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Homological codimension of modular rings of
invariants and the Koszul complex

By

Larry SMITH

Abstract

Let p:G g GL(n, F) be a representation of a finite group over the field F
of characteristic p, and h, , -+-, h,,€ F{ V]€ invariant polynomials that form a regular
sequence in F{V]. In this note we introduce a tool to study the problem of
whether they form a regular sequence in F[V']. Examples show they need
not. We define the cohomology of G with coefficients in the Koszul complex

(A,0)=(F[VIQEs~'hy, s 'h), os™ *h)=h;:i=1,---,n),

which we denote by H %G ; (X', d)), and use it to study the homological codimension
of rings of invariants of permutation representations of the cyclic group of order
p, for p#0, and to answer the above question in this case.

0. Introduction.

Let G be a finite group and p:G o GL(n,F) a representation of G
over the field F. Suppose that h,,---,h, e F[V]® are invariant polynomials (we
assume familiarity with the basic ideas, definitions, and notations of invariant theory
of finite groups as found for example in [22]) that form a regular sequence in
F[V]. We pose the question: do they form a regular sequence in F[V]%? In
general the answer will be no. For example if F is a Galois field of characteristic
pand d,,,--,d,,_,€F[V]® the Dickson polynomials (see [22] chapter 8), then
d,o,.d,,_, are certainly a regular sequence in F[V], but, are a regular sequence
in FLV]° if and only if F{V]¢ is Cohen-Macaulay, and this certainly need not be
the case (see e.g. [22] chapter 6 and [23] §4).

This study began in an attempt to verify the depth conjecture of Landweber
and Stong in some concrete examples by using the methods (not the results) of [8],
even though the depth conjecture has been proved by other methods by Borguiba
and Zarati [3] (see also [23] §6). These computations appear in §3 and §4.

In contrast to [8], where the ground field is algebraically closed, we take
advantage of the fact that, over a finite field F there is a universal ring of invariants
for representations of degree »n, namely the Dickson algebra D*(n). Since
D*(n) = F[V]° is always a finite extension, the homological codimension of F[V]¢
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as a ring is the same as the homological codimension of F[V]® as a
D*(n)-module. The Dickson algebra D*(n) is the polynomial algebra F[d,, ,,-,
d, ] and hence has finite global dimension, so a famous equality of Auslander and
Buchsbaum [1] allows us to convert the computation of the homological codimension
of F{V']¢ over D*(n) into an equivalent computation of the homological (i.e. projective)
dimension of F[V]¢ over D*(n). For this we introduce a spectral sequence, which,
loosely speaking, is a Koszul-Serre dual to the one used by Ellingsrud and Skjelbred
in [8]. We hope in this way to make this circle of ideas available to a larger
audience then seems to have been attracted by [8] alone.

La plupart de cette travail a été¢ fait pendant deux séjours de l'auteur au
Laboratoire de Mathématiques Emil Picard de 1'Universit¢ Paul Sabatier de
Toulouse. L’auteur tient a remercier Claude Hayat-Legrand et André Legrand
pour leur invitation & participer dans la vie du laboratoire, et toute I'équipe du
labo pour le soutien d’une atmosphére trés supportive pour la recherche.

§1. A Motivational Example

Let p: G g GL(n, F) be a representation of a finite group G over the field F. If
|Gle F* then the Reynolds operator

nG=|(l;—|TrG:F[V] - F[V]¢

defines a splitting of the inclusion F{V]¢g F[V]. If hy,---,h,e F[V]® form a
regular sequence in F[ V], then they are algebraically independent, and F[V] is a
free FTh,,---,h]-module. Since F[V]¢ < F[V] is an F[ V]%-direct summand = is
an F[V]%linear map (see [22] §2.4), it is also an F[h,,---, h,]-direct summand, and
hence projective as an F[h,,---,hJ-module. In this graded connected context,
projective and free are the same thing, so F[V]° is a free F[h,,---,h]-module, and
therefore (see e.g. [22] 6.2) h,,---,h, is also a regular sequence in F[V]®. So the
question posed at the outset is only of interest in the modular case (for finite groups,
i.e., where the characteristic of the ground field divides the group order).

The following example, due to M.D.Neusel, brings out the subtle nature of the
problem.

Example 1 (M.D. Neusel). Consider the representation ¢3:Z/2 g GL(6, F),
obtained by letting Z/2 permute the two vector variables x,,x,,x; with y,,y,,y;
where F is a field of characteristic 2. The Poincaré series of F{x,,x,,X3,¥1,V2,¥3]*?
can be computed by using either Molien’s theorem to compute the Poincaré
series over C and the last conclusion of [22] theorem 4.2.4 or [22] 4.2.8. In either
case we obtain:
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1+ +0-1? 143
P(FLx1.x2,X3.01,92.73]%%, ’)zi[ (1—0%(1-7) ]=(1 — (1 —12)?

