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On maximality of two-sheeted unlimited covering surfaces
of the unit disc
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1. Introduction

Let R be a Riemann surface. If there exists a conformal mapping : of R onto
a subregion of a Riemann surface R, then we call R, or more precisely the pair
(R,1), an extension of R. We often identify /(R) with R and consider R as a
subregion of R. According to this definition R itself is an extension of R. It is
called a proper extension if R\:(R) # J. A Riemann surface is called maximal if
it has no proper extensions. An extension R of R is called a maximal extension if
R is a maximal Riemann surface. In connection with the classification theory
of Riemann surfaces we know that if R has a small ideal boundary then R is
maximal. For example if R with no planar ends belongs to the class Oyp, Okp,
or O,, then R is maximal; see [SO, X.5C].

By a neighborhood of the ideal boundary of R we mean the exterior of a
compact set of R. We call a connected component V' of a neighborhood of the
ideal boundary an end if it is not relatively compact.

Sakai [Sa3] has obtained a new characterization of non-maximal Riemann
surfaces.

Theorem A ([Sa3] Theorem 4.1). Let R be a Riemann surface. Then R is not
maximal if and only if one of the following conditions holds for R.

(a) R has a planar end.

(b) R has a border.

(¢) R has a disc with crowded ideal boundary.

See the next section for the definition of a disc with crowded ideal boundary.

It is natural to ask whether there exists a maximal Riemann surface which
does not belong to the class Oyx-type above referred or not. Sakai has proved in
Proposition 6.1 of [Sa3] that if a Riemann surface R has no planar ends and
belongs to the class &k, then R is maximal. The class %k, is defined in
[Sal]. He also showed in Example 2 of [Sa3] that there exists a two-sheeted
unlimited covering surface of the unit disc which belongs to the class %jp.
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Obviously it does not belong to the class Oy-type. Then our final goal is to know
where the class of all maximal Riemann surfaces has place in the classification
theory of Riemann surfaces. In [J] we have obtained sufficient conditions for a
Riemann surface to be maximal.

Theorem B ([J] Theorems 2 and 3). Let R be a Riemann surface of infinite
genus having no planar ends.

(1) If R satisfies the condition I'yo(R)NT;,(R) # {0}, then R is maximal.

(2)  Suppose that there exists a harmonic function u on a neighborhood V of
the ideal boundary of R such that u is non-constant in each component of V and has
Ty~ and T'y,-behaviors simultaneously.  Then R is maximal.

See the next section for the definitions of I'yo(R) and I~ and I'j,-behaviors.

In this paper we are mainly concerned with a two-sheeted unlimited covering
surface R of the unit disc U with the projection mapping n. The pair (R, =) is
also called a covering surface. As is known from Sakai’s characterization of non-
maximal Riemann surfaces, we need some informations about the neighborhood of
the ideal boundary. In order to obtain them we consider the Kuramochi
compactification R* of R. We call R*\R the Kuramochi ideal boundary of R and
denote it by Ag. We shall show in Proposition 2 that the projection 7 is
continuously extended to RU A and in Theorem 4 determine the set 1? = n~!(e™)
of the Kuramochi boundary points over ¢’ € 9U. We obtain a sufficient con-
dition for R to be maximal in terms of /7.

Theorem 1. If 1V consists of one minimal point for every e € U, then R is a
maximal Riemann surface.

Later we shall give a theorem, that is Theorem 5, which includes Theorem
1. We also prove in Theorem 6 that the converse of Theorem 1 is not true.

2. Preliminaries

We summarize here the definitions concerning Riemann surfaces and covering
surfaces.

A continuous mapping of the open interval (0,1) into a Riemann surface R
is an open arc. We say that an open arc starts from the ideal boundary if
Mo <1 f((0,7]) is an empty set and terminates at the ideal boundary if
ﬂ()<r<|f([T* 1)) = Q -

We say that a plane point set £ which is compact and totally disconnected
belongs to the class Np or is an Np-set if C\E belongs to the class O,p (cf. [SO, p.
255]). Let D be a simply connected subregion of R. Suppose that its relative
boundary dD consists of a countable number of analytic simple open arcs {y;} such
that each y; starts from the ideal boundary and terminates at the ideal boundary,
yNye = if j#k, and {y;} does not accumulate in R. Then a Riemann
mapping ¢ of D onto the unit disc U is continuously extended over dD and #(dD)
is a relatively open subset of dU. We denote by I the complement of ¢(dD) with
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respect to 0U. We call D a disc with crowded ideal boundary if I is totally
disconnected and is not an Np-set.

Let R and S be Riemann surfaces. We say that R is an unlimited covering
surface of S if there is an analytic mapping 7 of R onto S such that for any curve
y=7(t), te[0,1] on S and any point Pye n~'(y(0)) there is a curve j = (1),
te[0.1] on R such that $(0) = Py and =(3(¢)) = y(f). We call the mapping 7 the
projection mapping. The pair (R, n) is also called a covering surface. We know
that if R is an unlimited covering surface of S, then for every point g€ S, n7'(q)
contains the same number of points provided a branch point of order n — 1 is
counted » points; see [Sp, Theorem 4.2]. The number » is called the number of
sheets. We say that a covering surface of S is ramified if it has branch points.

We recall some definitions of first order differentials on R. A differential
w = a(x, y)dx + b(x, y)dy is called real if all local coeflicients a(x, y) and b(x, y)
are real-valued functions and called of C* class of a(x, y) and b(x, y) are so. We
say that w is square integrable if local coefficients are measurable and

[ (a® + b*)dxdy = J oA

Jr R

is finite, where w* = —b(x, y)dx + a(x, y)dy is the conjugate differential of w. The
positive square root of this integral is denoted by ||w||z, and we call it the norm of
. Let I'(R) be the space of all real square integrable differentials on R. We
know that I'(R) is a Hilbert space with the inner product

(w1, w2) = (w1, w2) g = [ W) A ;.
Jr

Set

IG(R) ={df; f e CF (R)} and T'w(R) = I'§(R),

where C§°(R) is a class of infinitely differentiable functions with compact support
on R. We denote by I'4(R) the subspace of I'(R) which consists of harmonic
differentials.

We introduce important subspaces of I';(R). Let I'j(R) (resp. I'j(R)) be
the subspace of I',(R) whose elements w are exact (resp. semiexact) on R, that is,

j w =0 for every (resp. every dividing) l-cycle y on R.
y

We often use notation I'. Iy, I'pe, - - - instead of I'(R), I'y(R), 'he(R).---. Given a
closed subspace I'y of I', the orthogonal complement of Iy, in I is denoted by
Iy Set I't = {wswel,}. Since (wi.w;) = (o}, w3) holds, we have (I'*)" =
r L)". Then we shall write it simply I ;1. We need the subspaces of harmonic
measures [, and I'po; see [AS, V.ISC, 10B and 14C]| for definition. By [AS,
V.15D] and [AS, V.10C| we have I, = F}‘,ﬁ, and Iy = . By definition it

he
follows that I'y, > I'yse © 'y, and 'y © 'y, We have Iy D T'yo D i because



158 Naondo Jin

they are orthogonal complements of I'; . I';,, and I, respectively. See also
[AS, V.ISE]. We summarize the inclusion relations here:

r h = I hse = I he
u U
I ho > I hm-

If the differential dh of a function / of the class C' is square integrable, then
we call the integral [(h2 +h)2,)dxdy = ||dh||} the Dirichlet integral of 4 and say
that 4 has finite Dirichlet integral. Let HD(R) be the class of real-valued
harmonic functions on R with finite Dirichlet integral and KD(R) be the subclass
of HD(R) whose elements u have the property

J du* =0 for every dividing 1-cycle y on R.

Let AD(R) be the class of analytic functions on R with finite Dirichlet integral.
We denote by ‘RAD(R) the class of real-valued harmonic functions u such that
there is a single-valued conjugate harmonic function u* of u and u + iu* belongs
to AD(R). By the Cauchy-Riemann equation we have du* = —u,dx + u,dy =
(u*)dx+ (u*),dy=d(u*). It is easily seen that ue RAD(R) if and only if
ue HD(R) and

J du’ =0 for every l-cycle y on R.
Y

The relations
{du;u e HD(R)} = I'yo(R)
{du;ue KD(R)} = I'y(R)N T} (R)
{du;u e RAD(R)} = I'n(R)NT7;,(R)

hold. We say that a Riemann surface R belongs to the class Oyp, Ogp or O,p if
and only if HD(R), KD(R) or ‘RAD(R) consists of only constant functions, re-
spectively.

Let w be a real differential defined in a neighborhood of the ideal boundary of
R and I, be any closed subspace of I'j,. Then w is said to have I',-behavior if
the following representation holds in some neighborhood of the ideal boundary of
R:

w = w; + dfo,
w* = wy +dfi,

where w; e I'y, wy € F)*(‘Lﬂ and f, and f, are C®-functions on R such that dfy and
dfy belong to I'y. We say that a function u has I',-behavior if du does.
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3. Results

Let S be a Riemann surface and R be a two-sheeted unlimited covering
surface of S. We obtain a sufficient condition for R to be maximal as follows.

Theorem 2. Let S be a Riemann surface and R be a two-sheeted unlimited
covering surface of S with the projection mapping n. If R has no planar ends and
n~Y(Q) consists of one point for quasi every Qe As, then R is maximal.

The next theorem is a generalization of Theorem 2.

