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Limit theorem for symmetric statistics
with respect to Weyl transformation:
Disappearance of dependency

By

Hiroshi SucitAa and Satoshi TAKANOBU

1. Introduction

It is known that there are several kinds of deterministic sequences {x,};>; on
T™=[0,1)" having the following property : For any function F:T™ - R of
finite variation, we have

j Fode—) § Re)|=0N"1%9, Nooo. (%>0) 1)
™ Nn=l

These sequences are called low discrepancy sequences ([2]). The convergence (1)
can be used for numerical integrations in T™, which is called the quasi Monte Carlo
method. Since the usual Monte Carlo method (=random sampling method)
converges at the rate of O(N ~'/?), this method is more effective for numerical
integrations.

However, many authors have reported that the quasi Monte Carlo method
does not converge so fast as it is expected, if the dimension is very high. In extreme
cases, it is observed to converge at the rate of O(N ~'/?), namely, exactly as slow
as the Monte Carlo method. This phenomenon is often called “the curse of
dimensionality”, and it has been explained by some intuitive arguments (e.g. [15]),
but no rigorous discussion has ever been made to explain the observed convergence
rate, for example, O(N ~'/?) in extreme cases. Of course, even the curse of
dimensionality cannot contradict with the convergence rate (1), so that it must be
an intermediate or transient state, which will eventually disappear and the rate
O(N ~'*%) will appear after that.

In this paper, we tried to explain “the curse of dimensionality” in extreme cases
by a rigorous probabilistic discussion for the low-discrepancy sequences generated
by the Weyl transformation (= irrational rotation). In doing this, we were inspired
by the following claim of Sobol’ et al. ([11, 12])

CLAM (Sobol’ et al.). In high dimensions, the quasi Monte Carlo method is no
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more effective than the Monte Carlo method, that is, it seems to converge at the rate
of exactly O(N~''?), if the integrands depend equally on each coordinate.

In order to extract an essence from the phenomenon caused by the very large
dimensions, we investigated the limit behavior when m (=dimension) — co. (One
may think that m — oo is not realistic, but to the contrary, it is getting more and
more realistic. For example, in a simulation of quantum field theory, we sometimes
have to implement more than 10*-dimensional numerical integrations.)

The above claim being in our mind, we exclusively investigated the case when
the integrands are symmetric in each coordinate. However, “symmetry” alone is
not enough. Indeed, we have the following example:

Example 1. Define F: T" - R by

F(x):=sin (271 i x,.>, x=(xy,-x,)ET™

i=1

Then F is a symmetric function. But applying the Weyl transformation with
irrational numbers («,, ---,,) to F is nothing but applying the Weyl transformation
with an irrational number o, + --- +a,, to a 1-dimensional function “sin 2nx”. Hence,
it is very effective even if m is very large.

The class of integrands which we finally found appropriate for the purpose is
that of symmetric statistics ([4]). Let o'(x;h) be the symmetric statistic on 7™ with
a canonical kernel function he L,(T") (see, Definition 6 below for details). Consider
the sequence {m~"2¢"(x+na™;h)}= ,, where o™ is the first m-coordinates of an
irrational vector a € T®, as a stationary process on (7™ dx™). Then what we obtained
in this paper is the following (Main Theorem and its Corollary): Under a certain
condition, the sequence of processes {m "?a7(x +na™;h)}=,, converges as m — oo
in law to the sequence of independent copies of the multiple Wiener integrals with
the kernel function h.

This result directly connects the purely deterministic sequences with the fully
random sequences, and it may well give a probabilistic explanation to the claim of
Sobol’ et al. for the Weyl transformation.

The authors would like to thank the referee for good advice which enabled us
to make proofs clear and considerably short.

2. Observation of elementary case

In this section, we will observe an elementary case to see the heart of the
matter, which shows how naturally the disappearance of dependency takes place.

2.1. Presentation of C.L.T. Let T"=[0,1)" be the m-dimensional torus and
let P™ be the Lebesgue probability measure on it. As usual, the addition in T™ is
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defined in each coordinate with modulo 1. For each F: T™ —» R and each ae T™,
we will regard the sequence of functions {F(- +na)};>, as a sequence of random
variables defined on the probability space (T™, P™).

To formulate the problem rigorously, we have to let m — oo so that our basic
probability space should be (T, P*), where T®:=[0,1)* and P* is the infinite
direct product of the 1-dimensional Lebesgue probability measure.