=14314+12024+283 + -,

Therefore the space of invariant linear forms has dimension 3, the space of
invariant quadratic forms dimension 12, the space of invariant cubic forms dimension
28, etc. In degrees 1 and 2 it is relatively easy to find bases for the invariant forms:

1i=xi+yl' i= 1,233
is a basis for the invariant linear forms, and the 6 products

I, 1<i<j<3

together with the 6 quadratic polynomials
gi=xy; =123
Q3=x1x2+y1)2
Q,=x1x3+y1)3
Q4=x3%3+Y,3

form a basis for the space of invariant quadratic forms. The relation
L= 0411+ Qals+ O3l +2(x,x,X3+ 1Y ,2)3)

in K[x,,x,,Xx3,¥1,¥2,¥3), for any field K, is due to M.D. Neusel, and shows that
in F[x,,x,,X3,Y1,¥,,¥3]%* the linear form [; is a zero divisor modulo the ideal
generated by /; and /, (recall F has characteristic 2). However the forms /,,/,,/,
are clearly a regular sequence in F[x,,X,,X3,¥;,¥2.V3]

The situation is even more complicated: in section 3 we will see that the
homological codimension of F[x,.X,,X;,¥;.V2,y3]%?* is 5, and therefore by the
theorem of Bourguiba and Zarati [3] the five Dickson polynomials of least degrees
dg s,dg4,dg y,dg 5, dg , form a regular sequence in F{x,,X,,x3,y;,¥,,y3]%/* as well
as in F[x,,x,,X3,¥{,V2.73]- By contrast the five Dickson polynomials of highest
degrees dg 4,ds 3.ds 5 .ds, ,dg are a regular sequence in F{x;,Xx,,X3,Y1,¥3.)3]
but not in F[x,,x,,x3,7,,V2,y31%%2.  We will return to this circle of problems in
§5 after we have developed adequate tools in the next sections.

To delve into the problems posed by this example we recall, [22] §6.2, that
hy,--- h,e FLIV]° is a regular sequence if and only if the Koszul complex

FL=FVI°QFE(s 'hy,-,s 'hy)
0(S_1h,-)=hi ror i: 1’ ...,k



730 Larry Smith

is acyclic. For the sake of clarity here is the definition of the Koszul complex and
notation that we are using (see [22] §6.2, [21] part II §1).

Definition. Let 4 be a graded connected commutative algebra over a field F
and a,,---,a,eA. The Koszul complex of 4 with respect to a,,---,a,e 4 is the
differential graded commutative algebra

H=A(a,,a)=AREs 'a,, s 'a,)

where E(s”'a,,---,s"'a,) denotes a graded'-exterior algebra with deg(s™ 'a)
= — 1 +deg(a;), and the differential ¢ is defined by requiring

a|A=0

s 'a)=a; fori=1,---.n

0(x-y)=0(x)y +(—1)**¥xd(y) Vx,yeA.
Introduce the Koszul complex

A =FIVI®E(s 'hy, 5™ 'hy)
as~ lh,')=hl~ for i=1, -, k.

The group G acts on ¢ via the representation p on F[V] and trivially on
E(s™ 'hy,---,5"'h). Moreover £ =x"°. By hypothesis h,,---,h, e F[V] is a regular
sequence, so (', 0) is acyclic. Hence the question at hand becomes: is (X7, d) also
acyclic? More generally we would want to relate H*(¢",9)° and H*(#'¢,8). One
way to do so is to note that M%=H%G;M) for any G-module M. Since the
functor H%G; —) is not exact in general it is not suprising that the higher derived
functors (see e.g. [10]) of H%(G; —) enter into the discussion.

§2. Koszul Cohomology of a Group

As a tool to deal with the problems encountered in the introduction and §1 we
set up a spectral sequence’ relating the cohomology of a G-cocomplex to the
cohomology of the fixed cocomplex. In order to keep the discussion as simple as
possible® we suppose that p:G  GL(n, F) is a representation of a finite group G
over the field F and that h,,--- h,e F[V]¢ are invariant polynomials which form
a regular sequence in F[V]. Let (#,0) denote the Koszul complex

sz[V]®E(S—lhl 5 "'as_lhk)

! This is the totalization of the Koszul complex bigraded as in [21].

2 1n fact this spectral sequence is a form of Koszul-Serre dual, or local cohomology dual, to the spectral
sequence employed by Ellingsrud and Skjelbred in [8].

3 It will be immediately clear to the experts that a much broader discussion is possible, however, my
aim here is not generality, but to provide a tool to make concrete computations in invariant theory.
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(s~ 'h)=h; for i=1,--k

with the extended action of G as in the previous section. We denote by F(G) the
group algebra of G over F and let #(G)— F denote a projective resolution of F
regarded as an F(G)-module via the augmentation homomorphism ¢: F(G) - F, such
as for example the bar construction #(G) of G over F (see e.g. [4] or [6]). Introduce
the double complex*

% =Homy,(2(G), X).

