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On the stationary Povzner equation in R”"
By

L. ARKERYD and A. NOURI

Abstract

The stationary Povzner equation is considered in a bounded and strictly convex domain of
R". Existence theorems are established for a class of collision kernels in the case of hard
forces and for diffuse reflection boundary conditions. Generalizations with respect to the
collision kernel and boundary conditions are discussed.

1. Introduction

We consider the stationary Povzner equation for a strictly convex bounded,
C' domain £ in R”,
v-V,f(x,0) =0(f, f)x,v), xeQ, veR". (1.1)

The details of the collision operator Q(f.f) will be introduced below. The
boundary conditions are of diffuse reflection type

f(x,0) = M(x,v) [ v - n(x)|f (x, 0" )dv', (12)

Jo'-n(x)<0
xedR, v-n(x)>0.
Here n(x) denotes the inward normal to the boundary. We shall restrict the
discussion to the R? case with no loss in generality methodwise. M is a given
normalized half-space Maxwellian

M(x,v) = e—|vlz/2T(-\‘)’

1
27T (x)

1. . .
such that T is a measurable function on 0Q2, uniformly bounded away from 0 and
0.
Let us first recall that in the case of the time-dependent Povzner equation

(fi+0-Vof)(t,x0) = Q(f . f)(t.x,v), teRy, xeQ, veR?

the Cauchy problem has been studied by a number of authors. Existence and
uniqueness results for global solutions in the whole space (i.e. 2 = R?) have been
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given by Morgenstern [28] and Povzner [30]. Existence results for the Povzner
equation in a bounded domain with periodic boundary conditions have been
proven by Lachowicz [23]. The existence of non-negative L' solutions to the
Povzner equation in a bounded domain with a general type of boundary conditions
(including the maxwellian diffuse reflection case) has been established by Broman
[8].

In this paper we concentrate on solutions to the stationary Povzner problem.
Stationary solutions are of interest as candidates for the time asymptotics of
evolutionary solutions. They also appear naturally in the resolution of boundary
layer problems, when studying hydrodynamical limits of time dependent solutions.
However, they cannot be obtained by the techniques so far used in the time-
dependent case, since for the latter natural bounds on mass, energy and entropy
provide the initial mathematical framework, whereas in the stationary case only
bounds on mass flow, energy flow and entropy flow through the boundary are
easily available. Instead the crucial steps in our proofs are based on estimates
involving the entropy dissipation term. That requires a more delicate approxi-
mation approach than for time-dependent and earlier stationary kinetic problems.

Similar difficulties are faced when dealing with the stationary Boltzmann
equation. In the slab case mathematical results on boundary value problems with
large given indata are presented in a measure setting in [1], [11] and in an L!
setting in [3], [4]. For the nonlinear Boltzmann equation the long time behaviour
under constant temperature, diffuse reflection boundary conditions was treated in
[5]. In all these results except [11] and [4], the control of the mass was obtained
by introducing truncations in the collision operator for small velocities. In this
paper, we do not introduce such truncations, but control the mass with the energy
and the entropy production term.

We should also point out that a number of results are known concerning the
non-linear stationary Boltzmann equation close to equilibrium, and solutions of the
corresponding linearized equation. There more general approaches can be uti-
lized. So e.g. in an R” setting the solvability of boundary value problems for the
Boltzmann equation in situations close to equilibrium is studied in [18], [19] and
[20] in bounded domains, and for exterior regions in [33]. Stationary problems
in small domains for the non-linear Boltzmann equation are studied in [21], [29].
The unique solvability of internal stationary problems for the Boltzmann equation
at large Knudsen numbers is established in [27]. Existence and uniqueness of
stationary solutions of the linearized Boltzmann equation in a bounded domain
is discussed in [26], and for the linear Boltzmann equation uniqueness in [31], [32],
and existence in [12] and others. A classification of well-posed boundary value
problems for the linearized Boltzmann equation is given in [16]. For discrete
velocity models, in particular the Broadwell model, there are a number of sta-
tionary results in two dimensions, among them [6], [7], [13], [14], [15].

Let us next recall a few well known facts from the kinetic theory of neutral
gases, and some details about the collision term in the Povzner equation. The gas
is modelled as a density at position x and velocity v, and represented by a
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nonnegative function f(x,v). In a number of different kinetic equations the
evolution of fis driven by collisions, and the rate of change is defined through the
collision term Q. In the Boltzmann equation, one of the assumptions in the
derivation of the Boltzmann collision operator is that only pair collisions are
significant and that each separate collision between two molecules occurs at one
point in space. Povzner [30] proposed a modified Boltzmann collision operator,
considering a ‘smearing’ process for the pair collisions. This modified Povzner
collision operator looks as follows,

QﬁfﬂLWZLQmUVf—fﬂWU—yw—vthw
where B is the collision kernel and f = f(x.v), f, = f(y,v.), f' = f(x., ), fl. =
f(»,v.). Here the post-collisional velocities v’ and v, are linear functions of the
pre-collisional velocities according to

V'=>U—-alx-yp)vo+aly —x)v.. v.=alx—yo+ U —a(y— x))v*,'

where a is a 3 x 3 matrix and 7 the 3 x 3 identity matrix. These last relations
imply the conservation of momentum v’ + v, =v+wv,. They also imply that
simultaneously interchanging x with y and v with v, gives an exchange between v’
and v/. The conservation of energy v'? + v = v? + v? yields that a({) = a(—{)

!
and a*({) = a({). In this paper we consider «({) = C_|C_|2€ so that

X—)y x—)
vV=v—-(v-v,) —— —,
Ix =yl |x =yl
X—y XxX—Yy
o =0, 4+ (w—0) — 2 TV (1.3)
lx =yl |x =yl

That implies in particular that head-on collisions (when x — y and v, — v are
parallel) exchange (x,v), (y,v.) into (x,v.), (y,0).

The Povzner equation was first introduced for purely mathematical reasons
and usually ignored by the physicists. However, when considering the Grad limit
of a system of N interacting ‘soft spheres’, Cercignani [10] obtained a hierarchy
of equations factorized by a Povzner-like equation. Lachowicz and Pulvirenti [24]
considered a system of N spheres colliding at a stochastic distance. They proved
that when N tends to infinity, the one-particle distribution function converges to a
local Maxwellian with density, velocity and temperature satisfying the Euler
equations. At an intermediate step the Povzner equation appears.

Let us conclude this introduction by detailing our results and methods of
proofs. Later in this section a central existence theorem is stated for the sta-
tionary Povzner equation in the case of maxwellian diffuse reflection boundary
conditions for the kernel B = 1. It is then established that the stationary Povzner
problem is equivalent to another kinetic problem with collision frequency equal to
unity via a transform of the space variables and involving the mass, here called the
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sm-transform. The transform was first introduced into radiative transfer and
boundary layer studies, later in the mid 1950s by M. Krook [2] into gas kinetic
for the BGK equation, and recently used by C. Cercignani [11] for measure
solutions to the Boltzmann equation in a slab. The second section is devoted to a
crucial construction of approximated solutions to the transformed problem with a
modified asymmetric collision operator in the case of maxwellian diffuse reflection
boundary conditions. The asymmetry introduced in the collision operator allows
monotonicity arguments which lead to uniqueness of the approximate solutions.
Moreover, we prove pointwise bounds from below and from above of the mass
flow through the boundary by taking into account the diffuse reflection type of the
boundary conditions. In the third section the symmetry of the collision operator
is reintroduced. Weak compactness in L'(2 x R?) is obtained by controlling the
approximate solutions inside © x R® by their values at the outgoing boundary.
There the transformed situation is being utilized, enabling a pointwise boundedness
of the collision frequency. In the last section the passage to the limit for a
solution of the transformed problem is performed. The mass of the transformed
approximations is controlled by using the bounds of the energy and the entropy
dissipation term. The technique of obtaining compactness directly from the
entropy dissipation term without involving the entropy property was to our
knowledge first introduced in [3] for a slab problem, and is here extended to a
higher dimensional context. Towards the end of Section 4, generalizations from
B =1 to hard forces are also discussed in the main result of the paper, Theorem
4.8.  With minor changes, but to the price of a few additional arguments the proof
can be carried through for the original equation without introducing the sm-
transform (cf [4] for such an alternative proof). The approach of this paper can
also be used for given indata problems (cf [4]) in both the hard and the soft force
cases.

