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1-cocycles on the group of diffeomorphisms

By

Hiroaki SHIMOMURA

§1. Introduction

Let M be a d-dimensional paracompact C*®-manifold and Diff(M) be the group
of all C*-difftomorphisms on M. Among the subgroups of Diff(M), we take here
the group Diffy(M) which consists of all ge Diff(M) with compact supports, that is
the set {Pe M| g(P)# P} is relatively compact. Up to the present time, unitary
representations (U, #) of Diff(M) or of its subgroups (# is the representation
Hilbert space of U) are constructed and considered by many authors, for example
(4], [5], [6], [7], [81, [9], [10], [12] and [19]. The first purpose of this paper is
a trial to construct some differentiable method to analyze these representations
(U, #) of Diff(M) or of its subgroups. Roughly speaking, we wish to consider a
differential representation of a given one. So the first step we should do is to
define a suitable Lie algebra %, of Diff(M), regarding it as an infinite dimensional
Lie group. For the case of compact manifold, it is well known for a pretty long
time ago that Diff(M)=Diff,(M) is an infinite dimensional Lie group whose modelled
space is a Fréchet space called strong inductive limit of Hilbert spaces by a few
authors. (cf [13]). So after them, we are naturally derived that we should take the
set To(M) of all C®-vector fields X with compact supports as the Lie algebra %,
and it is appropriate to take the map Exp(X) as the exponential map exp from
[o(M) to Diffo(M), where {Exp(tX)},g is the 1-parameter transformation group
generated by XeI'o(M). Thus formally we have self adjoint operators dU(X) on
# by Stone’s result,

U(Exp(tX)) =exp(/ — 1tdU(X)),

and simaltaneouly there arise many problems for such dU(X) and for Exp
maps. Among them the following questions are fundamental.

(1) Does \/—-_ldU become a linear representation under suitable restrictions
of the domain of each dU(X)?

(2) Isthe common domain of {dU(X)} x.r.m, rich such one like Garding space ?

(3) Is the subgroup generated by Exp(X), XeI'o(M) dense in Diffy(M)?

It is easily expected that the linearity of ./ — 14U mostly depends on the usual
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formula which is easily derived from Campbell-Hausdorff formula of which will be
made sure in the next section. In conclusion the question (1) is affirmative at least
for the finite dimensional representations. Now the theory of product integral is
so useful for (3). It turns that the above subgroup is dense in the connected
component Diff§(X) of id, where id is the identity map. This will be carried out
also in the next section. As a direct cosequence of these results we will show in
Section 3 that there is no continuous finite dimensional representations of Diff(X)
except for a trivial one. Lastly as for the question (2), it will be expected that a
lot of discussions are required for satisfactory solutions. However since we will
only consider here the finite dimensional representations of subgroups of Diff¥(X),
so it has no problem at the present time. We will not concern with this problem
in this paper.

The second and main purpose of this paper is a characterization of continuous
I-cocycles 0 defined on M x Diff(M) using the above differential methods. A
T'-valued function 0 is said to be a continuous I-cocycle if

(1) for any fixed Pe M, O(P,g) is a continuous function of g with respect to
the inductive limit topology t (later t on Diffo(M) will be explained exactly), and

(2) for any PeM and for any g,,g,€eDiff (M) we have O(P,g,)0(g; '(P),g,)
=0(P,g,g,)- These 1-cocycles, especially the following typical ones, appear in the
various kinds of representations of Diff(M). (cf. [5])

(@) (g™ '(P))/c(P), which is called 1-coboundary type, where c is an arbitrary
T'-valued continuous function on M.

J——ls
(b) (%(P)) , which is called Jacobian type, where u is any o-finite smooth
u

measure on M which is locally equivalent to the Lebesgue measure on RY, p, is the
image measure of u under the map g and s is a real parameter.

() n(g), which is called character type, where n is any continuous unitary
character on Diffy(M).
We call standard type continuous 1-cocycles which consist of 1-coboundary term,
Jacobian term and characer term. Section 3 is devoted to the study of 1-cocycles
and in it it is shown that if the manifold M is simply connected, then any continuous
1-cocycle is of standard type, which is expected by T. Hirai in the local case
M=R‘ However the simply connectedness condition is not the necessary one,
because the same results hold on compact connected Lie groups. On the other
hand there exist also continuous 1-cocycles of non standard type on the manifold
M=RxT! We will give a concrete example and decide the general form of
1-cocycles on the cylinder in the second part of this section. The last section is
devoted to the study of natural representations (U,(g), L2(M)),

d
Uy(g): f(P)e LYM)— 0O(P, g) /ﬁf(i’)f (g~ '(P)eLiM).

It will be shown there that these representations are all irreduceible and they are
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equivalent if and only if the corresponding 1-cocycles are 1-cohomologus. These
results are simple consequences of the local form of such 1-cocycles.

Acknowledgement. I express my thanks to Professor. T. Hirai at Kyoto
University for introducing me this subject and for kind advice. I also thank to
Professor. H. Omori at Science University of Tokyo for giving me many valuable
informations on this topics. In particular, the proof of Theorem 2.1 owe to him so
much.

§2. Diffeomorphism Group as an Infinite Dimensional Lie Grop
2.1. Topology on Diff(M). Let K be a compact subset of M and put
Diff(K):= {g € Diffo(M) |suppg < K}.

We shall introduce to the set Diff(K) a topology 1 of uniform convergence
on K with every derivative of higher order. It is clear that tx is a group
topology. Now Diff(K) is naturally imbedded into an infinite dimensional Lie group
by the following procedure. Let us take a compact submanifold L with boundary
containing K. L is obtained by first covering K with finitely many open sets which
are diffeomorphic to disks of R? and by next smoothing their boundaries. Next
we patch L and the copy L’ together along the boundary of L and form the double
N of L, N:=LuUL' (the double of L) Then N is a compact manifold without
boundary and Diff(K) is regarded as a subgroup of Diff(N). Now it is already
known that Diff(N) is an infinite dimensional Lie group whose modelled space is
a strong inductive limit of Hilbert spaces (cf. [13]), especially it is a Fréchet
space. Consequently Diff(K) is locally connected. That is there exists a fundamental
system of arcwise connected open neibourhoods # at id. So the connected
component Diff¥(K) is also arcwise connected. Now it is clear that Diffy(M)
= UgDIff(K), where K runs through all compact sets. So it is natural to consider
the inductive limit topology t of tx on Diffy(M). However the great care must be
taken for 7, because t is not a group topology, unless M is compact. (cf. [17] and
[18]) The right and left translations and the inverse operation is continuous.
However the map (g, )+ gh is not continuous. Since Diff*(K) is an open subgroup
of Diff(K) which increases for K, so Diff§(M):=uDiff¥(K) is a connected normal
open and thus closed subgroup. It follows that Diff§(M) is the connected component
of id in Diff(M). Note that for any ge Diff§(M), there exists a continuous path,
te[0,1]+ g, € Diff§(M) such that g,=id, g, =g and suppg, is contained in a fixed
compact set K.

2.2. Primitive Campbell-Hausdorff formula on the grop of diffeomorphism. The
following theorem is an extension of the usual formula which is easily derived from
Campbell-Hausdorff formula on (compact) Lie groups. Actually we can assure it
by operating all transformations in (1) and (2) in Theorem 2.1. corresponding to



698 Hiroaki Shimomura

right invariant vector fields to the unit element of the compact Lie group.

Theorem 2.1. Let X, Yel'((M) and {Exp(tX)},cr, {Exp(tY)},cr be 1-parameter
subgroups of diffeomorphisms generated by X, Y, respectively. Then as n tends to + oo,

(1) {Exp(ﬁI)oExp(g)} converges to Exp(t(X+ Y)), and
n n

@ {Ep(_f)ap(_%)ap(\‘[_")lap(}_y)} converges 10

Exp(—1t*[X, Y]) in t¢ uniformly on every compact interval of t, respectively, where
K is any compact set containing supp X and supp Y.

