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Scattering theory for the perturbations
of periodic Schrodinger operators

By

Christian GERARD and Francis NIER

Abstract

In this article, we study the short- and long-range perturbations of periodic
Schrodinger operators.  The asymptotic completeness is proved in the short-range
case by referring to known results on the stationary approach and more explicit-
ly with the time-dependent approach. In the long-range case, one is able to
construct modified wave operators. In both cases, the asymptotic observables
can be defined as elements of a commutative C *-algebra of which the spectrum
equals or is contained in the Bloch variety. Especially, the expression of the
mean velocity as the gradient of the Bloch eigenvalues is completely justified
in this framework, even when the Bloch variety presents singularities.

1. Introduction

This paper is devoted to the scattering theory for the perturbations of periodic
Schrodinger operators Ho =1 D*+ V{(x), where Vi is a real potential, I'-periodic for
some lattice I" in R". The physical phenomenon related to this mathematical
problem is called impurity scattering. The most basic result in this domain is the
proof by Thomas [23] that the spectrum of H, is absolutely continuous if the
potential V- is not too singular. On the other hand stationary phase arguments
using the Floquet-Bloch transformation show that the motion of a particle in a
periodic potential should be ballistic. These two facts indicate that the scattering
theory for perturbations H=H,+ V of H, should be quite similar to the scattering
theory for the free Laplacian i D? However up to now there are only partial
results to support this belief. We mention the work of Thomas [23] using the
Kato-Birman theory, Simon [21], using the Enss approach, and Bentosela [3] using
the Kato-Kuroda stationary approach. All these results either assume a decay of
the interaction V that is too strong or are valid only in a restricted range of energies.

In this paper we reconsider this problem using the Mourre method, which is
based on the construction of a conjugate operator. This construction was made in
our previous paper [12]. We prove the existence and completeness of the wave
operators for the correct class of short-range perturbations. For long-range
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perturbations, we construct modified wave operators and characterize their
range. The range of the modified wave operators is described using a C*-algebra
A" of asymptotic observables which correspond to the energy and quasi-momentum
for the free Hamiltonian H,. Using the algebra % * we can also justify the heuristic
fact that the velocity of a particle in a periodic potential is asymptotically given by the
gradients of the Bloch functions.

2. Definitions, assumptions and results

2.1. The periodic free Hamiltonian.

We shall consider the free Hamiltonian
1 2 2
HO :=§D + Vr(x), on L (R"),

where Vr is a real valued potential, I'-periodic for some lattice T in R":
Vr(x+7y)=Vrx), yel.
We assume that
Vr is A bounded with bound strictly smaller than 1. 2.1

It follows that H, is self-adjoint with domain H?*(R"). As we mentioned in the
Introduction, the first basic question about scattering theory for H, is whether the
spectrum of H, is absolutely continuous. Under the general assumption (2.1) this
question is so far unsolved. In [23], Thomas proved the absolute continuity of
the spectrum if the Fourier coefficients of Vi are in some /? space (see [17, Thm.
XIL.100] for a precise statement). The proof in [23] shows that if we replace (2.1)
by the stronger condition:

1
Vr is (—A)? bounded with relative bound O, (2.2)

then the spectrum of H, is absolutely continuous. Our results will have a simpler
expression in this case. We next specify our notations about the Floquet-Bloch
transformation and refer the reader for details to [17, 22]. With the lattice I, we
associate the torus T"=R"/T’, the fundamental cell

F={x=7Y xp;, 0<x;<l},
j=1
of which the volume for Lebesgue measure will be denoted by ur, the dual lattice

I*:={y*eR"|{y,y*)>€e2nZ, Vyel}.

and symmetrically the sets T"*=R"/T'*, F* and the volume up.. For xeR", we
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define the integer part [x] of x as the unique yel so that x—yeF. The

Floquet-Bloch transformation:

Uulk,x) =2 T e (x4 y), 2.3)

yell
first defined for ue S(R"), extends as a unitary operator
U: L*(R",dx) » L*(T"* dk ; L*(F, dx)).

The I'*-periodicity w.r.t. k of Uu follows from its definition. The distinction between
the isomorphic spaces L?(F,dx) and L*(T" dx) avoids confusion when one works
with smooth functions, We shall use the notations

M:=T"*  # :=LYF,dx)
and H = LA(T"* dk ; LA(F,dx))= Je H'dk ~ L*(R", dx).
M
The inverse of U is given by:
U 'o(x+y)= ur_% J "k, x)dk, xeF, yeT.
M

One easily deduce from (2.3) the identities
UxU '=x—-D, (2.4
Ux]U™'=—D,. 2.5
Conjugating H, with U yields

®
UH U™ ' = J H,(k)dk, (2.6)

M
with
Ho(k)=7 D*+ Vr(x),
D(Hyk))={u=v|g, ve H2(R(x+7y)=e*"y(x), Vyel}.
In this representation, the Hamiltonian H,, satisfies the following properties (see [12]):

i) the map Mak — (Hyk)+i)~! is analytic with values in Z£(#");

i) for all ke M, the self-adjoint operator H(k) has purely discrete spectrum;

i) the Bloch variety X:={(,k)e Rx M, Aea(Hy(k))} is an analytic variety of M
and the projection pg:X3(4,k) — 4 is proper.

As a consequence H,, belongs to the class of analytically fibered operators, introduced
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in [12]. We have proved there the

Theorem 2.1.  There exists a discrete set t determined by H,, so that for any interval
I = < R\t there exists an operator A;, essentially self-adjoint on D(A})=F % ..(M ; H")
satisfying the following properties:

1) For all ye€%,,(I), there exists a constant ¢, >0 so that
x(Ho)[Hyq,iAd1x(Ho) > C,X(Ho)z-
i) The multi-commutators ad%,(H,) are bounded for all ke N.

iti) The operator A, is a first order differential operator in k with coefficients which
belong to €°(M ; £(H"')) and there exists x € € comp(R\1) 50 that A;=y(H,)A; = A;x(H,).

Here are some other notations related to the free Hamiltonian which be used
in our analysis. On the Bloch variety £ which is locally compact with the topology
induced by R x M, we shall consider the open subset

Zrcg = {(Ao N ko) € Z, 3 WE Vz(}.o N ko), V(I{, k) € W,
dim 1,(Hy(k)A# =dim 1, ,(Ho(ko))H# }

where 7 4(x) denotes the set of neighborhoods of x in the topological space
X. When (,,k,) belongs to X, there exists Je ¥ g(do), We¥ ylko) and a real
analytic function 4 on W so that

Ix WAZ={(Ak),k), ke W}.

Besides 1y, there is another useful Borel function defined on the Bloch variety.

Definition 2.2. The function v is defined on X by

{v(l, k)=0,Ak) if (A=1(k).k)€ e,

0 else.

The function v will be used in Subsection 2.3 to define the asymptotic velocity
observable. We close this review of properties of the free Hamiltonian by some
remarks. First if p,,: £ — M denotes the projection on M, then pp(Z\Z,,,) has zero
Lebesgue measure. Indeed this is a consequence of the stratification argument used
in [12], which ensures that p,(X\ZX,.) is covered by a countable (finite if one
considers £ npg '(K) with K = R compact) family of real analytic submanifolds with
non null codimension. Second, the function v belongs to Lio(Z, pidk). This follows
from the local Lipschitz regularity of the eigenvalues of Hy(k), which can be proved
by a minimax argument.
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2.2. The perturbations.
We shall consider perturbed Hamiltonians of the form H=H,+ V(x) with
Vx) = V) + Vi),

and where ¥, and ¥, are real-valued functions and satisfy for some x>0 and p;>0 the

Hypothesis 2.3. a) The operator P {x>!'*#*(—A+1)"" is compact on L*R").
b) The function V¥, satisfies: |0%V,(x)| < C,{x) 1174,

We set
Vix):= P+ Vi(x)— VA[x]).

The reason for decomposing V as V,+ V{([x]) is that the functions of the integer
part [x] become after the Floquet-Bloch reduction scalar pseudo-differential operators
(see the discussion below). In the sequel we will use the following consequence of

assumption a) of Hypotheses 2.3. We denote by R the operator {[x]>=(1 +|[x]|2)%.

Lemma 24. Let x€6%,(R). The operator RV (H)R? is compact on L*(R")
if a+pB<1+inf(u, u) and bounded if o+ =1+ inf(x, u,).

Proof. We will use the functional calculus formula:
1
xH)=_- J O;z)z— H) ™ 'dz Ndz 2.7
2ni J¢

where je%%,,,(C) is an almost analytic extension of y satisfying:

5
X

Hln =2 ’(322)SCN|Imz|N, VNeN. 28

Since there exists a constant C>0 so that
C™ x> <([Ix]> < C{x),

the operator R can be replaced by {(x) in the lemma. By Hypothesis 2.3 b), the
function

GOV () — VI[x]) = (Dt J VP ([x]+s(x —[x])), x —[x])ds
0

is bounded.Hence the operator {x)*V(H,—z)"' is compact if a <1+ inf(u, u) and
bounded if a=1+inf(i, ) with an operator norm O(Imz|~!) for Imz#0.
Commuting inductively powers of {x) with (z— H,)~ !, we see that for feZ, <0,
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(YN

|Im z|Ne

II(Ho+I')<X>"’(Z—Ho)"<x>”||=0< ) |Im z| #0.