Theorem 3. Let S be a Riemann surface and R be a two-sheeted unlimited
covering surface of S with the projection mapping n. If R is of positive genus and
7~ 1(Q) consists of one point for quasi every Q€ As, then there are a maximal
extension (R,1) of R and an extension (S,1') of S such that R is a two-sheeted
unlimited covering surface of S with the projection mapping 7 which satisfies
'og=7o1 on R

We know that the Kuramochi boundary of the unit disc U is homeomorphic
to 0U = {|z| = 1} and every Kuramochi boundary point is minimal. We shall
show the following theorem.

Theorem 4. Let (R, ) be a two-sheeted unlimited covering surface of the unit
disc U. Then for e € 0U the fiber 1° = n='(e") is one of the following sets.

(a) IY consists of two minimal points.

(b) 19 is homeomorphic to I = [0, 1], and two minimal points correspond to 0
and 1.

(c) 1Y consists of one minimal point.

We say that R has (W)-property if I'y(R)NI;,(R) = I';,(R) holds. We
shall show the next theorem. We note that the assertion of Theorem 1 is
(a) = (h) in this theorem.

Theorem 5. For a two-sheeted unlimited covering surface R of the unit disc U
which has infinitely many branch points we have the relation

(a) & (b) & (c) & (d) & () & (f) = (g) = (h) = (i) and (i) # (h)

among the following conditions (a)—(i):
(a) 1?9 consists of one minimal point for every e’ € 0U.
(b) 1Y consists of one minimal point for quasi every e € oU.
(c) I'n(R)NT,(R) = {0}.
(d) HD(R) =HD(U). That is, for every ue HD(R) there is ue HD(U)
such that u=uon.
(e) HD(R) = RAD(R) holds on R.
(f) R has (W )-property.
(&) Tw(R)NTjy(R) # {0}.
(h) R is a maximal Riemann surface.
(i) RAD(R) = HD(U).



160 Naondo Jin
Remark. It is not known whether or not (g) = (f) or (h) = (g).
Finally we shall show that the converse of Theorem 1 is not true.

Theorem 6. There exists a two-sheeted unlimited covering surface (R,m) of U
such that R is maximal and 1° is homeomorphic to [0,1] for every e e dU.

Theorems 2 and 3 are proved in Section 6 and Theorem 4 is proved in Section
7. The proof of Theorem 5 is in Section 8 and the proof of Theorem 6 is in
Section 9.

4. Kuramochi boundary

We shall recall the definition of the Kuramochi (ideal) boundary of R and
some properties of it; see [CC] and [O].

We fix a closed parametric disc Ko on R and a point p,e R\K,. Let
{Ry},>, be an exhaustion of R, that is, R, is a regular subregion of R with
R, = R,,1, R\R, contains no compact component and R = UR,,. We assume
that Ry o Ko. Then there is ny such that R, contains p,. For any n > ny there
exists a function N,(p, p,) on R,\Kp which satisfies :

i) N,(p,py) has a singularity —log|z| at p,, where z is a local parameter
about p,,

i) N, (p, po) is harmonic in (R,\Ko)\{p},

iif)  Ny(p, pg) =0 if pe Ko,
and

iv) the (inner) normal derivative (ON,(-, py))/dv vanishes on 0R,.

The sequence {N,(p, po)},»,, converges uniformly on every compact subset
of ((R\Ko)\{po})U0Ky. Denote the limit function by N, (p) = N(p.p,). We
know that [|dNy, — dN, (-, po)llg\k, tends to zero as n — oo (cf. [O, Theorem 4]).
Since Ny(p, po) = Nu(py, p) holds, we have N(p, py) = N(py, p).

We say that a sequence {p,},, converges to the ideal boundary of R if
{p,} does not accumulate in R. A sequence {p,} converging to the ideal
boundary of R is called a fundamental sequence if {N,, } converges uniformly on
every compact subset of R\K;. Among the family of fundamental sequences
we define an equivalence relation: two fundamental sequences {p,} and {p,}
are equivalent if the limit functions coincide. We call an equivalence class a
Kuramochi boundary point. To every Kuramochi boundary point p, which is
an equivalence class of {p,} there corresponds a unique function N, (p) =

lim N, (p). We call the set of all Kuramochi boundary points the Kuramochi
m— oo

ideal boundary or simply Kuramochi boundary of R and denote it by dz. Set
R* = RUd4g. This R* is called the Kuramochi compactification of R. We define
a distance d(p, p') on R*\Kj by

N(P, p) N(P, p')
d N N = - ’
(P, p") ek [T+ N(P.p) T+ N(P, p)
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where K, is a closed parametric disc in R\K;. We call it the Kuramochi distance
on R*\Kj.

We know that this compactification does not depend on the choice of Kjp.
That is, let K be another closed parametric disc in R and 4% be the Kuramochi
boundary constructed on R\K;. Then there is a homeomorphism ¢ of RU 4g
onto RU 4y such that ¢| is an identity mapping (cf. [O, Theorem 12]).

For any compact set K = R\Kp and any compact set K’ = R*\Kj disjointed
from K, N(p, p,) is continuous on K x K’ by Harnack’s inequality (cf. [O, p.
278]). Obviously N, (p) = N(p, py), as a function of p, is positive on R\Kp and
equal to zero on 0Kjy. If p, is a point in 4g, then N, (p) is harmonic in R\Kyp. If
Po is a point in R\Kp, then N, (p) is harmonic in (R\Ko)\{p,} and has a
singularity —log|z| at p,. Moreover in this case if we define values of N, at
p € dr by N,(py), then N, has a continuous extension over Ag.

We can define the value of N, at pe 4 for pye Ag so that N, is lower
semicontinuous in R*\Kj.

Now we obtain a function N, (p) = N(p, py) on (R*\Kp) x (R*\Kp) and we
call it the Kuramochi kernel function. It is known that the Kuramochi kernel
function has the following properties:

i) N(p, py) is lower semi-continuous on (R*\Kp) x (R*\Kj).

ii) If pge R\Kp, then N, is continuous on (R*\Ko)\{py}-

iii) If py e A, then N, is continuous on R\K, and lower semi-continuous
on R*\Kj.

iv)  N(p, po) = N(po. p).

See [CC, Satz 17.1 and p.178] for the Kuramochi kernel functions. In [CC]
the Kuramochi kernel function is denoted by g.

Denote the set of all minimal boundary points by 4y. Set 4% = Ag\4}. We
know that A}{ is a Gy set and A% is an F, set; see [CC, p.134].

We take N(p, p’) as a kernel of potential. For any positive measure u in
R*\Ky we can define the potential Nu(p) = [N(p, p")du(p’) if it is not equal to
+00. A positive measure i on R*\Kj is said to be canonical if u(4%) =0. We
know that any potential Nu(p) has a canonical representation, that is, there exists
uniquely a canonical measure g such that Nu = Ng; see Satz 16.2 in [CC] or
Corollary of Theorem 24 and Theorem 27 in [O].

We call a subregion G of R admissible if its relative boundary dG consists of a
finite number of analytic Jordan curves and its closure G = GU 0G is disjoint from
Ko. For example if 2 > K is a regular subregion of R then each component of
R\Q is admissible. For f e C(R) and an admissible subregion G let us denote
by Qé the family of all Dirichlet finite functions of C' class on G with boundary
values f on 0G. Then there exists uniquely f ﬁGe@é which minimizes the
Dirichlet integral in 27.

The following facts for an admissible subregion G of R are useful (see [O,
Theorem 5)):

i) If pye G, then N,y > (N,)’ in G.

ii) If py¢ GUAG, then N, = (N,)’ in G.
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Denote by 47(R) the class of continuous functions f in R for which there
exists a regular subregion © o K such that f(p) = f?"(p) in each component V
of R\Q. If a regular subregion Q' contains @, then f = f°"" holds in each
component ¥’ of R\Q' and f is harmonic in some neighborhood of R\Q'. Thus
considering Q' instead of 2 we may assume from the beginning that f is harmonic
in some neighborhood of R\2. We know that every f € A#°(R) has a continuous
extension on Ag. See [CC, p.167 and p.170].

We shall use boundary behaviors of the Green function and the Kuramochi
kernel function. Denote the Green function on R\K; with a pole at p, by
dp(P) = g(p,py). We know that N, and g,, have finite Dirichlet integral over
some neighborhood of the ideal boundary. We show the next lemma.

Lemma 1. Suppose that p, € R\Ky. Then differentials dN;0 and dg,, admit
the following representations in some neighborhood of the ideal boundary:

de*O =y +dfo and dg,, = dfi,
where wpo € 'no(R), fy, fi € C*(R), and dfy,dfi € I'p(R).

Proof. Set Vo ={p;N,(p) = M}. Then V; is a closed parametric disc
centered at p, for sufficiently large M > 0. Let 2 be a relatively compact
subregion of R such that Q o VUK, and 0Q consists of a finite number of
analytic curves. We show that dN; |, can be extended to a closed differential
o of C® class on R by using the same arguments as in [Y, Lemma 1]. Let
{N.(p, py)} be the sequence which is defined on the top of this section. Since
{N,(p, py)} converges uniformly to N, on some neighborhoods of 9K, and 0V,
we have

dN> = lim

*
J Po J dNy(-, py)” = 0.
0KoUaV, n=9C Jak,Uav,

Take a quadrilateral subregion W of Q\(VyUKj) such that one pair of opposite
sides consists of subarcs of 0Ky and 0V}, and that the other pair of opposite sides
consists of arcs in Q\(VoUKp). Let W be the interior of WU VUK. Then W
is a simply connected region and

dN* :J dN* +[ dN* =0.
LW P ow P Jokuavy P

We can choose u of C* class in a neighborhood of dW so that du = dN, and
extend u over W so that ue C®(W). Then define a closed differential ¢ of C*
class as follows:

{ dN; on R\W
o= 0
du on W.

