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Tauberian theorem of exponential type and its application to
multiple convolution

By

Nobuko Kosuai

1. Introduction

Let {U,(x)} be a sequence of non-decreasing, right-continuous functions on R
vanishing on (—00,0], and let w,(s) be the Laplace transform of U,(x). In this
paper, we shall study the relationship between the asymptotic behavior of
logw,(ns) and that of log U,(x). This problem is motivated by the following
question: Let X, X>,... be positive, independent random variables with common
distribution. By the law of large numbers, we see that X; + Xo +---+ X, —» ©
as n— oo, as, and it is of interest to know how fast P[X;+ Xo+---+
X, <a)(a>0) tends to 0 as n — co. In other words, we are interested in the
asymptotic behavior of the multiple convolution

J . J do(x))do(x) - - - da(x,), (a > 0)

0<xj+x2++x,<a

as n — oo, where o(x) is a right-continuous non-decreasing function vanishing on
(—00,0] and here we no longer need to assume that ¢ is a distribution func-
tion. This may be considered as a problem of large deviation. In a study of the
local time of Gaussian processes, Kasahara, et al. obtained the following result
(Lemma 3 of [11]). If o varies regularly at 0 (i.e., lim;_oo(Ax)/a(4) = x*,x > 0,
for some a; see [1]), then

I/n
do(x;) - -do(x,) xa(l), n— oo, (1.1)

. n
O<xi+-+x, <1

where f =< g means 0 < liminf f(x)/g(x) < limsup f(x)/g(x) < c0. Our question
is to determine the exact constant in (1.1). To this end, we first consider the case
of o(x) = x$ (x> 0), where x; = x v 0. An elementary calculus provides us with

I+ 1)"

do(x))do(x3) - - - do(x,) = Tan+1)’

0<xj++x, <1

(1.2)
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where I'(a) is the gamma function (see Appendix for details). Therefore, by

Stirling’s formula, we get

1n
JH&U(I#/M JJ dotx))+-dom) | = () T+, (3)

O<xy+-+x, <1

One of the main results of this paper is that (1.3) remains valid if ¢ varies regularly
at 0 with exponent a (Theorem 2). The idea of the proof is as follows. Put

1
Up(x) = o J+j < da(m):+-do(,) (14)

and consider its Laplace transform. Since

Jw AU, (x) = ( 1 F e"’”‘da(x))n,

0 a(1/n) Jo

we have

l [e¢] l [og]
- logJ e "dU,(x) =lo J e "*da(x). 1.5
Jlog | (x) = log 7 | ¢ do() (1.5)
If o(x) is a regularly varying function, we can apply Karamata’s Tauberian
theorem (see [6] pp. 442-448) to the right side of (1.5) and have

00
lir{‘lO % log J e "™*dU,(x) = —alogs+logI'(x +1). (1.6)
h— 0

Thus, our problem is deduced to a certain kind of Tauberian theorem of ex-
ponential type. There have been many works on this subject. For examples,
Davies ([4]), Fukushima ([7]), Fukushima, Nagai and Nakao ([8]), Kasahara ([10]),
Kohlbecker ([12]), Kéno ([13]), Minlos and Povzner ([14]), Nagai ([15]), and so
on. Especially, Kasahara ([10]) shows that all of the above works are deduced to
the relationship between measures dU(x) and their Laplace transforms

j:o exp{Af (x/$(1))}dU (). (1.7)

where ¢(4) is a regularly varying function, and gives a Tauberian theorem in a
most general form. From (1.7), notice that a measure dU is fixed in each
Tauberian theorem of exponential type that we mentioned above, and thus we can
apply none of these works to the case of (1.6), in which we have to treat the
measures dU,(x) depending on n. Therefore, in the present paper we construct a
Tauberian theorem which treats the case where the measures dU,(x) depend on n.
Afterwards, we shall see that our theorem contains a special case of Kasahara’s
theorem, and the proof of our theorem becomes much easier than that of his.
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We remark that, as we mentioned before, our problem may be treated in the
framework of large deviations. Especially, our theorem is much silimar to the
theorem due to J. Girtner (see [9]) and R. S. Ellis (see [5]), which, however, does
not contain ours.