A bit of care is needed with the gradings to turn this into an acceptable double
complex, i.e., one satisfying the standard grading conventions (see e.g. [15]). The
differential d * coming from the projective resolution 2(G) appears in the contravariant
variable of Homy/(—, —) and hence the differential d* induced by d on € increases
the grading in % coming from 2(G), i.e., d*: 4% - **!". Therefore we must grade
the Koszul complex J#° compatibly, i.e., so that 0 (which appears in the covariant
variable of Homg,(—, —)) also raises the resolution degree (this time in ) by 1,
and the induced differential on € satisfies 0:%*" —» é*'*'. This is the standard
grading of the Koszul complex a la Eilenberg-Moore [21]. In other words, we
bigrade A~ by giving the elements of F[ V] resolution degree O (and internal degree
deg(f)) and the elements s~ 'A; the resolution degree — 1 (and internal degree deg(h;))
for i=1,-.-,k. Doing so (¥¢,d* 0) becomes a double complex (of graded modules!
the grading €*' on coming from the grading of F[V]).

This describes the grading convention we will employ throughout this manuscript.

Since (¢,d* 0) is a double complex we can totalize it, i.e., we can form the

associated graded complex {Tot(®)"= @ €*'|meZ} with differential d*+0. We

stt=m
denote the cohomology of this complex by H*G;(4',0)) and refer to it laxly as
the cohomology of G with coefficients in the Koszul complex (¢, 0).

Associated to this double complex are two spectral sequences, [15] chapter XI,
which are independent of the choice of the resolution 2(G). Using the spectral
sequence where we first apply the Koszul differential and then the differential from
the projective resolution #(G) we obtain:

Proposition 2.1. With the preceding hypotheses and notations the augmentation
map of complexes

F1V] 0)

(A,0) >
n:x.0) ((hl,-.o,hk)

4 See also [4] chapter VII section 5 for a similar construction in connection with the cohomology of
semidirect products.
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induces an isomorphism

HXG(X,0) - H*(G;ﬂ)

(hy,-hy)
Proof. The map # is an equivalence of complexes, and hence so is

V] )

Homg(%(G), #) = Homg g, <ﬂ(G),
(hl 5" hk)

from which the desired conclusion follows.

The spectral sequence where we first apply the projective resolution differential
(e.g. bar construction differential) and then the Koszul complex differential will
become our main technical tool. If we denote this spectral sequence by {E,,d,}
then as a consequence of 2.1 (= denotes converges to)

V] >

E,_=>H*<G; .
(hl ) ""hk)

Since G acts trivially on E(s~'h,,---,s”'h,) the term E, of the spectral sequence
takes the form
E,=HXG;FLV))®E(s ™ 'hy -5 'hy).

Therefore the term E, may be identified with the cohomology of yet another Koszul
complex, namely for the elements

hy,- heHG;FLV])=F[V]° < HXG; FLV)).
Therefore, recalling that A, ,---,h, € FLV]¢ are algebraically independent, we see
E3' =Torgy,...n(H'(G; FLV]), F)
where H*G;F[V)) is regarded as an F[h,,---,h]-module via the inclusion
Flhy,--,h] € FLVI°=H%G;FLV]) =< HXG;F[V])
and the product in group cohomology. To summarize, we have shown:

Proposition 2.2.  With the preceding hypotheses and notations there is a convergent
second quadrant spectral sequence {E,,d,} with

ﬂ)
(hl TN hk)
E3'=Toryy, ... H'(G; FLV]), F).

E,=>H*<G;
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Proof. We need only remark that convergence is a consequence of the fact
that E3'=0 if s< —k.

This spectral sequence is a precursor of Grothendieck’s local cohomology
spectral sequence [11].

As a simple application of this spectral sequence we reprove a result of Landweber
and Stong [14], that serves as a model for further applications.

Proposition 2.3. Suppose that p:G g GL(n,F), n>2, is a representation of a
finite group G over the field F. If h,,h,e F{IV]¢ are a regular sequence in F[V],
then they are a regular sequence in F[V1¢ also.

Proof. The polynomial algebra F[h, ,h,] has global dimension 2, so the functors
Torg, .n,(—» —) are identically zero for s< —2. The following diagram representing
E,

A
0
0 3
0 2
0l a2 1
0 Ez—l.() 0
» §

3|2 ]-1]-0

Figure 2.1. E, in the dimension 2 case

shows that there is no way that a nonzero differential can either arrive at or leave
from E; "%, The elements of E; '° have negative total degree. HXG;#%l) is
zero in negative degrees, and hence EI' is also zero in negative degrees. Therefore

0=E; “°=Torgs, w(H%G; FIV]), F)=Totg, o (FLV1®,F)

and the result follows.

§3. Vector invariants of Z/2

In this section we will apply the spectral sequence of 2.2 to rings of invariants
in characteristic 2. To see why this case is particularly amenable we begin with a
number of general remarks. If p:G g GL(n, F) is a representation of a finite group
G over the field F of characteristic p and P=Syl (G)<G is a p-Sylow subgroup of
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G then one has by [23] 4.6:
hom — codim(F[ ¥']%) >hom —codim(F[ V]").