Definition 1.1. f is a weak solution to the stationary Povzner equations (1.1-2)
if f belongs to L' (2 x R®) and for any test function ¢ € C'(Q x R3) vanishing on
09U 80",

[, o vaos our s
OxR-

+ J v-n(x)M(x,v)p(x,v) (J [v" - n(x)|f(x, v’)dv’)dxdv =0.
oo

v'-n(x)<0

Here v' and v, are given by (1.3) and
09 := {(x,v) € 02 x R*;v - n(x) < 0},
0Q° := {(x,v) € 02 x R*;v- n(x) = 0},
o2+ == {(x,v) € 02 x R3:v- n(x) > 0}.

Let us next state a key result of this paper.
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Theorem 1.2. There is a weak solution f in L'(Q x R3) with given total mass
k to the stationary Povzner equations (1.1-2) when B = 1.

Extensions to more general pseudo-maxwellian and hard forces are given in
Theorem 4.8.

Remark. The theorem holds with an analogous proof in R", n>2. It is
obvious from the proof that given indata problems can also be treated by the
method of this paper. In that case some of the more elaborate arguments from
the present diffuse reflection case are not needed due to the a priori control of
ingoing entropy flux.

Lemma 1.3. (i) If f is a weak solution in L'+(Q x R®) to (1.1-2), then

X
FX,0):=71 (ff(x, v)dxdv’ v)

is a weak solution to the sm-transformed problem

v-VyF = X,0)F(Y,v.)dYdv, — F,

1
JF(X, v)ddeJF(

X 3
((JF(X‘U)dde)'/“’v) € xR, (1.4)

X
FiX,o) = M((jF(X, v)dXdo) "’ U)

F(X,w)dw,

w-hn X
([ F(X,v)dXdv)"/*

X +
<(IF(X,v)dde)l/4*”> € Qt. (1.5)

(il) Reciprocally, if there is a positive real number k such that there is a weak
solution Fy in L} (kQ x R?) 10 the sm-transformed problem

X
J wn(X/( f F(X,v)dXdv)'*)<0

1 /
v- VXFk = WJF[((X, v )Fk( Y, Ui)deU* - Fk,
(%,U)GQXR:‘, (1.6)
X
Fi(X,v) = M(z,v) J w- n(—) Fe (X, w)dw,
k w-n(X /k)<0 k
(%,v) € 0Qt, (1.7)

then there is a weak solution f e L. (Q x R3) to (1.1-2), with k = J f(x, v)dxdv.
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Proof. (i) If fis a weak solution to (1.1-2) belonging to LL(Q x R3), then

X
= _— ] k 1
F(X,v) f(ff(X, u)dxa’v’v> is a weak solution to

b VyF = ' | Fex o) F(Y, o)avas, - F,

( J f(x, u)dxdv)

X 3
(va)éﬂxm

Then
JF(X, v)dXdv = (Jf(x, v)afxafv>4

implies (1.4). Finally, (1.5) is straightforward.
(i1) Reciprocally, if for some positive number k, there is a solution Fj e
Ll (kQ x R?) to (1.6), let us define the L!(Q x R3) function f by

k4

J060) = TR o) axds

Fy (kx,v).
The function f satisfies

v~fo=Jf(x,v’)f(y,vi)dydv* —kf, (x,v)€Q xR,

and

k= jf(x, v)dxdv,
which implies (1.1). Finally, (1.2) follows from the definition of f and (1.7).

2. Approximate solutions to the transformed problem

Let k >0, r >0 and je N be given. The aim of this section is to construct
solutions f7'" to the following approximate problem

. 1 , )
v-Vufh =ij (x =y, 0,0)¢ (x — y,v,0.)
L e — [ 77,2 .
_(x,v — (y,v))dydv, — f7" : ,
T Jor o
T 177
(%v) eQ x R,

o (X P (x) x .
f/ (x’v)—M(E,U)W, (%,0)669 s (21)
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j, 1 —
/)) (X) <Jv|'~n(-/k)<0

with the convolution

<Jn~.,,(4/k) ‘w ’ n(l:) ‘fj'r(\ w)dw * (Pf) (x)

- 'Lupp«p," Jll“n(_v/k)|w ( )‘fj "(y.ow)ei(y)dwdy.

Here, ¢! is a normalized density with support in a neighbourhood of x, defined as
follows. Divide 0 into 2" disjoint subdomains S/ each with area |S/| = 27"|0€].
i=1,...,2" so that the maximal diameter D, of S/, i=1,...,2" tends to zero
when n — o0. Denote the characteristic function of S/ by s and define

where,

w- n(i) ‘f’”(-, w)dw * (p_ﬁ) (x).

" 2)1
=3 g s (s ()
The functions y" and x/ are C, invariant under the transformations
(v,v,) = (', 0)), (v,v,) — (vs,v). They are defined from a function ¢ on R. Take

1 1 1 . . .
< Y(s) =0 fors< o Y(s) =1 for s > pm Y (s) increasing from 0 to | in the
interval — 1 <s< l, Y e C*. Define

m m

2 (x = yooo) =y ()" (0)y" (0 )W (v)

(-2 e a2
m|lo=v] Ix—yl o= v Ix—yl

with y"(v) = ¢(Jv] —r). Analogously define
X (x = yoo) = W W ()’ ()9 (0)),

where ¥/ (v) = Y(j — |v|2) and m = 2.
In the paper |2| and |0Q| denote volume in R3 of Q, respectively area of €2,
and D is the diameter of Q. Define st by

st(y.v) :=inf{s > 0:(y —sv,0) € 0Q%}. (y,0) e Q2 x R,
and
s7(y.v) :=inf{s > 0: (y +sv,0) € 327}, (y.v) e Q x R,

Denote by

]AQxR’ 1% f(y.v)dydo.

) = ARITESE T
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The following geometric property of 002 will be used in the sequel. For

i o | D
x€ 02, weR’ with o] =1, @-n(x) <0, set y = x—s*(x,w)o. With D_Cj the

Jacobian, the function w - n(x) is uniformly bounded as a function of x, y e

Dy
0R2. Since the truncation y" will be removed only at the very end of the proof in
Section 4, we shall skip the index r in y" =y, f"'=f/, p'=p§, v/ =v; and
elsewhere. Let 0 <a <1 be given. Let K be the closed and convex subset of
L'(kQ x R®) x L'(0kQ) defined by

K={feL(kQxR%:0< f(x,v) <e}

X {p e L'(0kQ);0 < p(x),J
ke

p(x)dx = l}.
The boundary integral (2.1) is related to the total inflow condition [, , p(x)dx =1
in the definition of K.

1 e . .
For p >0d >0 let us be a mollifier in v with support in |v| <J. Denote by

. A U BV SV
0" (P2 = g ' r R G

J
Let T be the map defined on K by T(f,p) = (F,0), where F is the solution to

oF +0-VF = QY (F., f) % s — Fy(x, f), (%v) € Q xR?,

F(x,v) = M(%v)(p * o) (x), (%,v) € 0Q", (2.2)

and

J w-n (E) ‘F (x, w)dw

w-n(x/k)<0 k

J W n(f) ‘F(x, w)dwdx
a(kR)” k

Below we shall state the results with respect to &, but for easy reading only
carry out the proofs for k = 1.

o(x) =

Lemma 2.1. There is a positive lower bound c¢; for [ F(x,v)dxdv, with ¢; in-

1
dependent of 0 < o < 1, O<5<E’ and of (f.p) e K.

Proof. 1t follows from the exponential form of (2.2) and the boundedness
from above of v by 1 that

F(x,0) > M(x — st (x.0)0,0)p * ¢" (x — st (x, v)v)e” 1+0s7(x0),
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And so for, say, 1 <|v] <2 and for some ¢ independent of (f,p)€ K,
F(x,v) < cp* g3, (xp),

where x, = x — s7(x,v)v, and

J F(x,v)dxdv > CJ v-n(x)s™ (x,v)p * g% (x)dxdv,
QxR? A
with

A={(xv);x€dR.1<|v] <2,v-n(x)>0}.

Since Q is strictly convex, bounded, and C!, it follows that for some ¢; > 0,
J F(x,v)dxdv > clj p(¥)dy = ¢;.
QxR3 R

Lemma 2.2.

sup a(x) < ¢ju,
okQ

with c;, independent of o and of (f,p) € K when
J f(y,v.)dydv, > .
kQxR3
Proof. Obviously in (2.2),
sup p x gy < sup gy < o,
QR x
and the gain term Q% (F, f) * u; is bounded by

_4n . 32 )2
4= 12|+ 1) o

So from the exponential form of (2.2), for r—% <l <+j+1,

—as*(x, v')—J‘0

F(x,0) = M(x — 5" (x,v)v, v)p * 0" (x — st (x.v)v)e ot ") ts00)ds

0 0
| O, f (x4 s, )

—st(x,v)

. gD
< sup M(y,0)sup g}(z) + 225 p/* (v).
yeo ».z [ ——

m



124 L. Arkeryd and A. Nouri
In fact this estimate holds for all of 2 x R®. Also an estimate downward in the

exponential form of outgoing F by ingoing ones gives

j |v- n(x)|F(x,v)dxdv > C,J
Flon

p(y)dy =¢ > 0.
o

And so
O'(X) < Cins

for some c¢;, independent of o and of (f,p) € K with [ f(y,v.)dydv, > c.