This paper consists as follows: In Section 2, as we mentioned in the above,
we give a new Tauberian theorem, and using it, we shall show that (1.3) holds in
the case where o is a regularly varying function at 0. The proof of the Tauberian
theorem is given in Section 3. In section 4, we give another Tauberian theorem in
which the roles of the origin and infinity are interchanged and show that our
theorem includes a part of Kasahara’s Tauberian theorem.

2. Main Theorem

Let ¢(s) € C'(0, 0) be a decreasing convex function such that

. / _ . / _

Jlim ¢(e) = —co.  lim ¢'(s) =0, (2.1)
and define

" (x) = i‘r;g{sx + o(s)}, x> 0. (2.2)

Then ¢*(x) is a non-decreasing concave function on (0, ). Indeed, from (2.2), it
is easy to see that ¢* is non-decreasing, and it also follows that

e (x+ (1 —1)y) = t9"(x)+ (1 — Ne*(p), for 0<r<l,

which proves the concavity. Since s— sx + ¢(s) attains its minimum at s such
that x + ¢'(s) = 0, denoting by g(x) the inverse function of —¢’(s), we have

9" (x) = xg(x) + 9(g(x)). (2.3)

By (2.2), it follows that ¢*(x) < sx + ¢(s) for all s > 0 and x > 0, and therefore, it
is easy to see that

o(s) = sup{—sx + ¢*(x)}.

x>0
However, from (2.3), we have
o(s) = —sx + ¢*(x) if x=—¢'(s), (2.4)
and hence, in fact it holds that
p(s) = il;g{—SX+¢*(X)}~ (2.5)

For example, put ¢(s) = —alogs (« > 0). Then, g(x) = a/x and ¢*(x) = alogx +
alog(e/a). For another example, if ¢(s) =s7* (a > 0), then, g(x) = (oc/x)'/(““)
and ¢*(x) = (1 +a) (x/a)?/C*D.
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Remark that from (2.4) and (2.5), we can see that x — ¢*(x) — sx takes its
maximal value ¢(s) at x = —¢'(s), and furthermore, x = —¢'(s) is the unique
solution of ¢*(x) — sx = ¢(s), for a given s > 0.

Now we state our main theorem:

Theorem 1. Let ¢(s),p*(x) be as above. Suppose U,(x) be a sequence of

non-decreasing, right-continuous functions on R vanishing on (—00,0]. If
l o0
lingor—z log J e "*dU,(x) = o(s), for all s >0, (2.6)
n— 0
then
1
nlmo)O; log U,(x) = ¢*(x), for all x> 0. 2.7

Conversely, if

. 1 © .
lim sup - log J e dU,(x) < o0, for all s> 0,

H—00 0
then (2.7) implies (2.6).

We postpone the proof of Theorem 1 and we apply the above result to
multiple convolution.

Theorem 2. Let o > 0, and o(x) (x € R) be a non-decreasing, right-continuous
function vanishing on (—o0,0].
(i) If o(x) varies regularly at O with exponent o, then

1/n
}Lngom Jj do(x) - - - do(x,)
0<x) 4 4x, <x
e o
=x" (;) I'(oe+1), Jor every x> 0. (2.8)
(it) Conversely, if (2.8) holds and if
1 [ee]
lil:li;lp WL e "*do(x) < o0, Sor all s >0, (2.9)

then, o(x) varies regularly at 0 with exponent o.

Proof of Theorem 2.
(1) Recall that if we put

1

= iy

JJ do(x) -+~ do(x,),

0<x)+-4x, <X
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then

l (o @] 1 o0
-lo e "YdU,(x) = lo ——j e "do(x).
n gJo ) ga(l/n) 0 )

(See (1.4) and (1.5) in Section 1). Using Karamata’s Tauberian theorem, we have

M l * —hnsx o
nll»nolo;(_l/T)L e " do(x) =s*T(a+1). (2.10)
Therefore,
l [e o]
lim . log J e "dU,(x) = —alogs + log I'(a + 1). (2.11)
n—oo 0

As we mentioned above, if ¢(s) = —alogs+logl"(«+ 1), then ¢*(x) = alogx+
alog(e/a) +log I'(w+1). Applying Theorem 1, we see that (2.11) implies

nll'rgxo % log U,(x) = alogx + alog(e/a) + log I'(o + 1), (2.12)
which proves (2.8).