By interpolation, this estimate extends to any real §<0. Writing
DV lz = Ho) ™' xP = x)* PV (Ho +1) " (Ho +)Xx) "z — Ho) ™ ' {x)P

and using formula (2.7) and estimate (2.8), we get the result.

Now that the action of conjugating with the Floquet-Bloch transformation U is
specified, an operator B on L*(R",dx) and its image UBU ™' on # will both be
denoted by B in the sequel. Formula (2.4) indicates that multiplication operators
on L?(R", dx) become after conjugation by U pseudo-differential operators on M = T"*
with operator valued symbols on #'. Actually pseudo-differential operators on
M with operator valued symbols of negative order is the natural class of pertubations
of H, for which a clean scattering theory can be developed. A remarkable fact of
the pseudo-differential calculus on T"*is that complete symbols can be associated with
pseudo-differential operators like in R". We refer to Appendix B for details.
Moreover, the right-hand side of the two next identities which are defined by
functional calculus. are pseudo-differential operators (see Proposition B.3 iv)):

URU ™' = U[x]YU "1 =(D,. (2.9)
and  UVU '=UV,U" '+ V,(=D,). (2.10)

Notation. We denote by OpS*M) and OpS*M; L(#')) the space of pseudo-
differential operators of order « € R on M with respectively scalar and #(#"')-valued
symbols. When he(0,h,) is a small parameter, OpS**(M) and OpS"*(M ; L(#"))
denote the semiclassical version of these pseudo-differential classes.

The class of pseudo-differential operators that we consider is precisely defined in
Definition B.1. Complete symbols are well defined for this class and the operator
valued are defined like in [2]. The assertion iv) of Proposition B.3 gives

R*e OpS*(M), @.11)
Vi(—D,)e OpS™H#(M) (2.12)
and A;eOpSi (M ; L(H)). (2.13)

We recall that the estimates of scalar pseudo-differential calculus carry over to the
PL(A')-valued case except the commutator estimate which holds only when the
principal symbols commute. This latter condition is trivially satisfied when one of
the symbols is scalar. We refer the reader to [2] for operator valued
pseudo-differential operators. The next lemma ensures that V' enters in the class
of perturbations considered in [12].
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Lemma 2.5. The operator V is symmetric and satisfies for any compact energy
interval I included in R\t

i) V(Hy+i) ! is compact,
i) [V,id;] is bounded,
iii)  the function: s —» €41 Ve~ "4 — V belongs to €' **(R; £(#)) with 0 <e<inf {1, u, 1}

Moreover for H=Hy+V, the function s— e**{(H+i)"'e” 4" belongs to €'**(R;
L(H)) with 0<e<inf{1, u, ).

Proof. The compactness of V(H,+i)~' follows at once from Hypothesis
2.3. We next write Vas V,+ V(—D,). For V/(—D,), the pseudo-differential calculus
yields

ad), V(—Dy)R*e L(#), VjeN. (2.14)

For V,, we recall that A;=y(Hy)A;=A4,x(H,). This gives by expanding the
commutator:

AV = VA =AR™'Ry(Ho)V,— V(H)RR™'4,.

Using Lemma 2.4 we see that ad,,V, is bounded. This implies ii) and also that
s— e Ve~ 4 _ 1 is Lipschitz continuous if inf(u, u)=0. The same method of
expanding the commutator shows that adZ V, is bounded if inf(z,u)>1. The
assertion iii) is then derived for general (u, p,) by real interpolation between inf(u, ;) =0
and inf(u, u)=1. It remains to check the regularity of r(s):=e*4*(H +i)~ 'e 41, We
have

r(s)=(H+i)“1 '—iJ\l ei“A’(H+i)_l[AlsH0+ V](H+i)—le—iu,4,du
0

=(H+i) '—i Js ru)e" 1 [A;, Hy+ Ve "“A1r(u) du. (2.15)
0

Using the first line of (2.15), we first deduce from iii) that r(s) is Lipschitz continuous,
and then using the second line of (2.15) that r(s) is €' *°.

Remark 2.6. a) About the real interpolation result and the notation €* with
a¢ N for the Holder spaces, we refer the reader to [6].
b) The property iii) is indeed stronger than what is needed to develop Mourre
theory (see [1] for a sharper version). However, it is convenient while checking
the last assertion which is used in our propagation estimates.

By noting that (x)>*R™® and R* (1+|A4,|)”* are bounded for any se R, standard
results for H=H,+ V reviewed in [12] can be written in the form
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Theorem 2.7. Let A; be a conjugate operator for H, associated with an arbitrary
compact interval I c R\t. Then the following results hold.

1) For ye€oml), there exist a constant ¢, >0 and a compact operator K, so that
x(H)H,iAJx(H)>c *(H)+K,.

As a consequence c,(H) is of finite multiplicity in R\t and has no accumulation
points in R\7.

ii) For each Ael\o,(H), there exists €>0 and c>0 so that

Vg eava(H)LH AN o g v(H) 2 €12 34 ().
ii)) The limiting absorption principle holds on I\o,(H):

1
lim {x)7S(H—A+ie) " '{x)~* exists and is bounded for all s>§.
=10
As a consequence the singular continuous spectrum of H is empty.

iv) When V,=0, the wave operators

s-lim e~ itHo| (H))=:W*

t->+t o
exist and are asymptotically complete,
\(H)H# =Wt

Moreover if the condition (2.1) is replaced by (2.2) then we have 1(H,)=1 and

W* =s-lim,_, , e"He ™ "Ho,

The result iv) for the short-range case will be recovered via the time-dependent
approach as a byproduct of the long-range analysis. We close this paragraph with
another application of Lemma 2.5 to minimal velocity estimates essentially due to
Sigal-Soffer [19]. Its proof is given in Appendix A.l.

Proposition 2.8. Let ye €%, (R\(tv 0, (H)). Forey>0small enough, we have:
J

R .
and s-lim F(TSs(,)X(H)e"'":(),

t=>+ o

2

dt
7scuunz, Vue #

R .
F<—S£0>x(H)e_"”u
t

Moreover the result also holds if R is replaced by {x).
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2.3. Results.

Part of these results have natural expressions in terms of C *-algebras. We
first specify this framework. Remind that the energy-momentum space X is closed in
R x M and is endowed with the induced topology.

Definition 2.9. The commutative C*-algebra of which the elements are the
®

g(Ho,k):zj g(Hok),k)dk, with ge €(Z),

M

is denoted by %,.

The mapping g — g(H,, k) defines a faithful representation of €3(X). Therefore
U, is a C*-algebra with spectrum equal to £. Moreover, it is clear that the measure
(pum)¥(dk) is basic for %,. Hence, the Proposition 1.7.1 of [9] ensures that the
mapping g — g(H,,k) weakly or strongly extends as a C*-isomorphism from
L®(Z,(py)*(dk)) into the Von Neumann algebra (%,)’. The family (14(H,,k)) for
Q Borel subset of X satisfies

]Q,(Ho,k)ln;(uo’k)z ]anz(Ho’k)

so that the next definition makes sense.

Definition 2.10. The projection valued measure Q — 15(H, . k) will be denoted
by uo. With any Borel function g on Z, will be associated the operator

g(Ho k)= J (A, k)dpo(4. k), (2.16)

I

with D(g(Hy k)= {l,b eN, J lg(4, k)| d(r, oA, k) < oo} . (2.17)
b

The first result is concerned with the asymptotic observables associated with
a class of continuous functions on X.

Theorem 2.11. For any ge%3(Z), the strong limit

s-lim efg(H, , k)e "1 (H)=:g(H,k*), (2.18)

t—+ oo

exist. These limits form a commutative C*-algebra U™ with spectrum ZKp?(E,J?iJ))
Moreover the limit (2.18) equals gg(H)1(H) if g(A.k)=ggr(4) depends only on A.

Remark 2.12. The index . recalls that our definition of g(H, k™), includes the
projection on the continuous spectrum of H.
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Corollary 2.13.  If condition (2.2) holds, then o, (H,) is empty and the spectrum
of U* is equal to L.

The family of projections indexed by open subsets Q of £ and defined by
lo(H k™), =sup{g(H.k*),, ge€y(Z). g <1},
satisfies
o,(H k™) 1o, (H k™). =10, no,(H k™).
Hence we can introduce the
Definition 2.14. The projection valued measure Q — 1,(H ,k*),, whose definition

extends to any Borel set Q < X, will be denoted by u*. With any Borel function g
on X, will be associated the operator

gH, k"), = J g(A, k)du* (A, k), (2.19)

z

with D(g(H,k*),)= {l// eH, J lg(4, k) 2d(y, p (4, k)W) < oo} . (2.20)
)

Remark 2.15. One easily checks that this definition is compatible with the
previous result, that u* is null on X\Z\pg '(5,,(H,)) and that g(H,k*).is 0 on 1, (H)H#.