Proof. Using the notation in 2.1, we imbed Diff(K) into Diff(N) which is a
strong inductive limit of Hilbert Lie group (SILH-group). Put

h(s, 1) :=Exp(sX) < Exp(s Y).

Then h is a t-independent map which is so called C'-hair. For the definition of
C!'-hair we quote the following reference [14] on regular Fréchet groups. Since
SILH-groups are regular Fréchet groups, we are able to apply fundamental theorem

. X tY\|"
4.1. in [14] to G=Diff{N) and h. Then it follows that {Exp(——)oExp(—)}
n n
converges to some g, in Diff(N) uniformly on every compact interval ot ¢ and that
g, satisfies the equation,
dg,

2.1) o dRg u, go=id,

where u is an element in the Lie algebra Diff(N) such that

u=—| Exp(sX)-Exp(sY).
Sls=0
Now take a local coordinate system x,,---,x, at g(x,), x, is any fixed point,
and put g,(0):=x(g/(x,)). Then we have
dg; d
Bi)=2]  x(Exp(sX) Expls¥)og.(xo)
dt dsls= o
=(X(x;)+ Y(x)Ngdxo))-

So we have g,=Exp(«(X+ Y)).
(2) is derived in a similar way. This time we put

h(s, f):= Exp(— \/sX) o Exp(—+/5Y) o Exp(/5X) o Exp(y/5 Y).

Then the limit point g, satisfies the equation,
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dg; d
=21 x(Exp(—/sX) o Bxp(—/s¥) Exp(/5X) Exp(y/s 7)o g xo)
s=0

=—[X, Y](x)g(xo). QED.
Now we proceed to the question (3) stated in the Introduction.

Theorem 2.2. Put I'(K):={XeTly(M)|suppX < K}. Then the subgroup Gg
generated by Exp(X), XeI'(K) is dense in Diff*(K).

Proof. Let {g}o<.<i = Diff*(K) be a continuous path connecting id and
geDiff¥(K). Taking a suitable partition of [0,1], 0=t,<t, < --- <t,=1, we may
assume that g, 'g,,. € (i=0,---,n—1), where % is a neighbourhood of id which
is diffeomorphic by a map ¢ to an open convex set containing the origin of the
modelled ILH-space I'(N). (N is the compact manifold containing K.) The explicit
form of &, according to H. Omori in [13], is written as

22 ¢(u)(x) = exp,u(x),

where the last means the minimal geodisc for a Riemann structure on N starting
at x along the direction u(x). Thus there exists for each i,u;eI'(N) such that
Eu)=g, 'g,., and Eu)(P)=P for all Pe K. So we get u(P)=0 for all Pe K* and
u; are actually in I'(K). Now put y(1):=&(tu;). Then y(?) is a C®-curve on Diff(N)
and v(f):=dR;,y; is also in I'(K). Because take any C*-function on M and take
any PeK‘. Since y(f)P=P for all 0<r<1, we have for any C>®-function on M,

d d
-] €X SU" t =— fi t P =0.
dss=0f( pe(svi1)) dtf()’() )
It follows that (v(f)f) P)=0 for all PeK".

By the way y,(¢) is just equal to the product integral IT{(1 + v,(s))ds, where the
product integral is defined as the limit of

Exp((a,—a,_ )v{a,- 1) ° Exp((@,-  —a,_)via,_,)) o -« Exp((a; —ap)viay)),

when the size Max; .;.,la;—a;_,| of the partition, 0=a,<a, < --- <a,=t tends to
0. For details see p63-p66 in [13]. It follows that each y(f) and y(¢):=yo(¢) -+ 7, - 1(2),
especially g=v(1) is approximated by the elements of G;. Q.E.D.

Here for the later discussions we shall list another version of Theorem 2.2. Let
A be any fixed point of M and consider all diffemorphisms g with compact supports
which leave A invariant. Now put

Diff, (M):={g € Diffy(M) | g(4) = A}, Diff(K):={ge Diff, ((M)|suppg < K}, and
Diff¥(K):={ge Diff (K)| there exists a continuous path {g},.,<; < Diff 4(K) such
that g,=id and g, =g}.
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Theorem 2.3. Put T (K):={XeD(K)|X(4)=0}. Then the subgroup G,y
generated by Exp(X), XeT K) is dense in Diff%(K).

Proof is derived in a quite similar way with the above one. So we omit it.

The following theorem as an affirmative answere of the problem (3) is a direct
consequence of Theorem 2.2.

Theorem 2.4. The group G generated by Exp(X), X e I'o(M) is dense in Diff§(M).

§3. 1-Cocycles on the Group of Diffeomorphisms

3.1. Finite dimensional representation of Diff,(M).

Theorem 3.1. There is no continuous representations of Diff§(M) to GL(n, C)
except for trivial one.

Proof. Let U be a continuous representation of Diff§(M) to GL(n,C). Take
X from I'y(M) and form a continuous 1-parameter subgroup {Exp(¢X)},.x. Then
there exists some and unique dU(X)e M(n, C) such that

(3.1) U(Exp(tX)) =exp(tdU(X)).
By Theorem 2.1 dU is linear on T'y(M) and
(3.2) dU([X, Y])=[dUX),dU(Y)],

for all X, YeI'((M). Since

(33) AU(X) = lim ZEXPUX) — B,

-0 t

where E, is the unit matrix, dU is continuous on I'y(M) equipped with the inductive
limit topology of I'(K)’s, on which we give the usual C*-topology. For, dU|I'(K)
is a limit of continuous functions on I'(K) by (3.3) and thus a set of all discontinuous
points of dU|I'(K) is second category. On the other hand I'(K) is a Fréchet space,
so there exists at least one continuous point of dU|T(K) by Baire’s theorem. As
dU|T'(K) is linear, it is continuous on all the points of I'(K). Hence dU is continuous
with the inductive limit topology. We wish to show that dU=0 and for it it is
enough to admit the following lemma, because using a partition of unity, X is
decomposed to finitely many C®-vector fileds whose supports are contained in some
cubic neighbourhoods.

Lemma 3.1. For a positive number o, put U,'={xeR?| —a<x;<a (i=1,---,d)},
and consider a Lie algebra G, consisting of R-valued C®-functions F(x)=(F(x));<;<q
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on R? such that supp F < U, with the Lie bracket,
d G oF
[F,G1:= ), {F(x}—(x)— Gix)——(x)}.
i=1 6x,- 6x,-

Then there is no continuous linear representations dU from %, to B(H) except for
trivial one, where the toplogy of %, is the usual one imposed on the space of test
Sfunctions on U, and B(H), the space of all bounded operators on a complex finite or
infinite dimensional Hilbert space H, is equipped with the weak operator topolology.

Proof. Let for 1<k<d, 1, be the function defined by its kth component is
equal to 1 and the other component is equal to 0. Further put

n oo 0
dUfp):=dU(ply), [p,0)i:= P o (p,0€ C3(U,),

where the set CP(U,) consists of all C®-functions whose supports are compact
subsets of U,. Then
(3.4) dUy([p,0],) =dU0)dUyp)—dU,(p)dU,(o).

Now we claim that

(¥) for any x,€ U, there exists a function p=p, € C°(U,) such that
plxo)#0, and  dU(p)=0.