(i) Assume (2.8), and put U, as in (1.4). Then, (2.8) and (1.4) imply (2.12).
By the assumption (2.9), we can apply Theorem 1 to (2.12) and thus we have
(2.11). As (2.11) means (2.10), using Karamata’s Tauberian theorem, we see that
o is a regularly varying function at 0 with exponent a.

Consider a positive sequence a, which tends to oo as n — co. We remark
that the proof of the following theorem can be carried out completely in parallel
with that of Theorem 1.

Theorem 1a. Let ¢(s),¢*(x), and U,(x) be as Theorem 1, and let a, be a
positive sequence which tends to o as n — . If

. 1 ®©
lm(}o . log J e~ QU (x) = ¢(s), for all s> 0, (2.13)
n— n 0
then
1
,,lir?o a log Uy(x) = ¢*(x), for all x > 0. (2.14)

Conversely, if

) 1 ® .
lim sup — log J e "*dU,(x) < o0, for all s> 0,
0

n—oo dp
then (2.14) implies (2.13).

Furthermore, since

1 oo
— log J e ¥ d U, (x)
ay 0
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can be rewritten as
1 el
— log J e~ 4 U, (anx/by),
day 0

we obtain

Theorem 1b. Let ¢(s), p*(x) and U,(x) be as in Theorem 1, and let a, and b,
be positive sequences, where a, tends to o as n — oo. If

1 & "
lim — log [ e YU, (x) = o(s). for all s >0, (2.15)
n—oo d, Jo
then
lim ~log Up(%x) = ¢*(x),  for all x>0 2.16
"—’wang"b,, =9 (x), or all x> 0. (2.16)

Conversely, if

[e o]
lim sup 1 log J e~ d U, (x) < oo, for all s> 0,

n—oo  dp 0
then (2.16) implies (2.15).
According to this extention, we have the following corollaries.

Corollary 1. Let X1,X3,... be positive independent random variables with
common distribution function o, and let f, and y, be positive sequences. If

a0
lim log lj e *Mda(x) = g(s), for all s> 0, (2.17)
n—o ﬁn 0

then for every x >0,

logP[ﬁj_";—“h& Synx]=n<logﬁ,,+<o*<x)+o<1)), no o, (218)

Proof. Put
1
Uy(x) = - JJ do(x))---do(x,).
(Bn)
0<x)+-4x, <X
By using the same method as the proof of Theorem 2, we have

1 * —sx/ 1 (® —sx/
—log | e *"dU,(x) =log —| e ™*’da(x). (2.19)
n 0 ﬂn 0

Combining (2.17) and (2.19), we see

o0
lim ! log J e ¥MdU,(x) = o(s). (2.20)
n—oc N 0
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Applying Theorem 1b to (2.20), we have

lim ! log U,(ny,x) = ¢*(x).

n—oo N

Since

Un(nynx>=(ﬂ1)n jj do(x) - -do(x,),

0<(x)—+xn) /N <Y, X
these two equations imply (2.18).

We remark that if 8, = 1 and y, = 1, then the above corollary is a special case
of Chernoff’s theorem ([3], see also [2]).

Corollary 2. Let X|,Xa.... be positive independent random variables with
common distribution function o, and let y, be a positive sequence such that y, tends
to 0 as n goes to co. If a(x) varies regularly at 0 with exponent a(a > 0), then for
every x > 0,

Xi+Xo++ X,

log P < PuXx
n

= n(loga(y,) + alogx + alog(e/a) + log I'(a + 1) + o(1)),
n— 0.
Proof. Applying Theorem 1b to the proof of Theorem 2, we see immediately
1/n
1 L (€\®
JJ do(x;)---do(x,) | =x (&) I'(o+ 1),

1m
n= a(y,)

0<(xp+--+x,) /1 < p,x

which proves the assertion.