Let f: T(:=T') - R be a continuous function which is not a constant. Define a
function F":T® — R, me N, by

T (fo)=Mp),  x=(x,.x;3.)e T, @

1
T

where M =(,f(0)dt and V,=[{(f()—M)’dr. Note that the function F™ is a
normalized symmetric statistic of order 1 (see Definition 6 below).

F(x):=

Definition 1. For each probability measure u on T, we put

1 m
Ty = {az(a,-),f";l eT™; — Y d,(dx) weakly converges to u(dx) as m — oo}.

mi=1

In particular, if u is the Lebesgue measure, we denote it by 7,2, that is,
p g y Ty

1 m
T := {a=(a,-),f“;le T®; — Y 8,(dx) weakly converges to dx as m — oo}.

mi=y
©)
f.d.

In the sequel, we use the following notation: By “=", we mean the convergence of

random variables in each finite dimensional distribution.
Then, our first theorem is just a central limit theorem (C.L.T.).

Theorem 1. For each o.=(o,,a,,---)€ T®, define a sequence of random variables
{X7(";0)} 2 on the probability space (T®,P®) by

X (x;0)=F™"x+na), x=(xy,x5,)eT®. 4)

Then, if xe T,® where p has a density with respect to the Lebesgue measure, the sequence
of random variables {X'(-;a)} -, converges to a strongly mixing stationary Gaussian
sequence. In particular, if ae T, we have
f.d.
(X750 = MO, 1)-iid. random sequence.
m

— 0

Here N(0,1) is the Gaussian distribution with mean 0 and variance 1.
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Before the proof, we will give some comments to the theorem.

We first note that we are particularly interested in the case that the function
S in the theorem is smooth, such as f(f)=sin2ns. It is because we want to emphasize
that even if the integrand is smooth, the generated sequence becomes very random
if the dimension is so high. (It is known that if a 1-dimensional integrand /:[0,1) —» R
is very irregular, the quasi Monte Carlo method generates very random
sequences. This subject was discussed in several papers, such as [3, 5, 13].)

Let T2 be the set of all a=(x;,a,, )€ T2 such that {1,a,,---,a,} are linearly
independent over Q for each m, and that each o; is algebraic over Q. If
a=(a,,0,,-)e T, the Weyl transformation with (oy,-+,0,) generates low
discrepancy sequences in all 7™ ([10]). A typical example of elements of T is the
following:

a=()2, with a=/p; (mod1), )

where p; is the i-th prime number (see [7, 8]). We guess that many people are using
this typical o in the quasi Monte Carlo method by means of the Weyl transformation
for high dimensional numerical integrations, because it was suggested by an influential
paper [8].

Note that the Weyl transformation with irrationals o, , ---, a,, is uniquely ergodic
([147), if {1,0,,---,a,,} are linearly independent over Q. Therefore if ae Tf where
u has a density, this implies together with Theorem 1 that the asymptotic relative
frequency distribution of the deterministic samples {X;"(x;%)}%, in each dimension
is very close to that of the limit strongly mixing stationary Gaussian sequence. Hence,
it must be hard to distinguish the deterministic samples {X;"(x;a)};%, from the
samples of the limit sequence by statistical tests.

2.2. Proof of C.L.T. For any LeN and any f,,---,f._, € R, we consider the
linear combination

L—-1
Y BXT( ). (6)
n=0

Note that for each a=(x;,a,, --)e T®, (6) is a sum of independent random variables
as follows:

i Zl( "3 ), (7
where {Z,(-;2)}2, are defined by
L-1
: Z ﬁn(f(xi-}'nai)_Mf)’ X=(X1,x2,~-~)e T™. (8)

JmVpn=o0

By the definition, their expectations E®[Z,(-;0)]=0 and

Z{x;0):=
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Zux )|<<Z|ﬂ.,)y'f”_, | <Viem, Yxe T,
mV

from which a triangular array {Z,.(";®)}, <;<n satisfies the Lindeberg condition. To
apply the Lmdeberg -Feller theorem (see Theorem 27.2 of [1]), let us check the

convergence of Z E®[Z,{ ;20)*]asm - co. Wefirstcompute Y E*[Z,( ;%)*]as

i=1 i=1

m

Y E®[Z,( ;0]

L—1
S BB ERI(f(xy nar)— M [ x o) — M )]