So to establish lower bounde for the homological codimension we may restrict
ourselves to the case of p-groups, and henceforth we assume G=P to be a finite
p-group. We also assume that F is a Galois field with g=p* elements. The Dickson
algebra (see e.g. [22] §8.1) D*(n) is a subalgebra of F[V]® and the extensions
D*(n) < F[V]? < F[ V] are finite. Therefore (see the do it yourself kit [5] exercise
1.2.26)

hom — codim p.,(FT ¥']")=hom — codim(F[ V' ]7).
The Auslander-Buchsbaum equality [5] 1.3.3
n=hom — codimp.,,(F[ ' ]?) = hom — codim p..,,(FL V' ]7)

in turn allows us to convert the original homological codimension computation to
one of the homological dimension of F[V]® as D*(n)-module. It is here that the
spectral sequence

E, = HXP;FLV]oLnr)
E3'=Torp.,(H'(P; FLV]), F)

can be of use. (We have written F[ V] ) for FLV]® p.(,F for the ring of coinvariants
of the group GL(n, F) which coincides with standard notation.)

Notice that H*(P;F[V]gLnr) is zero for *<0 and therefore there are no
elements of negative total degree in E, . In other words, as the following diagram
shows

s+1=0

0 1

-2 -1

Figure 3.1. The vanishing area s+7<0 for E,

the terms ES' for s+¢<O0 are all zero. This is a key fact that will be exploited in
computations. The terms on the border of the vanishing area, i.c., where s+¢=0
(referred to as the vanishing line) are connected with the stable invariants introduced
in [12] and studied in [16].

To work with this spectral sequence we need to obtain information about
H*P;F[V]) and how the Dickson algebra acts on it. It would seem that since
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we do not know F[V]*=HOP;F[V]) that this would be a hopeless undertaking.
However, in any case, it is natural to start with the smallest exmple P=Z/p, the
cyclic group of order p. If yeZ/p is a generator then the periodic complex [6]

€ 4 Trlp o Tr2lr
0 FZ/p)— FZ/p)'~ RZ/p)— FZ/p)" -..

where:

(i) F(Z/p) is the group algebra of Z/p over F,

(i) & is the augmentation homomorphism,

(iii) 0 denotes multiplication by the element | —ye F(Z/p), and

(iv) Tr#?P=0r~! denotes multiplication by 1+y+ --- +y? "' e F(Z/p),

is a free resolution of F as F(Z/p)-module. Therefore applying the functor
Homgz,,(—, F{V]) to this complex we see that H*Z/p;F[V]) is the cohomology
of the cocomplex

4 Ip 0 Ip
0= FIV]-> VIS Avl-Av'S -
and hence

0 for i<0
F[V]*» for i=0
FLV1#?7/Im(Tr%/")  for i even and i>0
ker(Tr%/?)/Im(0) for i odd and i>0

() H(Z/[p;F[V])=

(N.b. we have used that F[V]%*?=ker(0) in the preceding formula for the even
cohomology groups.) In particular when p=2 we have

0 for i<0
(*2) HY(Z/2;FLV])=+ FV]*? for i=0.
F{V1*?/Im(Tr%?)  for i>0.

So for p=2, and need only determine the quotient of F[V]%? by the image of the
transfer to compute H(Z/2;F[V]) for i>0.

By using the Jordan form (or otherwise) one can see that a representation Z/2 of
2 over a field of characteristic 2 is always a permutation representation. A
permutation representation of Z/2 decomposes into a sum of trivial and regular
representations. The trivial part will cause us no problems and from [24], as a
consequence of the remarkable lemma 3.1 of [17], we have for sums of the regular
representation:

Theorem 3.1. Let F be a field of characteristic 2 and t,,: Z/2 c GL(2m, F) the
representation of Z/2 implemented by the permutation matrix
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[ ]
01
1o O
S eGL(2m, P)
01
0 10
L A

Let xy, ", Xp,Y1,*,Ym be the standard basis for the dual vector space V* of
V=F?. Then

(i) Im(Tr%?) is a prime ideal of height m in F[V]?"?, and
(i) FLVI*?/Im(Tr®*)~Flq,, -, q,] is a polynomial algebra on the quadratic forms
qi=XxY;, i=]’ ceom.

With the aid of this result we can compute Torp.,.(F[V]1*?/Im(Tr%/?), F)
for the representation t,, as follows: the ideal Im(Tr%/?) in F[x,, -, Xp, V1, Vml?'?
is the vector space spanned by the binomials

xAyB + xByA

where 4=(a,,---,a,) and B=(b,, -, b,) are distinct index sequences of nonnegative
integers®, ie. A#B. The subalgebra F[g,, --,qn] < F[x,,**,Xp, ¥y, V]?* is the
linear span of the monomials x“y¢ where C=(c,,--,c,) is an index sequence of
nonnegative integers, and therefore F[q,,--,q,,] intersects the ideal Im(Tr%?) in the
zero ideal (0). The prime ideal (/;, -+, /,) = F[x{, ", X, Y1, *, V), Where [;=x;+y;
for j=1,---,m, lies over Im(Tr%/?) and the map

7t:I:‘[xl »HXma V1 "'ameZIz/Im(TrZ/z) - ’le X Vi '”3ym]/(ll s "'alm)

is a monomorphism. We may identify F[x{, -, X, V1, Vml/Uy, 1) with
Flu,,---,u,] in such a way that n maps g; to u? for i=1,---,m. The Dickson
algebra D*(2m) < FIx,, ", X, V1, > ym]** is a subalgebra of the tensor product