For the proof we carry out it at x,=0 for simplicity. Consider a function
pe C§(U,) with suppp < U, and take a é from [§,%]. Put
4

p,(X)I=,D(x1 s X s X G X g s "'xd) (ltlsé)

Then since

Pi+n— Pt apl
—_—

h—-0
h 0x, ( )

in the space of test functions, we get by the assumption on continuity

0 d
(3.5) <duk<—” ')el Lex01=—(dU(p)es €3
ox dt

k

for all e;,e,e H. ({-, Dy is the scalar product on H.) Take ¢,€ C{(U,) such that
oo=1 on U,,. Then by the definiton of [-,-], and by (3.4) we have

B

(3.6) ad(dUy(o)\dUy(p)) = [dUy(p), AUy )] =d U(?) '

Xk
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It follows from (3.5) and (3.6) that
d
(3.7) E<dUk(pt)el se2)p=<ad(dUgoo)dUp)e; . e2u,
and repeating this procedure over n times,
d" N
(3.8) ﬁ<dUk(p.)€1 s€2 ) =<ad(dUy0,))"dUp)le; . e;0n -

Here using again the assumption on continuity and the resonance theorem, we get

(39 M = sup |[dU(p)l,, < 0.
|h|<é
Hence,
d" n n
(3.10) sup |%<dUk(P1)91 eul <2"M [ dUoo)lg,llelinllexlly -
|h<é

Therefore {dU,(p,)e, e,y is an analytic function on || <é for any fixed e,,e, € H,
and the same holds for {dU([p,p.Ju)e: €,pu- Since supppnsuppp,=0 for

zStsé,
2

dU([p,p ] =0
for all |f|<6. Especially taking a function of the form,
p(x)=¢(xk)'//(xl s Xk—15Xk+1 ""xd)’

$0)=y(0)=1, ¢'(0)=0 and ¢'(£)>0 for sufficiently small ¢, we get a desired function
as the one in (x), as

dU([p,pJ=0, [p,pJil0)=¢'()>0.
Now we will finish the proof. From (x) we have
dUJo)=0

for all oe CP(U,) with suppa < {x|p, (x)#0}. Because we have o=[p,,,s]; for a
s defined by

Xk

ag

s(x)3=Pon _2_(xl » s Xk—1 ’t’xk+l s "'xd)dt'
—aPxo

Therefore using a partition of unity we get dU,(6)=0 for all ce Cy°(U,)
and the conclusion follows. Q.E.D.
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From Theorem 3.1 we see that finite dimensional representations of Diffy(M)
actually come from the discrete group Diff(M)/Diff§(M). For example in the case
that M=T", Diff (M) consists of two components. One is the Diff(T') and the
other is the component of the reflection R. So a function y defined by y=1 on
Diff¥(T!) and y= —1 on RDIff¥(T") is the unique non trivial unitary character on
Diffy(T?).

3.2. 1-cocycles of standard type. Let 0 be a continuous 1-cocycle stated in
the Introduction. The purpose of this subsection is to show that if the manifold
M is simply connected, then any continuous I-cocycle 6 consists of standard
type. We begin with a study of unitary characters associated with 1-cocycles. Take
any point AeM and fix it. Then the function

x:heDiffy (M) 04, h)eT!
is a unitary character. First we shall investigate such characters on Diff§ ,(M)

= uDiff%(K).

Theorem 3.2. Let x be any unitary character on Diff§ ,(M). Then there exists
some real number s such that

AP =)~

Sfor all ¢ e Diff§ (M), where JyA) is the Jacobian of ¢ at A (Jy(A) does not depend
on a particular choice of the local coordinate systems at A).

Proof. (I) Put Ty (M)={Xel(M)|X(4)=0}. Then for any Xel, (M)
there exists a real constant A(X) such that

(3.11) W Exp(tX))=exp(/ — 11A(X))
for all teR, where A is a linear functional on I', ,(M) which satisfies
(3.12) A[X,Y])=0

for all X,Yel'y, (M) by Theorem 2.1. As before we analyze A locally. That is,
first we cover {A}usuppX by finitely many open cubic neighbourhoods U,
(n=0,---,N) such that 4 belongs to only one of the sets U,, say U,. Then using
a partition of unity, X is represented as a sum of X,eI'y ,(M) whose support is
contained in U, (n=0,---,N). Tt is not hard to see that by virtue of Lemma 3.1
MX,)=0 for all n#0. For n=0 the following lemma is fundamental.

(1)

Lemma 3.2. Using the same notation as in Lemma 3.1, we consider a Lie
algebra 9°:={Fe%,|F0)=0}. Then for each linear functional A\ defined on %° with
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the property, A[F,G])=0 for all F,Ge%_, there exists a real constant s such that

d oF.
AF)=sY a—F'(O).

i=10X;
Proof. 1-step. Noting that x;Fe%? for all Fe%,, let us prove first that
(3.13) Mx2F)=0
for each 1<j<d. Take any R-valued C®-function p with suppp < U,, and put

Ap)=Ux?pT)).

Since the jth component of [xjpi j,xjai ;] is equal to x}(p%—oj—i) and the other
component is equal to 0, we have by the assumption
(3.14) l,-(pj—::j - 02—)2) =0.
Hence we get from the last part of the proof of Lemma 3.1
14p)=0.
Next for k#j we put

Mlp)=2(x] p1).

Then noting that the kth component of [xjpfk,xjoik] is equal to x}(p%’—a%’)
k k

and the other component is equal to 0, we have
0
lk<pa—a—a—£)=0, and therefore A,(p)=0.

Therefore (3.13) follows directly.

2-sTep. Next we shall prove that
(3.15) Axx,F)=0
for all Fe%, and for all j#k. Now for each /#j,k, put

Alp) = A((x it xk)zp il)

- oo 0 0
Then the /th component of [(x;+ x,)p1;, (x;+x)a1,] is equal to (x;+ xk)2<p—a - o—e> ,
X
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and the other component is equal to 0, so we get
0 )
A,(p—a—oéﬁ>=0, and thererore A(p)=0.

Further if / is equal to one of j or k, say j, then the jth component of [(xj+xk)pij,
R 0 0
(x;+x)01;] is equal to (xj+xk)2<pa—a—a—p> and the other component is equal
~ Xj X
to 0. So we have A((x;+x,)’p1,)=0 as before. It follows that A((x;+ x,)*F)=0 and
(3.15) follows from (3.13).

3-step. Take any Fe%? and expand it by Taylor’s formula,

d oF d 1 32F
3.16 x)= O)x; + X; 1 —f)——(tx)dt.
(3.16) Ax) i;a—xi( ) MZ=1 ,ka( )axﬁxk( )
Further take an R-valued C®-function ¢ which is equal to 1 on a neighbourhood
of supp FU{0} and have a support contained in U,. Then we get from 1-step and
2-step,

d OF;
MF)=MoF)= Z ai,j_(o)s
ij=1 Bxi
where the number g, ;:= Mxol ;) is actually the same one for every ¢ which is equal
to 1 on a neighbourhood of 0 and supp¢ < U,, so it is a constant independent
oF;

of Fe%?. Consequently for matrices A:=(a; ), <; j<a and Jp(0):= (6 (O)> we
Xj 1<i,j<d

have

(3.17) MF)=tr(AJ0)).

4-step. Lastly we shall prove that A4 is a scalar matrix. By the assumption
and by the following equality,

(3.18) Jir,61(0) = J(0)J (0) — J(0)J 5(0),
we get
(3.19) tr(AJ 5(0)J¢(0)) = tr(AJH0)J 4(0)).

Since for any matrix Pe.#(d), there exists an Fe%° such that J(0)=P,
(3.20) tr(APQ) = tr(AQP)

for all P,Qe.#(d). Now let e; (1<i<d) be the canonical base of R* whose ith
component is equal to 1 and the other is equal to 0. First for each i#j choose
P,Qe . #(d) as follows,

Pe;=e;, Pe,=0 for k#i, and Qe;=e;, Qe=0 for k#i.
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Then we have tr(APQ)=0 and tr(AQP)=a;;, and therefore A is a diagonal
matrix. Next for each i#j, we set

Pe;=e;, Pe,=0 fork#j and Qe=e;, Qe,=0  for k+#i

Then we have tr(4PQ)=a;; and tr(AQP)=a;;, and therefore a;; (1 <i<d) are the
same one, say s and we have 4 =sE.

