in  characteristic p

Let p be an odd prime, Z  p  the cyclic group of order p and X  a finite Zip-set, i.e.,
a permutation representation of Zip. S in c e  p e N  is a prime the only possible orbits
of Z i p  o n  X are fixed points and free orbits': the action is se m ifre e . Let B denote

A free o rb it is  an orbit w ith  p  elements cyclically permuted by Z ip .
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the Z ip -se t w ith  underly ing  s e t  th e  elements o f  Z ip  a n d  Z/p-action by left
multiplication: B  is a  generic free orbit, and'

X = B  • • 1-1BLIX z IP

as Zip-set for a  unique integer m EN ,.
If F is a field we denote by Vx =Fun(X ,F) the F-vector space of all functions

from X  to  F, which is the  corresponding F-linear representation. In  this way X
becomes identified as Z i p - s e t  w ith  a  basis for V , and the algebra F[Vx 1 with the
algebra of polynomials F[X ] in the variables X .  Note that the representation Vx  is
defined over the prim e subfield of F  and so there is n o  loss of generality in the
following discussion in supposing that F = F .

We are going to study the homological codimension of the ring of invariants
F [X ]z , where F is a field of characteristic p , and show

hom-codim(F[X] z / P )= 2 + dim,( Vf/P)=- 2 + m + IXz/P i,

confirming a  fo rm u la  o f  [8]. O u r strategy is th e  sam e a s  in  §3: w e use the
Auslander-Buchsbaum equality to convert a  homological codimension computation
into the computation of the homological dimension of  F [ X ] Z I P  as a  m odule  over
the Dickson algebra D(I.X1), which we do  with the aid of the spectral sequence 2.2

11*(ZIP;F[X]uL(Ixl,F))
EV =T or (i xp (Ht(Z Ip;F[X ]),F).

It is not hard to see that

F[x]z ip,_.F[xz lp] 0 F[x\x .zu]z Ip

where X\ V / P  =BI--1••• II B denotes the free part of the Z/p-set X .  Hence from the

viewpoint of invariant theory there is no loss of generality in assuming that Xz /P= 0 ,
i.e., the action of Z ip  o n  X  is  free. A nother w ay to  say  th is is tha t Vx  i s  the
m-fold direct sum of the regular representation of Z i p .  So, without loss of generality,
we assume until further notice that X  is a free Zip-set, a n d  we set IX1=mp.

T o  m a k e  u s e  o f  2 .2  w e  n e e d  to  c o m p u te  Il i(Z ip ;F [X ])  a s  a  D*(mp) -
m odu le . This we do with the standard resolution of Cartan-Eilenberg as described
in  § 3 .  Recall (formula (*) from §3)

(* ) Ill(Z ip;F[X ])=

0
F[X ] z IP

F[X ] z IPIlm(Trz IP)

ker(Tr z /P)/Im(e)

8 Li means disjoint union.

for i <0
for i =0
for i  even and i>0
for i  odd and 1> 0.



74 0 L arry  Smith

A s a consequence of [1 7 ] lemma 3.1 we have for j> 0  from [24 ] theorem 2:

H 2 i(Z lp ; F[X])= F[X] z IP Ilm(Tr z IP )=  F[c p (X,), • • • , c p (X„,)]

where,

— X 1 ,•••, X,„ denote th e  orbits o f Z lp  o n  X , so  each Xi is isom orphic  to  B  as
Zip-set,
— X = X 1 1-1. • • LI X ,  and
— c ( X )  denotes the p-th  C hern  class of the orbit X i fo r  i = 1, •••, m.

The action of the Dickson algebra D*(mp) on H 2 i(Z  p ; F [X ]) is via the composition

ir: D*(mp) c F[X] z " F [ X ] z IP Ilm(Tr z /P) F[cp (X 1 ) ,  • • •, cp (X,,,)].