D*2)® --- ® D*(2), which is in turn a subalgebra of F[x,, -, X, 71, Vml?’> The

map 7 sends the Dickson polynomials d,,.d,, in the i-th factor to 0 and uf
respectively, for i=1,---,m. Therefore the map induced by =

D*(2)® ®D*(2) - F[xl > Xms Vi1 ""ym]zn/lm(TrZ/z):F[ul > ""um]

“-m-

maps onto the subalgebra F{q,,--,q,.] and has kernel the Borel ideal® generated
by the m elements 1® - @d, (® --- ®1, where d, , occurs once in each factor. A

 For an index sequence E=(e,,-,e,) of nonnegative in integers we write x5=x‘;‘ X,
¢ A Borel ideal is an ideal generated by a regular sequence.
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standard change of rings argument [21] therefore yields:

Proposition 3.2. With the preceding hypotheses and notations we have
Tor;mm(F[xl s X Vst ym]Z/Z/[m(Trzll)’ F) = E(vl DI vm)
where v; has homological degree-1 (and internal degree 3) for i=1,---,m. In particular

TOI‘ (F[x] ) '“axmay[ B “"ym]2/2/[m(TrZ/2)’n=O

)
®D*(2)
m

for s< —m.

Corollary 3.3. With the preceding hypotheses and notations we have for all
>0

Tor:;*(Zm)(H'(Z/z > FIX] s Xmsy Ve "',ym])’ F)= [® D*(2)//D*(2m)]®E(vl PR vm)

where v, has homological degree-1 (and internal degree 3) for i=1,---,m. In particular
Tori)"(lm)(H'(Z/Z;F[xl s Xms Yo "’»ym])’F)=0

for t>0 and s< —m.

Proof. ®D*?2) is a free D*2m) module, and the result follows from a standard

change of rings argument and the formula (x,) for H'(Z/2; F[x,, -, Xpm, Y1, "+ V)
when 7>0.

Theorem 3.4 (Ellingsrud and Skjelbred [8]). Let p:Z/2 s GL(n,F) be a
representation of the cyclic group Z|2 of order 2 over a field F of characteristic 2. Then
hom-codim(F[ V1%/*)=min{n, 2 + dimg(V%/%)}.

Proof. Let V=F". Using the Jordan form (or otherwise) one sees that it is
possible to choose a basis x;, X, V1 Vms 21, 2, for V* such that Z/2 acts
on V* by interchanging the vector variable (x,,---,x,) with the vector variable
1,y and fixing z,,---,z,. Therefore

F[V]Z/ZZF[xl s Xms Vi ""ym12/2®nzl ’ '“’Zk]

and hom-codim(F[ V' ]?*)=hom-codim(F[x,, **, Xp» V1> VYml*'*)+k and we may
suppose k=0 and n=2m. The case m=1 being elementary, we also may suppose
m>1.

Consider the spectral sequence of 2.2 in this case, for which we have
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E, = HXZ/2;F[ V]GL(Zm,F))
E3'=Torp.am(H(Z/2; FLV]), F).
From 3.3 it follows that

E3'=0 for s<—m and >0

E;™'#£0.

This leads to the following picture for E,:

0 A
3
2
-m,1
B & :
~
Ez—m+2.() 0
»S
-m -m+1| -m+2 0

It follows that none of the terms E; >™°, ..., E; ™+ 1% can be the target of a nonzero
differential. Since all differentials starting on the s-axis are zero, if any of these
terms were nonzero, it would represent nonzero elements of negative degree in
HXZ/2; FLV]GL@am.r) Which cannot exit. Hence we conclude E; 2™0=...= E; m* 1.0
=0. The term E; ™' is nonzero and the indicated differential is the only possible
nonzero differential either originating, or terminating, at E; ™'. Since E_;™!=0 it
follows that d,: E; ™' = E; ™*2:° must be an isomorphism. In particular

05 E; " 20 =Torply,  (FLV1*?), F)

so hom-dim ., (FLV1?*)=m—2 from which it follows that hom-codim(F[ V']*?)
=m+2 as required.

§4. Permutation Representations of Z/p in characteristic p

Let p be an odd prime, Z/p the cyclic group of order p and X a finite Z/p-set, i.e.,
a permutation representation of Z/p. Since pe N is a prime the only possible orbits
of Z/p on X are fixed points and free orbits”: the action is semifree. Let B denote

7 A free orbit is an orbit with p elements cyclically permuted by Z/p.
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the Z/p-set with underlying set the elements of Z/p and Z/p-action by left
multiplication: B is a generic free orbit, and®

X=BU...LIBLIxZ/r

— m—

as Z/p-set for a unique integer meN,.

If Fis a field we denote by Vy=Fun(X, F) the F-vector space of all functions
from X to F, which is the corresponding F-linear representation. In this way X
becomes identified as Z/p-set with a basis for V¥, and the algebra F[ V1 with the
algebra of polynomials F X] in the variables X. Note that the representation Vy is
defined over the prime subfield of F and so there is no loss of generality in the
following discussion in supposing that F=F,.