In this proof we often use well-known orthogonal decompositions I'.(R) = I'y(R) +
I'p(R) and I'(R) = I'.(R) + I'}y(R), where I'.(R) is the class of square integrable
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closed differentials; see [AS, V.10A]. Then we have 0 = w + dfy, where w and dfy
belong to I'y(R) and I'.o(R), respectively. It is easily seen that f; is of C*(R).
We show that this w of o is w9 which we want. It suffices to show that w
belongs to I'y(R) = I'j-(R). For any dve Iy

(w,dv*) g = (0,dv™) g = (0,dV") g\ + (0,d0") 5 = (AN, dv” )R\Q-l—JQua

holds.  Since [|[dN,, — dN, (-, py)llg,\x, tends to zero as n — oo,

(dN7,. dv") g = lim (dNA (-, py)" do") g0

= lim J vdN, (-, py)* = —J vdN, = J vo.
=)0 Q Fle)

Hence (w,dv*)r =0. We deduce that w is an element of I'j.

For the Green function we set Uy = {p:gp,(p) > M}. For sufficiently large
M >0, U is a closed parametric disc centered at p,. Let g,(p, py) be the Green
function on R,\Ky with a pole at p,. We know that a sequence {g.(p,py)}
converges to g, (p) uniformly on every compact subset of ((R\Ky)\{po})U Ko
and |\dgp, — dgn(-, Po)ll Rk, — O @s n — c0. Since g,, =0 on analytic boundary
0Ky, gp, is extended to be harmonic in some nelghborhood of 0Ky. Then there is
a function f on R such that f € C*(R\{p,}) and f = gp, in R\Kp. Let p be a
function of C*(R) such that p=1 in R\U, and p =0 in some neighborhood
of py. Set f) =pf. Then f, belongs to C*(R) and is equal to g,, in the
neighborhood of the ideal boundary. In order to prove dfi € I'o(R) it suffices to
show that (dfi,7), =0 holds for every e I'y,(R). Note that

(@, 0)r = (i, D) R\ gouvy) T (@1 D)y, + (df 1),

lmgo(dg,,( P0)- TR\ (KoU) +J St +J Lt
Ky

H— 00 Fl

:—limj g,,(-.p0>r*+j Me*
U Uy

I
|
D
s

gp, T = —J Mz =0.
Uy .

We have a conclusion.

Remark. Let Ky and K; be mutually disjoint closed parametric discs of R.
We can construct the Kuramochi kernel functions and the Kuramochi compac-
tification with respect to R\(KoU K;) in the same way as above. All statements in
this section are true if we use Ko U K; instead of Ky. We shall show that Lemma
1 is true even if we choose KoUK instead of Kj.

Let N, and N,,U be the Kuramochi kernel functions on R\K;, and R\
(Ko UKjy), respectively. By Lemma | we have
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ANy =awp +df, wp€lp(R), feCT(R), and df e I'o(R)

in the neighborhood of the ideal boundary. Since N, — N, is harmonic in R\
(KoUK;) and satisfies LﬁKoUﬁKO’ d(N,, —N,)* =0, we can choose a closed
differential ¢ of C® class on R such that o =d(N, — N,)" holds in the
neighborhood of the ideal boundary by the same way as in the proof of Lemma
1. Hence it suffices to show that a € I'jo(R) + I'o(R). For any dv € I'y, we have
(o,dv*)p =0 by the same argument as in the proof of Lemma 1. Therefore
g€ p(R)+ F@(R) and dN;o = d}\I;O — o admits a representation @y + df with
po € T'po(R), fe C®(R), and df e I'w(R) in the neighborhood of the ideal
boundary.

We shall remind the definition of the Kuramochi capacity. See [CC, p.
185]. We denote by C(F) the Kuramochi capacity of a subset F of R*\K,. If F
is a compact subset of R*\Kjp, then

C(F) = sup{u(F); u is a positive canonical measure and Ny < 1 on F}.
If D is an open set in R*\Kj, then
C(D) = sup{C(F); F is a compact set with F = D}.
For a set A = R*\K, the Kuramochi (outer) capacity is defined by
C(A4) = inf{C(D); D is an open set including 4}.

We say that a set E is (full) polar if the Kuramochi capacity of E is equal to
0. We know that compact subsets of A% are polar; see p.185 of [CC]. Since A%
is an F, set, from subadditivity of capacity it follows that 4% is polar. See also
[CC, pp. 186-189]). We say that a statement is true for quasi every Q € 4 or quasi
everywhere on A if the subset of A4 for which the statement is false has vanishing
capacity.

We consider the Kuramochi boundary of a Riemann surface R’ = R\Kj.

Proposition 1. There is a homeomorphism 1 of (R\Ky)U ArU 0Ky onto R'U
Ap: such that 1 is the identity mapping in R\Ky and for a subset A of Ar A is polar
with respect to R if and only if 1(A) is polar with respect to R’.

Proof.  (cf. [O, Theorem 12]) It is easily seen that there is a homeomorphism
of (R\Kp)U4rUdK, onto R"UAg such that 1 is the identity mapping in R\Kj.

We prove the remaining assertion. We choose a closed parametric disc Ko
on R'. Let N, be the Kuramochi kernel function of (R"Udg)\Koy for poe
(R'U 4g)\Ko.

Let K, and K, be closed parametric discs in R such that K NK, =&,
Ki\0K; o Ky, and iq\afq > K,. Fix regular subregion 2 of R such that
(KiUK)) = Q. Since N(p, q) is continuous and positive on (R*\Q) x (8K; U3K;),
we have

0<m= min  N(p,q) < max _ N(p,q) =M < 0.
(R*\Q)x (9K U2K) ) (R*\Q)x (8K, UK,
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For the same reason

0<m= min _ N(p.q) < max _ N(p.g)=M <
(R\Q)x (3K, UaK)) (R*\Q)x (6K, UAK,)

holds. Set a = max(M/m,1) and b = max(M/m,1). If p,e R\, then

(aNp, = Np )% = (a = )N + (N, — N,,) %

< (a - l)Nl)o + Npo - NP

0

= aNPo - I(Ipo
in G, where G=R\(K;UK)) is an admissible subregion of R. From the
inequality

. S 06 . < Y

— = — > - M >

inf(aNp, = Np,)™ = min (aNpy = Npy) = am =M >0,
it follows that aN,, > N, in G. For the same reason bN,, > N, in G holds for
po € R\Q. Denote by C(A4) and C(A4) the Kuramochi capacities of 4 = R*\Q
with respect to N,, and N, respectively. If F is a compact ~subset of R\Q and a
positive measure u on F satisfies Ny <1 on F, then (1 /Na)N,u <1 holds. Then
aC(F) = C(F) follows. For the same reason bC(F) > C(F) holds. 1If D is an
open set in R*\Q, then by Folgesatz 17.6 of [CC] C(D) = C(DNR) and C(D) =

- - l
C(DNR) hold and hence we have éC(D) < C(D) < bC(D). Therefore ;C(A) <
C(A) <bC(A4) holds for every subset 4 of R*\Q. In particular 4 = R*\Q is

polar with respect to N if and only if it is polar with respect to N.

5. Kuramochi boundary of two-sheeted unlimited covering surfaces

In this section let S be a Riemann surface and R be a two-sheeted unlimited
covering surface of S with the projection mapping n. Let j be a sheet interchange
of R, that is, j is a conformal automorphism of R which satisfies jo j = the
identity and n = moj. We fix a closed parametric disc K, on S. When (R, 7) is
ramified, we may choose K, such that it contains just one point of the projection
of branch points. Then Ky =rn"'(K,) is a simply connected subregion with
analytic boundary. If (R,n) does not have branch points, then Ky =rn"'(K,)
consists of mutually disjoint two simply connected subregions with analytic
boundary. As is seen in Remark given after Lemma 1 of Section 4, we can
construct the Kuramochi kernel functions N(p,p,) and the Kuramochi com-
pactification R* with respect to R\K; in the second case, too. Denote the
Kuramochi boundary of S by 45 and the Kuramochi compactification of S by
S*.  We shall use notation p, p, as points of R* and ¢, gy as points of S*. Let
N(gq,90) be the Kuramochi kernel functions for S\K|.

We shall show the next proposition.
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Proposition 2 (cf. [JMS] Proposition 2.1). (1) Suppose that N,N, j and © be as
mentiond above. Then

(1-1) N(p.py) = N(i(p).J(po))
and
(1-2) N(n(p),7(po)) = N(p.po) + N(p,j(po)) = N(p. po) + NU(p): po)

hold on (R\Kj) x (R\Kj).

(2) j and m can be extended continuously over Ar. Moreover joj is the
identity and m = mo j holds for extended j and n.

(3) (1-1) and (1-2) hold on (R*\Ky) x (R*\Kp).

Proof. (1) Let {S,},5, be an exhaustion of S with S} > K,. Set R, =
n~'(S,). Since there is nyp such that R,, is connected for all n > ny, we may
assume ng = 1. Then {R,} is an exhaustion of R. It is easily seen that
N,.(p. py) = N,(j(p),j(py)) holds for N, defined in Section 4, and hence (1-1)
follows.

Let N,(q,q0) be the Kuramochi kernel function of S,\K,. We can easily
show that a function N, (7(p).qo) is equal to N,(p. py) + Nu(p.j(py)), where gy =
n(py). We obtain (1-2) as n tends to infinity.