3. Proof of Theorem 1

We prepare a few Lemmas to prove Theorem 1. According to the
assumptions of Theorem 1, we may and do assume that

. 1 *®
lim sup . log J e "dU,(x) < oo, for all s > 0,

n—aoo 0
throughout this section.

Lemma 3.1. Suppose

. 1 x :
lim sup . log J e dU,(x) < o(s), Sfor all s> 0.

n—oo 0



338 Nobuko Kosugi
Then,

. 1
lim sup " log U,(x) < ¢™(x), for all x> 0.

n—oo

Proof. We need nothing but Chebyshev’s inequality.

© y
J e dU, (x) > J e U, (x)
0 0

> e VU, ().

Hence

. 1 .
lim sup ~ log Uy(») < inf{sy + p(s)}

n— 00
= (P*(y)’
which proves Lemma 3.1.

Lemma 3.2. Suppose

For each y >0,

o]
lim 1£f " log U,(x) = ¢*(x), for all x> 0.

Then

0
Proof. From (3.1), we have

e o]
liminf ! log J e dU,(x) = o(s), Sfor all s> 0.

1 0
liminf — log J e " dU,(x) > sup{—sy +¢* ()}

n—o R 0 y>0

= (p(s)1
which proves Lemma 3.2.

Lemma 3.3. Suppose

lim sup % log U,(x) < ¢*(x), for all x> 0.

n—oC

For a fixed s >0, let xo = —¢'(s). Then,

e o)
(i) limsup ! log J e "™ dU,(x) < —su+ o (n) for each pu > xy,

n—00 n "

1 # :
(if) limsup , log J e""dU,(x) < —su+¢*(p) for each 0 < pu < xo.

n— oo 0

Proof. Before proving (i) and (ii), remark that x+— ¢*(x) — sx attains its

maximum at xp as we mentioned in the previous section.

Therefore, if u < xg,
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then —su+ ¢*(u) is a monotone increasing function, while —su+@*(u) is
monotone decreasing if u > xo. To prove Lemma 3.3 and 3.4, we use the fol-
lowing fact: If

. 1
lim sup p loga, < c,

n—oo
and
. 1
lim sup - logb, < c3,
n—oo N
then

lim sup % log(a, + b,) < max{c;,c2}.

(i) For each 6 >0, put y, = pu+dk (k=0,1,2,...). Then,
Myt
[ emaun o < e Uy )
H

Hence

. 1 Hit1

lim sup — log J e ™dU,(x) < — sy + 0" (Mies1),

n—o N i
which implies

. 1 N
hmmm—kwj e dUn(x) < max{—sp +¢" (1)}

n—aw N u
< —su+o"(p) + 9,
for each N > pu. Since ¢ > 0 is arbitrary, by putting é | 0 we get
1 N
lirnrl'sczlp - log L e " dU,(x) < —su+¢*(u).

On the other hand, for each N > p,

Jao e XU, (x) = j"o e_n(x/Z)xe—n(s/Z)de"(x)
N N

< e—n(s/Z)N Jw e—n(s/Z)xd U, (X)
0
Therefore,

. 1 © .
limsup - log j e "™dU,(x) < — 2N +lim sup ! log J e " DX U, (x).

9
n—oo N N 2 n—oo N 0
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By assumption,

o0
lim sup % log J e "/2X4U,(x) < A, for some A4,

n—0 0

and hence

; 1 * —nsx * s
lim sup " log | e™dU,(x) < (—su+¢*(u) v (—§N+A).

n—oo "

Since N is arbitrary, by choosing sufficiently large N, we get

l o0
mmw;mje%HMMS—w+ww-

nh—o0 Y%
Similarly we can prove (ii).