(II)) Put
¢, :=Exp(tX), and ¢:=Exp(X) (Xely (M)).

We claim that

d .
(321) J¢(A)=exp<z oF '«»),

i=10x;

where x,,---,x, is a local coordinate system at A such that x(A4)=0 (i=1,---,d),

and X= Zf= F(X)— .
147
0x;

For, put
Bilt, x)=x; o P(x).
Then
d 0¢; d| a0 0 4 0F, 0,
—1,0)=—| —x;° =—| F = 10 t,0).
d10x 00750 | g PI= | FOD) 2505500
. 09, .
Hence a matrix 4,:=( —(,0) satisfies
axi 1<i,j<d
A
(3.22) %=JF(O)A,, Ag=EF,

so we have A4,=exp(J¢(0)), especially

Ji(A) = det(A(1)) = exp(tr(J£(0))).

(IV) Returning to the notation in (I), for X which is written as X=X, + X, + ---
+ Xy we have

2(Exp(X))

=exp(y/ — 1AX)) =exp(y/ — 14(Xo) =exp(y/ — Is

M=

oF, _
-6—X£(0)) = (JExp(Xo)(A))J ls’

1

where F, o(x) is the ith component of X, with respect to the local coordinate system
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Xy, X, at A, Since A belongs to none of supp X, (1<n<N), Exp(X) is equal
to Exp(X,) for a small neighbourhood of 4. Therefore we get

(3.23) HEXP(X)) = gep(A)Y ™

for all XeTl', 4(M). 1t follows that x(¢)=(J¢(A))¢_—" for all ¢ in the group G, ,
generated by Exp X, Xel, (M) and the assertion of the theorem follows from
Theorem 2.3. Q.E.D.

According to T. Hirai here we shall rewrite the original 0 as follows, using a
section s5,€ Diffo(M), sp(4)=P by the map, geDiff(M)>g(4)e M and a function
¢ defined by c(P):=0(4,sp "),

o(g~'(P)

(3.24) o(P,.g)= —WX(S

P lgsg-l(r))y

where y is a unitary character on Diff, ,(M) defined by y(h):=0(4,4). Note that
(" o) (o)

3.25 Js" s A 1: g upy(p— 1 SPP _gP

(3:25) Ve 185, () ( g (P))><d—u( ) (G

holds for any o-finite smooth measure p on M which is locally equivalent to the
Lebesgue measure on R,

Now let us take locally finite open coverings ¥ :=(V}),n (i=1,2,--,6) which
satisfies

(1) V] is compact for each 1<i<6 and /€N,

(2) Vi*T < V/ for each 1<i<5 and /€N,

(3) Vi is diffeomorphic to R for each 1<i<3 and /eN and

(4) ¥ is a covering which have a property such that whenever V2 n Vi+#0,
then V2 ¥V} is connected.

The existence of such coverings is derived from the theory of simple covering.
(cf. [15]) From (2) and (3), V? is regarded as a relatively compact open set of
R?. Consequently for any fixed 4;€ V2, there exists a section s e Diffs(V}!), si(4,) =P
such that Pe V? s sheDiffi(V}!)) is continuous. For example exponential maps
generated by vector fields which are equal to /?,7’. for all Pe V? and vanishes outside
some fixed open disk containing VZ are desired ones.

Here we consider the following condition (*) for Pe M and ge Diff,(M).

() For PeM and geDiffy(M), there exist some ie N and a continuous path
{g.}o<:<1 = Diffy(M) connecting id and g such that g,”"!(P)e V? for all 0<t<]1.

If such condition is satisfied, then s& lg,sj}t- 1,y Moves continuously in Diff, , (M)
starting from id and ending to sh 'gsi-1» as ¢ runs from 0 to 1, and it follows
that si 'gsk-1p e Diff ,(M). Hence carrying out some calculations, we get from
Theorem 3.2,
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o dpg e m V= Ts; Vs
(326)  x(sh gsé"(r))=<%;—(g;”" “(P))) (ﬁ(m) (%‘f(r)) :

where s; is some real constant. Thus defining a function ¢; on V? as

u V=1si -
c(P):= (—si’(P)> 0(A;,sp ),
we get from (3.24) and (3.26),

cig” '(P))(dﬂg )J s
3.27 (P, g)=—"—— )
(3.27) (P.g)= () (P)

for all (P,g) satisfying (). We take and fix such s; and ¢; for each i. s; does not
depend on i, if M is connected. For, suppose first that V’? and V'}? have a common
point P. Take an open neighbourhood of U(P) of P which is diffeomorphic to
R"’ Then taking a continuous path {g,},,<; = Diffy(U(P)) such that g, '(P)=P and

—(P) a for each a>0, we see that 5;=s; holds. The existence of such a path is

assured by considering maps which act as similar transfomations near at P.

Next let iy and j, be arbitrary integers. Take PeV; and Qe V; . Then there
exists a finitely many {V2}, .,y such that k, =iy, ky=j, and VZn V2, #0 for
[=0,---,L—1. Consequently s; =5, , S, =58, 8y, =5;, hold by the above
arguments, and thus s; =s;, . Let us denote this common value by s. Then we get

clg~\(P) )(dug )J-_‘*
3.28 0P, g)= P ,
(3.28) (P,g)= P AL

if (P,g) satisfies (x).

Now we claim that if V> V}#0, then ¢; coincides with ¢; up to a constant
factor on this intersection. In fact take any point Poe VZn ij and fix it. Since
VZnV} is connected, for any another point Qe VZnV}, there exists ge Diff(M)
and a continuous path {g},.,<, connecting id and g such that g, '(Po)e VZnV}
and g ~'(P,)=0Q. Thus the conclusion follows from the equality,

clg” I(Po))<dl‘g( )J ofg” ‘(Po))<dug )J-—ns

g o)) p _cfg™(Po) . |
ci(Po) du 0) Cj(Po) d_#( 0)

Let us put

Ky=Clypo--0 V) and - L:={ieNIK,nV?3#0}.

Set
«,={geDiff(K,)|*{g,}: continuous path connecting id and g s.t., geDiff(K,),
g W<V, gV Vi, g '(VH < V3 and g(V?) < V7 hold for all iel, and
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0<r<l1}. 4, contains an open neighbourhood of id, and we have
«, < DiffYK,)n%,,

for m>n. Let n(P) be the smallest integer n such that Pe V3u---u V2 for each
PeM. Then a set {g(P)|g€,p)} is a neighbourhood of P which is seen by similar
arguments with the construction s, in the preceding arguments. Thus there exists
a connected open neighbourhood O, of P such that O, < {g(P)|g€ %, )} Without
loss of generality we may assume that Op < V¢ for some ie N. Under the above
preparations we are now able to prove the following theorem.

Theorem 3.3. Let M be a simply connected paracompacr C®-manifold. (In
particular it is connected.) Then for any continuous 1-cocycle 0, there exists a
continuous function c defined on M, a real parameter s and a unitary character n such that

-1 P d J:Ts
0(P,g)=%(ﬁ<m> (@)

where p is any but fixed o-finite smooth measure on M which is locally equivalent to
the Lebesgue measure on R%. Moreover s and v are uniquely determined by a given
0 and c is determined up to a constant factor.

Proof. Proof is derived by the theorem of Principle of monodoromy which we
shall list it below for reference. (See, [1])

Theorem 3.4. Let M be a simply connected space. Assume that we have assigned
to every Pe M a non empty set Ep, to every point (P,Q) of a certain subset D of
M xM a mapping @p gy of Ep into E,, in such a way that the following conditions
are satisfied.

(1) The set D is a connected open set containing the diagonal in M x M,

(2) each @pgy is a one-to-one mapping of Ep onto Ey, @pp is the identity
mapping, and

(3) if ¢pg> Po.r> Ppr are all defined, we have @pr=Qo r°Ppgo-

Then there exists a mapping \y which assigns to every Pe M an element y(P)e Ep in
such a way that y(Q)=@p o(W(P)) whenever @p , is defined.