It follows that 7" maps

K, = {(f,p) eK;jfdydv* >c¢, p=< Cjn}

into itself. For (f,p) € Kj,, one solution F is obtained as the strong L' limit of
the nonnegative monotone sequence (F™), bounded from above, defined by F* = 0
and

aF"™ 4o VEM = O (F™" f) s us — F" (x, f),  (x,0) € 2 x R?,
F'™ ' (x.0) = M(x.0)(px g)(x),  (x.0) € 02"
Moreover, F is unique since if there were another solution G, then
AF - G) +v-V(F - G) = (Q*(F. f) — (G, f)) * s
—(F - G(x, f), (x,v) e Q xR, (2.3)
(F - G)(x,0) =0, (x,0)€dQ".

Multiplying (2.3) by sgn(F — G) and integrating it over 2 X R? leads to
aJ |F — G|dxdv < 0,
QxR?

which implies that F = G.

Let us prove that T is continuous for the strong topology of L'. If (f;,p,)
converges to (f,p) in L'(2 x R*) x L'(0Q), denote by (Fj,a/) = T(f;,p,). It is
enough to prove that there is a subsequence of (F;p,) converging to
(F,0) =T(f,p), because of the uniqueness of the solution to (2.2). But
[ xx/ fydydv, and [ fidydv, converge to [ yy’ fdydv, respectively [ fdydv,. There is
a subsequence, still denoted (f;) such that decreasingly G;:=sup,,-,f,,, and
increasingly ¢;:=inf,,»,f, converge to f in L'. Let (S;) and (s;) be the
sequences of solutions to
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| Y G)

J x. v o' Vdvd, \

fg/dydv* JXX | +&(’C v )l +Q(y U*)(ycu * Il
J ;

aS;+v-V.Si =
J

_s [ x g1(y.v.)dydv,
: [ Gi(y.v.)dydv.

Si(x,0) = M(x.v)(p* @) (x). (x,v)edQ,

(x,0) € Q2 x R?,

and

1 i S gi
as; +v- Vs = TGrdyab. JXXJ l +S_/(x. v') 1 +%;(y, vl)dydv, | = py

_ J2 Gy v )dydv,

. (x.0)e2 xR,
" Tai(y.v.)dydo, (xe) e L2 x

si(x.0) = M(x0)(px ) (). (x.0) € 02"

(S/) is a non-increasing sequence. Indeed, S; = lim, ;o S/, with S,O =0 and
S,’”“ solution to

1 3 S"’ G
O(Slm-H +o- V~\'Slm+I = JXX] I i (X, 0") I (». l’i)dydv* * U
[ gidydv, m S . G

_ gm+l IXX‘igl(y~ v*)dydv*
L TGy v)dydo,

Slm+l (X, l)) — M(X‘ U)(/) * ¢'\')(Xj)’ (X. U) € 6Q+ (24)

(x.v) € 2 x R,

From (2.4) in exponential form it is easy to see that (S;"), is nonincreasing in / for
any m. Analogously, (s;) is a non-decreasing sequence. Moreover, it can be
proved from the iterates that s, < F; < S;.  Then (S;) decreasingly converges in L'
to some S and (s;) increasingly converges in L' to some s, which are solutions to

S +0-V.S=04S. f)*pus— Sv(x. f). (x.v) e xR
S(x,v) = M(x.0)(pxpl)(x), (x,v)€dQt, (2.5)
and

as+v-Vos=Q (s, f)*us—sv(x. f). (x.v)eQ xR,

s(x,0) = M(x.0)(p*x@l)(x), (x.v)edQt. (2.6)
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By the uniqueness of the solution to the systems (2.5) and (2.6), S=s=F. It
then follows that (F;) converges to F in L'. Set

0 )
Glpr S x.0) s = M(x = 5™ (x.0)0) py + @2)(x = s (.o ™ Loy 0l

For x € Q2

J [w - n(x)|Fi(x, w)dw
w-n(x)<0

| enlG . xw)
w-n(x)<0

—st(x,w)

0 0
+ j ) (J e DO ot (g (v, w)ds) dw,
w-n(x)<0

converges in L'(0R) to

J [w - n(x)|F(x,w)dw
w-n(x)<0

= J [w-n(x)|G(p, f,x,w)dw
w-n(x)<0

0 0
+J lw - n(x)| J o= N, "')dtQ+(F,f)*/1(5(x+sw, w)ds | dw.
w-n(x)<0 —st(x,w)
Hence (o;) converges in L'(dQ) to o, which ends the proof of the continuity of 7.
The compactness of T is a consequence of the following argument. Let
(Fy,0m) and (f,,,p,,) be sequences in L'(2 x R?) x L'(dQ) with (f,,.p,,) bounded

F, F,
and (F,,0m):=T(f,,p,). The sequences "= | as well as |v-V,—"

I+ I+
are uniformly bounded in L®, hence weakly compact in L'. Also

(Jxxfi(y, vl ) s (D — v)dydvi) is compact in L' and so the sequence

I +5
O (P f)  15(x.8) = g [~ (5.0
msJm 20 bl ‘J‘f;"dydl)* l +ﬁ )
J
J fm / = / /
x| | —" (y.v)us(0 — v)dydv, | dv
j

is compact in L'(Q2 x R®) by the averaging lemma (cf [17]). And so the ex-
ponential form of (2.2) for F,, together with the compactness in L'(Q x R3) of
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(G(Pps fu))men due to the boundedness of (p,,) and the convolution with ¢,
implies that (F,) is compact in L'(2 x R?). Moreover,

| e nIG (S W)
w-n(x)<0

is compact in L'(0Q). Together with the compactness of (Q%(Fy,f,,) * #;) in
L'(Q x R?), this makes (a,,) compact in L'(09).

T is thus continuous and compact from the closed and convex subset Kj, of
L'(Q x R*) x L'(09) into a bounded subset of Kj,, so by Schauder’s fixed point
theorem it has a fixed point (F* %), solution to (2.2) with f = f%
p=oc* Arguing similarly to the preceeding analysis of 7, we can also by
compactness pass to the limit when x tends to zero. That limit F° is then a
solution to

v-VF? = QF(F° F%) % u; — Fov(x, F%), (x,v) € 2 x R,

Fymyco ¥ - AO)ES( )by
Tro- - () F(y. w)dhwdly

In order to remove the u; convolution, we shall next prove that the family (F?),,
is strongly compact in L'. Denote by

Fo(x,v) = M(x, v)( ) *ol(x), (x,v)edQ*. (2.7)

3§ J
Fﬁ (x’ Ul)
1+ 7 1+—

¢°(x,v) = Jxxj

To prove the compactness of the family (Q*(F? F?)), and again using the
previous compactness argument for Q% (F,, f,,) * s, it remains to show that

[, 107 )y = (P, P = 0 (28)
QxR

when 6 — 0 (cf [25]). Similarly to the earlier analysis of 7, the compactness of
(Q*(F°, F?))ss implies the compactness of (F?)y,.

The proof of (2.8) comes back to proving the strong L' translational
equicontinuity in the v variable of (¢°). Use the Hilbert-Carleman parametri-
zation

. 57 (x, (0" =v) /" ~vl) Fo g
q°(x.v) = J J sz———é (x—i—s——-b/ 0 ,v')ds
—s*t(x, (v —0) /0" —0]) |+ E_ |U — UI
J
1 J ° ’ / ’
X . vlzx)( (x,v))dv, |dv
v’ l 4+ —
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where E,, is the plane containing v and orthogonal to v—v'. We split
q°(x, v+ h) — ¢°(x,v) into A%"(x,v) + B>"(x,v), where

: Fd r_
A" (x,v) = J Jsz (x +s |Z’ v| ,v’)ds
—v

Fé
1 +—
J
dv! . dv! . F?
x J 4 = (x,0,) —J s xX (x,v,) |dv',
Eppy [0/ — 0 —h| 1+F—. £ | — o] 1+F—.6
J
and
) ! ) /
Sih . ) v'—v—h F v'—v
B%"(x,v) .—J [s J 75 (x+ |v’—v—h|’v> 75 <x+s|vl_ l,v') ds
J
dv! . F?
. JE v/ — v — /1|2XXJ F? (x,v0) fdv'.
vth o’ l_'__'
. J
First
1
4%, < ('J dojdxduw,,cé(x, v+ 0h)|?,
0
where
. dv’ . F«S
Co(x.v+ 0h) := J D 5 XX 5 (x,v) (x, 0+ Oh) - h.
E, . v — 1] F
o 1 4+—
J
Hence by [34],
2
F5

14312, < clif? j

s | (x,v)dxdv,
Qx|o| < \/j+1 I+E—
J

which tends to zero when /i tends to zero. This proves the translational equi-
continuity of the A%/-term.