The asymptotic projection 1y (H,k™). is of particular importance, especially
in the long range case. The states in its range have rather good propagation
properties and should be considered as “regular” states. We next introduce the
velocity observable associated to the function v given by Definition 2.2.

Definition 2.16. The velocity observable associated with H, is the vector of
commuting self-adjoint operators vy, :=v(H,,k). The asymptotic velocity observable
(for positive times) associated with H is the vector of commuting self-adjoint operators

+ _ +
vy =v(H,k™),.

Theorem 2.17. a) For any y€%%m,(R), we have

x(H)og = s-lim e y(Ho)oy e "1y (H. k™).

=+

b) For any function fe €5(R"), we have

s-lime""f(?) e Mg, (H.k*) +1,,(H)]=f(vf).

=+
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As we shall see in the proof, the first statement in Theorem 2.17 indeed comes
at once from the definition of vy, while the second one is deeper. For the next
two results, we distinguish the short and long-range case. The main difference
between these two cases is: in short-range case, one is able to prove 1y, (H, k™). =0,
or in other words that all the states are regular; in the long-range case, this can
be checked only in dimension n=1 or with artificial assumptions on the singularities
of Z.

Theorem 2.18. Assume V,=0. Then the following properties hold:

a) Asymptotic completeness: the wave operator

W =s-lime"He~"Hol (H,)
totw
exists and the system is asymptotically complete:
Wrs# =1(H)H#.
Moreover we have

(W *)*= s-lime"Hoe ~tH 1| (F)

t—=+ o0

and W*g(H, k)=g(Hk*).W*, Yge€YZ).

b) Existence and properties of the asymptotic velocity: for fe €3)(R"), we have
P O R Py +
s-lime f<7>e =f(vg). (2.21)
t—=*+ o0
c) If moreover the condition (2.2) holds, then the wave operator equals

Wt =s-lime"He~1tHo,
t— + oo

Part b) in Theorem 2.18 is the justification of the common idea that the velocity
of a particle in a periodic potential is given by the gradient of the eigenvalues of
Hy(k). Note that this result holds in the presence of perturbations. In the
long-range case one has to introduce modifiers e~ S®H#ob commuting with H, in
order to define modified wave operators. Their construction, which will be completely
done in Section 4, is local on ¥ and involves solutions of Hamilton-Jacobi
equations. The asymptotic velocity result is the one given in Theorem 2.17.

Theorem 2.19. The limit

Wt =s-lime'He SHob | (H )
t=>+ o
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exists and its range coincides with the range of 1y, (H.k*),. Moreover we have

(W +)*=s-limeiStHoRg=itH] . (F f*)

reg
t—=+ o0

and  W'g(Ho kW) *=g(H k"), Vgeb3(Z\pg (0,(Ho)NE

re g)'

Finally, if the condition (2.2) holds, then the modified wave operator equals

W+ = s-limeitHe~ iSt.Hok).

t=+

In the sequel, we shall prove these results in a more general case where the
operator V(—D,) is replaced by a general self-adjoint element V(k, D,)e OpS *(M).
With this, the reader will be convinced that the important condition is not that
the symbol V,(—#) (the complete symbol is well defined on the torus) does not
depend on k but rather that it is fiberwise scalar. All the proofs and the previous
results carry over to the more general framework proposed in [12] with M equal
to a compact real analytic manifold or to R". In this general situation, the manifold
M has to be endowed with a Riemannian structure, the operator R is nothing but
the square root of 1—A,,, with A, equal to the Laplace-Beltrami operator, and
the operator D, has to be replaced at some points by —i times the gradient. Due
to the lack of applications of this general framework, we prefer to stick to the case
where M =T"* and to avoid additional definitions.

3. Effective time-dependent dynamic and asymptotic observables

As we said just above, the perturbation V is the sum of the short-range part
V, and a self-adjoint scalar pseudo-differential operator V,(k, D,). The first step of the
time-dependent approach consists in introducing an effective dynamic associated
with some time-dependent Hamiltonian. We set

R
vVt k, D) :=F<§log12 1) Vik, Dk)F<710g12 1), for t>1.
t

L
One easily checks that such an operator belongs to OpSt ~# (M), for any u' <p, so
that the estimates below follow at once from pseudo-differential calculus

adA Vl(t, k, Dk) = Oul(t_“l),
and  adgy,4y-1 Vit k, D)= 0,(t7 %), V' 0<p' <p.

Here and in the sequel, we drop the index ; and the operator 4 has to be understood
as any A;. The effective Hamiltonian is defined by
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H(t):= Ho+ V{t,k, D}

Definition 3.1. The unitary propagator U(t,0) associated with H(t) will be
denoted by U,(1).

Proposition 3.2. For all ge €3(X) the norm-limit

lim U,(1)*g(Ho,k)U,(1) G.1

t=+ o

exists. Moreover we have:

a) There exist a unique densely defined self-adjoint operator H;" on # so that the limit
(3.1) equals gg(H{") for g(4,k)=gg(4)e €o(R).

b) The set of limits (3.1) defines a commutative C*-algebra with spectrum X, denoted
by uf.

Proof. By density, the function g can be chosen as the restriction to X of
some element of €, (R x M), still denoted by g. Then it is clear using (2.7) that
g(H, , k) belongs to €, (M; £(#") and pseudo-differential calculus yields

ILg(Ho k). Vilt.k, D)1l =0~ "~*).

Hence, the derivative of (3.1) is norm-integrable and the limit exists. The construction
of H{" is standard (see for example [8]) and the density of its domain is a consequence
of the norm convergence. For b), we note that the representation of €3(X) given
by (3.1) is faithful again due to the norm convergence.

From this result, we can construct a projection valued measure by the standard
process recalled in Paragraph 2.3 (definition of u*).

Definition 3.3. The projection valued measure derived from the limits (3.1) will
be denoted by u and we set for any Borel function on T

g(Hl+ ak1+)=fg(/1’k)dﬂ1+('1’ k)’ (32)

z

with  D(g(H{" k{"))= {llf eX, J g4 k)Pdy, ui (4, k) < 00}- (3.3
z

Propagation estimates given in Proposition 2.8 are also valid for U,(?) (see Appendix
A.1): for any ye €%, (R\1), we have

)

and  slim F(? se(,)x(Ho)Ul(t) =0. (3.5)

t—=+ o0

2

R dt
F(TSso)x(HO)U,(t)u < Clull, Yue s (3.4)
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For the next result, we will also need the

Lemma 3.4. For all ye€g,(R), the following estimates hold.

i) [x(H ), FG > e(,)] =0(t™").

i) (x(H)— X(H&)F(? > 80) = Ot~ inf(Lmnsy,

Proof. Using formula (2.7), the problem is reduced to getting estimates with
x(H) (resp. x(H,)) replaced by the resolvent (z—H) ™' (resp. (z— H,)~'). We have

[(z—H)", F(?Ze())]:(z—H)" [Ho, F<§250>:|(Z—H)_‘
_ R _
+(z—H) 1[V,, F<7280>:|(Z—H) !

+(z—H)"[Vs, F(?Za(,)](z—ﬂ)"’.

The first term writes
_1 o - —l R _1
—(z—H) '(Ho+i)| (Ho+i)™ ', F 7260 (Ho+i)(z—H)

and its norm is estimated via pseudo-differential calculus by O(t™ ")f&2p. If F, is
a function like F with F; =1 on supp F, then the commutator in the second term equals

(e (8]

and pseudo-differential calculus ensures that its norm is O(t"'7#). For the third
one, we simply use

R
”F<7280> V{z—H)~ '”SCI""“IIR”“Vs(HH)"’|| I(H + i)z —H)™ .
The statement ii) relies on the same arguments applied to
-1 -1 R
[z—H) "—(z—H,)"'IF ‘1—230 =

—(—H)"'(V,+ Vl)(Z—Ho)—1F<§230)-
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Proposition 3.5. The limits

s-lime™™ U, (1)1 g i) =: W (3.6)
t— + oo

and  s-limU,(0)*e” "1 (H) 3.7
t=+ o

exist. Moreover the limit (3.7) equals (W[)*. Finally, the wave operator Wi defines
a unitary transformation from g (H{")# onto 1(H)# and we have

WirHH(WH)*=H1(H). (3.8)

Proof. The existence of the limits (3.6) and (3.7) rely on the same argument
and we shall only consider the existence of (3.7). We choose uel(H)x#. By
density, we can assume u=y*(H)u with ye 42, (R\o,(H)U1). We have

comp

. . R .
Uy(t)*e™ "u=U,(t)*¢*(H)e "Hu= Ul(t)*F<7280)x2(H)e‘""u+o(1),
owing to Proposition 2.8. Lemma 3.4 then implies
. R .
U ()*e™ "y = Ul(t)*)((HO)F<7280)x(H)e_""u+0(1).
We introduce the Heisenberg derivative
0 . .
DIBZE-'- iH({)B—iBH
and we get
R
DI[X(HO)F <7 = 50))((”)] =
R _ (R ..(R
- X(Ho)ﬁ F' (7 = 80)X(H) + X(Ho)I:Ho , IF (7 2 Eo):IX(H)
. R
+[x(Ho), iV (t,k, D)IF (7 2 80>X(H )
(R
+ X(Ho)[ Vit,k, Dy), 1F<72 30)]%(1'1)

R
+x(Hy)F (7 > eo>(i Vit,k,D)—iV)x(H).