We continue the proof of Theorem 3.3.

(I) Definition of Ep and D: Set Ep:=T" for each Pe M, and D := Upp(Op x Op),
which is a connected open set containing the diagonal.

(IT) Definition of ¢po: For each (P, Q)e D, there exists some ie NV such that
(P,Q)eVExVE. So we put

(PP,Q(Z)— ci(P)Z'
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This definition does not depend on a particular choice of V# by the above
discussions. Especially, ¢p, is a bijection. Moreover, if (P,Q)e Oxx Oy, (Q,R)
€0y x Oy, and (P,R)€ 0, % Oy, then P=g(X), Q=g,(X) for some g,,g,€ Uy,
Q=g5(Y), R=g4(Y) for some g;.84€%,y,, and Oy = 3VE, O, =?V?P, 0, <3V¢
for some i, jkeN. Thus, we have g;e#, (i=1,2,3,4) for |:=Max(n(X),n(Y)) and
KinVE#0, KN V,-6 #0. Take pathesg;,(i=1,2,3,4) which have properties described
in the definiton of %,. We have

84, Ogs—,rl ng,r"gl-,rl(l_/f) < g4 °ga_.:l oga A Vis) < 84,:"83_,:1(1/?) < g4,r(Vi3) < V-'2 .

Consequently the diffeomorphism g:=g,-g, 'og3og, ' and the point P satsfies the
condtion (x). It follows from (3.27) that

_ iR dig )“2@(% )‘
O(P’g)_c.-(P)<du(P) o)

where the last equality follows from P,Re O, = V. Similarly we have,

[ d -1 ‘/-__ls R d -1 ‘/__ls
o(P,glg;'){—{%(—”g;L(m) . and O(Q,gag:')=%<—’%(g)) -

c(R) _ ¢fR) ¢/(Q)
&(P) cfQ) (P)

from the above arguments that there exists a T'-valued function c(P) such that

Q) _ d9)
c(P) dP)

So we get

and the equality @pr=0g r°@p o follows. It follows

(P,Q)eDN(VEx VP implies that

(IIT) Next we cover K, by finitely many open sets Op, (i=1,---,[), where P,
belongs to VZu---uV?. Choose an open covering {G;},.;; of K, such that
G; < Op, (1<i<l) and G; are all compact. Then there exists an neighbourhood
«, of id in Diff(K,) such that if ge%,, there exists a continuous path {g}o<,<;
connecting id and g such that g~ !'(G;nK,) = Op, for each 1<i</ and for all
0<r<l1. Thus for any fixed point PeK, and for any ge%,, we have
g '(P)eOp, = V¢ (0<t<1), where ieN is a number such that PeG;nK,. It
follows from (3.27) that

elg ’(P»(dug b )J'—“ _og” ‘(P»(dug p )J"_”
AERVAL R AUIR

O(P,g)=
(P, g) d i
because (P,g ~!(P)) also belongs to DN (V¢ x V§). Now put for all Pe M and for
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all ge Diff(M),

_clg TN (P))[dy, )J-_“
C(P,g).— W((},—#(P) .

Then we have {(P,g)=0(P,g) for any PeK, and for any ge%,. Thus it holds
also for all geDiff¥(K,), because %, generates the whole group Diff%K,).
Consequently we have 0= on M x Diff§(M) due to K, M.

(IV) Let us check that ¢ is a continuous funciton. For it take any point
P,e M and take a local continuous section sp, sp(Py)= P, around P, which satisfies
sp,=id. Then the continuity of ¢ at P, follows from the equality,

——-—-—O(P s—l)_<dﬂs§l p )>_\/—_ls
C(PO)— 0:8p )= _(dH o .

0 D .
(V) Next we shall prove that 11:=E is a unitary character, which is derived

from the following theorem.

Theorem 3.5. Assume that a paracompact C®-manifold M is connected. If a
continuous 1-cocycle n is identically equal to 1 on Diff§(M), then it is a unitary character.

Proof. Take any PeM, any g,eDiff§(M) and any heDiff(M). We have
n(P, hgo)=n(P, hynth ™ '(P), go)=n(P, h).
Since the group Diff§(M) is normal, n(P,h)=n(P,goh) also holds and thus we have
n(P,h)=n(P,gq 'h)=n(P.gs "I(go(P), 1) =n(go(P), h).

Hence n(P, k) is independent of P, because Diff§(M) acts transitively on M, and 5 is
a unitary character. Q.E.D.

(VI) Uniqueness. We restrict 8 to Diff§(M) in order to omit the character
term. Then the uniqueness of s is derived by taking some transformations such
one like similar transformations at P, where P, is any fixed point. So 1-coboundary

(P . . . . .

term % remains under considerations, however c is determined up to a
f

constant factor by virtue of the transitivity of Diff§(M). Consequently the remainder

term of unitary characters should coincide with each other. Q.E.D.

From the above proof we see that the assertion of Theorem 3.3 holds if we
can take a global continuous section s, on M. As a special case of it we have the
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following corollary.

Corollary 3.6. If M is a compact connected Lie group, then the same result
as in Theorem 3.3 holds for continuous 1-cocycles 0. Namely, every continuous 1-cocycle
is of standard type.

Remark 3.1. If the M is not connected, then the general form of continuous
1-cocycles 0 consists of 1-coboundary type, of Jacobian type and of the following type
of 1-cocycles ¢.

Namely, decompose M =uUM | M, into connected components M; (i=1,---, N).
Then Diffy(M)/Diff§(M) acts as a(g) on {1,---,N} such that g(M;)=M ;. Under
this notation the above 1-cocycle £ is characterized as

&P,g)=Eii, o(§)),

where & is an arbitrary l-cocycle for the action of ¢ on the discrete space
{1,---,N} x Diffo(M)/Diff§(M) and i is number such that Pe M,.

It follows that the simply connectedness condition is not a necessary one for
the arguments of the canonical form of these 1-cocycles. Moreover Theorem 3.3
is no longer true if we omit the simply connectedness condition. We will give a
counter example for it in the next subsection.

3.3. 1-cocycles on the cylinder. In this subsection we consider continuous
l-cocycles 0 on M=RxT'. The elements in M will be denoted by (u,z), or

(u,exp(/—10)). Let geDiff§(RxT') and take a continuous path {g}o</<:
connecting id and g. Then for each fixed (,z)e Rx T!, the second component
Z(t,u,z) of g7~ '(u,z) has an continuous angular function 0(t,u, z).

Lemma 3.3. Put @y (u,z):=0(1,u,2)—0(0,u,z). Then ¢:=q@g does not depend on
a particular choice of {g}o<i<1 -

Proof. It is a direct consequence of the properties of the covering space
(R' - T') and suppg. Q.E.D.

For any real number Q we put
(3.29) Lal(u, 2),8)=expl/ — 1Qp(u, 2)).
Lemma 3.4. (, is a continuous 1-cocycle on Diff§(R x T").
Proof. First of all we shall prove the cocycle equality. Let g,he Difff(Rx T")

and {g}o<i<1> {M}o<i<1 be continuous paths connecting id and g, id and A,
respectively. Then a path defined f;:=g,, for0<¢<1/2 and f;:=gh,,_, for 1/2<t<1
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connectes with id and f:=gh. Let us put g~ '(u,z)=(v,w) and take continuous
angular functions 0,(t,u,z) along {g}o<.<1. O4(t.v,w) along {h}o<,<;, respectively.
Then we have

0,(1,u,2)=0,0,v,w) + 2kn

for a keZ. Hence 0(t,u,z) defined as below is a continuous angular function

along {fi}o<i<1
0,(t,u,2):=0,2t,u,z)—2kn for 0<r<1/2, and 0/t u,z):=0,2t—1,0,w) for 1/2
<t<1. It follows that

@ p(u, z)=0,(1, v, w)— 0,0, u,z) + 2kn
= (pg(u9 Z) + (0;,(0, W),

and therefore we have

Callu,2), gh)=Lol(u, 2). 8) Lallv, w), h)
={ol(1,2),8)- Lolg ', 2), h).
Next we check the continuity. For it, we have only to show that {((v,z),g)
is continuous at id as a funciton of ge Diff*(R x T!) for each fixed (1,z). Evidently,

for any given €>0 there exists a neighbourhood % of id such that ge% implies
there exists a continuous path {g}o<,<; connecting id and g such that

lg,” (u,z)—(u,z)|| <€ for all 0<t<1. So we have |exp(y/ —10(¢,u, z)) —exp(y/ — 10)|

. . €
<€, where 0 is an argument of z, and therefore |¢(u, z)| < 2 arcsin 5 Thus we have

|Col(u, 2),g)— 1] =lexp(s/ — 1 ¢(u, z)) — 1] < 2arcsin % . QE.D.