The B%" estimate is connected to averaging. We give a direct proof. For h
small
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| B*"(x,0)|
F? v —v—h F?° v —v
2
SC[JS w<x+sm.v’>——ﬁ(x+slv,—_7|,v') deU/.
1 +— 1 +—
J J
(2.9)
Write the difference within absolute values in (2.9),
F° "—v—/ F° =
Jsz F5<x+sﬁ,v’)—l F«*(X+S|Z/_Z|’v/> ds,
1 +— T
J
F(S
with each term 1B in mild form. Then there first appears a difference of

J
boundary terms whose integral tends to zero when A tends to zero, essentially

because of the convolution with ¢”. There also appears a difference of gain terms
along characteristics. There finally appear differences for the loss terms and for

FO\~ . . . .
(1-!—7) which can be treated analogously to the differences in the gain

term,only simpler. The gain term contribution to B®"(x,v) is a v’ integral of an
expression of the type

s7(x, (v =v)/|v"—v]) 0 . FJ
| ot
—st(x, (v =v)/|v'—v|) —st (x+s(v'—v=h)/|v'—v—h|,v") 1 +F_
J
v'—v—h F?
X (X + Sm + 5 v, U;h) 1—4_? (yl R v{h*)dyldwl
J
0 d
. F
- J ds Jxxf 3
—st(x+s(v'—v)/|v"—0v|,v") 1 +F_
J
v — v ., F«S ,
X x+s———+s0, 0, | ——=(y;,0),)dydw |ds, (2.10)
[v" — v - F°

where

b v —v—h , ,
Ulpe * = U, x+S|v,_v_h|+Slv,y1,v,w1 )

o= (x s T o
th [v! — v — h R '
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!

roL v
Vi, - =0, x+s|v,—

! li
—U|+Slv y Y1 U »wl)a

/

[ v v / N
vpi=v x+s|v,—+s|v,y,,t,w1 .

—U|

We split (2.10) into a difference in the yy/ terms which tends to zero when 4 — 0,
and the sum of

5™ (x, (v'=v)/|o"—v])
| s

—s*(x, (v'=v)/|v"—v])

JO Jxx’ i (x+sv/_v_h+sv’ v’)
v,
—s* (x-+5(v'—v—h) /o' —v—h],0") F° [v! — v —h th

F? v —v F?
TP <x + sm + 510/, v;) m(yl,v{h*)dy,dwldsdsl, (2.11)
j

s (x, (v'=v)/|v'—1|) 0 R F‘S v —v
J SZJ Jxx’ 5 <x+s—/*“"’"”;)
=st(x, (v'=v)/|v"-v]) —st(x+s(v'—v=h)/|v'—v—h|,v') F_ o — ol

F?° , F? ,
F&(ylavlh*)__ﬁ(yl,vl*) dyldwldesl’ (212)
1 +— 1 +—
J J

and

s™(x, (v =v)/|v"=v]) 5 =5t (x+s(v'=v)/[v'—v],0") ) Fﬁ v —v
J s J J)(x’ <x+s|—|+slv’,v;>

=s*(x, (v'~v)/|v'=v]) —s* (x+s(v' —v—h)/|v' —v—h]|,v") 14 F_a v —v
J
F° ,
x _Fg(ylvvl*)dyldwldesl- (2.13)
1 +—
J

The contribution of the integral in v’ of (2.13) to the integral over 2 x R? of B%"
tends to zero when / tends to zero, because the volume of integration tends to zero
with A.  As for the two differences in brackets in (2.11) and (2.12), we repeat the
procedure of expressing them in mild form. Terms like
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s7(x, (v =v)/|v'—v]) 0 )
] “Il Jr
—st(x, (v'=v)/|v"—v|) —s*t(x+s(v'—v—h)/|v'—v—h|,v’)

0 Fo v —v , .
X dsy——= | x + s7———— + 510" + $520y,,,, Uy
F° |v! — v — A !
—st(x+s(v'—v~h)/|v'—v—h|+s 10", 0], ) l+—
J

0 F? v — v
—J dsz—(,<x+s,—+slv’+sw{*,v§>
=5t (x+s(v'=v)/|v'~v|+s10", 0] ,) 1 +F |l) - Ul

F? F°
—‘Fg()’nvfh)—F(;
1 +— 1 +—

J J

X (pa, vé,,*)dyldwldyzdwzdsl} ds

will appear. Sets where ﬁ%’ v', and v}, are close to parallel can be made
as small as desired, to make the corresponding integrals as small as desired because
of the uniform boundedness of %. Except for the sets where IZ::+2|’ v’
and vy, are close to parallel, we can /perform a change of variables with uniformly
bounded Jacobians

v —v—h

(S,S],SZ) - X :=x+5m

+ 510" + 8201,
as well as a similar change of variables in the term without ~. We end up with a
difference of volume integrals integrated over volumes differing by c|h| and
integrals containing the difference of the Jacobians. Each such term tends to zero
when A tends to zero.

We can now pass to the limit in (2.7), when ¢ tends to zero. The limit F/" is
a solution to

v-VFM = QY (FIm FImy — Fimy(y, FP™), (x,0) € 2 x R,

Lt'-n(-)<0 |uf . n(.)lFf,n(, , M’)dW
Too W - n )7 (, w)dwdy

FP(x,0) = M(x, U)( ) xpl(x), (x,v)edQt. (2.14)

The aim of the present section to construct a solution to the approximate problem
(2.1) has then been achieved.

Lemma 2.3. Let f = f/'"" denote a solution to the approximate problem
(2.14), and for x € 0kQ set
S
k

flx.0)dv, o(x) =2 (x)

plx) = J a Jokg p(x)dx”

v-n(x/k)<0
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Then
o(x) > ¢ >0, xedkQ,

with ¢, only depending on 0Q and M but not on j,r, n.

Proof. The ingoing mass flow equals one. Fix a ball 4 inside 2 and with
centre xyg. For each x; € 0Q, the line / through x; and x, intersect 0% in between
at x € 04 with (antipodal) intersection x, € 0% and x, € Q2. Choose a symmetric
polar cap on 0% with centre at x, such that its projection S in 022 around x; has
area |S| =1|0Q|. Make a similar polar cap on 0% around x, with projection T to
0Q around x, and area |T|=}]02|. Cover 02 with N such domains
S;,j=1,...,N, so that the corresponding 7}’s also cover 02. Clearly, for at least
one j,

1
"dx > —.
Lja*(px X > N

Also for xe Tj,v-n(x) <0,

0

f(x,v) = f(x —sT(x,v)v,0) exp (— J v(x + sv, v)ds) ,

—s*(x,v)

and so for xe T},

p(x) > J v n(x)|M(x—s*(x,v)v,0)0 * @ (x—s(x,v)v)

Ay

0
X exp (—J " v(x+sv, v)ds) dv,
—st(x,0

with
A, ={veRx—st(x,v)peS;v-n(x) <0,1 <[] <10},
Also
min inf viEnAg |—Z|-n(x) — >0,

inf M(x,v) =¢c3>0,
1<|v|<10,xe02

0
inf exp| — J v(x + sv,v)ds
(x,v)ed7,1<p| <10 )

>

> inf exp(—sT(x,v)) =c4 > 0.
(v,0) €@, 1 <] < 10 P(=s"(x,0)) = ca

Set y = x —s*(x,v)v and change variables

v= |v|ﬁ =t — (1.y), dv=1rdt

Dw
—\dy.
Dy) g
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By the properties assumed for .’

min inf inf
I<j<NxeT; vedy

Dw
—|=c 0.
Dy‘ “=>

Hence for xe T;

C5C4C3C
= (

N 6

p(x) > j escacscao x 9! (v)dy >

S

Here c¢ only depends on M and Q. Using the lower bound ¢ for p on T; (and n
large) by a similar argument p(x) > ¢; > 0 for x € S;, with ¢; only depending on M
and Q. Finally using the geometrical fact that x € 0Q\(S;UT;) is “far” from
either S; or T;, as well as the lower bounds ¢ and c7 for p on S; and Tj, gives in
the same way a lower bound for p on all of 02 independent of j,r and (large) n.
By Green’s formula for (2.14) the outflow is bounded by the inflow,

J p(x)dx < Ja * gt (x)dx =1,
o0

and the lemma follows.