“nV nn' =0

—1» Z /},,B,,J(ft+na,) M )(f(t+n'a)— M [)dt

""—

Il
Ma

thg

Ve
i_ﬂ f(f 0- Mf)—Z(f(t+n—n)<x.) My,

f

where in the last line we have used the translation invariance of the Lebesgue
measure. Since a=(ax)2, €T,

lim i i (f(t+(n’—n)ai)—Mf)=J (f(t+(n' —n)s) — M ;)u(ds).
m— i=1 T

Substituting this into the expression above we have

lim Z E®(Z,(;0)]= Z BB R®(n' —n),

m—oo i= nn =0
where
1
R>(k)= v ‘[ f(— M,)dtj (f(t+ks)—M pu(ds), keZ. )
ST T
Consequently, by the Lindeberg-Feller theorem, the linear combination (6) converges
L-1
in law to a Gaussian random variable with mean 0 and variance ) B,B,-R*(n'—n),
nn' =0

and hence, the sequence {X)(-;a)}, converges in law to a stationary Gaussian
sequence with covariance function R%(-).

If ae T2, namely, u is the Lebesgue measure, we see R®(k)=0 for k#0, which
shows the limit is a Gaussian i.i.d. random sequence. For a general u which has a
density, it is easy to see by the Riemann-Lebesgue lemma that

J‘(f(t+ks)—Mf);4(ds)—>O, as |k| - oo,
T

which shows R®(k) — 0 as |k| — oo, that is, the limit sequence is strongly mixing. Now
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the proof is done.

Remark 1. Since we wish no more complicated calculations, we will not state
the assertions in the forthcoming sections for general probability measure y, but only
for the Lebesgue measure. Namely, we will deal with only the cases where the
dependency disappears.

3. General case

We will investigate the cases when the integrands are symmetric statistics of
general orders. At this time, multiple Wiener integrals appear as their limits.

3.1. Preliminaries. We will here introduce necessary notions by following
Dynkin-Mandelbaum [4].

Definition 2. For each ne N, we define
"i=L,(T", P")=L,([0,1)";dx, .- dx,).

If n=1, we will write £} simply by %,.
Definition 3. (i) We define the symmetrizer &: %5 — £ by

1
(Lh)xy s X,) = Z h(Xpe1ys s Xqm)h  hELS

n. ges,
where S, is the symmetric group over the set {1,2,---,n}.

(i) Ly :={heLs;Sh=h}. If n=1, we have S L;=%,.

(i) CSF L= {he.?,?’;;f h(x,, - X,—1.9)dy=0, a.a.(x,, --«,x,,_l)}.
T

An element of €% is called canonical. 1f n=1, we write

(gyg;:(g,?z:{hea?z;J h(y)dy=0}.
T
Definition 4. We define
@ ]
H:= {{h,,},‘?:,; h,e6S L Y, - [EMPHES 00}-
n=1H

Then H is a Hilbert space with an inner product

e o) l
2
(h", h®)y = E, —'(h:.“ahf:z))y;, hY = {hfyl) w1 = {hf, )}50=1€H
n=1M
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Definition 5. (i) For ,,---,,€. %, we put

‘//1® R ®.lln(xl 3 '“’xn)::‘l/l(xl)x e X '//n(xn)eg;'

In particular, we put y®":=y® --- QY e L L.
—_—

(i) For pe%Z,, we put h':= {¢®"} = e H.

If {¢:}io is a complete orthonormal system (abbreviated as CONS) in £,, then
{$:,® - ®¢; }®.....=0 is a CONS in £3.

Definition 6. (i) For each he %%, we define the symmetric statistic o}(x;h),
xeT>, by

h(x,'l,"',xin), nSm

1<iy < <ip
o:'(x;h):={ e

0, n>m.

(i) For h=1{h,};>. € H, we define

Yulx;h)=Y, m™"67(x;h,).
n=1

The function Y,(-;h) is an infinite-dimensional analogue of the symmetric
statistics. The coefficients m~ "2 are normalizing factors. It is easy to see that
Y, (;h)eLy(T®,P®). Our main theorem below will be stated for each o, as well
as Y,,. And then, independent multiple Wiener integrals will appear as the limits.

Definition 7. Let {(BP(1))o<:<1}pen defined on a probability space (Q, %, P),
be a sequence of independent 1-dimensional Brownian motions starting at the origin.