We are going to study the homological codimension of the ring of invariants
FIX]%®, where F is a field of characteristic p, and show

hom-codim(F[ X ]%/P)=2 + dimp(VEP) =2+ m+|XZ/7|,

confirming a formula of [8]. Our strategy is the same as in §3: we use the
Auslander-Buchsbaum equality to convert a homological codimension computation
into the computation of the homological dimension of F[X]%” as a module over
the Dickson algebra D(|X]), which we do with the aid of the spectral sequence 2.2

E,=HXZ/p; F[X]GL(|X|.F))
E3'=Torpx(H(Z/p; FLX]), F).

It is not hard to see that

F[X]Z“’ — F[Xz/”] ® F[X\Xllp]llp

where X\XZ/P=BLl... LU B denotes the free part of the Z/p-set X. Hence from the

—m—

viewpoint of invariant theory there is no loss of generality in assuming that X%/? = (¥,
i.e., the action of Z/p on X is free. Another way to say this is that Vy is the
m-fold direct sum of the regular representation of Z/p. So, without loss of generality,
we assume until further notice that X is a free Z/p-set, and we set |X|=mp.

To make use of 2.2 we need to compute H(Z/p;F[X]) as a D*(mp)-
module. This we do with the standard resolution of Cartan-Eilenberg as described
in §3. Recall (formula (x) from §3)

0 for i<0
F[Xx#r for i=0
FLX)%?/Im(Tr%/?)  for i even and i>0
ker(Tr%/?)/Im(0) for i odd and i>0.

(%) H(Z/p;F[X]))=

8 'l means disjoint union.
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As a consequence of [17] lemma 3.1 we have for j>0 from [24] theorem 2:

H*(Z/p; F{X])=FLX1*" /Im(Tr*/?)= Fc(X,), -+, c,(X,))]
where,

— X,,-+, X,, denote the orbits of Z/p on X, so each X; is isomorphic to B as
Z [p-set,

— X=X,4...Ux,, and

— ¢,(X;) denotes the p-th Chern class of the orbit X; for i=1,---,m.

The action of the Dickson algebra D*(mp) on H*(Z/p; F{X]) is via the composition
n:DX(mp) = FIX1%" - FLX1%7 /Im(Tr??) - Flc(Xy), -+, ¢ (X,)].

There are algebra inclusions

D*mp) = DXp)® - ®D*(p) = FLX]*"

—_— —

induced by the inclusions Z/p< x GL(p, F)<GL(mp, F) and the map = satisfies

0 forj=0,---,p—2

)= {c,,(x,.)P" TemD forj=p—1

when restricted to the i-th factor D*(p) of the tensor product. Hence the kernel of the
map 7y, 18 @ Borel ideal and Flc (X)), ¢ (X,)] is a free module over the
image. "Using the Koszul complex and a standard change of rings argument [21]

we find that hom-dimg,, FIX]1*?=m(p—1). Finally the algebra @ D*(p) is a free

D*inp)-module, so we conclude:

Proposition 4.1. With the preceding hypotheses and notations we have
hom-dim pug,p,(H*(Z/p; FLX1)=m(p—1) for all j>O0.

Our next task is to describe the cohomology modules H(Z/p; F{X]) for i odd
and positive as modules over the Dickson algebra. To this end we require a lemma.

Lemma 4.2. With the preceding hypotheses and notations the maps 0,
Tr?/?: F[X] — F[ X] satisfy

Im(TrZ/P)=Im(Jd) N ker(d)
ker(Tr2/?) = Im() + ker(d).

Proof. Note that the action of Z/p on the homogeneous component F[X],
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of F[X] of degree d is the linear action associated to the permutation representation
of Z/p on the set SPYX), the d-fold symmetric product of the Z/p-set X, which® is
identified with the monomial basis for F{X], as F-vector space. Since p is a prime
the action of Z/p on SPY(X) is semifree. Let SPYX)™ denote the set of free orbits
of the action of Z/p on SPYX), ie., the elemints of SPYX) are free
Z /p-orbits in SPYX) and

SPAX\SPi(X)ZP=  |) U

UeSP“(X)“‘“

For any fe F[X], we may write

- 5 (Sawrae 3w

UeSP4(X)free \uel weSPI(X)Z/P

where o (U) and f, belong to F for all UeSPYX)™ and ueU as well as
weSPYX)%/P. This expression for f is unique.

ForUe SPYX)"™ a free orbit we may write U={u,,---,u,} with the action of
Z/p given by cyclic permutation of u,,---,u,, ie.,

y(u.)z{u.'ﬂ fori=1,---,p—1
! uy fOI’i:p

where ye Z/p is a generator (independent of U). Therefore, for fe F[ V], we find
W= Y (@, (U)up+ 4o, (U)u+a, (U)u)+ ) f,o
UeSP4(X)free weSP4(X)z/P
so we obtain
a(f)= Z [(aul(U)—aup(U))'ul+ o +(aup(U)_aup-1(U)).up]
UeSP4(X)free
and
TeZr(f)= ), wU) (uy+ -+ +up)
Uespd(x)frec

where
oU)=o, (U)+ - +a,, (V).