3. Reintroduction of the gain-loss symmetry

In this section we shall remove the asymmetry between the gain and the loss
terms by taking the limit j — co. The smooth increase of ¥ from zero to one

1
in the interval [—E,%] was needed in Section 2 for the Radon transform

argument. That smoothness will also be removed from y" by keeping r fixed, but
letting m = j — oo.

Lemma 3.1. If F/ is a solution to (2.14), then for any r >0,
J FI(x,v)dxdy < cge™PI", (3.1)
le|=>r

and
J| . [o]>F/ (x. v)dxdv < coe®*P/". (3.2)

Proof. Multiplying (2.14) by 1 and |v|2 respectively, and integrating over £ x
R? implies that

J |v~n(x)|Fj(x,v)dxdv$J v - n(x)F/(x, v)dxdv
80" aQr

= J o/ (x)dx = 1, (33)
(]
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and

J lv- n(x)||v|2Fj(x, v)dxdv < J v- n(x)lvlej(x, v)dxdv
o Flols

= C'OJ o’ (x)dx = cy. (3.4)
o0
Also (2.14) implies that

d i T v
T (F/(x + sv, v)efo ylekmedey 5 0,

so that

$7(xr)

F/(x,0) < F/(x + 5 (x,0)v, v)eﬁ» ko o)de

< F/(x 4+ s (x,0)v,0)eP",  |v] > r.

Then

J F/(x,v)dxdv
Qx{v;lv| = r}

0
= } J F/(y 4 sv,v)ds|v - n(y)|dydv
Q7 ,[v| >r

—st(x,v)

< eD/rj F/(y,0)s% (x,0)|v - n(y)|dydv
0" || >r

< eZD/’J F/(y,v)|v-n(y)|dydv,
Qv >r

which is bounded by (3.3) uniformly in ;. The proof of (3.2) can be derived
analogously.

Lemma 3.2. The sequence of solutions (F/) to (2.14) is weakly compact in
L'(kQ x R®).

Proof. By Lemma 3.1, (Ler_l/ijdxdv) is uniformly bounded. Also
uniformly in j

J Fldxdv < supJ M(x,v) (i . n(x))dv
ol <r=1/j 0Q Jjv|<r—1/j,0-n(x)>0 |v]

x <D [ o’ * (p;f(x)dx) <c,
Joo
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and analogously for jlvlSr_,/jlv|2Ffdxdv. Let us prove that (F’) is uniformly
equiintegrable. It follows from the exponential form of (2.14) for F/ that

s (ne

. . ) vy
Fl(x,0) < Fl(x+ 5~ (x.v)v,v)eh 70T (6 1) e @ x R3.

Hence

J F/log F/(x, v)dxdv
Qx{|v| =46}

< Pl BJ
0 Jax{l =6}

F/(x + s (x,v)v,v)dxdv
+ J F/log F/(x + 5™ (x, v)v, v)dxdv)
ox{lil 2 8}
= e (Z[ om0 e
0 Joa
+ J v~ n(y)|F/log F/(y,v)s*(», v)dydv)
oQ

D (D ~
<R[ oI (3 + g Pl ). (9

Here by (3.3) the first term to the right is uniformly in j bounded. As for the
second term the following holds.
Multiplying (2.14) by log F/ and integrating over 2 x R® implies

1
4 [ rs F/(x,v)dxdv

j , 6e(Fj,F/)(x, ¥, v, v )dxdydvdv,
QxR

< J v n(x)F’ log F/(x,v)dxdv + X/,
AQxR3
where
e(F/,F/)(x, y,v,v.)

FI(x,0)F)(p,v.)
Fi(x.0)FI(y.v])’

= ! (F/(x,0)F/(y,v.) = F/(x,v")F/(y,0])) log

and
F/
X/ :=_;J 0 —L— (xv') j (y,00)
| Fidydv, ) g2 g 1+? 1+£

j ’ j ! Fj(xv vl) j ’ j
x (F/(x,0")+ F/(y.v,) + —j—F/(y, v,)) log F/(x, v)dxdydvdv..
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Then
Fi
‘ 1 . Fi

X’S.—J 1’ S (x,0) —— vl

JFidydv, Jg2xrs Figx) <1 l+£.j( )l+ﬂ(y )
J

j ! j ! F/(x’ U/) j ! - j
x | F/(x,0") + F/(y,v,) + ——F/(y,v,) ||log™ F/(x, v)|dxdydvdv,.

Now using Lemma 2.3,

F/(x,0) > cMd’ % 9" (x — s7(x,0)0) > inafQ M(x,v)c;.
XE€E

This is bounded from below by a positive Maxwellian My. So uniformly in j, the
denominator in X/ is bounded from below, and log™ F/(x,v) is bounded from
below by ¢, + ¢3|v|*. It follows that uniformly in j,

X/ < cJFj(l + |0.?)dydy, < c.

This in turn implies that the outflow of entropy through 02~ (together with the
entropy dissipation) is uniformly bounded with respect to j, since the inflow is
uniformly bounded with respect to j (for n fixed). We conclude that also the
second term to the right in (3.5) is uniformly bounded with respect to j. Since F/

; . 1 .

is constant along characteristics for |v| < r—; and uniformly bounded on 0Q*

with respect to x, v, j (for n fixed), this endé the proof of compactness.
Lemma 3.3.  The sequence (Q*(F/. F/)),_\ is weakly compact in L' (k& x R?).

1

Joxr? F/(y,v.)dydv, '
above, since given A > 0, by the exponential form of F/ and Lemma 2.3,

Proof. The sequence ( ) is uniformly in j bounded from
F/(x,0) = M(x — st (x.0)v,0)a’ * ¢"_ (x — s7(x, v)v)e 0,
> cM(x —st(x,0)v,0), xeQ, |[v=>4

Hence, it is sufficient to prove the weak L'-compactness of

([ xx’F’(x‘v’)Ff(y,vi)dydv*)-
JoxR?

By (3.2) the total mass of F/ in |v| > A tends to zero uniformly in j, when 4 — co.
So it remains to study the equiintegrability for domains of integration, where
(x,0'),(»,v)) € 2 x {ve R3;|v] < A}. But there the equiintegrability in (x,v) is an
immediate consequence of Lemma 3.2.



On the stationary Povzner equation in R" 137

We are now in a position to remove the asymmetry between the gain and the
loss term by taking the limit j — c0. Let us start from the weak formulation of
(2.14), i.e. for any test function { e C!(Q x R?) vanishing on 0Q~,

: 1
. j . j
kas(v V) F/ (x, v)dxdv + [Faya, LZXMXX

J . .
(0 0) = (,00) ~ P 0)F (3, 02) | (v, v)ddydod,
- +—

=- v-n(x)M(x,v)(0’ * 9")(x){(x, v)dxdv. (3.6)
ol

First (for subsequences),

4 Fi
. J ! !
Jdim | = ) = () ooy,
1 +— 1 +—
J J

= lim J X F/ (x, 0" YF/(y,v])¢(x, v)dxdvdyd,
Q>xR®

jo+eo

by the weak L'-compactness of (F/). Then, by the change of variables (v,v,) —

(v, 00),

J ) exijj(x, v')F/ (y, v]){(x, v)dxdvdydv,
Q°xR

- J P (x0) P (00 (x 0 (x, y.v.0.)dxdodydo,
Q°xR

(F/), as well as (v-V,F/) are weakly compact in L'(Q x R?) by Lemmas 3.2-3.
Consequently, via averaging, ([gs F/(y.0.)¢(x,v'(x, p,v,v.))dv.dy) is compact in
L'(2 x R3) and converges to Jrs F(y,0)¢(x,0'(x, p,v,0,))dv.dy, where F is a weak
L' limit of (F/). Hence

lim J 1 F (x, 0)F/(p,0.)L(x, 0 (x. y, v, v,)dxdydvdb,
J—+0 QZXR6

= J 6)(F(x, V)F(y,v)¢(x,0'(x, y,v,0,))dxdydvdv..
QxR

Moreover, (y*F/) converges up to a subsequence to (y*F), since (F’) and
(v-VyF/) are weakly compact in L'(Q x R3). Hence we can pass to the limit
when j — +o00 in (3.6) and obtain
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1
Joxrs F(y,vi)dydv,

J (v-VO)F(x,v)dxdv +
QxR?
<[ HEFG)
Q°xR
— F(x,0)F(y,v.))(x,v)dxdydvdv,

T Lm v-n(x)M(x,0)(p * p3)(x)(x, v)dxdv,

which means that F := F"" is a weak solution to the stationary sm-transformed
Povzner problem

rno__ 1 r(prn N prn Iy _ e r.n
0 V" = e [P0V (0,00) = (k)PP . .
(x,v) € 2 x R,
Fi'(x,0) = M(x.0) (0" 90)(3). (x,0) € 02", (3.7)

And so the aim of this section has been achieved, to obtain a solution for an
approximate equation with gain and loss terms of the same type, and with the
truncation y" a characteristic function.