By pseudo-differential calculus, the third and fourth terms are O(1 ™' ~*), with O <y’ < p.



610 Christian Gérard and Francis Nier

The last term equals for large enough ¢

x(Ho)fF(—'}zeo)[ Vot V,(FGlog(t)Zeo)— 1)]x(m

= x(Ho)iF (? > 80) ViF (? log(f) < Bo)X(H) Lo ™)

=uH 0)[F <§ = 80) , Vz] F (? log(r)< 80>X(H )+ O™ 1)
=0t~ 1 —inf(u’,us)).

For the second term we set j(uw)=(u+i)y(u) and we choose some cut-off
Flu=2£0) € 62mp((C ™ 'gg, Cty)) with C> 1 chosen so that Flu=¢5)=1 on supp F'(u>¢,).
We have

1(Ho) [Ho,iF(’fZeoﬂx(m

=- i)Z(HO)|:(H0 +i)7h F(-? 2 30>:|(H0 +)x(H)
= —f)?(Ho)[(Ho +i)7 1, F<f280>][i(1‘1)— Va(H)]

R_ \! D, (R R
== ii(HO)F(? = £0>;Vk[(H0(k) + l) h 1]”‘RTkF( <'t— > 80>F <7 = 80>
o[X(H)— Vx(H)]+0(t™?)
R 1 D
== ii(HO)F<7=80>;Vk[(HO(k)+ 0" 1]~R—" F’ <§ 230>F<§ = 80)1(1‘1)
+ 0(1— 1 —inf(u’.us))‘

Hence the complete Heisenberg derivative writes

R . R B(1) (R .

Dl[X(Ho)F(TZ%)X(H)]zX(HO)F<7=30)TF<7=80>X(H)
+ 0(1_ 1 —inf(u’,us))
with |B(f) =0(1). By referring to Proposition 2.8, to the propagation estimate
(3.4) for U,(r) and to the version of the Cook method recalled in Lemma A.2 b), we
conclude that the observable y(H,)FZ>¢,)x(H) is integrable along the evolution.
Thus the limit of U,(f)e”"Hu as t » + oo exists. Let W' denote the limit (3.7). The
fact that W.," =(W.;)* will follow from the properties:
Wl < 1\ (H)H 3.9)
and WA < g (H)H. (3.10)
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For Eeo,,(H), YygeH so that Hyy=E}y and uelp (H{")#, we have

W, Wiwy= lim e "5y, U (1)u).

t—+ oo

As a consequence of the minimal velocity estimate (3.5) for U,(f), U,()ju weakly
converges to 0 and this yields (3.9). Let us consider (3.10). We first check that
the convergence

s-lim U, () *(x(Ho) — x(H))e ™ ""1(H) =0, (3.11)

t—= + oo

holds for any function ye%%,,(R). Indeed for xe‘ﬁmmp(R\(ruapp(H))), we infer
from the minimal velocity bound for H stated in Proposition 2.8 and from
Lemma 3.4 ii) that

s-lim Uy (0)¥(x(H o) — x(H))e ™ "™ 7(H)

t=+ o

R
=s-limU,())*(x(Ho) — X(H))F( >80> ~M(H)=0.

>+
This yields the strong convergence of (3.11). This and the definition of H,' ensure that
Wi H)= (HOW, (€62 (R). (3.12)
Since 1(H)=1g(H)1(H), we get that
WE=WH(H) =g HHW |

and theorefore (3.10). The unitarity of W' now follows at once: It is one to one
as an isometry and the surjectivity is a consequence of (3.6) and (3.7). This also
gives W, =Wy and the identity (3.8) comes from (3.12).

Next we shall prove Theorems 2.11 and 2.17 about asymptotic observables.
Beside the information that they bring about observables, these results are important
for the long-range problem. With them, one is able to develop a local analysis on
Y. We begin with a Lemma which in the end allows the identification of the
spectrum of % ™.

Lemma 3.6. Let E be a countable subset of R, then the closure in X of T\pg'
(EuT) equals Z\pn (o pp(HO))

Proof. We first note that Z\pg ' (Eut) = Z\pg ' (0,,(H,)) because o,(H,) < .
If (1y,ko)€Z does not belong to Z\pg! (EuT), then there exist /e ¥ g(4,) and

We v ko) so that pg(I x WNZX) is included in Eut. Since pg is continuous and
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Eurt is countable, we have necessarily pg(I x WnZXZ)={A,}. Hence i, belongs to
o,p(Ho). We have proved

Z\r' (0y(Ho) = Z\pr " (EUT)

and we conclude by taking the closure in Z.

Proof of Theorem 2.11. The existence of (2.18) with ge €3(Z\pg! (tvo,,(H))
is a direct consequence of Proposition 3.2 and Proposition 3.5. This limit equals

W1+g(Hl+sk1+)(W1+)*~ (3.13)

This result extends to any ge %5(X) by noticing that
S'Ilan(H) = 1c(H)~
n—+ow
for some sequence of functions y, € €3(R\(o,,(H)U1)), 0<y,<1, which a.e. converges
to 1. Then we have
g(H k™) =s-limg(H,k™).x,(H).

n—a

Thus, the last statement of the Theorem is a consequence of (3.8). We next verify
that the C*-morphism

C3Z\pr ' (0p(H)UT))3g - g(H. k™). € L(H)

defines a faithful representation of €Y(X\pg ! (0,p(H)u1t). This will imply that the
spectrum of #* equals Z\pg' (6,,(H)U1)=Z\pg '(6,,(H,)), according to Lemma
3.6. Indeed it is enough to check that this morphism is one to one, or

sup

H k)l 2 ——
llg(H, k™) ”>>3\pn' )0

lgl,  VgeGUZ\pg (o,,(H)UT)). (3.14)
By taking a sequence of functions y, as above, we get

I g(H, k*)ll = supll x,(H)g(H, k).

We refer to (3.13) while replacing g by y,g and we recall that W is unitary from
lp(H)# onto 1(H)#. We obtain

sup

I CH Kl = 2o CH £ CH R = o, (H)U 1)

%8 -

By combining the two previous inequalities and by taking the sup-limit as n — oo,



Periodic Schrodinger operators 613

we deduce (3.14).

Proof of Theorem 2.17. Let us first prove a). Since y(H,)vy, is a bounded
operator, since we have

Iy, (H kT)e=15, (H.k™) g (H)1(H)

and since Iy, \,_ 1@, mmun 15 the pointwise limit of a sequence in €Q(Z,.,\pg'
(0,p(H) U 1)), the quantity 1 (H,k*), can be replaced by g(H,k "), with g€ €3(Z, ., \Px '
(0p5(H)U1)). With Theorem 2.11, we get

s-lime™y(Ho)vg e~ "Pg(H,k*), = s-lime"" y(H)o(H , k)g(H, , k)e ™"

1>+ o0 -+ oo

= y(H)o(H, k*)g(H k™),

because v is smooth on Z,.,.
Let us now prove b). By the density of €2, (R") in €3(R", we can assume

comp

feB%np(R"). Then we note that we have, for such a function, the estimate

)2 0)

As a consequence, the time-dependent observable /(%) can be replaced by f(™), which
becomes f(—2%) after conjugating with the Floquet-Bloch transformation. One
easily checks

sup

xeR"

s-nmen"f(_Btk)e-fle,,,,(H)=f(0)1p.,(H).

t—=+ oo
By its definition, vy satisfies
v 1,,(H)=0,
which shows that
: itH Dk —itH +
s-lime*Hf1 - e " (H)=f(vg)1,,(H).
t—=+
It remains to check that
L D .
s-lnme""f(——t'f)e"'”lzm(H,k*)c=f(v,";)1c(H).
t=>+ oo

For the same reason as in the proof of a), 15, (H,k*). can be replaced by g*(H,k "), with
ge ‘68(2‘.”&\17,; Yty o,p(H))). Since pg(supp g)nt=0, we deduce from the construction
of the set t given in [12] that |v(4,k)| is bounded from below by a positive constant
on suppg. This implies