There are algebra inclusions

D *(m p ) D *(P)0 • • • OD*(p) c  F[x]zIP

induced by the inclusions Z ip < x GL(p, F) <GL(mp, F) a n d  th e  m ap  n  satisfies

0 for j= 0, • • • ,p — 2
ir(dp ,.) =

cp (X i)P' for j= p —1

when restricted to the i-th factor D*(p) of the tensor p ro d u c t. Hence the kernel of the
map ® 0 , 1P1

a  B o r e l  ideal a n d  F[c p (X,), •••, cp (Xm ) ] is  a  free  m odule over the
image. "' Using the Koszul complex and a standard change of rings argument [21]

we find that hom-dim. p e o l [ X ] z /P=m(p— 1). Finally the algebra OD*(p) is a free

D*(inp)-module, so we conclude:

Proposition 4.1. W ith  th e  preceding hy potheses an d  n o tatio n s  w e  have
hom-dim,* ( „,p ) (H 2 i(Z p ; F[X])=m(p —1) f o r all j>  O.

O ur next task is to describe the cohomology modules I i i(Z  p ; F [X ]) for i odd
and positive as modules over the Dickson algebra. To this end we require a lemma.

Lem m a 4.2. W ith  th e  preceding hy potheses an d  n o tatio n s  th e  m ap s 0,
Tr z /P :  F [X ]  F [X ]  satisfy

Im(Tr z /P)=Im(a)n ker(a)

ker(TrziP)= Im(a)+ker(0).

P ro o f  N ote that the action of Z  p  on  the  homogeneous component F[X]d
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of F [X ] of degree d is the linear action associated to the permutation representation
of Z lp  on the set SPd (X), the d-fold symmetric product of the Z/p-set X , which' is
identified with the monomial basis for F[X] d  as F-vector space. Since p  is a prime
the action of Z lp  on S P d (X ) is semifree. Let SP I (X ) f ree denote the set of free orbits
o f  t h e  a c t i o n  o f  Z l p  o n  SP d (X ) ,  i.e., th e  e le m in ts  o f  S P A X ) are  free
Z/p-orbits in SPd(X ) and

SPd(X)\SPd(X)zIP= U U.
U E S P a (X )r.'"

For any f  E F [X ] a we may write

f = (E  a u ( U )• u )+ E flu ,•
uesed(x)f— uEu wEsed(x)zIp

where au ( U )  a n d  / 3  b e lo n g  to  F  fo r  a l l  U e S P d (X ) f ree a n d  u e  U  a s  w ell as
W E S P A V / P . This expression for f  is unique.

ForU eSP d (X) f ree a free orbit we may write U = {u , ,...,u p }  with the action of
Z ip  given by cyclic permutation of u 1 ,•••,u p , i.e.,

for i=1,•••,p-1
Y(0 = f u i +  I

u, for i = p

where y e Zlp is a  generator (independent o f  U ) .  Therefore, for fe F[11,, we find

y(f)= E  ( „(a, u ) +• • • • +ap p _,( 0 •  up+ ot„p(u)• ui)+ E fi. • cu
ti spdoof-rc. weSPd(X)z/p

so we obtain

a(I)= E uot. 1( u)—ccup(0)•u1+ ••• +(ocup ( U)— au p  1 ( U)) up]
UESPd (X)r  r.o

Tr z IP (f)= E a(U)• (u,+ •••
U eS P d (X )fre

a(U )=a„,(U )+  ••• +a u p ( U).

From these equations it is an  easy matter to deduce the following criteria:

(i) f  eker(3) if and only if au i ( U )=  • • •  = x (U )  for all Ue SP d(X)f ree,
(ii) eIm(0) if  a n d  only if  a (U )= 0  fo r a ll  U e S P d (X ) f ree a n d  )3,0 = 0  fo r  all

and

where

9 F o r  a  d is c u s s io n  o f  th e  in va r ia n t theory o f perm utation  representations a n d  sym m etric products see

[2 2 ] §4.1 and  §4.2.



742 Larry Smith

0)E SPW / P ,
(iii) f  Eker(Tr z IP) if and only if cx(U )= 0  for a ll Ue SPd(X)ee,
(iv) f e lm (Tr z IP )  if and only if ot„,(U)= ••• =ot u p (U ) for a ll U e S P I(X) f ree and
0  for all co e SP d(X) z /P.