4. End of proof of Theorem 1.2. The main theorem

We now have solutions F"" corresponding to the remaining approximations
of (1.3-4) involving x" and ¢". We will work with subsequences (r,) mono-
tonically decreasing to zero. The boundary convolution with ¢” and the small
velocity truncation y” will no longer be used to control weak L' compactness. Now
that the gain-loss symmetry is reintroduced, that control will be taken over by the
entropy production term and by estimating integrals along characteristics. In
particular the boundary convolution will be removed through Jensen type argu-
ments. In Theorem 4.1 the entropy production term will be used to gain r, n-
independent mass control. There we carry out the analysis for an arbitrary
element of the sequence (¢") (and uniformly over #), but in Proposition 4.3 about
weak L' compactness, subsequences (F'") are being considered. Proposition 4.3
is used for obtaining a last limit in the approximation scheme, thereby completing
the proof of Theorem 1.2. Finally in the main theorem of the paper, Theorem
4.8, the generalization to hard forces is carried out.

Theorem 4.1. The mass of (F"") is bounded uniformly with respect to r,n.

Proof. Consider a sequence (r,) monotonically decreasing to zero. If the
mass of the corresponding sequence (F7”) is not uniformly bounded, then there is a
subsequence (F?) such that
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J FP(x,v)dxdv > 3c,e*P, (4.1)
QxR3

. 1 .
with c,e?® > 1. Set V, = {veR3;r,, <|v < 1_7} Then using (3.1)

J F?(x,v)dxdv > 2c,e™? > 2J F?(x,v)dxdv,
QxV, Qx{|v| > 1/p}

so that

j F?(x,v)dxdv > gJ FP(x,v)dxdv.
QxV, 3)axr?

By (3.1-2), £FP? is integrable, for any component & of v. Green’s formula can
then be used for the equation (3.7). Let IT,, denote the plane through xp € 2 and
orthogonal to the ¢ direction. By Green’s formula for one of the subregions into
which Q is divided by I7,,, it holds that

J E2FP(x,v)dxdy < c,
1, xR?
with ¢ only depending on M of (1.4). Hence,
J E2FP(x,v)dxdv < c.
QxR?

Analogous estimates hold for the integrals of F? time the square of any component
of v. Hence

J 0] F7 (x, v)dxdv < c. (4.2)
QxR?
Moreover,
FP(p,0.) 2 FP(y = s*(p,0.)p,)e” 00
= M(y =5 (3.0 )0, 0.)(p" 9P )(y = sH(y,v. )0 )e )
>c, 1<|u] <4,

by Lemma 2.3. Using that type of estimate for F”(y,v!) but from above with
respect to outgoing boundary, for geometric reasons the following holds. For y in

. Q . = .
an x-dependent subset Qp = Q with |Qp| > 7 there is £,, with
1Qpy| > 4m(2° — 1) - 1,
and there is Q. = Q,, with |Q,,,| » 1, such that,

(X pyo0) =0+ (0 —v)- <x—y) "

Ix — ¥l |x_y|ery, VEVp V. €Lp

Here the following lemma is needed to complete the proof of Theorem 4.1.
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Lemma 4.2. Under the hypothesis (4.1) for the sequence (FP), there are
Sy = Q, and for aa. xe€S, yeQ, there are Sy <V, and Q) <y, with
|Qpyx| > 1, such that

J J F”(x,v)dxdvzlj F?(x,v)dxdv,
Sp J Spx 6 QxR?

and

FP(x,v) = p FP(x,v'(x, p,0,0.)), X€Sp, VESp, Ve, v.€Q,

x—y) xX—y

where v'(x, y,v,0,) =0 — (v —0s) " <|x ) x =y

Proof. Using the previous discussion, it is enough to prove the existence of
S, « Q and for a.a. x € S, the existence of Sy, = ¥, and V,, = {v";1 < |v'| < 1}
with [V<] <1, such that

J J F?(x,v)dxdv = 1] F?(x,v)dxdv,
S, ISy 6 Joxr?

and
FP(x,0) > p’FP(x,v'), x€8, veS,, veV,.

Let U:={v;1 <|v| <4} and

Sy = {xe Q;J FP(x,v)dv > pJ F?(x, v)dv}.
v, U
Then
J [ F?(x,v)dxdv SpJ [ F?(x,v)dxdy
\s, Jv, as, Ju
< bccew < pez('_”)DJ J F?(x,v)dxdv.
ely,
Hence

J J FP(x,v)dxdv = (1 —pez('_”)D)J J FP(x,v)dxdv > 1] FP(x,v)dxdv,
s, ely, 3 Jaxr?

14

for p large enough.

Let x € S, be fixed. By rearrangement, there are nonincreasing, nonnegative
and left-continuous functions F? and F’ respectively, defined on [0,|V,|] and
(0,47(47 — 1)] such that

ve Vo —da < FP(x,v) <o+ da
14

=|uel0,|V,|];a—doa < FP(u) < o+ dol,
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and
lve Usa —do < FP(x,0) < o+ daf
= |uel0,4n(A? - D)o — do < Fi(p) < o+ dat|.

Let us divide the interval 0 < u < |V,| into two intervals I, I in increasing order,
so that

Jﬁfdﬂzlj FP(x,v)dv, ve{l,2}.
I 2 v,

For any g smaller than the right endpoint of I,

- - . 1
SFUR) > FIn > [ Fdn=3 [ P
2 r

o
SE

J(4/3)nu-‘—l>

\%

gJ FP(x,v)do =2 F"(u)dp.
U

2)o

Hence, for any j smaller than the right endpoint of /; and any jie [l.‘—3‘7z(/13 - 1),

ﬁﬁf(m > ,,J; Fl(wydu > pF’(p),
which implies
Fi(a) = p°Fi(a),
for p large enough. Let
Spxi={ve Vi FP(x,0) > FP(@) for some fi
smaller than the right endpoint of I, }.

Then

L L F?(x,v)dxdv = Lp Jl| FP(p)dp = %J JV FP(x, v)dxdv

p ¥ Opx Sp I Vp
1

> —J F?(x, v)dxdv.
6 QxR?

End of proof of Theorem 4.1. Multiplying (3.7) with log F? and integrating
over 2 x R® implies

]
- L
[Frdvds, [ _— e(FP,F?)(x, y,v,v.)dxdydvdv,

= J U n(x)FFlog F(x,v)dxdv
0Q2xR’
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FP
= . Plog —
Lgxk3v n(x)FPlog M(x, v)dxdv

+ J v-n(x)F’log M (x, v)dxdv.
dQxR?
Here
F(x,0)F(y,v.)
F,F) = " (F(x,0)F(y,0,) — F(x,0")F(,0.)) log—t2*)
€(F F) = o (F(x,0)F(y.0.) ~ Flx,t)F(y,vl)) log g - s
Also

J v-n(x)F’log M (x,v)dxdv
dQxR?

= —J v n(x)F?(b(x) + ¢(x)|v]*)dxdv < cj pP(x)dx = c,
20xR? oQ

and

p
J v-n(x)FPlog F—(x, v)dxdv = J P’ x oY (x) log(p? * @) (x)dx
oo+ M 00

< | otx(priog p)(x = | priogpr (.
Jog Fte)
by Jensen’s inequality. Again by Jensen’s inequality (see [9]),
FP
J pP(x)log p? (x)dx < J |v-n(x)|FPlog — (x,v)dxdv,
9 Q- M
since
Fr
pP(x) = J |v- n(x)|M —(x, v)dv.
v-n(x)<0 M

Hence

1

WL}&R" e(F?, FP)(x, y,v,v.)dxdydvdv, < ¢ < 0.

This together with Lemma 4.2 implies

J J F?(x,v)dxdv > 1] F?(x,v)dxdv
Sp JSpx 6 Joxr®

%

C‘J e(FP,F")(x. y,v,vs)dxdydvdv,
Q?xR®

1\

¢ J e(FP,F")(x, y,v,v.)dxdydvdv,.
XESp,vE Spy, ) € Qp v, € Qpyy
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The inequalities

FP(x,v) > p*FP(x,v"), ¢<FP(y,0,) <],
c<FP(yv) <1, x€8, veS,, ye, v.€Q,,
imply that
FP(x,0)FP(y,v,) — FP(x,0")F?(y,v.) > cFP(x,0),
and

14 14
Frxo)F(yv) | o
Fr(x.0)F(y.v])

so that
e(F?, FP)(x. y.v.v.) = cxTFP(x.v) log p.