Swi)=0, for feBLn(B0,€p)), €9 1.
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Using the minimal velocity estimate in Proposition 2.8 leads to
: itH Dk —itH +
s-lime""f _—t— e "g(H k™). =0, feBamp(B,¢))),

t=+ o0

for €,>0 small enough. Thus it suffices to prove b) for fe®x, (R"\{0}).
Proposition 3.5 and (3.13) reduce the problem to the existence of

s-lim UJt)*f(—%) U,(ng*(H{ k). (3.15)

t—= + o0

By taking a locally finite partition of unity on Z . \pg'(tUc,,(H)), we can assume
that g is supported in some small enough neighborhood I, x V, of (4,,k,) so that
n(k) = 1;(Ho(k)) = 1 54 (Ho(k)) and (k) are real analytic w.r.t. ke V,. We introduce
the unitary propagator U,(f) generated by the time-dependent Hamiltonian

H,y(0) = x(k)Ak)n(k) + V (t,k, Dy), (3.16)
with y €€ %mp(Vo), x=1 on suppg. Note that
Hog(H, k)= x(k)Ak)n(k)g(H o , k). (3.17)

Moreover by pseudo-differential calculus, we have

[ f-2)

and  [[[g%(Ho.k) Vi(t.k. DY =0(""'""). (3.19)

l=0(t_‘) (3.18)

We next apply Proposition 3.2 and estimate (3.18) so that the existence of the limit
(3.15) is equivalent to the one of

D,
s-lim U,(t)*gZ(HO‘k)f<—Tk>g2(Ho KU (0).

t=+ oo

Then we infer from (3.17), (3.19) the existence of

s-limU,(0)*g(Ho . k)U,(1)  and  s-lim U,(0)*g(Ho ., k)U,(2).

t=+ o0 1=+ oo

Hence, it suffices to check the existence of

D
s-lim U,(1)*g(Ho. k) f ( - -~k> g(Ho . k)U,(1).

t— + oo ’
We first check the estimate

1Dy + 0, (xRN UR(OR ™ || = Ot ). (3.20)
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Let D, denote the derivation Z+i[H,(r),] and let § belong to €%, (Vo) so that
=1 on suppy. We have

D (D, + 10,(xA(k)n(k) + [0, n(k), in(k)])
= 0, (x Dk)m(k) — B (u(k) Ak )m(k) — B, V{1, k., D)
— x(k)Ak)[n(k), [B,me(k), n(k)]]
+i[ V1, k, Dy, 10,y D k)m(k) + 7[d,n(k), in(k)]].

By pseudo-differential calculus, the last term and 9,V (1,k,D,) are O(t™*). The
remainder equals

— 1K) Ak)@ym(k) + [n(k), [m(k), m(k)]]) =0.
Indeed the relation n(k)=n(k) yields

oym(k) = 8,n2(k) = 0, n(k)n(k) + (k)0 m(k)
and n(k)o, n(k)n(k) =0.

The estimate (3.20) is then derived by integrating from O to ¢. The assertion iii)
of Proposition B.3 provides the decomposition

D, ~
f(—T") — @ AK)) = R, (1) <%+ak(x1)(k))+ Ry(1), (3.21)

with R,(1)=0(1), Ry()=0(t""') and therefore R,(f)%=0(1). Since f(0)=0 and
n(k)g(H, k)= g(H,, k), we have

g(Ho,k)[f(—%> —f(ak(xi')(kwk»]g(ﬂo,k)
D, -
=g(Ho,k)[f<—7) —f(ak(xAXk»n(k)]g(Ho,k)

D ~
=g(Ho, k)R, (1) [—t'f + Bk(xi)(k)n(k)] g(Ho,k)+0(t™").
The estimate (3.19) (with g2 replaced by g) provide the existence of
s-lim U,(1)*¢(Ho , k) U (1).
t—=++w

Moreover we deduce from (3.20)

=0(t™"), VueD(R).

D ~
‘g(Ho k)R l(t)<7k + 5k(x/1)(k)ﬂ(k)) U,(t)u
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By using (3.21), we get

s-lim g(H, ,k)<f ( —%) —f (5k(x1)(k)n(k))> U,(=0

t—=+ o0

and, going back to the evolution U,(1),

. D
s-lim Uy (1)*g(H,, k)(f < - Tk) -f (3k(xf)(k)n(k))>g(Ho KU (1)

t—+ oo

D ~
=s-limU,(n)* (f (——k> —f (3k(xl)(k)n(k))>g2(ﬂo KU, (1)=0.

t— + oo t

Then Proposition 3.2 implies

s-lim U, (1)*¢ *(Ho . k) f @ A)k)n(k))g *(Ho , K)U (1)

=[O Ak Dk g ((H k)

and provides the existence and the expression of (3.15). Finally, this one is nothing
but f(u(H ki )g*(H{ ,k{) because y=1 on suppg.

We close this section with the proof of the short-range result.

Proof of Theorem 2.18. Proposition 3.5 implies part a) of Theorem 2.18 because
when V,=0 we have U,(f)=e~"M° and H}'=H,. Moreover it follows from part
a) that:

g(H,k*).=W™*g(Hy, k)W ™*)* for all Borel functions g on X.

By the remark after Definition 22, we have Iy _(Hy,k)=0 and therefore
lys,. (H,k™).=0. Thus, part b) of Theorem 2.18 is a consequence of Theorem 2.17.

4. Existence of modified wave operators in the long-range case

The first step of this analysis is the construction of local (on X) modified wave
operators. Let (4y.ko)€Z,.,. We consider small neighborhoods Que 775, (4o,ko),
I,V g(Ao), Vo€ ¥ mlko) and Voe ¥ ylko), so that Qo = = Iyx V, and V< < V.
Indeed I, and ¥, are chosen so that n(k)= 11 (Ho(k)) = 134,(H o(k)) and (k) are real
analyticw.r.t. ke V,. We take X E B oampl Vo), x=10onV,. When ¥, is small enough,

it can be identified with some open subset of R" and the construction of Appendix A.2
provides a solution to the Hamilton-Jacobi equation

{9150(& k)= x(k)Ak) + x(K)[ReV )(t,k, — 0, So(t. k). k€ Vo @1

So(T, k) =0,
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with the estimates for pu'<pu
3USo(t.k)— tx(k) k) =0,t'"*), VkeV,, YaeN" 4.2)

Note that we introduced the cut-off y in order to have a global definition of Sy(z,k):
This solution Sy(t,-) belongs to €2, (M ; R) and is supported in Vo forall t>T. If

comp

the variable k is restricted to V,, then one can drop the cut-off y in the estimates (4.2) in
equation (4.1) and all relations locally derived from this equation.

We will need some other propagation estimates. The expression U,(f) again
denotes the unitary propagator associated with the time-dependent Hamiltonian H,(f)
given by (3.16). For the sake of simplicity we assume T'=0, which can be done
after changing the time origin.

Lemma 4.1. Let g belong to 6%.,,,(Io x Vo) with suppgly = Q. Then we have
(D + 0uSot, k)g(H o, K)U()R™ | = O(1), (4.3)
and (D, + 8,So(t, k))g(Hy , k)e SR~ =O(1). (4.4

Proof. The estimate (4.4) is rather easy. Indeed the identity

Dye™ 1SotH) = ¢ = 5eB(Dy — 9,81, k)),
implies
(Di+ 0 So(t,k)g(Ho , k)e™ SotN =g(H, k)™ 0D,
+[Dy.g(Ho k)]e™ S0,

But since g€ G %my(lo % Vo). the commutator is bounded. This implies (4.4).
The proof of (4.3) is more involved. For ge 65.,,(Io x V), with §=1 on suppg,
and for pe N we set

G, =g*"(Hy k).
Pseudo-differential calculus yields
(Dy+0,So(t,k)g(Hy k) =g(H k)G (D, + 0,So(t, k)G, + O(1).
Hence the problem is reduced to checking that
F ()= Uy()*G (D, + 8,So(t. k)G, Uy(NR ™"

is uniformly bounded with respect to 1>0 for some peN. It is clear that F,0) is
bounded. Meanwhile its derivative equals

Fi()=Uy(0*D,[G Dy +8,So(t. k)G, 1 U (R,
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where D, is the Heisenberg derivative associated with H,(¢). In the next calculation,
the expression B,(f) will generically denote a bounded operator of which the norm
is O(t™") and y' will be some positive number smaller than p. By noticing that
G x(k)n(k)= G, because suppg < I, x V,, we get

Dy(G (D +0,So(t, k)G ,)
=i[V(t,k, D}), G, 1(D,+ 3,So(t,k)G, +h.c.
+G(— 8, k) + LV (t,k, D), Dy + 8, So(t, k)] + 03So(t, k)G,
=:1,()+1,(1).
Pseudo-differential calculus combined with estimate (4.2) leads to
1()=B, 4 ()G, (D + 0, So(t, k)G, 1 + By 4 (1),  for p>1 4.5)
and  I,()=B,(1), for p=0. (4.6)