Only (ii) requires any comment a t all: here one just needs to notice that the system
of linear equations

1 —1 0 .• •
0 1 —1 0

0 0 •• •••
—1 0

•-• 0 b, a
••• 0 b 2 a

0
1 —1

bq a

can always be solved for b 1 ,•••,bp e F  because

a -

a

 

E Span,

     

Since oc,,,(U)= ••• =a p p (U ) implies a(U )=0  it follows that condition (iii) is equivalent
to either condition (i), or (ii), or both and hence ker(Tr z iP )= ker(a)+ Im (0). Likewise,
condition (iv) is equivalent to  conditions ( i)  a n d  (ii) taken together, a n d  hence
Im(Tr z /P)=ker(a)n Im(a) as required.

Proposition 4.3. W ith the preceding hypotheses and notations we have

H 2 ' + 1 (Z jp :F [X ])= H  2 ( i  + 1 ) (Z Ip ;F [X ])

f o r all j .O .

Proposition 4.4. W ith  th e  precceding hypothese an d  n o tatio n s  w e  have
hom-dim,* ( „,p ) (H 2 J +  1 (Z Ip ;F [X ])=m (p - 1) f o r all j> 0 .

Theorem 4.5 (Ellingsrud and S k je lb red  [8 ]) . Let p  be an  odd prim e, Z lp  the
cyclic group of order p and X a finite Z  p -se t. If F is afield of characteristic p, then

hom-codim(F[X] z /P)= 2 + dim,(I/1/ ) = 2 + IXz/P1

w h e re  m —
IXI\IXziPI  is the number of  free orbits of  Z lp  on X.
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P ro o f  W ithout loss of generality we may suppose tha t V / P =  0 , m > 0  and
F is finite. W e  co n sid e r the spectral sequence 2.2

E r H P F[X]cL(np,F))

=T or r ( . 0 (11`(Z p;F[X ]), F).

By propositions 4.1 and  4.4 w e have the precise vanishing line for E " , 1 > 0, is
s= —(m(p - 1))+ 1. This leads to the following diagram for E2:

v

.
... 3

:• ... 2

:• E2-m(P-1)•1 d2 . . .
1

: E2-'"(P--
1 )+2 ,0

. . . 0
).

- m(p- 1)+2 -m(p-1)+1 -m(p-1) 0

which together with the fact that E V =0  for s+ t <0 implies that

0=EV ) =Torb., („,p ) (F[X] z /P, F) for s< —m(p - 1)+1

and tha t the indicated differential is an isom orphism . Since

E2
- m( P - 1 ) . 1 =TorD

- .7(Pp  " ( H 1 (Z /p ; F[X ]), F)0 0

we conclude that

T o r i4 i(Ppi- "  2 (F[X] 'P , F)0 0

and  hence hom-dim,* ( „,p ) (F[X ]P)=m (p - 1) - 2  a n d  th e  result follows from the
Auslander-Buchsbaum equality.

Corollary 4.6 (Fossum and Griffiths [9]). L et p  be a prim e, Z ip c GL(p,F)
the  regular representation o f  th e  cy clic group Z lp o f  order p  ov er a f ie ld  F of
characteristic p. T h e n  F[ V ]' is  Cohen-Macaulay if  and only  i f  p=2 o r 3.

P ro o f  For p = 2  the  result is clear. F o r  odd p , if the ring of invariants is
Cohen-Macualy, substitute in the formula of 4.5 to obtain p =hom -codim(F[V ] Z / P)
= 2 + dimA Vz /P)= 2 + 1 =3.
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§ 5 .  Regular Sequences in invariant rings of permutation representations

The computations of sections §3 and 4 combined with the tools of §2 may be
used to reexamine the motivational problem posed in §1 to good advantage in the
case of perm utation representations. L e t u s  begin by examining the case of a
representation p: Z/2 q GL(n, F). Without loss of generality we may suppose that
the representation permutes a basis ,R of the dual vector space V* and to simplify the
notations we furthermore suppose th a t 4Z / 2  =  Ø. S o  n =2 m  and p  is implemented
by the permutation matrix

0  1

1 0 o

o 0 1
1 0

e GL(2m, F).