(i) For ¢ .%,, we define the Wiener integral by
1

IP(¢):= f B(s)dB™(s).

0

(ii) For he %%, we define the multiple Wiener integral by

1 1
lglp)(h) = J ot J h(sl PR S")dB(p)(Sl) e dB{p)(sn)'

0o o

Proposition 1 ([6]). (i) For each ¢ ¥,, we have

(¢ =n! Jl ¢(s1)d3"”(sn)rl $(s,)dBP(s) -
0 0

S,

j " Blsu- )AB(s, ) f " (s)dBPs,)
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el ,)
=nlllpln. H,[ 1 ,
e, ( <||¢||y,

—1) n
where {H,}*_, are Hermite polynomials : H,,(rf)=¥e¢1/2;—8(e'¢2/2).
n!

(i) For each he ¥ %" and each ke ¥ L7, we have

E[IP(h)] =0,

0 ifn#m
nl(h,k)g,  ifn=m.

LM ={

3.2. Presentation of Main Theorem. Now, it is possible to mention the main
theorem of this paper.

Main Theorem. For any h={h,}>, € H, we consider {Y,(x+po;h)},n, xe T,
to be random variables defined on the probability space (T®,P*). Then we have

f.d. © 1
{ Ym(x +pa;h)}p€N = { Z _Ap)(h")} )
m—-owo (n=1 I’l! peN
if and only if aeTS2.
Corollary. For any sequence h={h,}>_, such that each h, is in € L%, the
distribution of an array of random variables {m~"?a}(x +pot; h,)}, .en 0n the probability

space (T®, P®) converges to that of an array of i.id. random variables {;;I'P\(h,)}, sen »
if and only if 0e TS2.

Obviously, Theorem 1 (C.L.T.) in case ae T2 is an easy consequence of this
corollary.

3.3. Proof of Main Theorem. We begin with two lemmas.

Lemma 1. cls.{h;¢pe4¥,}=H. Here the term “cls.” stands for closed linear
span.

Proof. Let he(cls.{h?;pe€%,})*. Then for any %L, and any te R, we
have

a0 til
(h, h1¢)H = Z ’? (hn P ¢®")3’g =0.

n=1

Thus we see (h,,,¢®")y,2,=0 for any ¢4, and any n>1.
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Now, let ¥, , -, ¥,€€L,, (t;,--,t,)ER". By the above fact, we see

n !
= Z Z Z 1 ...t?p__L.
h gl !
p=1 1<ij<--<ip<n ag,—ap>1; a,.-~-ap.
ay+--+tap=n

XSWi,® - QUi ® - QY ® - BV,
~— ~————

so that we see

n
y y Y T T
f g ]
p=1 1<ij<--<ip<n ay,-ap>1; ay: - dp
ay+.--+ap=n

X (s 1, ® - @Y, ® -+ ®Y;, ® ®'/’i,,)s’g=0’ v(t1 L 1,)ER".
S—— N———
a ap
Consequently, for 1<p<n, 1<i;<--<i,<n, a;,-,a,21; a;+ - +a,=n, we
have

(hns'//h@ ®‘/jil® ®l//,'p® ®|//ip).2"z'=0-

\-’—\/——_—/
ap

ay

In particular, when p=n, we have i\=1, i,=2,---,i,=n, a;= - =a,=1, so
that

(V1 ® -+ @Y )y =0 ViV e4 2, a1

This means that h={h,}> , =0.

Lemma 2. For any h={h,};> € H, pmeN, ae T, we have

o 1 n—1\1
1Y (- +p2; )2 roipoy =Y. (1——)---<1 —-m—);nh,,n;gsll""#

n=1 m
Proof. The assertion follows from the identity:

E®[a(- +pa;h)or (- +pa;h)]=E=[or(-;h)ol (-5 1)]
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=, <’" A’"’)g,, Wyyns “he$F L%, Webs LY. (10)
n 2

Definition 8. In the sequel, we take the system of trigonometric functions
{d )0 as our standard CONS of #,. That is,

do=1, {dJi1= {ﬁcosanx, \/Esin2nlx}k',e,v.
Recall that for x=(x,)e T®, m,ke N,

1
—=0T(x; @)=

J Jmi

Theorem 2. If ae T2, we have

uM;

1 f.d.
{— o7 (x+pa; '//)} = {IPW)} penypeezs-
\/E peN,ye€¥, m— o

Proof. For each Yy e¥€¥,, it follows from (10) and Proposition 1 that

1
'ﬁﬁ'ﬂ"i‘m‘;'f’)—’g (¥, d)l}fal( +pa; 4’)

L(T>;P>)
=NW%Z¢@WWJ = 3 W.d)? — o
Ly2;p) I1=L+1 L=

Hence Theorem 2 is reduced to the following: For each ne N,

1 .
{—UT(X"‘PO‘;%)} = {I(IP)(d)k)}lsp,ksn in law.