(2) For a point p, € 4g and any fundamental sequence {p,,} defining p, we
have

lim N(p, j(pm)) = lim N((p), pn) = N((p), Po)

M— o0

and

lim N(z(p).7(p,,)) = lim {N(p, p,,) + N(i(p): Pw)} = N(p. po) + N((p). po)

m—oc

in R\Ky by (1). Then each {j(p,,)} (resp. {n(p,,)}) is also a fundamental se-
quence on R (resp. S) and defines a Kuramochi boundary point in Ag (resp.
As). We note that this boundary point j(p,) (resp. n(p,)) is determined inde-
pendently of the choice of {p,,} defining p,. With this definition we can extend
the mapping j and 7 over 4g. For extended j and = it is easily seen that (1-1) and
(1-2) hold on (R\Kj) x (R*\Kp). It follows that jo j is the identity and n = 7o j
holds. It is easily checked that j and = are continuous on Ag with respect to the
Kuramochi distance on R\K; and S\K|.

(3) On account of the symmetry of the Kuramochi kernel function on
(R*\Kp) x (R*\Kp) it sufﬁces to show that (1-1) and (1-2) hold on 4g x 4g. Fix
po € 4r. Denote by 2 N the family of all Dirichlet finite functions of C' class

R\R,
on R\R with boundary value N, on JR,. Then there is a umque function F;
(resp. F ) which minimizes the Dirichlet integral in & Nro (resp. 2 N Smce

R\R,
Fpo(p) = Ny, (p) = Ny (j(p0)) = (Fjf,p,) © /) (P)

holds on dR,, we conclude that Fy :F/.’(’po)oj on Ag. We know that F, is

R\R,



Two-sheeted unlimited covering surfaces 167

continuous on R*\R, and the value N, (p) for p € 4g is defined by lim,_.o, F,; (p).
Therefore we obtain (1-1) on Az X Agr as n — 0.
As for (1-2) by a similar argument as above we have

Erpoy (7()) = F (p) + g, (P)

on R\R,, wh%re Frp(m(p)) is the unique function which minimizes the Dirichlet
integral in 9;”?".
Since each side of this equation is continuous in R*\R,, the equality holds

also on Ag. Then (1-2) on dg x Ax follows as n — oo.

The following lemma about the relation between polar sets in R*\K, and
polar sets in S*\K,, is shown in [JMS, Lemma 2.3].

Lemma 2. Let E be a subset of S'\K,. Then E is polar if and only if n~'(E)
is a polar subset of R*\Ky.

We have the next proposition about the relation between the sets Ay and 43
of minimal points. For the proof see Theorem 1 of [JMS].

Proposition 3. Let S be a Riemann surface and (R.m) be a two-sheeted
unlimited covering surface of S. Then we have n(A4 ,'Q) =4 é Moreover the fiber
7' (Q) contains at most two minimal points for every Q € Aj.

6. Proof of Theorems 2 and 3

We denote by HD(R\Kj) the class of harmonic functions in some neigh-
borhood of R\Ky = (R\Ky)U 0K, which have finite Dirichlet integral over R\K.
Let g,,(p) = g(p, py) be the Green function on R\K, with a pole at p,. Set

Hp, (p) = {Npo(P) = Njio)(P)} = {9po (P) = 9jipe) (P)}

for pye R\Ky. Then we have the next lemma, which will be used to prove
Theorem 2.

Lemma 3. [f he HD(R\Ky), then

(dh, dHp,) gk, = 27{h(po) = h(j(po))} — J . h(p){dN,,(p) — dNj,, (p)}.
0
Proof.  Note that H,, € HD(R\Ky). Set Uy(M) = {p:gp,(p) = M}. If Mis
sufficiently large, then Uy(M) is a closed disc. Then for every i € HD(R\Ky) we
have

(dh.dgpo)k\(KoUUo(M)) =0

and

dh,dN,, = —J h(p)dN*
( P0) R\(KoUU (M) ) (P)dN,, (p)
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by the same argument as in Lemma 1. Note that

(dh,dNp, —dgpy) gk, = Jim (dh, dNp, = dgp) g (kouus(ar))

__ Lm, H(p)AN;,(p) ~ lim

| g o).
X JoUy(M)

It is easily seen that

M-

lim J h(p)dN, (p) = —2mh(py).
Uy (M)

Hence we obtain the required conclusion.

For differentials on R the pull back induced by j is denoted by j#. Every
w € I'y(R) has a representation w = 27 (w + j*(w)) + 27 (w — j* (w)). Put wy =
27w+ j*(w)) and w; =27 (w — j*(w)). Then we have wy = j* (wg) and w; =
—j*(w1). Set I''(R)={wel(R);w=j*(w)} and I''(R)={we (R);w=
—j#(w)}. From the equation

.#(

(@,0)g = (/% (0),j*(9)

it follows that I')(R) L I'}(R). Hence we have the orthogonal decomposition
I'y(R)=T}(R) + I(R).

We say that a function f on R* is quasicontinuous if for any ¢ > 0 there exists
an open set G, such that the capacity of G, is less than ¢ and f is continuous as
a function on R*\G,. We know that every f e CD(R) has a quasicontinuous
extension over 4g and by this extension f e CD(R) with df € I',o(R) is equal
to some constant quasi everywhere on 4g. See [CC, Satz 17.9 and Satz 17.10].
Now we show the following proposition before proving Theorem 2.

Proposition 4. Let S be a Riemann surface and (R,m) be a two-sheeted
unlimited covering surface of S. Then I'y,(R)NT)(R) = {0} if and only if n='(Q)
consists of only one point for quasi every Q€ A4s.

Proof. When 4g is polar or equivalently S € Og¢ (cf. [CC, p.189]), by Lemma
2 Ag is polar and R e Og = Oyp. Hence the conclusion is true.

We assume that S ¢ Og. We shall show

Ciamm 1 Tp(R)NT}(R) = {0} if and only if H, =0 for every p,e R\Ky
and

CLAMM 2:  H,, =0 for every p,€ R\Ky if and only if n='(Q) consists of one
point for quasi every Q € As.

Cramm 1. Let u be a function of HD(R) such that du belongs to I'j.(R)N
I'}(R). Note that uoje HD(R) and

d(uo j) = j*(du) = —du.
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Thus d(u+uoj)=0 and w+wuoj is constant ¢ in R. Hence u—c/2=
—(u—c¢/2)oj holds. We shall replace u—c¢/2 by u. Then u satisfies u =
~uoj. Let p be a function of C*(R) such that

p=0 in a neighborhood of Kj
p=1 in a neighborhood of the ideal boundary

0 <p <1 otherwise.

Then pue C*®(R) has finite Dirichlet integral. We consider Ry = R\K; as a
Riemann surface. By Proposition | the Kuramochi compactification of Ry is
homeomorphic to RyUAgUdKy. Let (pu) R, = Un +vo be the Royden decom-
position of (pu)|g, in Ro, where v, € HD(Ry) and vy is a Dirichlet potential in Ry
(cf. [CC, Satz 7.6]). By Satz 7.5 of [CC] we know dvy e I',o(Rp). Since vy =
(pu)| Ry — Uh is harmonic in a neighborhood of 0Ky, in Ry, vy is continuously
extended to be constant 0 on 0Ky by Lemma 5 of [J] and Satz 17.10 of [CC]. Thus
vy is also continuously extended to be constant 0 on dK;. On the other hand
vy = u quasi everywhere on Adg by Satz 17.10 of [CC] and Proposition 1. From
the uniqueness of the Royden decomposition (pu)lg, oj=wv,0j+upoj is the
Royden decomposition of (pu)|g oj in Rp. In the neighborhood of the ideal
boundary of R, v, +v,0j is equal to (u4+wuoj)—(vp+uvpoj)= —vop—1v90j.
Thus vy, + v, o j = 0 quasi everywhere on Ag. Therefore vy, + v, 0 j is a harmonic
function and a Dirichlet potential in Ry and hence v, + v, 0 =0 in Ry. Then v,
belongs to HD(R\Ky) and satisfies v, = 0 on 3Ky, and v,(p) = —v,(j(p)). Hence

(dl)h, dHPO)R\Ko = 47TUI,(p())~

If Hy, = 0 for every p, € R\Ko, then v; = 0 in Ry and (pu)|g, is equal to vy in Ryp.
Hence u = 0 quasi everywhere on Az and we have u =0. Since u is arbitrary,
T4(R)NT)(R) = {0}.

Next assume Iy (R)N T} (R) = {0}. We extend H,, continuously over K by
putting H,) = 0. Then H), is a Dirichlet function on R, and a harmonic part « of
the Royden decomposition of H,, belongs to HD(R) and satisfies u = H,, quasi
everywhere on A4y (cf. [CC, Satz 7.6]). It is easily seen that du belongs to
T'h(R)NT;(R). Hence we have u = 0. It follows that H,, = 0 quasi everywhere
on 4g. Therefore Hy, is a Dirichlet potential in Ry by Satz 17.10 of [CC]. Hence
we conclude that H, = 0.

CrLamm 2. For the Green function g, we set Uy = {g,,(p) > M}. For
sufficiently large M >0, Uy is compact. Since min(gp,, M) has finite Dirichlet
integral, it is a Dirichlet potential by definition; see [CC, p.79]. Hence we have
gpo(P) = 0 for quasi every P e Ag by Satz 17.10 of [CC].

Suppose that H,, =0 for p, e R\Ky. Then N, (P) = Nj,,(P) holds for
quasi every Pe dg. We can choose a countable set {p,},., which is dense in
R\Ko. Set I, ={Pedp;N, (P) =N, (P)} and I =\ 1, Since 4g\l, is

polar, 4g\I = U:o:l(AR\I,,) is also polar by subadditivity of capacity; see [CC,
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p.188]. For every Pel. N, (P)=N, (j(P)) holds by 3) in Proposition 2.
Hence Np+ Njp on R\K; or equivalently P = j(P). Consequently by 2) in
Proposition 2 we have Np(p) = 27'N,p(n(p)) on R\Kj.