For the second term 7,(f), we first recall that the principal symbol of V(t,k, D,) is
real so that

iLV(t,k, D), D+ 8,So(t, k)] = — 0, ReV(t,k, D)+ 3,ReV (1, k, D, )i So(t, k)
+ B, (1)
By differentiating the Hamilton-Jacobi equation (4.1) with respect to k € V,, we obtain:
02S,(1, k) = 0, (k) + 0, Re V (1, k, — 8, So(t, k) — 0,Re V(1. k, — 0, So(t, k))Or So(t, k).
The two previous identities imply
I,(1)= — G, [0,ReV(t.k, D\)— O, ReV (1, k, — 0,So(t, k)]G,
+G,[0,ReV (1, k, D) —d,ReV(t,k, — 0, So(t.k))] - 0iSo(t, k)G, + By 4 (1),
By Proposition B.3, we have
(O ReV(t,k, D) — 0 ReV(t,k, —0,Sy(t, k)=
By 4 (D + 0, So(t,k, D))+ By 4 (1),
(0,ReV(t,k, D) —0,ReV 1.k, — 0, So(t, k)=
By 4 (D4 0,So(t.k, D))+ B 4, (1),

while (4.2) says that the norm of 67 So(7,k) is O(7). Hence the term I,(¢) admits the same
decomposition as 7,(f) in (4.5) (4.6). By going back to the definition of F(t), we obtain

F;)(r)zBl+n’(t)Fp—l(t)+Bl+u'(t) fOI'pZ]
and Fo(f)= B,(1).
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By integrating and by induction, this yields
”FP(I)” < Cpt—inf(o,l —(p+ l)u’}'

We conclude by taking p>[n~'].

Proposition 4.2. The limits

s-limeMe S0 , (Ho k)1, (Ho) 4.7)
t— + o

and s-lime™Sote~iHy o (H k™), (4.8)
t—=+ o0

exist. If Wg, denotes the limit (4.7) then (4.8) equals (Wg)*. Moreover, we have:

Wag(Ho kY Wa)*=g(H.k").. geE5(Q).

Proof. By introducing some locally finite partition of unity on (I,\(rUa,,(H))
x Vo, Zjengf =1, with g;e 43, (I,\(tUa,(H))x V,), we have

s-lim Z gjz(HO*k)lQo(HO’k)z IQO(HO’k)lc(HO)

N—-ow j<N

and  slim Y g2(H,k*) g (H k*)e=1g,(H k™). (4.9)

N—-w j<N

Hence, it suffices to prove the existence of the limits

s-limeHe ~iSetkg 2(1 k)

t—+ oo
and s-lime'Sottke ~itHg2( I ke *) = s-lime'SotKg(H  k)e *H,
=+ t=+wo

By the same method as in the proof of Theorem 2.17, the problem is reduced to
the existence of the limits

s-lim U, (1) *g(H y , k)e ~ o0 (4.10)
t—+ + oo

and s-limeS°Rg(H  k)U,(1). 4.11)
t—+ oo

We calculate
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d .
ar (€5 Ng(H o, k)U(t)u)

=€"SoU0[i0,S (1, k)g(Hy , k) — ig(Ho , k)Y (xDk)m(k) + V (1, k, D) U, ()
=ie'SUP[ReV (t,k, — 0, So(t,k))— ReV (t,k, D)]g 2(Hy , k) U (tu+ O~ ~*). (4.12)
We refer again to Proposition B.3 and write
(ReV(t,k, —0,So(t,k))— ReV(t,k, D))= R, (1D, + 0, So(t, k)) + R,(1)
with R()=0(t""'"*) and R,(t)=0(t"2"*). By density we can take ue D(R) and

Lemma 4.1 gives

d .
‘ Ee's""""g(Ho KU
<C U ull + D+ 3 Solt, kNg(Ho k) U(0hull]

<Ct '™~

Thus we get the existence of the limit (4.11). We do the same for (4.10). The
identification of (4.11) as the adjoint of (4.10) and the last statement rely on the
same arguments as the one used for Proposition 3.5. Their proof is even simpler
by referring to Theorem 2.11.

In order to construct a global modified dynamic, we take a locally finite covering
of Z,.,=uUQ; where the sets Q; are “smooth enough™ open subsets of X,., which
satisfy the same properties as Q, introduced in the beginning of this Section and
Q;nQ; =0 for j#j'. The expression “smooth enough” means that the boundary
0Q; of Q; is the finite union of submanifolds of R x M with codimension 2. Such
a covering can be done with a triangulation of each stratum of Z ., (which is a
semi-analytic set of R x M locally difftomorphic to M by projection). With every
Q;, we associate the solution St,k), t>T;, of the Hamilton-Jacobi equation (4.1)
where a suitable cut-off y; replaces .

Definition 4.3. The modifier S(¢, H,.k) is the self-adjoint operator defined by

St Ho K)=3 iz, + oS 1)1 0,(Ho ) 4.13)

Remark 4.4. We recall that the estimate (4.2) can be made uniform with respect to
Jjfora=0. This combined with X1, (H,,k)=1 ensures that the domain of S(t, H, , k)
contains D(H,) (and equals D(H,) if T;=T for all j).

The Theorem 2.19 is now easily derived from its local form given in Proposition
4.2.
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Proof of Theorem 2.19. We have
e~ iS(t,Ho,k) — Z e iS;(t,k) 1 Q_,(HO , k)
J

The limit which defines the wave operator W* exists because Z;1,(H,,k)=1. For
the converse limit, we first note that for all j, we have 1,9 (H,,k)=0. By applying
Proposition 4.2 with finitely many Q, which cover dQ;, we deduce from this that
loo(H,k*),=0. This implies

ZIQJ(H»k+)c= lz,cg(H»k+)c
i

and the existence of the second limit in Theorem 2.19 becomes a consequence its
local form (4.8).

A. Some topics in scattering theory

In this appendix, we shall prove the minimal velocity estimates required in our
analysis. Then, we will detail the construction of the Hamilton-Jacobi equation (4.1).

A.1. Minimal velocity estimates.

These abstract propagation estimates are due to Sigal-Soffer. We will follow
the presentation given in [8] and [11], and give a sharper version which is
needed here.

Proposition A.1. Let H and A be two self-adjoint operators on a Hilbert space
H. Let V(1) be a bounded time-dependent self-adjoint perturbation so that the unitary
propagator U(t)= U(t,0), associated with the Hamiltonian H(t)=H+ V(t), is well-
defined. We suppose that:

i) The function s — e“*(H+i)"'e "4 belongs to €' **(R, L(K)),
for some £>0.

ii) lad V(0)ll € O(t™°), llady+n- V(DI €077 as t— o0
If A denotes some interval so that
1a(H)[H,iA]15(H)> coEA(H),

then we have for any g€ €%, (R),suppg < (—0,c,) and any f€E o (A)

+ 2
J g(é)f(H)U(t)u ?sCllullz, Yue # (A.1)
1
. A
and s-lim g <7> f(H)U(t)=0. (A.2)

The Heisenberg derivative &+ [H(r),i.] will be denoted by D. We will use the next
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versions of Putnam-Kato inequality and Cook method. The proof can be found

in [8].

Lemma A.2. Let ® be a uniformly bounded L(#)-valued €'-function on R™.

a) If there exist measurable ¥(#)-valued functions B(t) and B{t), i=1---n, so that

D®(1)=BX(0)B(t) — i B()*B;1)
i=1

with for all ie{l,--,n}

o o]
-[IIBf(t)U(t)ullzdtSCllullz, Vue s,
1
then there is a constant C, >0 so that

J I BE) Ut 2dt < C, |ull2,  Vue#.

1

b) Let us assume that the function ® satisfies

(02, DO, < 3 1B Wl 1B (0,

+ oo
with f 1B U@l dt < C, |2, Vue #

1

+ o
and J 1B (Ul ?dt < Cylul®,  VYue,

1

where 9 is a dense subset of #. Then, the limit

s-lim U(#)*®(£) U(¥)

t—+ oo

exists.

Proof of Proposition A.1. Let ge€%,((—,c,)) with ¢, <c,. We set
+ o
F(t)=j g%(s,)ds,
and we consider the observable

(1) =f(H)F<§)f(H).
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We next calculate D®(7). We have

D¢(t)=f(H)([H,1F< )]——zg ( >>f(H)+[V(t) tf(H)F( )f(H)]
o (]

+ [N, if (H )]FG) f(H)+h.c.

623

In order to estimate the last term, we use Helffer-Sjostrand functional calculus (2.7)
and we reduce the problem to the estimate of commutators of ¥(¢) with the resolvent
(H+i~'. Our assumptions on W(f), imply that the norm of this commutator is

O(t™'7%. By using suppg < (—,c,), we get

DO(¢) Zf(H)I:H, iF(f;-)]f(H) +f(H)[ ), iF(;)]j(H) —c ;g 2(;) +0(t™"' 9.