Let x„ • •., x„„y„ • •.,y„, be the standard basis for the dual vector space V * of
V= F 2 '"  and se t i i =x, + y i ,  q 1 = i = 1, • • m .  These polynomials are invariant
and q 1 ,•••,q„, is a  regular sequence in F [ V ] .  Note carefully, that we have choosen
to  w ork  w ith  th e  obvious quadratic invariants instead o f  th e  linear ones as in
example 1 of § 1 .  This is of course influenced by the cohomological computations
o f  § 3  and proposition 2.2. C hoose any tw o polymials f h e F [V ] 2 su c h  th a t
q, ,•••,q„„ f , h is a  regular sequence in F [ V ] .  For example we could choose f  and
h  to  be distinct linear forms l,

Proposition 5.1. W ith the  preceding notations w e  hav e  th at  q 1 , • • • ,q „„ f
he F[V ] z1 2  is  a  regular sequence.

P ro o f  We consider the spectral sequence of proposition 2.2 for the elements
q ,,• • • ,q „,, f , h. From  the discussion of 1--P(Z 12;F[V ]) in §3 we have

E2- s 't = V]Zi 2 /Im(Trz /2 ), F) for t >0 .

By [24 ] theorem 1

F[V ] z /2 /1m (T rz /2 )-- 4 4 , ,  •  •  • , -4„,]

where the -  indicates residue classes, so a simple change of rings spectral sequence
argument (see e.g. [21]) shows

4 , , •  • • f ,h1( F E r  Z/2Torits /Im(Trz/2),F)_'Tor-s f=F[f ,11](F , F) —

H e n c e  w e  c o n c lu d e  th a t E "= 0  fo r  t >0 a n d  s> 2. T h e  proof m ay be
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completed as in proposition 2.3 (refer to figure 2.1).

O n  th e  other hand, suppose we choose three polynomials f ,  , f 2 , f 3 e F[V ] z 1 2

such that q 1 ,• • • ,q ,„,f
1

, f 2 , f 3  is a  regular sequence in F [ V ] .  Again, we could choose
these amongst the  linear forms l,,••• ,1 „„ b u t because o f §1 we know this choice
could not lead to a  regular sequence in F[V ] z /2 ,  but there are lots of other possible
choices for f

1
, f 2 , f 3 . If we examine the spectral sequence of proposition 2.2 in this

case we find

E 2 5 1  =  TorF [
S
q ,,...,q „„f  1 ,f 2 ,f 30 1 v

, , Z / 2
V ]' 2 /Im(Trz /2 ), F)
rZ / 2j /Im(Trz /2 ),F);-4 Toritsf i ,f 2 ,f ,i(F,F)=T °riE sql,•••,q,,,,,f 1 ,1 2 ,1 3 0 1

=E (s - l f 1 ,s - l f 2 s - V 3 ) for t >0 .

In particular E2
-  3 '1 00 and has negative total degree. Since E2- s '* =0 for s <3

there are no nonzero differentials terminating at E2
- 3 .' and the only possible nonzero

differential originating there is d2  E 2 -  
1 , 0 .

 T herefore

_,LE 2  1 , 0  = T O r v.F[ql 1 ,f2 ,f3 ,(F { ]z
/ 2
 , A- )

s o  F[V ] z /2 i s  n o t  a  f r e e  F[q 1 ,•••,q„,,f
1

, f 2 , f 3 ]-m o d u le  and q 1 ,  . . . ,q ,  f
1

, f 2 , f 3

E F[V ] z I2 is  n o t  a  regular sequence.
In fact it is not necessary to start with the quadratic invariants q 1 ,•••,q„,. We

c o u ld  s ta r t  w ith  a n y  m  polynomials in V] z /2 w h o s e  r e s id u e  classes in
F[V ] z /2 /1m (T rz /2 ) fo rm  a  regular sequence a n d  t h e  sa m e  argum ent would
apply. Putting all these facts together, and adding the argument of M.D. Neusel
used in  example 1 o f §1 w e arrive a t  the  following definitive result fo r regular
sequences of maximal length.