Let Qe ds. We show that if 77'(Q) contains a minimal point P which
satisfies P = j(P) then n~'(Q) = {P}. 1If there is another point P’ € 7~ '(Q), then
Np/(p) + Njpy(p) = No(n(p)) = 2Np(p) holds. Since Np(p) is a minimal
function, there exists some ¢ > 0 such that Np/(p) = tNp(p). This means that P’
is also minimal. But this is a contradiction. Hence we have n~'(Q) = {P}.

Set E = {Qe As:n~'(Q) contains at least two points}. If a minimal point P
belongs to n~!(E), then P # j(P). By the above observation P is not an element
in I. Hence we have n!(E) = (4g\I)UA4%. Therefore n~'(E) is polar and by
Lemma 2, E is also polar.

Conversely suppose that 7~ !'(Q) consists of one point for quasi every Qe
4s. By Lemma 2, Np = Njp) holds in R\Kj for quasi every P e 4g. It follows
that N, — Nji,) = 0 quasi everywhere on A for every p,e R\Kj. Hence we
have H, =0 for every p, e R\Ky. This completes the proof.

Proof of Theorems 2 and 3. 1f S € Og, then Re Og = Opp. Since I'y(R) =
I'(R) + F;;el(R) and I'y.(R) = {0}, I'o(R) = I'y(R) holds. Thus I'n(R)N
I'lo(R) # {0} holds. When S ¢ Og, by Claim 2 in the proof of Proposition 4 we
have shown that if z~!(Q) consists of one point for quasi every Qe Ag then
Ny, = Njp) 18 equal to gp, — gj(p,) for every py € R\Kp. In view of Lemma 1 and
Remark after Lemma 1 we have the following representation of d(N,, — Nj4,)
and d(N,, — Nj,,))" in some neighborhood of the ideal boundary:

d(N,ﬂo - A/}'(po))* = wp + dfO and d(Npo - Nj(po)) = dfla

where wyo € I'io, fo, /1 € C*, and dfy,dfi € I'g. This shows that N, — N,y has
I'p.- and I'j,-behaviors. In each case, by Theorem B, if R has no planar ends
then R is maximal. Thus Theorem 2 is proved.

Suppose that R has planar ends. By Theorem 3’ of [J] there is a maximal
extension (R,1) of R such that R\i(R) is a closed Np-set. The mapping 10 jo ™!
is a conformal mapping of :(R) onto 1(R). Since R\i(R) is a closed Np-set,
tojor ! is extended to be a conformal automorphism of R by Lemma 4 of
[Re]. We denote the extended one by ;. It is obvious that joj is an identity
mapping of R. Hence we obtain a Riemann surface S = R/j and R is a two-
sheeted unlimited covering surface of S with the natural projection mapping 7
which satisfies 7 = 70 (cf. [FK, III. 7.8)).

If g € S is a projection of a branch point of (R, ), then a branch point n~!(g)
satisfies j(n!'(q)) =2~ '(q). Hence 1(n~'(q)) satisfies j(:(n~'(q))) = t(x~"(q)).
This means that 1(z~'(¢)) is a branch point of (R,#) and the point (7o 10 7z~')(g)
is well-defined.

If ¢ € S is not a projection of a branch point of (R, n), then n~!(g) consists of
two points p, and p,. Since j(p,) = py, j(1(py)) = 1(p,) holds. Then we have
7(1(py)) = #(1(p;)). Hence the image (7o10n')(q) is well-defined. Since 7 and
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7 are conformal mappings in some neighborhood of a non-branch point, 1" =
7

oron~! is a conformal mapping of S into S and satisfies i’ o = 7o

7. Kuramochi boundary of two-sheeted unlimited covering surfaces of the unit disc

In this section we treat a two-sheeted unlimited covering surface R of the unit
disc U with the projection mapping 7. Since U is simply connected, if an un-
limited covering surface of U is not ramified then it is conformally equivalent to
the unit disc. Thus we may assume that R is ramified and has branch points.

First we shall show that (R, 7) is uniquely determined by the set {z,} of the
projection of branch points.

Proposition 5. Let (R.m) and (R'.7n') be two-sheeted unlimited covering
surfaces of the unit disc U = {|z| < 1}. Let j (resp. j') be the sheet interchange of
(R.m) (resp. (R',7')) and {z,} (resp. {w,}) be the projection of branch points of
(R.7) (resp. (R',7)).

Then the following conditions are equivalent:

(a) There is a Mobius transformation T(z) such that T(U)=U and
T({z}) = {m}.

(b) There is a conformal map Y of R onto R’ such that yroj=j oy.

Proof. (b) = (a): In this proof we shall use notation U.= {|z|] < 1} and
U, = {lw| < 1}. By assumption (n'o)(z~'(z)) consists of one point for every
zeU.. Set w=T(z)=(n'oy)(n'(z)) in U.. It is easily seen that T(z) is
a bijection of U. to U, and T({z,}) = {w,}. Since =z (resp. #n’) is a locally
conformal mapping of R\{n'(z,)} (resp. R'\{(n')"'(w,)}) onto U:-\{z,} (resp.
U, \{w,}), T(z) is a conformal mapping of U.\{z,} to U,\{w,}. Because isolated
points {z,} are removable for an analytic function 7(z) in U.\{z,}, T(z) is a
conformal mapping of U. onto U, with T({z,}) = {w,}.

(a) = (b): Since (R'.T 'on') is also a two-sheeted unlimited covering
surface of the unit disc with projection {z,} of branch points and the sheet in-
terchange of (R', T~' on’) is equal to j’, the identity map of R’ satisfies condition
(b). Then it is enough to prove in the case when {z,} = {w,}.

By Weierstrass’ Theorem there exists an analytic function f(z) in U, such that
f(2) has a single zero at every z, and f(z) #0 if z # z,; see [Ru, p. 326, 15.11
Theorem]. We know that a Riemann surface (Ry,7y) of an analytic configuration
of \/f(z) is a two-sheeted unlimited covering surface of the unit disc with
projection {z,} of branch points; see for example [Sp, Chapter 3].

If \/707z defines a single valued analytic function on (R,7), then we can
easily construct a conformal mapping ¢, of R onto Ry such that Y, 0 j=j, oy,
where j, is the sheet interchange of (Ry, 7).

Now it suffices to show that \/fon is a single valued analytic function on
(R,m). Fix a reference point p, € R which is not a branch point of z. We may
assume that 0 ¢ {z,} and n(p,) =0. We can choose mutually disjoint closed discs
U, in U which is centered at z, and does not contain 0. Let /, be a finite union
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of segments in U\(J,U, which does not intersect itself and starts from 0 and
terminates at a point of dU,. Set ¢, = 0U, and y, = I;'¢,l,.  We can show that a
closed curve y € U\{z,} which issues from 0 is homotopic to some yJ'! - - yj¥, where
apy ... 00 € Z\{O}, vi,...,vy e Nand v; # vj4;. Set R = R\{branch points}. Let
o be an arbitrary closed curve in R which starts from p,. It can be shown that if

n(o) is homotopic to y}'---yx, then Z;‘:, oj = 0 (mod 2) holds. Note that

27! L(o)dargf(z) =2"! [

k k
=2 Z2naj = nZaj.
=1 =1

Then /f(z) = exp(2~'(log|f(z)| + iarg f(z))) defines the same function element
about z =0 if it is continued analytically along n(s). Hence \/f on defines a
single valued analytic function on (R,n).

Remark. The uniqueness of covering surfaces with the same branch points
does not hold generally. We consider a Riemann surface R; of \/ (z—=V2)(z+ V2)

and a Riemann surface R, of \/;(z— V2)(z+V?2). Then R; and R, are two-
sheeted unlimited covering surfaces of CU{oo} with the natural projection
mappings 7; and 7, respectively. Then the inverse image R| = n;'(4) and R} =
n;'(4) of the annulus 4 = {1 <|z| <2} are two-sheeted unlimited covering
surfaces of A with projection of branch points ++/2 € 4. But they are not
conformally equivalent because R; has four boundary components and R; has two
boundary components. It is easily seen that if n > 3 there are many n-sheeted
unlimited covering surfaces of the unit disc with the same projection of branch

points {z,}.

Now we prove Theorem 4.

Proof of Theorem 4. By Proposition 3 we know that I’ = 7! (e’’) contains
one or two minimal points.

Let {z},., be the projection of branch points. Set Q,={ze U;
|z — ™| < r}. Suppose that e is not an accumulation point of {z,}. Then there
exists ro > 0 such that , N{z,} = &. The inverse image n~'(£2,,) consists of just
two components and each of them determines a border of R. Then I? consists of
two minimal points. This is the case (a).

Assume that e is an accumulation point of {z,}. There exists a subsequence
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{z,,} such that limy_ z,, = e™. Note that {z,,} is a fundamental sequence on
U. By Proposition 2, 1? is closed. Since e is a limit point of {z,,}, every @,
contains some z,. Hence n~'(£,) is connected. Therefore 7%, which is equal
to ()2, m~1(£21/,), is connected. Since N(p.7"'(z,,)) = 27'N(n(p), z,) and {z,,}
is a fundamental sequence on U, {n7!(z,)} is also a fundamental sequence
converging to some ideal boundary point P{’/z e I’ which satisfies N(p, P{’/Z) =
27'N(n(p),e®). Let P’ be an arbitrary point in 7. By Proposition 3 we
have j(P’) €1’ and 27'{N(p, P) + N(p,j(P"))} = 27'N(n(p),e”) = N(p. P{),).
Hence P’ = j(P’) if and only if P’=P{, Let P/ be a minimal point in
1%, One of the two cases occurs: i) P coincides with j(P{) or ii) P{ differs from
Py = j(PY).