Moreover, |2,|, and for a.a. xeS,, yeQ, |2, are bounded from below,
uniformly with respect to p and x,y. Hence,

J J z/x"’F”(x,v)dxdeclong j Y FP(x, v)dxdv,
s, s

px Sp J Spy
which leads to a contradiction. This ends the proof of Theorem 4.1.

Remark. In this step the condition of the diffuse reflection being Maxwellian
was used to obtain

J v n(x)FP(x,v)log M(x,v)dxdv < c.

A number of generalizations are obviously also possible, including the one of
replacing M by normalized functions ¢ with

ju -n(x)FP(x,v)log ¢(x,v)dxdv < c.

The key Theorem 1.2 will easily follow from the previous results together with
weak sequential compactness of (F™").

Proposition 4.3.  Any sequence (F'™") with lim,_,r, = 0 is weakly compact in
L'(kQ x R%).

Proof. The statement follows if the sequence (F'™") is uniformly equiinte-
grable. Given ¢, there is K, such that

J J F™"(x,v)dxdv < ¢.
QJlelz K,

So if the proposition does not hold, then there is ¢ > 0, a subsequence (F") and a
sequence of domains (A4,) with (4,) = 2 x {r, <|v| < K.}, such that
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J F(x,v)dxdv > ¢, |An| <n>.
Let us first discuss the case of
1
A, cQxV, =0 x {veR3;r,, <y < ;}

By Theorem 4.1, for some ¢y > 0,

J F""(x,v)dxdv < ¢y < 00,

QxR?
independently of r,n. And so

j F"(x,v)dxdv > ¢ > iJ F"(x,v)dxdv.
QxV, €0 Joxr?

We can then proceed as in the proof of Theorem 4.1 introducing ,, £2,, and S_Qnyx.
We will also need a variant of Lemma 4.2, namely

Lemma 4.4. There are S, = 2, and for a.a. x€ S,, y € Q,, there are Syx < Vy,

Qpyx © Qyy with |2y,x| > 1, such that

J J F"(x,v)dxdv = ij F"(x,v)dxdv,
S0 I 4co Joxr?

and for x€ S,, ve Syy, Y €82y, v, € Qyyx,
F"(x,v) > n?F"(x,0v'(x, y,0,0,)).

Proof. 1t is enough to prove the existence of S, — 2 and for a.a. x € S, the
existence of S,y = V, and V! < {v'eR* 1 < |v/| <1} with |V <1 such that

J J F"(x,v)dxdvzij F"(x,v)dxdv,
Sn Snx CO Q)(R3

and
F'(x,v) > n*F"(x,v")., x€S,, vE€Sw, vVeV,.

Let U:={veR*1<|v] <A} and

S, = {er:J F"(x,v)dv > LJ F"(x, v)dv}.
v, 2Cb U

Then by (4.2),

J J F"(x,v)dxdv < _s_J J F"(x,v)dxdv <
as, v, as. Ju

N ™

Ch

SlJ [ F"(x,v)dxdv.
2)aly,
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Hence

J J F”(x,v)dxdvzlj J F"(x,v)dxdv
s, dv, 2)aly,

£
> — F"(x,v)dxdv.
2co JQxR-‘ (x.0)

Given x € S,, introduce the rearrangements F" and F. as in the proof of Lemma
4.2 and conclude as there that for any g smaller than the right endpoint of I; and
any fie(l4n(2’ - 1),

Hence, for large n,

Let
Spx = {v €V, F"(x,0) = F'(ji) for some ji

smaller than the right endpoint of I, }.

[, Jo o= | ] prtan=s ]

n n

Then

F"(x, v)dxdv
v,

n

£ n
ac JQxR’ F"(x, v)dxdv.

v

Continuation of the proof of Proposition 4.3. From the proof of Theorem 4.1,
we know that uniformly with respect to n,

J ; e(F",F")(x, y,v,v.)dxdydvdv, < ¢ < o0,
Q*xR®

which this time using Lemma 4.4 leads to the same contradiction as in the proof of
Theorem 4.1. We have thus proved that given & > 0, there is n, such that

J J F'(x.v)dxdv < e.
Q Jlol <n;!

It remains to prove the uniform e-equiintegrability for (F") on S, = Q x
{veR%n;! <|v| < K.}. Assume that in the set S, there is a sequence (A,) with
|4, <n™? such that

J F"(x,v)dxdv > e.
An
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Then A4, = A, UA,,, with
1
Ap = {(x, v) € A,;meas{w e R?; (x,w) € 4,} < ;},

Ay, = A\Ay,.

Arguing similarly to the earlier case of |v| < n_!, there is np € N such that

J F"(x,v)dxdv < g, n > ny. (4.3)
A,

It remains to exclude the possibility that -[A.. F"(x,v)dxdv >§ for an un-

bounded sequence of n. For this we first prove the weak L'(9Q) compactness of
(p™). That result is a direct consequence of the following two lemmas. Write p” =
G"+ H", where
G"(x) := J gn(x, v)dv,
v-n(x)<0
0
gn(x,0) := |v- n(x)|M(x — 57 (x,0)v,0)p" x @"(x — 57 (x,v)v)e L oy ectse 0

1

0 0
H"(x) := —J v-n(x) [ o J ey
‘[F"dydl]* v-n(x)<0 l ( | J—st(x0)

x Jx’" (x + 50— y,v,0.)F"(x + sv,0")F"( y, v.)dydv.dvds.

Lemma 4.5. (G") is strongly compact in L'(08).
Lemma 4.6. (H") is weakly compact in L'(08).

Proof of Lemma 4.5. (G") is uniformly in x and » bounded by
¢ [,op"(p)dy = ¢, thus weakly L'-compact. Next, (G") is an equicontinuous
family, uniformly with respect to xedQ. Indeed, for a fixed xe0Q2, let
v
[o
{v eR*0 < —ﬁ -n(x),0 < |v] < K}. The M-factor makes the contribution from
|v] > K arbitrarily small for K large enough. Writing v in polar coordinates v =
|vjw, w € S?, and bounding from above the exponential term by one, implies that

Ay :={ve R30<— n(x) gé}, B, := {veR%0<—v-n(x),|v]| <4}, and C, :=

| o< | - (X" % o) (x — s* (x. 0))

weS¥0 < —wn(x) <o

+00
X J > M (x — st (x. ), |v|w)d|v|dw
0

< C‘J (p" * @l)(x — st (x, w)w)|w - n(x)|dw.
we S0 < —wn(x) <0



On the stationary Povzner equation in R" 147

By the change of variables w — y = x — st (x, w)w € 09Q,

Dw
[ ntxonao<c| (" w0 [
Ag y

y€0Q,0<—(x—y)/lx—yl.n(x)<d

< cJ (p" * @) (y)dy,
82,0 < —((x—)/Ix—y])n(x) <6

is uniformly bounded. The above weak L'-compactness of

. Do
since |w - n(x)| D

(G") is all from the present lemma, that is used in the proof of Lemma 4.6 to
prove the weak L'-compactness of (H"), thus of (p”). That in turn implies the
uniform in » convergence to zero of IAY gn(x,v)dv, when 6 — 0. The contribution
of B, to G, is in the same way bounded by

| - n()|(p" * @) (x — 5" (x, 0)0)
weS%0 < —wn(x) ’

X (Jj [o]> M (x - st (x, w)w, |v|w)d|v|)dw

< céj | - n(x)|(p" * @) (x — s*(x, w)w)dw
S2
< .

There remains to study the contribution from C, to G”.

J gn(x + h,v)dv = J lw-n(x+h)|p"* @l ,(x+h—st(x+ho)o)
Cisn —w-n(x+h)>6

K’:
X (J o]’ M (x + h — st (x + h.0)o. |v]|o)
s
0
X e_(l/JF"dyd”‘) f_m.wh Irlo) Jrmethesiloy o, e ) P, l)')dydv'dsd|v|)dw,

Set

_ h4st(x+ho)
st (x4 hoo)l”

up

. D o .
Obviously D—Z’)’ = identity for h =0. By continuity, the convergence to this value

when # — 0 is uniform with respect to xe 2, ve C,. Also

Ilin(l)w -n(x+h) —w, - n(x) =0,
11—
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uniformly in x € 09,

0
— n n - —_v n
lim e (1/ [ Frdydv.) ffmm‘w Jam (ethtsiolo=y, oo, 0.) F (v, v, )dydo.ds
h—0

0

e—(l/fpndydu,)J

_ —st (x.[olo)

I)("‘ (x+s]vlw—y, |v]w, v.)F"(y,Lu)dydu.ds) -0
- )

uniformly with respect to x € 022, ve C,. Set

Gy (x) = J gn(x,v)d,
C\'

and change variables from dw to du, in Gj(x). It follows that lim;_oGj§ (x + h) —

GJ(x) = O(8), uniformly with respect to neN, x€0Q, 0<peL'(0R2) with

Joo pdx = 1.