From these equations it is an easy matter to deduce the following criteria:

(i) feker(d) if and only if «, (U)= --- =, (U) for all Ue SPYX)"",
(i) heIm(d) if and only if «(U)=0 for all Ue SPYX)" and B,=0 for all

? For a discussion of the invariant theory of permutation representations and symmetric products see
[22] §4.1 and §4.2.
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we SPX)Z,
(iii) feker(Tr??) if and only if «(U)=0 for all Ue SPA(X)ree,
(v) feIm(Te?m) if and only if o, (U)= - =a, (U) for all UeSPAX)™ and

B.,=0 for all we SPYX)%/,

Only (ii) requires any comment at all: here one just needs to notice that the system
of linear equations

1 —1 0 v oo 0 | [ b, | [ o ]
0 1 —10 -0 b,

S0 e e 0 =

0 0 - - 1 —1 :
-1 0 I _b"J a |

[ a] (1] [-1] [0 )
a 0 1
.| €Spang - : , 0 0
: 0 : —1 \
. 4 | \ L_l ] | 0 J 3 1 J /
Since «,,(U)= - =a, (U) implies «(U)=0 it follows that condition (iii) is equivalent

to either condition (i), or (i), or both and hence ker(Tr%/?)=ker(0)+1m(d). Likewise,
condition (iv) is equivalent to conditions (i) and (ii) taken together, and hence
Im(Tr?/P)=ker(d) n Im(d) as required.

Proposition 4.3. With the preceding hypotheses and notations we have
HY*NZ[p; FIX])=H?*(Z/p; F[X])

for all j>0.

Proposition 4.4. With the precceding hypothese and notations we have
hom-dim p.,,(H>* (Z/p; FIX])=m(p—1) for all j>O0.

Theorem 4.5 (Ellingsrud and Skjelbred [8]). Let p be an odd prime, Z/p the
cyclic group of order p and X a finite Z [p-set. If F is a field of characteristic p, then

hom-codim(F[ X]%2/7) =2+ dim(VEP)=2+m+|X?/7|

RO
p

where m= is the number of free orbits of Z/p on X.
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Proof. Without loss of generality we may suppose that X?7=@¥, m>0 and
F is finite. We consider the spectral sequence 2.2

Er = H *(Z/P X F[X]GL(mp,F))
EEJ = Tor‘;’*(mp)(H'(Z/p; F[X])a F)‘

By propositions 4.1 and 4.4 we have the precise vanishing line for E5*, >0, is
s=—(m(p—1))+1. This leads to the following diagram for E,:

A
0

3

2

-m(p-1),1
EZ —_ dZ 1
~>
Ez—m(p— 1)+2,0 0
“ee S
-m(p-1)+2 | -m(p-1)+1 | -m(p-1) 0

which together with the fact that E3'=0 for s+¢<0 implies that
0=E3° =Tolhu(mp(FLX]*",F)  for s<—m(p—1)+1
and that the indicated differential is an isomorphism. Since
E; ™= =Torpes "(H (Z/p; FLX]), F)#0
we conclude that
Torpeb V*2(FLX]%/?, F)#0

and hence hom-dimp.,, (FIX]*?)=m(p—1)—2 and the result follows from the
Auslander-Buchsbaum equality.

Corollary 4.6 (Fossum and Griffiths [9]). Let p be a prime, Z/p s GL(p,F)
the regular representation of the cyclic group Z/p of order p over a field F of
characteristic p. Then F{V]*/* is Cohen-Macaulay if and only if p=2 or 3.

Proof. For p=2 the result is clear. For odd p, if the ring of invariants is
Cohen-Macualy, substitute in the formula of 4.5 to obtain p=hom-codim(F[ V]*/?)
=2+dimg(V*r)=2+1=3.
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§5. Regular Sequences in invariant rings of permutation representations

The computations of sections §3 and 4 combined with the tools of §2 may be
used to reexamine the motivational problem posed in §1 to good advantage in the
case of permutation representations. Let us begin by examining the case of a
representation p:Z/2 g GL(n, F). Without loss of generality we may suppose that
the representation permutes a basis 4 of the dual vector space V' * and to simplify the
notations we furthermore suppose that #%2= . So n=2m and p is implemented
by the permutation matrix

e GL(2m, F).

Let x,, -, X, V1, V. b€ the standard basis for the dual vector space V* of
V=F?" and set l;=x;+y;, ¢;=x;, i=1,--,m. These polynomials are invariant
and ¢q,,--,q,, is a regular sequence in F[V]. Note carefully, that we have choosen
to work with the obvious quadratic invariants instead of the linear ones as in
example 1 of §1. This is of course influenced by the cohomological computations
of §3 and proposition 2.2. Choose any two polymials f,he F[V]*/* such that
q1,~qm> f, h is a regular sequence in F[V]. For example we could choose f and
h to be distinct linear forms /;, /;.

Proposition 5.1. With the preceding notations we have that q,,--.,q,,, f,
he F[V]*? is a regular sequence.