Lemma 3.5. {, is not of standard type, unless Qe Z. While if Q=ne Z, then it
P -1 n
is a 1-coboundary. Namaly, {o((u,z2), g)=<M) , where P, is a second
z

projection from Rx T' to T'.

Proof. For the first part we have only to show an example such that g=id
holds on some neighbourhood P,=(u,,z,), while {,(Py,g)#1. For it take an
R-valued C*-function p with compact support such that p(u)=1 on a neighbourhood
of u, and define geDiff§(Rx T') such that g(u,z):=(u,cxp(2n\/_—‘1p(u))z). Then
g :=(u,exp(2n\/—71tp(u))z) defines a continuous path connecting id and g, so we

have {o(Py,g)=¢exp(—2n,/—1Q). While g is equal to id on some neighbourhood
P,. The second part is obvious. Q.E.D.
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Next we shall extend the domain of {, to the whole group Diff((Rx T'). So
let geDiffy(Rx T') and take R such that g(u,z)=(u,z) holds for all |u|>R. Then
P,(g(u,z)) describes a continuous curve on T! as u runs from —R to R. We will
denote its continuous angular function by ¢(u,z). Put

Qe(2)=0(2):=h(R,2) — p(— R, 2).
Lemma 3.6. ((2) is a continuous function of ze T'.

Proof. Since g is uniformly continous on Rx T!, for any given ¢>0 there
esists >0 such that

(3.30) lexp(y/ — U((u, 2) — P, 2)) — 1] < l|g(u, 2) — g(u, 2')|| <€

for all z, z’ such that |z—z'|<d. We may assume that
.0
|p(— R, z2)—d(— R, 2')| < 2arcsm§,
so we get from (3.30)
|¢(R, z) — H(R, z’)l<2arcsin§ and therefore |Q(z)—Q(z’)|<2(arcsing+arcsin§>.
Q.E.D.

By the above, Q(z) takes a constant value, say 2nn, ne Z, on T' which will be
denoted by Rot(g)=n. Put for all neZ

G,:={geDiffy(R x T")|Rot(g)=n}.
Lemma 3.7. Each connected component of Diff (R x T') is contained in some G, .

Proof. Let {g,}o<:<: be a continuous path connecting g and g'. Then there
exists a partition of [0,1]:0=¢,<!,< --- <t,,=1 such that

sup{llg.(u,2)—g, @2)| | (uz)eRxT'}<e

for all 1<i<m. Take a continuous angular function ¢(u,z) of g,. We have

lexp(y/ — Ui, 2) — i 1w, 2)) — 1| < 118, (u, 2) — &4, (4, D) || <e.

Since we may assume that ¢(—R,z)=¢;_,(—R,2),
|piu,2)— ¢;_ ((u, z)|<2arcsin§ and therefore |Qg’ (z)—Qg' (z)|<2arcsin§.

Thus for a sufficiently small ¢, we have Rot(g,)=Rot(g,,_,) for all I1<i<m. Q.E.D.
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Conversely,
Lemma 3.8. If Rot(g)=Rot(g’), then g and g' belongs to the same componet.

Proof. For the proof we use the following well known fact privately
communicated by H. Omori.

Fact: For any geDiffy(Rx T') there exists some g,eDiffy(R x T') consisting of
the form, gq(u,z)=(u,h(u,z)) such that g and g, belongs to the same component.

A proof of this fact is an application of the uniqueness and the continuity of
Riemann mapping theorem to a suitable domain of the unit disk derived from the
diffeomorphism g.

Consequently we may assume that

gu,z2)=(u,hu,z)) and g'(u,z)=(u,h'(u,?2)),

so we have

h(u,z)=exp(y/ — 16w,2) and  K(u,z)=exp(y/ — 1¢'(u, 2)).

As we may also assume that ¢(—R,z)=¢'(—R,z), we have by the assumption
#(R,2)=¢(R,z). Put

gu,2):=(uw hu,2), where  hfu,z):=exp(y/— 1(1¢'(t, 2) + (1 — )p(u, 2))).

Then we have go=g, g,=¢  and h(u,z)=z for all |u/>R. We claim that g, is a
difftomorphism for each ¢ For it we choose ¢ and ¢ which satisfy

¢(—R,2)=¢'(—R,2z)=0 for z=exp(y/ —10) with 0<0<2n. Then ¢(u,exp(y/ —10))

is a continuous function of 0 for each fixed u, as is seen from (3.30). It follows
that ¢(u,exp(y/ —10)) is a C™-function on R x(0,2n), because it coincides with an
argument of h(u, exp(\/—_l 0)) on a neighbourhood of each point in R x(0,2n). Thus

the same holds for A(u,exp(\/ —10)) for each te€[0,1]. To see the differentiability
of h, at (u, 1), we replace ¢ and ¢’ with ¢, and ¢’ which comes from the following
condition likewise ¢ and ¢',

éi(—R2)=¢(—R 2)=0 for z=exp(/—10) with —n<0<n.
Since we have
¢ (u,2)+2n=¢(u,z) if 0<0 and ¢,(u,2)=P(u,z) if 6=>0

and the same holds for ¢ and @', A, is still invariant under the change ¢, ¢’ to
¢,, ¢). So repeating the above arguments for ¢, and ¢, we see that h, is
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everywhere C®-differentiable for each t.
Next we check that g, is a bijection. It is easy to see that J(u,exp(y/ —10)),
Jacobian of g at (u,exp(/ —10)) (0 <0< 2n), satisfies

(3.31) Jg(u,exp(y/ — 10))=%‘§(u, exp(y/ —10)), and %%(—R, exp(y/ —16))=1.

0
So we have a—(g(u,exp(,/——IO))>0 for ueR and 0<0<2n. The same holds for

¢’. It follows that g, is an injection for each ¢ and the Jacobian g, does not vanish
everywhere. Finally, the surjection of g implies that

(3.32) lim {@(u, exp(y/— 10)— d(u, 1)} = 2.

6-2n-0
Since the same holds for ¢, we have
(3.33)
lim {t¢'(u, exp(y/ — 10) + (1 — ), exply/ — 10)) — (1 (1, 1) + (1 — )p(, 1))} = 2.

0—-2n-0

This shows that g, is a surjection and that g, actually belongs to Diffy(R x T!). The
continuity of the map, 1 — g, is easily checked. Q.E.D.

In conclusion we have the following results which seem to be well known, but
we list them for our later discussions.

(1) G,=Diff¥(Rx T").

2) G,=gG,=G,g for each geG,.
Take an R-valued C*-function p(x) on R such that p(u)=0 on (—00,0] and p(u)=1
on [1,0), and define g, as gp(u,z):z(u,exp(Zn\/j -l"p(u))z).

(3) g,€G,, and Diffy(Rx T")=uU __£,G,,

4) Diffy(Rx T")/Difts(Rx T")~ Z.
This group isomorphism is given by the homomorphism, ge Diff(R x T')— Rot(g)
eZ.