In case i) assume that there exists another point PY in ¢, Since P{ coincides
with P, the equation N(p,P’)+N(p.j(P’)) =2N(p.P{) holds. But this
contradicts the fact that N(p, P) is minimal. Hence /¢ consists of one minimal
point P{(= P{,). This is the case (c). :

In case ii) /Y contains just two minimal points P! and PJ. By (1-2) in
Proposition 2 the equation

N(p. P’) + N(p.j(P")) = N(p, Pg) + N(p, P{)
holds for any point P’ in I°. Then N(p,P’) has the canonical representation
IN(p, PY) + sN(p, P{) with some s5,1€[0.1]. By Proposition 2
N(p.j(P")) = sN(p, P§) + N(p, P})

holds. It follows that 7 +s =1 and N(p, P’) = (N(p, P{) + (1 — )N(p, PY). This
correspondence defines a mapping ¢ of 17 to [0,1] by ¥(P’) =t By the
uniqueness of canonical representation injectivity of ¥ follows. Suppose that
N(p, P%) (resp. N(p,P?)) has a representation tN(p,PJ)+ (1 — t)N(p, P?) (resp.
iN(p, PY) + (1 — HN(p, P!)). Then

d(P(’,ﬁ0)
o | NP N(p. PY)
pe/l?l 1+N(p.P?) 1+ N(p.P?%
- (= DN P§) ~ N(p.P{)}
pek | {1+ IN(p. PJ) + (I = )N(p. P H1 + N(p. P§) + (1 - DN(p. P])}
sup [N(p. Pg) — N(p. P{)|
~ pEK|
> |t -1 5 -
sup {1 + N(p, P{) + N(p. P)}
pek,
Since

sup [N(p. P§) — N(p, P{)|
rek

sup {1 + N(p. P{) + N(p. P{)}?
rek
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is positive finite, the continuity of  follows. Since /” is connected, the mapping
is surjective. Therefore the inverse mapping is also continuous. Hence 77 is
homeomorphic to [0,1]. This is the case (b).

We shall obtain a sufficient condition that /¢ consists of one minimal point for
every ¢/ € 9U. We denote the distance between z, and {zu} /,#l,Ué’U by d,. Set
B(z,,r) ={|z—=z)| <r}. It is easily seen that B(z,,d,/2)NB(z,.d,/2) =& if
v # u. The next result is essentially due to Example 1.5 of [Sal].

Proposition 6. Suppose that there is a positive number k, 1/2 < k < 1, such

that for any positive integer vy an open set \ ) B(z,.kd,) contains a smooth Jordan
vy
curve y,, which separates z =0 from oU. Then I ¥ consists of one minimal point for

every e e oU.
To prove this proposition we use the following fact (cf. [AS, p.147]).

Lemma 4. If u(z) is a harmonic fumtion in U with finite Dirichlet integral and
\/_ ||du||U holds in |z| <p, 0 <p < 1.

Proof of Proposition 6. Let u be an arbltrdry function in HD(R). If ze U
and z # z,, then n~'(z) consists of just two points p,,p,. Set u(z) = |u(p,)—
u(p,y)| if z # z, and u(z,) = 0. Then u(z) is a non-negative subharmonic function
in U. Since {z,} has no accumulation point in U, for any ¢ > 0 there is a positive
integer vy such that ) B(z,.d,) = U\{|z| <1 —¢}. Denote by D, a Jordan

>V

domain bounded by ‘)')‘,0. Then D,, contains {|z| <1 —¢}. By the maximum
principle for subharmonic functions u(z) < maxze},vng(z) holds in D,, and also in
{lz] <1 —¢}. A function ¢(p) = +/n(p) — z,/\/d, becomes a single-valued ana-
lytic function in a simply connected subregion n~'(B(z,,d,)) of R and ¢ maps
n~'(B(z,,d,)) conformally onto a unit disc {|w| < 1} with ¢(z '(z,)) =0. It
is easily seen that ¢(p,) = —(p,) for p,.p,en'(z) and o(n '(B(z., kd,))) =
{Iw| < Vk}. The function i,(w) = Uly 1Bz ay)) © o' (w) —u(n~'(z,)) satisfies the
condition of Lemma 4. Hence

vanishes at z =0, then |u(z)

Vk
(I = \/— l|dul|,- “1(B(z.d\))

holds in |w| < vk. If ze B(z,.kd,), then
u(z) = |u(py) — u(p2)| = | (p(p1)) — u(0(p2))]

2vVk
va(l = vk)

i, (w)] <

= |in(p(p))) — i(=0(p)))| < “du“n“(B(:..‘d..))

This implies that

Wk
m ||du”"’“'(U\{I:I <1-e})

u(z) <
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holds in {|z] < 1 —¢}. Since ¢ is arbitrary, we have u(z) = 0. Therefore u(p,) =
u(p,) holds if n(p,) = n(p,). By Claim 1 of the proof of Proposition 4, H,, =0
holds for every p,e R\Kp. Since the Green function gq“(q) on U\K, tends to
zero as ¢ — 0U, the Green function g,, on R\Kj is equal to 0 on 4g. Hence
N(P, py) = N(P, j(p,)) holds for every P e 4g. By Proposition 2 P = j(P) holds.

By Theorem 4 IV consists of one minimal point for every e e oU.

8. Proof of Theorem 5

Proof of Theorem 5. Clearly (a) implies (b). By Proposition 4, (b) < (c)
follows. We have shown in [J, Lemma 3] that (f) implies (g). Since R has
infinitely many branch points, R does not have a planar end. By Theorem 2 in [J]
we have (g) = (h).

(c) & (d): If ue HD(R), then du = 2""(du + j* (du)) + 27" (du — j* (du)) and
2-Y(du + j*(du)) e I')(R) and 27! (du — j*(du)) € I'}(R), as observed in Section 6.
Since j* (du) = d(uo j) € I'j(R), 27'(du— j*(du)) € M'e(R)NT}(R). Therefore
(c) implies du = d(u o j) and hence u — u o j is a constant function. Because v and
uoj take the same value at each branch point, we have w=uwuoj. Then
u(z) = 2" (u(p) + (uo j)(p)), pen'(z), belongs to HD(U) and satisfies u = u o r.
Thus (¢) = (d) is shown.

Conversely if for every ue HD(R) there is ue HD(U) such that u=uomn,
then u = uoj holds. Hence du — j*(du) =0 and I';,(R)NT}(R) = {0}.

(d) = (e): For every ue HD(R) there is ue HD(U) such that u=uon.
Since HD(U) = RAD(U), there is a single-valued conjugate harmonic function u*
of u. Then u*on is a single-valued conjugate harmonic function of u. Hence
ue RAD(R) and HD(R) = RAD(R) holds.

(e) & (f): From the relations

{du:ue KD(R)} = ' (R)N T}, (R)
{du;u e RAD(R)} = I'.(R)NT;,(R),

in Section 2 it follows that R has (W)-property if and only if KD(R) = RAD(R)
holds. If K is a compact subset of R, then n(K) is a compact subset of U,
and hence n(K) is contained in {|z| < ry} for some ry, 0 <rp < 1. Since R has
infinitely many branch points, there is a branch point of p, of (R,n) such that
ro < |m(py)l < 1. Then zn~'({ro < |z| < 1}) is connected. Thus a neighborhood
of the ideal boundary R\K contains a connected neighborhood of the ideal
boundary #n~'({rg < |z] < 1}). Hence R has only one ideal boundary compo-
nent. If y is a dividing curve on R, then some connected component of R\y is
a neighborhood of the ideal boundary. Hence y is homologous 0. Therefore
Tie(R) = I'y(R) holds. Hence KD(R) = HD(R) holds. Therefore we have (e) <
().

(h) = (1) We shall prove a contraposition. Suppose that there is we
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RAD(R)\HD(U). If necessary by considering u — u o j on R we may assume that
u(p) = —u(j(p)) holds on R. Set D ={pe R;u(p)>0}. Since u(p)=—u(j(p)),
D does not contain any branch points and DN j(D) = . Let Dy be a connected
component of D. Then Dy is conformally equivalent to 7(Dy) by the mapping
n|p,- Hence Dy is planar and the relative boundary 0D, consists of piecewise
analytic curves, which are part of level curves {p € R;u(p) =0}. Since du* is
exact on Dy, Dy is simply connected. We can find a conformal mapping ¢ of Dy
to the upper half plane H. Set I, = dH\$(dDy). We can see that uog'e
HD(H) and uo¢™' =0 on $(0Dy). For ze H_, the lower half plane, define
uo¢™'(z) = —uog '(2). Then the extended uo¢~' belongs to HD(C\I;). We
can easily show that d(uog¢™')* is exact in C\I;. Then there exists a non-
constant Dirichlet finite analytic function uo¢~' +i(uo¢™"')* on C\/;. Hence I,
is not Np-set and R has a disc with crowded ideal boundary. This implies that R
is not maximal by Theorem A (c).

(e) = (d): We have shown (e) = (i). Immediately (e) = (d) follows.

(c)=(a): Let gp(p) be the Green function on R\K, with a pole at p,
and QZO(Z) the Green function on U\K, with a pole at z,. It is seen that
:Erglu on(z) =0 and gp,(p) + gj(po)(P) = gn(p“)(n(p)). Hence g,, is extended to be
continuous on (R\Kp)U 4r by putting g,, = 0. In the proof of Proposition 4 if
we use the condition g,, =0 on 4 instead of the condition g,, =0 quasi ev-
erywhere on Ag, then we conclude that (c) implies (a).