Corollary 5.2. L et p :Z / 2  q GL(n,F) be a perm utation representation of  Z/2
over the f ield F  of  characteristic 2. Choose a  basis f o r F "  so  p  is implemented by
the permutation matrix

0 1
1 0

o

GL(2m + k, F).o 0 1
1 0

o 1
o
1

L et x , ,• • • ,x y ,,• • • ,y „,,u ,,• • • ,u ,, be the standard basis for the dual vector space
V *  o f  V =P " ' + '  and  se t q ,• =x ,y , ,  i=1 ,• • • ,m . I f  h, , • • • , hm „+ 2G  F[V ] z i 2  f o rm  a



746 Larry Smith

regular sequence in  F [V ] then they are a regular sequence in F[ V ] 2  if  and only  if
som e m + k o f  them  form  a  regular sequence in  FE V]zi 2 /Im(Tr z / 2) = F[4 1 , • • •,

, •  •  . 5  ad•

Since at most two invariant polynomials in F[ V ] 2 o f  a  regular sequence in
can lie in the ideal Im(Tr z i c  F[ V] 2 when F  has characteristic 2 there is a  slight
bonus to  o u r  com putations. Recall that the grade of an  id e a l ' i s  the length of
the longest regular sequence that it contains. Corollary 5.2 implies:

Corollary 5 .3 .  Let X be a finite Z12 set and p :  Z /2  G L ( n ,F )  the corresponding
permutation representation over the a f ield F  of  characteristic 2. W rite n= 2m +k
where k = W 121 and is the number of free o r b t s  of  Z I2  on X .  A ssume p  is faithful!
so m > O .  Then the ideal Im(Trz / 2)  has grade min(2,m).

The case of Z Ip ,p  an odd prime, proceeds in a completely analogous v e in . From
proposition 2.2 and theorem 2  of [2 4 ] we obtain:

Proposition 5 .4 .  Let p  be a prime and X  a fin ite Z ip set. Decompose X into orbits

x=  x , • •  •  11 xn,uxziP

where each of  the orbits X,, •••, X . is a f ree orbit. L et Ni = c p (X ;)  be the p - t h  Chem
class of  the orbits X i f or i-= 1 ,-•• ,n i and u ,,• • • ,u k the distinct elements of  V I P .  The
f orm s N 1 ,•••, N„,,u 1 ,•••,u k f o rm  a  regular sequence in  F [ X ] .  Ex tend these to a
regular sequence in F [X ] of  length in+ k  + 2  by choosing two appropriate invariant
form s f , h e F [ X ] z IP ; f o r ex am ple tw o linear form s in  S p a n ,(X , •  •  •  X,,,). Then
N 1 ,•••, N . ,u 1 ,•••,u k ,  f ,  h  is  a  regular sequence in  F[X ] z IP. I t  is  n o t p o s s i b e l  to
extend N ,,• • • ,N .,u , ,• • • ,u k t o  a  regular sequence in F [ X ] z / )  o f  length m + k +  3.

Corollary 5.5. W ith the notations of 5.4 we have that a sequence h,, •••,h„, + „+ 2

F[X ] z IP  that is a  regular sequence in F [X ] is also a  regular sequence in F[X ] z IP

if  and only  if  som e m + k  o f  them  form  a  regular sequence in  F [ X ] " / l m ( T r )
= F [N ,, • •• ,N .,u 1 , •••,u,].

Corollary 5.6. L et X be f inite Z ip set and p : Z i p  GL(n, F ) the corresponding
p e r m u t a i o n  representation over a  f ie ld  o f  F  characteristic p. W rite n = p m + k
where k=IV IPI and n i is the number of free o r b t s  of  Z ip on X .  Assume p  is faithful!
so m > 0 .  Then the ideal Im (T r z IP ) has grade min(2,m).

"  See for exam ple  [5]. This concept has also been called the girth in some of the literature. S e e  for
example [7].
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