Next we wish to show that it is able to extend {, to the whole group as a
continuous 1-cocycle. For simplicity we shall write { instead of (.

Definition 3.1. Let g, be as above. For any aeT' and for any ne Z, put

L(Po.g, "hgp)
{(Po,h)

where P,=(0,1) and he G, is a map such that h™'(Py)=P.

k)

(dP.g,):=a
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First of all let us assure that this definition does not depend on a particular
choice of h. So let h, k be in G, such that h=Y(Po)=k"'(Py). Put b '(Py)=(u,,

exp(y/ —10)), kr_l(Po)=(UneXP(\/ —1¢), where {h}oc,<1, {kjo<i<1 be paths

connecting id and A, and id and k respectively. We have

gp— "ht_ 18:(])0) = gp_ nh:— l(PO) = (u! s CXP(\/ - 1(01 - Znnp(u,))).
Thus,

{(Po. g, "hgp) exp(\/in(—Znnp(ul)+ 0,—0,))
- =exp(—2n,/—1Qn )
C(P09h) exp(\/—__ln(gl _00)) exp( T p(ul))

Similarly we have

C(PO agp—”kg:)=ex

[Py 0 p(—2ny/ = 1Qnp(v,)).

So the definition is well defined by virtue of u, =v,.
Lemma 3.9. For any n,me Z,
LP.g))dlg, "(P)g;)=LdP.g; " ™).
Proof. Put

P:=h"'(Po), g, "(P):=k™"(Po), h; '(Po):=(u,,exp(y/ —10))),

k7 '(Po):=(v,,exp(y/ —1¢,)).
Then

(P, gp)=a"exp(—2n\/ — 1Qnp(u,)), (g, "(P).g;) = a"exp(—2n\/ — 1Qmp(v,)),

and
L(P.gy ™) =a"* mexp(—2ny/— 1Q(n +m)p(uy).

This completes the proof.

Lemma 3.10. For any f€G, and for any neZ,

{(P.gpfg, V=LdP.g))(g, "(P), NS g, "(P).g, ")
Proof. Put
Pi=h"'(Po), g, "(P):=k™"(Po), h'(Po):=(u,,exp(/~10,),
k' (Po):=(v, exp(y/~19).
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Then we have
g, "(PYy=(kf)~'(Py)
and the right hand side of the equality in the lemma is equal to

C(PO 9gp_"hg;:) C(PO sg;kgp_")

. -n P X .
TN BTN,
_UPo.g,; "he) e (PLS) . UPo.&IK 8,
Py R) UPo. k)L, "(P)f)

_U(Po.g, "hg;) {(Po.grkg, ")
{(Poh) {(Po, k)

=exp(—2my/ — 1Qnp(u,))exp(2n/ — 1Qnp(v,)){(P. g, /g, ")
=U(P.g;/8, ")

where the last equality follows from u;=v;. Q.E.D.

UP.gyfg, "

Definition 3.2. For any ne Z and for any he G,, put
LouP.goh) =P, g,)l(g, "(P), h).

Lemma 3.11. (,, is a continuous 1-cocycle on M x Diffo(M) and it is an
extension of (.

Proof. For the cocycle equality, we have only to show that
Lo.d(P.gp)a.(gsh) ™ ' (P).g k)= Lo /P8 ;hg k)
foralln,me Zandfor all h,ke G,. The left hand side of the above equality is equal to
LP.g (g, (P (h™ g, "(P), g, ) (g, "h™ g, "(P).k).
While the right hand side is equal to
LodP.g)""g, "he k) =CAP.g; (g, " "(P).g, "hg k)

={(P.g) ™ (g, " "(P).g, "he) (g, "h™ g, "(P).k)
={(P. g8, "(P).8,)dg, " "(P)g, ™)
Ug, "(P)h)(h™ g, "(P).g))l(g, "h™ ‘g, "(P).k)
=P gD, "(PLLh™ g, "(P).g,)(g, "h™ g, "(P).k).
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So the both sides coincides with each other. The continuity of {, , is clearly reduced

to the continuity of {, which is already proved. Q.E.D.

Lemma 3.12. If 1-cocycle 0 on Diffy(R x T') is an extension of {,, then there exists
some aeT" such that 0={g,.

Proof. Put a:=0(P,,g,). Then we have for any heG,,
P _’lh n
O™ (P, g) = 02E 185)
B(PO’gp )O(Po’h)

oLolPo.&, "hgy)
LalPo,h)

=(o.alh™'(Po).g})-

Further,
O(P, g h)=0(P,g))0(g, "(P),h)={q .P.g,) 0.8, "(P),h)={a P, gh).

So we get 0=(,,. Q.E.D.

Remark 3.2. A function #, defined by n,(g;h):=a" is a unitary character on
Diff(R x T') and we have {, ,={q ,#,. Thus the essential part of the extension (g , is
(o, which will be denoted again by (,.

Theorem 3.7. The general form of continuous 1-cocycles 0 on the manifold
M=RxT!" is as follows:

g~ '(P)
oP)

where se R and 0<Q<1. Besides, s, Q and n are uniquely determined and c
is determined up to a constant factor for a given 0.

J——ls
0(P,g)= <—(P)) {o(P.g)n(g),

Proof. Put
={teR|-k<t<k}, U;={zeT'|z#—1}, U,={zeT'|z#1},
Vie={zeT'| lz+1|>€}, V,={zeT'| |z—1|>¢}

for a given €>0, and put K,:=I,xT'. Then it is easily deduced from the
discussions in 3.2 that there exists an arcwise connected neighbourhood
U,, of id in Diff(K,) such that

(1) g7 'xVigcsxV, s for all ge%, and
(2) for any Pel xV;, and for any geU,,,
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op.g) =& 1(P))( I

d 2 J—_ls
P )
P \du ))

where ¢; is a function defined on I, x Vi‘%. ¢; (i=1,2) and s are actually also
depend on (¢,k), ¢;=c;,, s=s5,,. However if we assign to the value of ¢; (i=1,2)

. C; ' ’ .
at (0,,/ — 1) the same value, say 1, then since —*X | (¢'<¢, k'>k) is locally constant,
Cie ke
using the connectedness we see that {c;;},> o v defines a function ¢;on Rx U;. The
independence s of (¢, k) is more clear. Further the above consideration also implies

that

e(t.z)=cy(t,2)  if Imz>0, and (1, 2)=exp(—2n/— 1Q)c,(t,2) if Imz <0,

where Q (0<Q<1) is some constant derived from exp(2n\/——lQ):=M.
¢;(0,—/—1)

Here let us take functions ¢,(z) on U; such that gz) :=exp(\/———10,~) (i=1,2),
where 0; is an argument of z which satisfies, —n<0,<n and 0<0,<2n. Then,
€1(#,2) _eyn2)

for all ze U;nU,, and thus a function
q:(2) q2(2)

c(P):=ﬂ on Rx U, and c(P):=ﬂ on RxU,,
q1(P,(P)) 42(P,(P))

is well defined on the whole set. Now we define a new 1-cocycle { by

P) (4 Vs
(P g):=0p.g) 2 lzp))(dL,‘f(m) .

Then we get for any Pel, x V,, and for any ge%,,

(Py(g (P
[(p.g)= P& (D)

qi(P(P))

Now set P:=(u,exp(y/ —10)) and g, '(P):=(u,,exp(y/ — 10)) for Pel, x V, and
for a continuous path {g,}o<,<; = %, connecting id and ge#,,. We choose an
angle 0 such that —n<60<mn, from which we get —n<6,<n for all 0<t<1. So

o(u,exp(y/ —10))=0,—80,, and it follows that

_ _‘h(Pz(g_l(P)))_
CQ(P,g)—CXP(\/ — 10, —00))*W—C(P,g)~

Similar arguments derive the same result for Pel,xV,, and for ge,,.
Consequently for any PeK, and for any ge %, , we have {(P,g)={(P,g). As %,
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generates the group Diff¥(K,), we get {,={ on K, x Diff*(K,), and thus

o) = "PD(‘%

J——ls
«P) E(P)) LalP,g)

on M x Diff§(M). The rest of the proof is immediate and the uniqueness follows
from similar considerations with those for Theorem 3.3. Q.E.D.