(i) # (h): We shall present a counterexample. Set z, =1—n"! neN. Let
(R,m) be a two-sheeted unlimited covering surface of the unit disc which has a
branch point over each of {z,}. For every bounded and Dirichlet finite analytic
function f on R we define f(z) = (f(p) — f(j(p)))* where z = n(p). Then f(z) is
also a bounded and Dirichlet finite analytic function on U and f vanishes at every
zp. Since 3 (1 —|z,]) = 302, n7' = 0, we have f=0. Therefore f(p)=
f(i(p)) holds on R. Since the class of bounded and Dirichlet finite analytic
functions is dense in AD(R) with respect to the Dirichlet norm, the equation
f(p) = f({(p)) is valid for every f € AD(R); see [Sa2, Corollary 2.6]. Therefore
(i) RAD(R) = HD(U) holds on R.

On the other hand R is not maximal because R has a border; see Theorem A
(b). This completes the proof.

9. Proof of Theorem 6

It is easily checked that Theorem 6 follows from the next two propositions.

Proposition 7. Let (R,m) be a two-sheeted unlimited covering surface of the
unit disc with projection {z,},5, of branch points. Suppose that every ¢ € U is
an accumulation point of {z,}. Then there is a sequence {k,},5, 0 <K, <1, such
that if z, € B(z,,k,d,)\{z.} then the two-sheeted unlimited covering surface (R, m),
the projection of whose branch points is {z,}U{zl}, satisfies that ny'(e™) is
homeomorphic to the closed interval [0,1] for every e” e dU.
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Proposition 8. Let (R, 7) be a maximal two-sheeted unlimited covering surface
of the unit disc with projection {z,},5, of branch points. Then there is a sequence
{vi}ys1, 0 <K, <1, such that if z,e B(z,,k.d,)\{z,}, then the two-sheeted un-
limited covering surface (R,, ), the projection of whose branch points is {z,} U{z]},
is also maximal.

First we show Proposition 7.

Proof of Proposition 7. Set U; = U\B(z;,d,\/8). Let u,,v>2, be the so-
lution of the Neumann-Dirichlet problem on Uj\B(z,,k.d,) for some x,, 0 <
K, < 1/8, with boundary values u, =0 on |z — z;| =d, /8, u, = 1 on |z — z,| = x,d,,
and du,/0n =0 on U. We choose k, to satisfy the condition |u,(z)| < 1/2"*! in
U\B(z,,d,/4) and ”duV”M\M <1/2". Set u,=1 on B(z,,x,d,) and u, =0
on B(zy,d;/8). Then u, becomes a continuous Dirichlet function in U and
5" u,(z) converges uniformly on any compact set of U. Set f(z) = > u(z),

v>2 _— v>2
K>1 =1/8, and F = U‘,ZIB(ZV,K,,d‘,). It is easily seen that f(z) is continuo;s in U,
harmonic in U\F, 0 < f(z) < 1/4 in U\ |J B(z,,d,/4), f(z) > 1 on F, and has

finite Dirichlet integral over U. We show {ﬁét f(z) minimizes Dirichlet integral in
the class 2/ = {h;he CD(U), h= f on F}. By Satz 15.1 of [CC] there exists
uniquely a function f e @£ which minimizes Dirichlet integral in .@£ We know
that u, minimizes Dirichlet integral in Q‘F‘: ={h;he CD(U), h =0 on B(z,k1d,),
h=1 on B(z,,x,d,)}, where F, = B(z,x1d))UB(z,,x,d,). Since f — fF=0 on
F,, we have (du,,df —dff), =0 by Satz 15.1 a) of [CC]. It follows that

(df df —dfF)y =) (duv.df —dfF)y =0
v>2
and  ||df||f = (df.dfF),. Hence 0<|df —df|y=dff||y —ldflly and
ldflly < ldfFll,. From the uniqueness of f* we have f = f*. Choose z| # z,
in B(z,,k,d,), v>1. Let (R;,m) be a two-sheeted unlimited covering surface of
U with projection {z,}U{z.} of branch points. Since ny!(B(z1,x1d))) contains
just two branch points, dn;!(B(z1,kd,)) consists of two analytic Jordan curves Cp,
Ci. Choose ¢ € C(Ry) such that 9 =0 on Cy and ¢ =1 on C;. Then <Y<
belongs to A°(R;); recall that A47(R) is, as defined before Lemma 1, the class of
continuous functions f in R; for which there exists a regular subregion 2 o K
such that f(p) = f%(p) in each component ¥V of R/\Q. Let j, be a sheet
interchange of (R;,m). From the relation ¢SV o j, = (po j,) Y it follows
that gV 0 j, +9©YC =1 on Ry. A line segment /, with endpoints z, and z/
lies in B(z,,kx,d,) for v>2. We denote by Gy one of the two components of
(R\n; ' (B(z1.k1d1))\U, 5,77 ' (1) which has a border C;. The projection
mapping 7; maps Gy conformally onto (U\B(zi.kid\))\|J,.,h and ¢, =
9YC o 771 is a harmonic function with finite Dirichlet integral on it. Put ¢, = 0
on B(z;,kidy). Then ¢, is a continuous Dirichlet function on U\U‘,Zzlv and
satisfies ¢y = pf , where F'=F\|J,,,l is a closed set in U\, ,h. Since
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@ <1< f holds on F', it follows that ¢/ < f' = fF in U\|J,,,I. Hence
9o <1/4 in U\U,5,B(z.d,/4). For any e”edU there exists a sequence

{&} = U1\UVZZB(2|.,d‘,/4) converging to e. The sequence {m7'(x)} = R,
contains a subsequence {r;'({;,)} which converges to some point Py in n7!(e®).
Since ¢ Y€1 is a continuous function on the Kuramochi compactification of R;, we
have

1

7

On the other hand {j, onf'({k,)} converges to jj(Py) in nl—l(ei()) and

p @V (Po) = lim oWV (27 (L) = Jlim o (m7" (C)) <

1w

9 (i (Py)) = [11{2 VN (jyom (&) =1— ,131;3 oo(n7 ' (Cky)) =

Therefore 7' () contains two different points Py and j,(Pg). By Theorem 4 we
have a conclusion.

In order to prove Proposition 8 we prepare three lemmas.

Let y be a closed Jordan curve on C and z; and z; be two distinct points on
y. Then y\{z|,z3} consists of two open Jordan arcs y; and y,. We say that y is
of bounded turning if there exists a constant C > 0 such that

min(diamy,,diamy,) < C|z; — 22|

holds for any pair (z;,z3) of y, where diamy; is the diameter of y;. In [LV, §8] the
following has been shown: if y is of bounded turning and ¢, is a Riemann
mapping of the Jordan domain D, bounded by y onto the unit disc U then there is
a quasiconformal mapping (;;), of C onto itself such that qg), =¢, in D,.

Lemma 5. Let R and R’ be Riemann surfaces. Suppose that there is a
quasiconformal mapping f of R onto R'. If R has a planar end, a border, or a disc
with crowded ideal boundary, then R' has a planar end, a border, or a disc with
crowded ideal boundary, respectively.

Proof. It is clear that if R has a planar end or a border then R’ does.

If R has a disc D with crowded ideal boundary, then D' = f(D) is a simply
connected subregion of R’. Let ¢ and ¢’ be Riemann mappings of D and D’ onto
the unit disc U. = {|z| < 1} and U, = {|w| < 1}, respectively. Then F = ¢’ o fo
¢~ is a quasiconformal mapping of U. onto U,. By [LV, §8] F can be extended
to a quasiconformal mapping of C onto itself. By definition 7 = 0U.\¢(éD) does
not belong to the class Np. Since whether a compact set in C belongs to the class
Np or not is invariant under quasiconformal mappings of C, I' = F(I) does not
belong to the class Np. Note that

I'= F(I) = F(0U:\$(0D))
= F(OU:)\F($(3D)) = 0U.\¢'(f(0D))
= 0U\$'(8/ (D)) = 8U,\¢'(0D").
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Since ¢'(dD') is a relatively open set in AU, it consists of at most countably
infinite open intervals {J,}, where J, = {¢:a, < 0 < b,} for some 0 <a, < b, <
2n. We may assume b, —a, < n. Let J! be a line segment with endpoints e
and e®. Then J, lies in U, except two endpoints. Set y =1'U({J J;). It can
be shown that for any 0 < 6 < 2z there exists uniquely a point y(6) € y such that
argy(0) = 0. By this parametrization y becomes a Jordan curve. Denote by U,
a simply connected region bounded by y. We shall show that D, = ¢’_'(Uy) is
a disc with crowded ideal boundary on R’. The relative boundary dD, =
¢~ (\U,J,) consists of analytic arcs. Let ¢, be a Riemann mapping of U,. Then
¢, 0 ¢’ maps D, conformally onto the unit disc U. Let I, = oU\(¢, o ¢')(0D,) =
dU\,(J,J,). Since y is of bounded turning, there is a quasiconformal mapping
¢, of C onto itself such that ¢, =¢, in D,. Note that

1= 4,00, (U = 6,00

Since an Np-set is preserved by quasiconformal mappings of C, I, does not belong
to the class Np. Therefore D, is a disc with crowded ideal boundary.

Lemma 6. Let A be the annulus {e7” < |z| < e”}, p> 0. For any points z,
z1 € A, |z0| = e 3, |zy| = e”3, there is a K-quasiconformal mapping of A onto A
with f(z0) = —1 and f(zi) =1 which is an identity map in {e™" < |z| < e=P/®} U
{e¥/® < |z| < eP}, where constant K depends only on p.