. A\ .. ) . .
For the commutators with F <~), it is convenient to introduce the Fourier transform
t

of F:

[C zF( )]_—J Fo)[C, te“"]da

1 (. At 4 A
=—1/| Fo)oe': f e 9 C,iAle""’ dOdo
2nt ) g o

= — jf [£(c —a")(0") e ""’%[C, iA]ei"o%dOdada’
R2x[0,1]

[ o 4 A
= Jf [g(a)g'(a')]e""”’“_o)’[C,iA]e'(”"’"I‘idBdodo’.
R2x[0,1]

[ W), iF (;)] =017,

For C=(H+1i)"!, our assumptions say that

By taking C= V1), we get

R3s— B(s)=e“[(H+i)",id]e "4 e L(H#)

is Holder continuous with order ¢>0. Hence we have the identity

(A.3)
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ot of (20 07))

t

pilo o - o)%B(O)ei(a +oed _ eia%B (00 +(1— 0)0',) eia'%
t

and we deduce from (A.3)

(H+)™! [HJFGH(HH)‘ : =%g<§)(H+i)"[H,iA](H+i)"g <§>+0(r“f).
(A4)

Further, one easily checks, with Helffer-Sjostrand formula and the equality (A.3),
the estimate

[g G),hm)}o«- ), Vhe @, (R) (A5)

By left- and right- multiplying (A.4) with h(H)=f(H)(H+1i) the previous estimate
(A.S) leads to

f(H)[H, iF(?)]f(H) - ;f(H)g (”})[H, iAlg <§)f(m Lo,
We use again (A.5) with h=f,, fi € €5on,(A) and f, f=f:
A 1 A
f(H)[H, iF<7)]f(H) - ;f(H)g<7)f1(H>[H, iA1f\(H)g G)f(H) Lou Y

1 A
2Co ;f(H)gz <7>f(H)+ o179
We have proved

1 A -
DQ(’)Z(CO_Cl);f(H)gZ(7)f(H)+0(t 7).
This and Lemma A.2 a) yield (A.1). The existence and the value of the strong
limit (A.2) come from the previous result: We calculate the Heisenberg derivative
of f(H)g*#) f(H). With the inequality (A.1) and Lemma A.2 b), we obtain the
existence of the strong limit

s-lim U(t)*f(H) g 2 G) F(H)UG).

t—=+ o0

Finally, this one has to be zero because the integral (A.1) is convergent.
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Indeed, the estimates (A.1) and (A.2) are not very satisfactory because the
conjugate operator is not explicit, by its construction given in [12]. However, it
can be estimated by more familiar observables. This point of view is the reason
for the next statements.

Lemma A.3. Let A and B be two self-adjoint operators on a Hilbert space #
so that

2(B) € 9(A),
A<cB and 1<B,
[4, B1B '€ L(¥).

Then there exist small enough constants c4>0 and £,>0 so that

B A
AOES

Proposition A.l and the above Lemma A.3, lead to

=0(™ .

Proposition A4. If H, A and B are three self-adjoint operators on # which
satisfy the assumptions of Proposition A.1 and Lemma A.3, then we have for any
S €Comp(A) and for £,>0 small enough,

+ o0 2
J F(? Sso> f(H)U(tu ?s Clul®, Vue# (A.6)
1
and  s-lim F(?s 50> f(H)U(t)=0. (A.7)

Proof of Lemma A.3. Let us first verify

B
[6(%).4]-o ws

for Ge%%,.,(R). We use again Helffer-Sjostrand formula (2.7) which gives

-1
[G<§>,A]=LJ a,c?(z)[<z—§> ,A]dz/\dz’
t 2ni J ¢ t
L 656(2)(2—5)—1[§,A:|B"‘B(z—§>—ldz/\dz'
2ni J¢ t t t

where G is an almost analytic extension of G which satisfies

102 ,0;:G(2)| < Cy ,llm zI¥(z> N, YNeN, ae N2
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We have [(z—2)"'|=0(Imz|~"') while

(=) TG
t |Tm z|

The estimate (A.8) now comes at once. Let R(f) and R,(f) respectively denote
B B
F<7$ao> and F<7$2£0>. We have R(OR,()=R(1). Let A,(6)=R,(AR,(1)*

For ¢, small enough,

A0SR OBR, ()< ey

. . At .
which yields F(¥2co>=0. It remains to check that

R() [F(ézco)— F(f‘ 't(l)zco>]e ot .

We write F(s>c,)=(s+i)F_,(s) where F_, satisfies |0°F_ ,(s)| < C,{s>~'7*% We take
some almost analytic extension F_ (z) of F_, satisfying

|02 :0:F_ ()| < Cnlim2|¥(z>~27* ¥ NeN, aeN?,

and we write

R(t)[F(ﬁz co)— F(A 0, c0>] — R() (ﬁ—A ‘(’)> F. ,<4>
t t 1 t t
(%) (5)-- (4]

By (A.8) with G(B)=F,(8<¢,), we estimate the first term by

R() G—A‘f”>=ku)k,u)§—R(I)R,(z)éle=R(t)[Rl(z),é]eou"').
(A.9)

For the second term, we combine the above estimate with (A.8) and we get

w0 ()]
t t !
_ <A 'l(’) + i)R(t) [F_ ,G) _F_, <fil(i))] Lo, (A.10)
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By recalling that 449 is uniformly bounded by %c,, we are led to consider

i t {
_ ! [0 R0 [(z—i‘i>— l —(z—A'(t)>_ l]arz N
2ni )¢ t t

=L. 0:F_ (2)R(1) (z —’7’>_ l<ﬁ— 4 ‘(’))<z A ‘t(’)>_ Idz Ndz.

2ni J¢ t t

We commute R(f) and the resolvent (z—4)~":

R(f)<z—ﬂ>_l=<z—/—1>—lR(t)—<z—é>_l[R(t,ﬂ](z—ﬁ)_l
! ! t ! t
and we conclude with (A.8) and (A.9).

A.2 About the Hamilton-Jacobi equation.

In order to construct modified wave operators in the long-range case, we need
solutions of Hamilton-Jacobi equations with Hamiltonians having the form

h(t, x, &) = E(&)+ V1, x, )
where E belongs to €%,,(R") and Ve@™(R x T*R") satisfies

050801 W(1, X, E)| < C,p &+ |ty 12 1al 181,

Theorem A.5. There exists T>O0 large enough so that the equation

{0,5(& ) =E(&)+ V1,0.5(1,8).€)

S50 (A.11)

admits a unique solution under the condition 0}S(t,&)e L3(R").  This solution is then
infinitely differentiable with respect to £€R" and satisfies

QS &) —LEE)] =0 ™**%),  for |a|>0. (A.12)

In order to prove this result, we shall use the Theorem A.3.1 of
[8] which says that the solution is given by

S(1.8)=0(t,n(1, &) (A.13)

with Q1. n)= J hut, x(ua, 1), &Gt ) + x4, 1), 0,8(u, )y, (A.14)
T
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where (x(¢,1), £(t,n)) is the solution to the Hamilton equations with the initial data
(xX(T,n), &T,n)=(0,n). In order to define & — y(t, £), we have to study the Hamilton
equation with prescribed initial position and final momentum.

Proposition A.6. There exists T>0 large enough so that there is a unique
trajectory in T*R" which solves

31y = 0h(t, (1), n(1)
on(t)= —0,h(t, (1), n(1) (A.15)
yt)=xy, nlt))=¢,,

when T<t,<t,<+ o0 and (x,,&,)e T*R". This solution denoted by

05ty 1y, x,89), nt5 1,15, x4, 85))
is indeed infinitely differentiable with respect to £,€R" and satisfies
108,008t t2, X1, &9) —x; —(t = 1) EE) < Ot o)t — 1, (A.16)
and 05,1311 .15, %, . &) —0E(E)) <O "7, for a>0. (A.17)
Proof. The local existence and uniqueness of a solution to the initial value

problem for the considered Hamilton equations makes no problem. For such a
solution, we get by differentiation

{03y(,) = (1, (1), (1)
om(t)="P(t, y(1), n(1))

with O=0%V + 0, VO:E+0, V0V —0;E0V—0;Vo,V
and ¥Y=-0.V.

These functions actually satisfy

10:0501D(1, x, &) < Cyp, IE| H 1]y~ 1 eI~ IA

|0:0801 (1, X, &) < CogyIE| 121y~ TH¥em =10
We set

Y(0)=p(1) —x, —(t —1,)0:E(S>)
and O(1) =n(t)— 0E(E,).