Proof of Lemma 4.6. If follows from the earlier discussion of ‘small velocity
mass for F, that in the definition of H"(x) it is enough to consider domains of
integration with |v|, |v., [v'], |vl] = >0, and from the uniform bound for
j|v|2F "(x,v)dxdv that it is enough to consider domains of integration with |v|,

1 . .
v, |V'|, [vl| < <. It also follows from the (A4,,) part that it is enough to discuss as
* 5 1

domains of integration, sets with 1 —9J > . Let y; be the characteristic

v v
o] [v']
function of these v,v,,v’,v/. So with B,, a set in dQ of measure < m~2, instead of
I" = [, H"(x)dx, it is enough to discuss

I 0
1"1 — . ¢
* 7 JFrdyd, JB,,,xR’ lo-n) J-r szw X

0
x F"(x +sv,0")F"(y,v))e” I " dsdydv, dxdy.

since (using the argument in (4.3)) the contribution outside suppys; tends to zero
with & uniformly in n. For s,v,0" fixed, F"(x+ sv,v’) can also be expressed in
exponential form as an ingoing boundary value plus a gain term integral along a
characteristic. The contribution from its boundary term to 1" gives—similarly to
the proof of Lemma 4.5—a contribution to /" which tends to zero when m — oo,
uniformly with respect to n. Another y; truncation also removes an integral in the
gain part, uniformly with respect to n small of order o(1) in 6. Repeating once
again the procedure of expressing the latest remaining gain term in exponential
form, leads to a boundary contribution tending to zero when m — oo, uniformly in
n, and an inner integral. Taking into account that all the occuring exponentials of
collision frequencies are bounded by one, this inner integral is bounded by
1

K" .= WL F"(y1, VI)F"(y2, V3, ) F" (33, V3,)
ydy,

X F'(x 4 s10+ sV + s3V3. V)i a2 dxdvdy, y3dvins.dsia,
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where dy,,; = dy,dy,dy,;, and analogously dviz3., dsi23. Also,
Vii=10v"(x+ s, y;.0,04),
Vy i =v'(x+siv+ 82V, y, Vi, vis),
Vy=0'(x+siw+ V| +s3V5, 33, Vy02.),
and analogous definitions for the * variables, and
Z :={(x,0, Y1, Y2, V3, Vlx, V24, U3, 81,82, 83); X € By,
veRY y, eR v, eRYi=1,23 5 €[-st(x,0),0],
s3€[—sT(x+s10,V/),0],53 € [-sT (x+siv+ 52V, V3),0]}.

For (x.s1,52,53. ¥1, ¥2, y3) fixed, by the successive changes of variables (v,v.) —
V.V, (Viva) = (V3,V3,), (Vi) — (V3, V3,), dodvaas is replaced by
dvidV{.dv,.dV;,. Hence K™ is bounded by

¥ 4 n I n
K" < WJF D VIDF" (92, V2 )F" (33, V3,)
ydy.

X F'(x 4 siv+s:2V| + 83V, V3)dxdVidV |y, dy 53dsias,

where now v, V| and V; are functions of (x. V3, V|, .V, V3, ¥1.y2. ¥3,51,52,583).
For (x,V{,V|,,V,.,V3,) fixed, let us make the change of variables

(s1,82,83) > z = x+S1U+SzV|' +S3V2/.
The set {z=x+siv+ V] +s53V5: (X0, Y. V2, V3. Vls, V22034, 51, 82.53) € Z} is a

volume in R® and the Jacobian
truncations giving

is bounded from above due to the y;

-
<

T I U I S
BRICIA ol V3l Vil 1V,
so that
K™ < ¢|B,| J F"(z, V3)dzdV; < em™.
QxR?

We conclude that (H") is weakly compact in L'(9Q).

End of proof of Proposition 4.3. It remains to study IA,,, F"(x,v)dxdv, where
meas{x € 2; v e R3s.1.(x,v) € 4,,} <n 2.

Write F" in exponential form as the sum of an ingoing boundary value term B”
and a characteristic gain term integral C". For the integral of B" over 4,,. again
given v, split the x’es of A,,, into those xy where (xo,v) € 4,, and the set of x =
xo + tv such that (x,v) € 4,,, has measure smaller than n~! (small set along
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characteristic), and the rest which projected into a plane orthogonal to v
have measure smaller than n~' (small set of characteristics). The B” integral for
the first subset of A4,, is bounded by cn~! with ¢ independent of n. The B”
integral over the second subset of A4,, tends to zero when n — oo by the com-
pactness of (p”). So lim, s | 4, B"=0. As for the (C") sequence, the same
type of arguments that proved the compactness of (H") in Lemma 4.6, gives that
limy, 400 | Ay C" =0. This completes the proof of the proposition.

1
Lemma 4.7. The sequence ("—J A F(x, 0 ) F" (p, 0" )dy dm) s
weakly compact in L'(kQ x R?). JFrdydo, Jigxr:

Proof. The proof of Lemma 4.7 is similar to the proof of Lemma 3.3.

Proof of Theorem 1.2. Consider the weak L' limits of (F'™") and
Pk @l i=p"x ", Using the weak L'-compactness of Proposition 4.3 and
Lemmas 4.5-7, we can pass to the limit in the weak formulation of (3.7),
analogously to the end of Section 3. The weak limit of (p") is by the usual trace
arguments equal to the outgoing flux of the limit F of (F"). Hence F satisfies
the sm-transformed problem (1.5-6), and so Theorem 1.2 follows by an application
of Lemma 1.3.

The discussion so far was restricted to the collision kernel in the Povzner
collision operator being identically equal to 1. We shall now finally in the main
theorem of the paper extend the results to more general collision kernels. Here
test functions for the weak form of the Povzner equation are functions in
L*(2 x R?), continuously differentiable along characteristics and vanishing on
0.

Theorem 4.8. There exists a weak solution f in L'(2 x R*) with given total
mass k >0 to the boundary value problem (1.1-2) when the collision kernel is a
X=)
lx -yl

maxwellian type), or is of hard force type

B<x_y m):B(x‘ym—m)w—mM 0<f<2  (44)

Xy o,
|x — ¥l |x =yl

strictly positive function B( U — v*), bounded in L*(S* x R3) (of pseudo-

Proof. First, the existence of a weak L! solution to the Povzner equation
. . .. X —
in the case of a positive, bounded C* collision kernel B(ﬁ,v— v*) can be
X —

proven in the same way as for Theorem 1.2 in the previous sections, where the
collision kernel was identically equal to one. Let us next consider the case when
the collision kernel B is bounded and measurable. Let (B,) be a sequence of
bounded C* functions uniformly converging to B outside of sets of measure ¢ for
all ¢ > 0. The existence of a solution F” to the Povzner equation with collision
kernel B, and total mass k* for the sm-transform is already clear. Then the
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arguments in the proof of Theorem 4.1 and Proposition 4.3 apply to (F”), so that
(FP) is weakly compact in L'. Using this weak compactness, as well as the
uniform convergence of (B,) outside of arbitrarily small sets, one can pass to the
limit in the weak formulation satisfied by F?.

Consider next the case of a collision kernel of the hard force type (4.4).
Lemma 1.3 holds also in this case. Namely, solving the original Povzner problem
(1.1) under (4.4), is equivalent to solving the following transformed problem

v-VyF(X,v) = ! JB(X_Y,U—U*>
[(1+ o.)PF(Y, 0)dYdv. ) \|X = Y]

[ BF(Y,v,)dYdv,
[+ o) F(Y . v.)dYdv,

x F(X.0')F(Y,vl)dYdv. — F(X,v)

where

R X X v 3
Fx.v) '_f<j(1 1) f (. v)dxdu’v>’ M

The proofs of the preceeding two steps imply the existence of solutions F? to
such transformed problem with collision kernels B, = min(B, p) and with
J(1+ [o|)#F(X,v)dXdv = k*. We can pass to the limit in the weak formulation
satisfied by (F?) when p — oo by once more applying the proofs of Theorem 4.1
and Proposition 4.3.

Remark. Other generalizations can also be treated by this approach, such as
given indata boundary conditions, there also the soft force case with —3 < <0
by involving the renormalized solution concept, as well as more localized situations
such as

B(x —y,v—v,):= B(lz:i|,v—v*)|v—v*|ﬂx(x—y), -3<p<2,

where y is the characteristic function of a neighbourhood of zero.
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