Proof. Map A4 by the conformal mapping w =logz onto G = {w = u+ iv;
—p<u<p -n<v<mna} Letw=—-p/3+ivy=logzy and w; = p/3 + iv) = log
z1.  We construct a quasiconformal mapping of G. Let y,(f) be a C® function
on R such that Yo (1) =0 1if |[f| =1, 0 < yy(r) < 1 if || < 1 and Y(0) = 1. Define

(u,v) if |u| = 2?/)
3 p . —2p
&y(u,v) = u, v+ (m — v )Wy p (u+ §> sgn(vg) | mod 2z if = <u< 0
u,v— oy E(u—e) mod 27 if0<u<2—p
) %0 p 3 = 3 5

where sgn(vp) is the signature of vy. Then @y is quasiconformal in G, and it
satisfies ®o(—p/3,v0) = (—p/3,—n) and Dy(p/3,v1) = (p/3,0). By elementary

calculation maximal dilatation of @, is less than ILO(/D). where y, =
VO(/)) ) 37 , 1 —,U()(p)
— with vy(p) = 3 max,er|Yo(1)].
1+ vo(p) /

Next we construct a quasiconformal mapping @, of G with @,(—p/3, —=n) =
(0,—7m) and @,(p/3,0) = (0.0). Let
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—4/3
(%) x¥/3 ifo<x< %
Vi(x) = 3\ ~4/3
2—(§> B-x)* fZ<x<3
and
(
0 if 1| = =p
—§¢l<§r+5> 1f—%p£t$—§
He) = p ’ p
Py (8_2\_ i? e
61//1(/)1 2) 3 1f3Sts6p.

Then A(t) is a C' function on R and satisfies
8
W< =<1
[h'(n)] < 5 <

Put &;(u,v) = (u+ (cosv)h(u),v). Then @, is a quasiconformal mapping of G
onto itself with &,(—p/3,—=n) = (0,—n) and &;(p/3,0) = (0,0). The maximal
L+ p(p) (8/9)* +»?
1= (p) 1+ p?

quasiconformal mapping f(z) = expo @ o Pyologz is what we want.

dilatation of @, is less than , where y,(p) = < 1. Then the

Lemma 7. Let I, be the family of locally rectifiable curves y in U\B(z,, x,d,)
which start from some points of 0B(z,,k,d,) and tend toward 0U and I'} be the
family of locally rectifiable curves y* in R\n~'(B(z,,x,d.)) which issue from some
points of on~'(B(z,,x,d,)) and tend to the ideal boundary of R. Then A(I')) =
2M(I}) holds.

Proof. If p=p(z)|dz| is admissible for I',, then fn(y,)p|dz| > 1 because
n(y*) e I',. Hence the pull-back n# (p) of p by = is admissible for I'}. Note that
[[o(m# (p))*dxdy = 2 [ [, p*dxdy. Therefore we have A(I',) < 2A(T}).

If p is admissible for I'}, then the pull-back j#(p) of p by the sheet in-
terchange j is admissible for I"Y. Hence p = 27!(p + j*(p)) is also admissible for
I';. Since p satisfies p = j*(p), there exists a linear density p’ on U which satisfies
p=n*(p'). For any ye I', there is a lift y' of y, which belongs to I'’.  Then p’
is admissible for I',. Note that

JJ p'*dxdy = lJJ prdxdy
U 2)J)r

and
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JJ pldxdy — JJ prdxdy
R R

= %”R(pz +j#(p)2)dxdy — %”R(pz +j* (p)z +2pj* (p))dxdy

1 .

= ;‘” (p— j* (p))’dxdy > 0.
R

Hence 2[|, p"dxdy < [[zp*dxdy. 1t follows that A(I',) >2A(I';). This com-

pletes the proof.

We call the extremal length A(I",) the extremal distance between 0B(z,, k,d,)
and oU.

Proof of Proposition 8. We choose 0 < k, < 1/6 such that the extremal
distance between 0B(z,,k,d,) and AU is greater than 1. Take z] € B(z,,k,d,)\
{z,}. Let (Ry,m) be the two-sheeted unlimited covering surface of the unit disc
with projection {z,}U{z/} of branch points.

Let E, be the ellipse with foci z, and z; such that the length of major axis is
5|z, —z!|. By G, we denote the Jordan domain bounded by E,. Then G, =

! i
B(z,,d,/2). By the mapping z =y, () = % (C + é) +# the annulus
{1 <|¢| <5+ 24} is conformally mapped on G,\/, with ,(—1) =z, and
¥,(1) =z, where /, is the line segment with endpoints z, and z,. Let p=
log(5+ v/24). By the reflection principle v, (0) = (n5' o, )(¢) is extended over
{e7? < |¢| <1} such that the extended ¢, maps 4 = {¢™” < || < e”} conformally
onto 7;'(G,) with ¢,(—1) = n;'(z,) and ¥,(1) = 75" (z)).

Suppose that R, is not maximal. Then R, has a disc D, with crowded ideal
boundary. Since D; is simply connected, n;'(G,)N D, contains neither C, nor
C;, where C* =y, ({|{| = e*”/?}) are analytic closed Jordan curves. Then there
exist (F, |¢¥]| = e*?/ such that ¢, ((})¢ D;. By Lemma 6 there is a K-qua-
siconformal mapping f, of A onto itself such that f,({X) = +1, f, is an identity
map in {e” < |z| < e=GP/6} U {(P)/® < |z| < e}, and that the constant K depends
only on p. Define a mapping F on R, by

Yoo fyod, ! (p) if pen;'(G))
F(p) = . B
p if pe R\, 75" (Gy).

Then F is a K-quasiconformal mapping of R, onto itself such that all the branch
points {rn;'(z,)} U{n;'(z/)} lie in Ry\F(D,). By the same argument as in the
proof of Lemma 5 there is a disc D3 with crowded ideal boundary in F(D,), which
does not contain any branch points of (R,,7;). By a Riemann mapping ¢,, D is
conformally mapped onto U. Then ¢, can be continuously extended over dDj
and L, = 0U\¢,(0D5) does not belong to the class Np. By some Mobius
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transformation 7" the unit disc U is mapped onto the upper half plane H such that
I} = T(L) is contained in the closed interval [—1,1] of the real axis. Then Iy
does not belong to the class Np. There exists uniquely the vertical slit mapping
Py(z) of C\I, such that P, minimizes Ra[S] in ¥°, where 7" is the family of
univalent functions S(z) on C\/; with the following expansion around oo:

We know that P;(z) satisfies 1) Pi(2) = r(:) 2) each connected component of
E* = C\P|(C\Iy) is a point on the real axis R or a vertical slit symmetric with
respect to R, 3) Pi(H) = H\E", and 4) P;(R\I;) c R. Since I does not belong
to the class Np and E* is compact, there is a vertical slit Ly = {xo + iy:|y| < yo}
with maximal length among vertical slits in E*. The open ball By = {]z — zo| <
Yol Zo = Xo + iyo, is contained in H. Let B, = {|z —z9| <27"y,}.

We know that 7;'(1,) N D} consists of a finite number of analytic arcs, {y\"},
each of which has two end points on dD}. Set ¢, = Pyo T og,. Then ¢,(3\") is
an analytic arc in H\E* with two end points in R\E™.

We show that if n is greater than (4n)/log2 then B,N¢,(D5N ) 15" (L)) =
&. See Chapter 1-D of [Ah] for the properties of extremal length. Suppose that
there is an analytic arc 3\ such that B,Ng,(y\") # &. Denote by A, the family
of circles C, centered at zy with radius r, 27"y, < r < y;, and by A, the family of
rectifiable curves in R\7n;'(/,) each of which issues from some point on ny'(/,)
and tends to the ideal boundary of R,. By the property of extremal length and
Lemma 7 the extremal length A(A)) is greater than the half of the extremal
distance between 0B(z,.x,d,) and AU, which is greater than one. Hence we have
AA)) =1)2.

Every C, e 4, contams a subarc C; which connects ¢2(yk ) and a vertical
slit in E*. Since ¢2 (C))e A, we have A(A4,) =A(A4)) =1/2. On the other

2n 1

hand we know that A(4,) Zng< > This is a contradiction. Hence B,N

4n
é(DiN 77 (1) = Gifn> > log?

connected subregion of R, whose relative boundary consists of analytic arcs.
Moreover D, is contained in R?\U “N(1). It is easily seen that R\

It is clear that D, = ( B,\E*) is a simply

U,z I(1,) consists of two components R ) and R ) and 7, maps each one of R(20)
and R( conformally onto U\U/ Since D, is connected, D, is contained
in either R(O) or R Therefore 7|5 is a conformal mapping of D, into
U\, .. Since nz(Dz) is also simply connected in U\{z,}, 7~ defines a con-
formal mapping of 7y(D,) into R. Thus we know that D = n~'(ny(D5)) is a
simply connected subreglon of R with analytic relative boundary Moreover by
the mapping & = ¢, o 7;' o, D is mapped onto B,\E* with ®(dD) = 6B,\E*. It
follows that D is a disc with crowded ideal boundary. This contradicts the
maximality of R. Hence R, is maximal. This completes the proof.
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Problem. Is the assertion of Proposition 8 true without the condition
z) € B(zy,x,d,)?

[Ah]
[AS]
[CC)
[FK]
[J]
[IMS]

(LV]
(0]

[Re]

[Ru]
[Sal]

|Sa2]

[Sa3]
[SN]
[SO]
[Sp]
[Y]
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