The system (A.15) is then equivalent to the fixed point problem

-~
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where the mapping 2 is given by

9<Y>(,) < 1(s — 1)D(s, y(s), n(s)ds — (1 — 1,) [ (s, ¥(s), n(s))ds)
S [e2(s, y(s), n(s))ds

We introduce the functions (2, and (/,, defined by

0 if s<t 0 if s<t,
0= 71 if t<s<t, and  {, (=1 (—1,) if f,<s<t
0 if t,<s (t—t) if 1<s

The mapping £ then writes

g,< Y>(t):< [ 20 )D(s, X1 + (s — 11)0E(E2) + Y(s), 0.E (L, )+®(S))dS)
Jor ()W s, xy +(s— )0 E(E,) + Y(s), 0.E(£,) + O(s))ds

We shall solve the fixed point problem in the vector space Z,\ x Z° where

Z{l:={fe€€°([tl,+oo),R") sup AU oo}, i=0,1,

te[T, o[ It_’ |l

is endowed with its natural norm. The functions {?,,(s) and (], (s) satisfy

0<(?,<1 and 0< |C”l|<1
t—t

so that 2 is an endomorphism of Z! x Z°. Moreover the estimates on ® and ¥
ensure that 2 is infinitely Fréchet-differentiable with a derivative estimated by

10v.62(Y, O a1 20, < Cri "4,
1 1

By taking ¢, large enough, the mapping £ is a contraction on Z! x Z? and the fixed
point problem (A.18) admits a unique solution. Indeed, 2 is parametrized by
(x,,&,) and the derivative of the solution (¥(x, ,¢&,), O(x,,&,)) of (A.18) with respect
to £,€R" equals

[—( —6y,e,@)“a¢29]( ?(xl ,62), @(xl N2

By referring again to the estimates for ® and ¥ we deduce that 9,2 is of order
O(t7#*%) and the estimates (A.16)(A.17) come at once for |¢|<1. The estimates for
any a follow by differentiating with respect to &, e R" the above relation.

Proof of Theorem A.5. The function (¢, £) involved in (A.13) is cpnstructed by
considering the solution to (A.15) with ¢, =T large enough, t,=¢, x,=0 and
&,=¢&  We then take n(t,€)=n(t;T,1,0,&), where the estimate (A.17) ensures that
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n(¢, &) is Lipschitz continuous with respect to £eR". The Theorem A.3.1 of [8]
states that the function S(z,&) given by (A.13) and (A.14) is the unique solution
to (A.11) with 9}S(t,&)e L2(R"). Moreover this result provides the identity

a{S(t’ é) = x(t» ’I(t’ é)) =y(t 5 T, L, Oa é)
The estimate (A.12) is then easily derived by integration
0,05[S(1, &) — tE(Q)] =0 W1, 0¢5(1, €). &)]

from t to + oo, by using the estimates on V" and (A.16).

B. Pseudo-differential calculus on the torus

There are several ways of considering pseudo-differential calculus on the
torus. The one which we point out consists in going back to R" and using
Weyl-Hormander calculus. This method presents two advantages: 1) this procedure
associates a complete symbol with any pseudo-differential operator; 2) the precise
estimates of Weyl-Hormander calculus provide estimates for parameter dependent
pseudo-differential operators (semi-classical calculus). The final remark reviews other
approaches and relationships between them. Let I' denote the lattice Z” in R" and
IM'*=(2nZ") its dual lattice. The distributions on T"=R"/T" will be identified with
the T-periodic elements u(k) of &'(R"),

ulk+y)=uk), Vyel.
Then we have
HY(T"):={u(k) e H},(R"), u(k +y)=u(k), VyeT},

and the scalar product on L*(T" dk) is given by
(u, D)LZ(T") = j ﬁ(k)v(k)dk,
F

where F is any fixed fundamental cell of T
The pseudo-differential operators are defined by

a(k, Dyyu(k) = J J e~ * = Mak, mu(k)dndk’
R2n

1
< >

[t,.ak,DJ)]=0, Vyerl.

Note that the last condition is equivalent to a(k+vy,n)=alk,n), Yyel'. These



Periodic Schrodinger operators 631

operators send &'(R" into itself and preserve periodicity. Thus they can be
considered as continuous operators on 2'(T").

Definition B.1. i) The expression OpS™(T") denotes the space of operators
a(k, D,) where the symbol a belongs to #<(T*T") and satisfies

|020ka(x, &)l < C, ,EY™ W, V(x,&)e T*T", ¥(a, Pe N*".

ii) The expression OpS™™(T") denotes the space of families (a(k, Dy ; h))4e(0,1) Where the
symbols a(h) satisfy the estimates

10%04a(x, &)| < C, hP1I7mCE WL Y(x, & e T*T", V(o Ple N*,
uniformly with respect to he(0,1).

The symbols of these operators are defined on T*R" as I" periodic elements of

2
S((n)"‘, g,,=dk2 + il ) and the # operation defined by (a#b)k, D,)=a(k, D,)b(k, D)

ny?
inherits all the properties of the same operation defined for general symbols on
T*R" (see [14]).
We next check the L? continuity on T"

Lemma B.2. If aeS((n>".g,). then the operator a(k,D,) is continuous from
HS(T") into H*~™(T") for any se R. Moreover its norm is estimated by some fixed
semi-norm of the symbol a.

Proof. 1t suffices to consider the case m=s5=0. A fixed fundamental cell of
T is still denoted by F and we choose y e 2., ,(R") a cut-off function so that y=1 on F.

comp

Then we have the norm equivalence
C ™ Mlull gy < llxtll L2grmy < C el L2rm)

and it remains to find an estimate for ||ya(k, Dullp2rmy. We take yo€ € (R") sO

that £, ryok—y)=1 and jo€€%m,(R") so that j,=1 on suppy,. By using the
periodicity of u, we get

Cxatk, Dultk)= 3., [xk)atk, Dxolk —yul(k)

|17|<7vo0

+||z J e “ RNy k)atk, mxo(k")Tolk Yu(k')dndk . (B.1)
v[>vod J R2"

For |y| <y, , we refer to the continuity of a(k, D) on L*(R"). For |y|>y, integration by
parts applied to
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Kk, k)= J e Kty k)alk, n)xolk')dn
R

shows that K, is bounded, with some fixed compact support and the estimate
”Ky”L“"(RZ")SCN”a”N<v>_N

where || ||y is some seminorm on S(1,g,) depending on N. Schur’s Lemma then
provides the estimate for the second term of (B.1),

Cylally 3, <> ¥<Cyllaly
[¥]>vo
by taking N large enough.
From the definition that we took, we already know that the pseudo-differential
operators form an algebra of continuous operators on 2'(T"). The above Lemma
B.2 also ensures that pseudo-differential operators are continuous on €*(T").

Moreover this yields that the operator A=a(k, D,) defined on L*T") with domain
{ue LXT"), Aue L*(T")} is closed and that ¥=(T") is a core for A.

Proposition B.3. i) If A; belongs to OpS"™(T"), i=1,2, with m,+m,<1, then
we have

I[A4,,4,] ”.{e’(LZ(T")) = O(hl T,

i) If A=(a(k, Dy; M))ueio.1) belongs to OpS™™(T"), then the family of adjoint operators
A* belongs to OpS"™(T") and

A+A*

—(Rea(k, D, ; h))he(O,l) € Opsh'm_ \r).
i) If A=(a(k, Dy; Myeo.1) belongs to OpS"™(T") and if (ho(k ; W)ueio ney IS @ bounded
Samily in €°(T"), then we have

alk, Di;h)—alk, o(k ; h); )= Ry(h) (D, — @(k ;h))+ Ry(h) (B.2)
with ”Rl(h)”yu,z(rn)) = O(hl " and | Rz(h)”.y'(LZ(rn)) = O(hl ).

iv) The operator V(D,) defined as the closure on L*(R") of an element of OpS™(T"),
is the same as the operator defined by functional calculus.

Proof. If u and v taken in ¥*(T") are considered as I'-periodic elements of
%>(R" and A =(a(k, D,) as an element of OpS™(R"), the periodicity condition ensures
that
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jﬁ(k)[Av](k)dk: J [ATu](k)vtk)dk,
F F

where A is the formal adjoint of 4 on L?>(R"). Hence, the assertions i) and ii) are
byproducts of pseudo-differential calculus on R" combined with Lemma B.2.

The assertion iii) is also derived from a result on R” which may be found in [8]
(use a Taylor expansion).

Let us now consider iv). We first by V,D,) the closure of the pseudo-differential
operator and V(D)) the function of the vector of commuting self-adjoint operators
D,. For ue%™(T") considered as a I'-periodic element of ¥*(R"), the Fourier
tranform equals

d(n)n)=Q2n)" Y, 4,.0(n—y*)

y*elx

where i,,, y*eI'*, are the Fourier coefficients of u. Hence, we have

LV pal DiJu)(k) = J e Vinuxmdn= Y, e ViyNi, =[V(Dulk).
R

yeel'*

We conclude by recalling that ¥°(T") is a core for V,(D,) and V(D))
We close this appendix by recalling two other approaches to pseudo-differential
calculus on the torus.

Remark B4. i) The standard pseudo-differential calculus on compact manifolds

applies to the torus. Indeed, it is rather easy to check that the pseudo-differentital
operators defined in this appendix are classical pseudo-differential operators and by
using charts that classical pseudo-differential operators are of this form up to
negligible remainders.
ii) Another approach to pseudo-differential calculus on the torus, consists in replacing
Fourier transform by Fourier series and derivatives with respect to # by discrete
derivatives with respect to y*. Here again, by introducing the right interpolation,
one can show that this pseudo-differential calculus coincides with the two previous
ones modulo negligible remainders.
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