ﬁ 1<pk<n m=>o

And according to Cramér-Wold’s theorem (see Theorem 29.4 of [1]), this is equivalent
to the statement that for each {a,};<pi<, such that Y a2 =1,

1<pk<n

1 .
Ap——07(x+po;p) = NO,1) in law. (11)
p

1<pk<n ﬁ m— o
We will therefore show (11).
Put

XPx)= Y  apduxi+pr), x=(x)eT™, ieN.

1<pk<n

Then we see



Limit theorem for symmetric statistics 663

1 1 m X“"(x)
Y au——o0T(x+pa;d)= Y, ap—— Y, dlxi+pa)= Z .
1<pk<n \/; 1<pk<n ﬂlﬁl = \/—

It is easy to see the following by the definition of X{®:

(X}, are inependent “oe T*, (12)
E*[X®]=0, VYieN, YaeT>, (13)
IX®(x)</2n, YieN, x,aeT™. (14)

By (14) a triangular array {X,‘,;“,.’ = clearly satisfies the Lindeberg

1
_X;w}
\/'71 1<ism

condition, and so if we have

lim i E~[(X2) ] =1, (15)

m-owi=1

then (11) follows from the Lindeberg-Feller theorem.
(15) is shown in the same way as in the proof of Theorem 1. Indeed we

expand the sum Z(X ()2

i=

2 ( X(a)

1 m
= Z af,,‘— Z dulxi+po)* + Z pkaql z dulx; +pa)di(x; + qo)

(pk)  Mi=1 (p.k)#(q,D)

= Zapk_ Z Oulxi +pos) +Z Z apkapl Z dulx; + pa)d (x; + p;)

(p,k)

+ X Zapkaql Z¢k i+ pa)di(x; + qa),

p#q k|1l

and then taking expectation, we see

[z(xw ] S it ¥ Sana 5 BOb+g— P

(p,k) p#qk,

= 1 + Z Zapkaqu ¢k(t) Z ¢ t+(q p)a!)dt (16)

p#q k,l

Since, by ae T2,

lim i ot +(q —p)a.-)=J ot +(q—p)x)dx= J ¢((x)dx =0,

m-wMi=1
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we therefore have (15). The proof is complete.
The converse of Theorem 2 also holds.

Theorem 3. Let a=(x)2,€T®. If we have

1 f.d.
{— o7(x +pa; d’)} = {l(lp)(¢)}pe~,¢e@yz )
\/; peN pe€ ¥, m— o

then o€ Tje.
Proof. For k,leN, put

Xi(x):= LqS,‘(xi+ac,-)+i¢,(x,-+ 20)), i=1, xeT™.

V2 V2
Then obviously,

{X;}{2, are independent,
E*[X]=0,
|Xi(x) <2.

As in the proof of Theorem 2

m 1 2 1 m
() e [t o

(17)

1™
Let {m'} be an arbitrary subsequence of {1,2,---}. Since {—,Zéa‘(dx)} is
mi=1 m

tight, we can take a subsequence {m"} of {m'} and a probability measure u(dx) on

T such that

= u(dx) as m" — oo.

This implies

ah

The Lindeberg-Feller theorem together with (17) and (18) implies

nMS

_ 5 X;=N (O 1 +J u(dx)'[ (D (1 +x)dt> as m" — o0.
T T

\/‘ =

On the other hand, by the definition of X; and the assumption,

2
<7:X) ]—1+J w(dx) ¢k(t)¢,(t+x)dt as m" — o0.

(18)



Limit theorem for symmetric statistics 665

m 1 1
_ ZX.=—2—<T0'1"(x+ot;¢’k)+TUT(x+2a;¢l)>
m m

1
= ﬁ(ﬂll )(¢k)+](12)(¢l))~N(0a 1) as m— 0.