Proof. We consider the spectral sequence of proposition 2.2 for the elements
q1.-qm, f, h. From the discussion of H(Z/2;F[V]) in §3 we have

E; ' =Tt qmrn(FLV]IZ? [Im(Tr?/%), F) - for t>0.
By [24] theorem 1
F[V]ZIZ/Im(Trl/z); F[‘71 RERPN q'm]

where the ~ indicates residue classes, so a simple change of rings spectral sequence
argument (see e.g. [21]) shows

TOr g, osgom sl (FLV 12 [IM(T1?2), F) = Tor gy o (F, F) = E(s™ ' 57 'h).

Hence we conclude that E, *'=0 for t>0 and s>2. The proof may be
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completed as in proposition 2.3 (refer to figure 2.1).

On the other hand, suppose we choose three polynomials f;,f,,f5€ F[ V]*/?
such that q,,-,q,., f1 ./2./5 is a regular sequence in F[V']. Again, we could choose
these amongst the linear forms /,,---,/,, but because of §1 we know this choice
could not lead to a regular sequence in F[ V]%/?, but there are lots of other possible
choices for f,,f,,f5. If we examine the spectral sequence of proposition 2.2 in this
case we find

Ez_ = Tor;[fn »"’,‘Im-flvayfiil(F[ V:IZIZ/Im(TrZ/Z)’ F)
=TOtrs oo amsroras S FLVIZ? [I(TrZ2), F)y=Torg, o, -/(F, F)
=Es" ;.57 Ys™fy)  for t>0.

In particular E; >'#0 and has negative total degree. Since E; **=0 for s<3
there are no nonzero differentials terminating at E; 3! and the only possible nonzero
differential originating there is d,: E; >! - E; '°. Therefore

E; V0 =Torrg, ..qmsrsas FLV]I?2, F) #£0

so F[V]*? is not a free Flq,, ", qm.f1./2.f3]-module and q,, " qm, f1.f2.f3
e F[V]*? is not a regular sequence.

In fact it is not necessary to start with the quadratic invariants ¢q,,---,q,,. We
could start with any m polynomials in F[V]%?* whose residue classes in
F[V1#?/Im(Tr%/?) form a regular sequence and the same argument would
apply. Putting all these facts together, and adding the argument of M.D. Neusel
used in example 1 of §1 we arrive at the following definitive result for regular
sequences of maximal length.

Corollary 5.2. Let p:Z/2 g GL(n,F) be a permutation representation of Z/2
over the field F of characteristic 2. Choose a basis for F" so p is implemented by
the permutation matrix

[0 1 |
10 0
0 (1) (1) e GL(2m +k, F).
1
0 0
i 1]

Let Xy, ,Xpn, Y15 Yms Uy, Uy be the standard basis for the dual vector space
V* of V=F"** and set q;=xy,;, i=1,--m. If hy,-- hy 1+, FLIVI¥? form a
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regular sequence in F[ V] then they are a regular sequence in FLV1%? if and only if
some m+k of them form a regular sequence in F{V1*?*/Im(Tr%¥*)=F[§,, G,
l;l PIRPY ﬁk].

Since at most two invariant polynomials in F[¥]%? of a regular sequence in
can lie in the ideal Im(Tr*/?) = F{V']*”*> when F has characteristic 2 there is a slight
bonus to our computations. Recall that the grade of an ideal'® is the length of
the longest regular sequence that it contains. Corollary 5.2 implies:

Corollary 5.3. Let X be a finite Z/2 set and p: Z/2 — GL(n, F) the corresponding
permutation representation over the a field F of characteristic 2. Write n=2m+k
where k=|X*"| and is the number of free orbts of Z/2 on X. Assume p is faithfull
so m>0. Then the ideal Im(Tr??) has grade min(2, m).

The case of Z/p,p an odd prime, proceeds in a completely analogous vein. From
proposition 2.2 and theorem 2 of [24] we obtain:

Proposition 5.4. Let p be a prime and X a finite Z/p set. Decompose X into orbits

X=X, -Lx,LIxZ»

m ——

where each of the orbits X,,---, X, is a free orbit. Let N;=c,(X;) be the p-th Chern
class of the orbits X; for i=1,---,m and u,,---,u, the distinct elements of X*/P. The
forms Ny, N, uy,---,u form a regular sequence in F[X]. Extend these to a
regular sequence in F{X] of length m+k+2 by choosing two appropriate invariant
Jorms f,he F{IX1%'?, for example two linear forms in Spang(X, --- X,). Then
Ny, s Nty uy, f, h is a regular sequence in FLX1)%'P. It is not possibel to
extend Ny, --,N,,,u;,--,u, to a regular sequence in F{X1*'? of length m+k+3.

Corollary 5.5. With the notations of 5.4 we have that a sequence hy, -, hy 4142
€ FLX1%/? that is a regular sequence in F[X] is also a regular sequence in F[ X]*/®
if and only if some m+k of them form a regular sequence in F[X1%?/Im(Tr%/p)
=F[N,, Ny, ]

Corollary 5.6. Let X be finite Z|/p set and p:Z|p — GL(n, F) the corresponding
permutaion representation over a field of F characteristic p. Write n=pm+k
where k=|X?'?| and m is the number of free orbts of Z[p on X. Assume p is faithfull
so m>0. Then the ideal Im(Tr%/P) has grade min(2, m).

10 See for example [5]. This concept has also been called the girth in some of the literature. See for
example [7].
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