§4. Natural Representations of the Group of Diffeomorphisms

4.1, Irreducibility. In this subsection we consider natural representations U,
of Diffy(M) on L%(M) defined by,

d, _
4.1) Us(g): f(P)—O(P,g) »a%(P)f g~ '(P).
First we show that they are all irreducible, if M is connected.

Lemma 4.1. Let P be any fixed point in M and g be in Diff§(M) such that
there exists a continuous path {g}o<,, connecting id and g such that g(P)=P for
all 0<t<1. Then for any continuous 1-cocycle 0, there exists s€ R such that

d J—_ls
0(P,g)=<7jf%(1>)) .
m

Proof. This lemma is nothing but Theorem 3.2 in 3.2. Q.E.D.

Theorem 4.1.  If M is connected, then the representations (U, | Diff§(M), LA(M))
of Diff§(M) are irreducible for all continuous 1-cocycles 0.

Proof. Let s# (#0) be an invariant subspace of the representation. Take a
non zero f € # and an open set U = M which is diffeomorphic to R? such that f;, #0,
where f;, is a function defined by f(x):=f(x) for xe U and fi(x):=0, otherwise. Put
Diff§(U):={ge Diffo(VU) [*{g,}o<i<1 = Diffo(U): continuous path connecting id and
g}. Then by virtue of Theorem 3.3. we have

_ g~ (P)(d )f’“
0P, g)= —c(i—’)—"<du (P)

for all Pe U and for all g € Diff§(U) with a suitable continuous function ¢ on U. Thus,
the restricted representation of Diff§(U) on the space LX(U) of all square summable
functions vanishing outside of U is equivalent to the usual representation (U,, L3(R)
of Diff}(RY),

1 + J_—Ts
4.2) Ufg): f(x)e LRY — (%x))z £lg ™' (x) e LR,
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where 1 is the Lebesgue measure on RY, and the later one is irreducible (cf. Lemma
4.2). In particular, there exists some g,e Diff§(U) such that Uyg,)fy#/fy. Now
for any Pe U¢, we have by Lemma 4.1, O(P,g)=1. Hence h:=Uy(g,)f—f is a non
zero element which belongs to LA(U)ns#. Again by the irreducibility, we see that
LZ(U) is generated by Uy(g)h, g € Diff§(U), so we get LA(U) = #. By the assumption,
Diff§(M) acts transitively on M. It follows that for any PeM there exists a
neighbourhood U, of P such that LXUy) = #. As L2(M) is generated these
LZ(Up)s, we get that s#=L2(M). Q.ED.

4.2. Equivalence. Next we consider the mutual equivalence of (Uy, L2(M)).
For the bigger group Diffy(M) the assertion which is more general than the following
one is already known as Lemma A.l in Appendix in [5]. However for the group
Diff§(M) here we list it as the next lemma and prove it for completeness and for
our later use.

Lemma 4.2. Let A be the Lebesgue measure on R* and consider for each se R
a representation U, of Diffi(R?) defined by (4.2). Then if there exists a non trivial
intertwing operator T from (U;,LXRY) to (U, ,L¥R%), we have s=s and T=ald
with some constant o€ C.

Proof. Let Be.#(d) and take for each ne N an R-valued C*-function p,(x)
with compact support such that p,=1 on {xe R*| | x| <n}. Then for a 1-parameter
transformation subgroup ¢, ,(x):=Exp(tB,)(x) generated by a vector field B,,
B,(x):=p,(x)Bx, Uf¢,,) converges strongly to U,, on LXR%) as n— oo, where
A:=expB and U, , is a unitary operator on L3(R?) such that

(4.3) Us 4(/)(x) :=Idet 4] G4 Ix)  (feLRY).

By the same procedure we can find a sequence {,},.y = Diff§(R?) such that U(y,)
converges to T, for each ae R?, where

TNx):=f(x—a) (feLi(R%).
It follows that
(44) ToU4=UyaT,
(4.5) ToT,=T,oT

for Ae GLy(d):={A€GL(d)|det A>0} and aeR".
Here we change T to S:=%T% ~', using the Fourier transform

f:f(x)l—»f exp(2ny/ — 1{&, xD) f(x)Adx).
Rd
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Then from (4.5) there exists some ce LP(R? such that
S(N)x)=c(x)f(x).
Further (4.4) implies that for all 4e GLy(d) we have

(4.6) c(Ax) = c(x)(det 4)Y ™14

for A-a.e.x, where g:=s—s'. In particular taking 4 from SO(d), we see that ¢(x) is
rotationally-invariant. Namely there exists a Borel function y on [0, c0) such that

4.7) c(x) = y(llx))

for A-a.e.x. Next we take 4 from similar transformations, Ax=kx. Then it follows
from (4.6) that for all k>0 we have

4.8) Pkl xIl) =yl | v = T4

for A-a.e.x. Hence by virtue of Fubini’s theorem there exists some x,#0 such that

(4.9) kel xo ) =7(llxo ¥ =14

for a.e.k and therefore
(4.10) (k)= ok~ 144

wixoll)

for a.e.k with a non zero constant o/:=———~"—
"xo"‘/_ tad

It follows from (4.6) and (4.10) that

LAY~ 9 = | x]| Y~ To(det 4)/~ T
for l-aex. So we should have ¢g=0 and c¢(x) becomes a constant a. Q.E.D.

Theorem 4.2. Let M be a paracompact C*®-manifold and assume that M is
connected. Then two representaions (Uy, ,LA(M)) and (U,,,LAM)) of Diff§(M) (of
Diffy(M) resp.) is equivalent if and only if 0, and 0, are 1-cohomologous in Diff§(M)
(in Diffy(M) resp.). That is, there exists a T'-valued continuous function ¢ on M

-1
such that 0,(P,g)= 02(P,g)%?()@for all Pe M and for all g e Diff§(M) (g € Diffy(M)

resp.).

Proof. The sufficiency is obvious. We prove the necessity. Let T be an
intertwining unitary operator from (U, ,LX(M)) to (U,,,L2A(M)). Take any open
neighbourhood U for each Pe M which is diffeomorphic to R? and form a space
L2(U) of square summable functions zero outside of U. Further take any non zero
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koeL2(U) and take some g, Diff§(U) such that Uy (go)ko—ko#0. Then we have
T(Ujy,(go)ko —ko) = Up,(go) o Tko— Tky,

which belongs again to L2(U) due to Lemma 4.1. So we have shown that there
exists a non zero ke L2(U) such that TkeL2(U). It follows that T(L3(U))=LZ(U),
as (U,, | Diff§(U),LA(U)) is irreducible. Now on the set Ux Diff§(U), we have

] -1 P d J——1—51

with a T'-valued continuous function ¢; and a real constant s5; (i=1,2). Therefore
by virtue of Lemma 4.2, we have s, =5, and there exists some aye T' such that

@.11) TP = ()
()

P
for all feLXU). Put cU(P):=aU%. Clearly, cy=cy on UnV, unless this
¢

2
intersection is empty. Thus {c,}, defines a continuous T'-valued function ¢ on

M such that
4.12) T(f)P)=c(P)f(P)

for all feL%(M). Consequently for all ge Diff§(M) and for all feL}(M) we have

d d
(4.13)  c(P)0(P.g) :%(P)f (g~ '(P)=c(g " '(P)0y(P.g) ﬁf—’(P)f g~ '(P)

for p-a.e.P. Therefore the desired result follows directly. The same proof works
in the case of Diffy(M). Q.E.D.
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