Combining two convergences above we have

J ”(dx)J DDt +x)dt=0 for Yk,[>1.
T T

Recalling the definition of ¢,, k>1 (see Definition 8 above), we see that for Yk >1

f u(dx)f cos2nkt cos2nk(t + x)dt =0,
T T

J u(dx)J cos2nkt sin2nk(t + x)dt =0.
T T
This implies
jitk) = J e I y(dx) =0, Yk #£0,
T
and hence u(dx)=dx, so that
1
— Y S (dx)=dx  as m"— 0.
mi=1

Since this holds for a subsequence {m"} of any subsequence {m'} of {1,2,---}, we
must have that ae T;2. The proof is complete.

K
Lemma 3. Let $c6¥L, and KeN. Put ¢®:=3 (¢, ¢)p.. Then we have
k=1

¢(K)

1B —h 1 <1+ [ 911% el Vo)1 p— B2,

Proof. Noting an equality
a,-a,—b, -~b,,=,§:1 by b_ila,—bays,--a,, a,,b.eR,
we see, for any ¢,y e¥€.¥,, that
$®"— ¢l g

172
=<J (@xy) -+ POx,) —(xy) -+ Yo(x,)) dx,y -+ dxn)
[0, 11"
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d 1/2
= (J < 2 W) - - NP(x) — Y (x)P(xi 4 ) - B, )) dx - >
[0,1]"

k=1

1/2
(J le)z P - 1)2,¢(xk)— l/’(xk)'2¢(xk+ 1)2 d)(xn)zdxl dxn)
[o,1J?

IA
=

k
S N AT
< 16— ¥l pyrmax{l$lp, W 10,} "

Using this inequality,

¢ — k" = Z II¢®" "5

n=1N1

< Z—nqb PR L

{Z (Il¢||y,) 16— ™2

Now we have only to use the following easy identity to obtain the required inequality:

n—1

x =(l+x)e*, xe€R.

pofe
Before the proof of Main Theorem, we introduce an auxiliary theorem.
Theorem 4. If ae T3,

f.d. ’ 1
{] + Ym(x+pa;h¢)}peN.¢e‘€$’z = {e"| '(¢)_2"¢"}1}pelv,¢eg’.?z .

m-— o

K
Proof. For ¢eb%L,, KeN, we put ¢®:=Y (¢,¢)¢,. Then [¢p—¢*|>
k=1
Y (¢,4)* >0 as K—oo. By Lemma 2, we have
k=K+1
1Yol +posh)— Y- +pas BB 2= Y, (- +potshf— ™)) 2
<|h—ht"|3.

Then it follows from Lemma 3 that for each ¢ €4.Z,,

sup sup E®[|Y,(- +po;h)— Y, (- +pa; )] - o.

p,meN aeT> K— oo
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Thus we have now only to prove, for each Ke N, that
(K)
{147,(x +po;ht )} peN g2

f.d.
e XL A

m-=* oo

}peN.qﬁe‘é’.Z’p VOCET;;' (19)
By definition, we have

_n i) Yi)
5 M ; ®nm _ ! cee LT >n,
m O',,(,V '// ) lSilZ“inSm m \/E mzn

so that

1+ Y, ;") =1+ im 267(y; Y ")

n=1

i)

This expression and ¢® =Y c,¢, where ¢, =(9,$,), reduce (19) to

k=1

m l K
{il:[l<1 +ﬁ kglckd)k(xi +pa i))}peN,(c;,m,cx)ERK

{e K=o Pd) — Zzh A

m— oo

} eN,(c1, -, cK)eRK * (20)

On the other hand, since Theorem 2 says

] m f.d.
{ﬁ _;1 ¢k(xi+pai)} = {IPDW)} pken» Yae TR,

p,keN m—o

and the law of large numbers implies

Z (Ded)x;+pa) = 8y P®-as, YaeT® pkleN,

1
m m- o

(20) is now reduced to

s

(1 +\—/li Y Ck¢k(xi+P°‘i))

mk=1

i=1
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Zk |Ck~/m I dulxi +poy)— 22“ lka1$22"=,(¢k¢z)(-\’f+pa;) 21

— 0 in propability,

m-— oo

aeT2, "peN, Y(c,, -, cx)e RX.

Let us show (21). Note first that

2 X y2
1 +x=ex_7+"x), r(x):f —7—dy (lel < ]).
ol+y

0] < x]? ("|x|s§>.

K
Take 6>0 such that ) |c,|d <§. Under the condition { max max |@.(x;+ pa;)|
k=1

1<k<K 1<i<m

<./md}, we have

| K
Tkzl cidilx; +pay)
mi=

K 2 v,
< Ylald<Z, 1<Vi<m,
k=1 3

and hence

m 1 K
[1 (1 +7:kzlck¢k(xi+Pai))
i=1 mi=

Lom
_ez |ka T dulx;+ pay) — ZZ 1 E T 1 (PrpiNx; + p)

1 1 Lom
— ezl‘= .Qﬁzy; 1+ pa) — 2ZX - i i (e Xoxi + pat)

x eET=|"(J_1'—an=,Ck¢k(-"1+l7¢1»_ 1

Se):f=l(lJ =1 +P°‘-)_22u lck"!m e 1 (e )X+ poty)

elz: | zkx 1Ce@ilx; +pai))|

X
.Mi

1

mk=1

i K
r Z Ck¢k(x +po; ))
(f

<ezf=‘ck¢ i= 1¢k("i+l’a:)—2zu |"u<‘1m 7= 1(Pdidx; +pa)

2
X z |Ck|5 Z e3zl=l|\/m x= 10D+ po)|

i=1

- chd)kx +pay)
mk=1

—ez* 1“&\, = 1Oulxi+ poi) — 2):“ |¢‘h¢‘:m 7o (D)X + po)
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x 9 Z leil Z e Z(¢k¢l)(x +p; )332""'“("" = bt )

k=1 kil=1 mi=1

Consequently, for any n>0, we have

m ] K
.'1;11(1 + ﬁ kgl crdilx; +P°‘i))

P‘D

1
_ eEL lckﬁzﬂ 1 dilxi +pay) — %E;{, 16T I (upidx; +pay) >n

1<k<K 1<i<m

SP"’( max max |¢,‘(x,-+poz,-)|>\/;16>

eE* 1":;\/ L7 dulxi+ po) — 22“= Ckclm I ((@uidxi + pay)

K
+P> x Z IckI“Z1 e Z(¢k¢ Yoxi +po;)

B

X e§2u= 1"1"152?; 1(GxdMx; +pey) >

Y

Letting m — o0, we see

lim (The Ist term)=0, YaeT®, YpeN,

m=— o

m-— oo k=1 k=1

K K
i (The 2nd term) < Pl eZied?0—3z5 2 35k a1
im (The 2nd term)< P| e led S c2e 27).

Yae TR, peN, Y(c,, -, cx) e RX.
Hence

lim Tim (The 2nd term)=0.

60 m—oo

Thus (21) is proved, and hence the proof of Theorem 4 is done.
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Proof of Main Theorem. Since the “only if” part was done in Theorem 3, we
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So we assume ae T3.
1€H and fix it. Let ¢>0. By Lemma 1, we can take

]
n€R so that |h— Y th¥ ||y <e. Then Lemma 2 implies
i=1

here prove the “if” part.
Take any h={h}>

Vi, Y, €6L; and ¢y, -,

i=1

! !
| Yol - +pash)— Z LY,(: +P°‘§hw')||12,z(1w;rw)5 lh— Z thi i <e?,
i=1

Yp,meN, Yae T™.

Theorem 4 implies

f.d.
t m(x+Pa hvi )} {Zt(el""(‘l’) 2||'I‘||§r;_l)} ,
peN

peN m— o i=1

-
M..

i=1
Vae TR,

On the other hand, Proposition 1 (i) shows

” 1 0 ; 0 1
e)‘, (wi)_iu'l/i"}zz 1+ Z ”‘[,'”nng (1(p)< Y >> 1+ 2 —lp(.p)(llfi@"),
n=1 Vil &, n!

n=1
and hence
1 1
z (el‘P(llh) 2||'lhllin_ )= Z _‘I(p ( Z t l/,:.zm>’ vaN.
i=1 n=11. =

And Proposition 1 (ii) shows

n'l(p)<iz t ¢®n> Z I(”)(h )

=1 L2(S2;P)
2 0 1 1 2
Lo Lo -5y wer-
i Laaipy n=11li= n
I 2
—_-”h— Y i <€, peN.
i=1 H

From the above estimates, we can finally derive that

f.d.
(Vo o)}y {z Lo, )} .
peN

m-w (n=11
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