Lemma 3.4. Suppose

lim sup % log U,(x) < ¢*(x), Sfor all x> 0.

n— 00

Then

1 *© .
lim sup . log J e " dU,(x) < o(s), for all s> 0.

n—oo 0

Proof.  Let xy be as in Lemma 3.3, and choose x; and x, so that 0 < x; <
X0 < X < 00. Then,

X2
lim sup % log J e "*dU,(x)

n— o0 X

. 1
< limsup— log{e ™" U,(x2)}

n—oo N
< —sxp+ 97 (x2).

Therefore, by Lemma 3.3,

1 0
lim sup " log J e "*dU,(x)

n—o0 0

X1
= lim sup % log (J e " dU,(x) + J

n—oo 0 x|

X2 o8]

ﬂ%mm+J

X

e "™ dU, (x))

< max{—sx; + ¢"(x1), —sx1 + ¢*(x2), —sx2 + ¢*(x2)}.
As we mentioned in Section 2, xo = —¢’(s) turns to be the unique solution of

0" (x) —sx = ¢(s), for a given s > 0.
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Thus, letting x; T xg, x2 | xo, we see

0
limsup%logj e "*dU,(x) < —sx0 + 9" (x0) = 0(s).

h—a0

Lemma 3.5. Suppose

llmsup log U,(x) < ¢*(x), Sfor all x>0,

n— o0
and
1 o0
liminf — log J e~ "*dU,(x) = p(s), for all s> 0.
n—oo n 0
Then,

lim ! log U,(x) = ¢™(x), for all x> 0.

n—oo N
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(3.2)

Proof. For a given x>0, choose any 0 < y <x. Since ¢(s) is a C!
function satisfying (2.1) by assumption, we may choose s> 0 such that y <

—¢'(s) <x. Put xo = —¢'(s), then by Lemma 3.3,

y
lim sup % log J e "*dU,(x)
0

n—oo
< —sy+o*(y)
< —sx0 + ¢ (x0) = ¢(s),

0
lim sup - log J e "™*dU,(x)

n—00 x
< —sx+¢*(x)
< —sxo + ¢ (x0) = ¢(s).
(3.2), (3.3), and (3.4) imply

X
lim mf log J e "dU,(x) = ¢(s).

n— oo y

On the other hand, we have

n—oo
y

Thus, combining these two inequalities, we see

hmmf logU( ) = sy + o(s)

n— o0
> ¢*(y).

Letting y T x, we obtain the assertion.

liminf — logJ e " dUy,(x) < —sy+llm 1nf log Un(x).
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We are now ready to show Theorem 1. Assume (2.6), then combining
Lemmas 3.1 and 3.5, we get (2.7). For the converse half, if we assume (2.7), then
Lemmas 3.2 and 3.4 imply (2.6).

4. Another asymptotic behavior

In this section, as we mentioned in Section 1, we show that our theorem
contains a part of Kasahara’s Tauberian theorem. Let us see Kasahara’s Tau-
berian theorem at first. Assume o to be a fixed positive number and f(x)
(% const.) to be a real valued non-decreasing function defined on the interval
(0, 00) such that f(£f) is concave for some f(>a). Put

g(x) = sup{f %)+ x£}, for x <0,

then the following theorem holds.

Theorem A ([10]). Suppose u(dx) be a finite Borel measure on (0,00) and
#(x) be a regularly varying function with exponent a. Set

o) = | " exp{ (/) bu(d).
Then,
lim ~ logu(3(x), 0) = A(<0)
i and only if
Jlim /11 logw(4) = g(4).
In the special case where f(x) = x, we have

Theorem B ([10]). Set 0 <a < 1. Let ¢(x) be a positive function varying
regularly at oo with exponent o and Y(x) be the asymptotic inverse of
x/$(x). Suppose u(dx) be a finite Borel measure on (0,00). Then,

.1
Jlim —log u($(x), 0) = —4 <0
if and only if

Jim l/j(l)logj ™ pu(dx) = (1 — o) (a/4) /).

Now we go back to our Tauberian theorem. By considering

J:o exp{—nsf(x)}dU,(x) 4.1)
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instead of [;° exp{—nsx}dU,(x), we can extend Theorem 1. Here, we study the
case where the roles of the origin and infinity are interchanged in Theorem 1. If
we put f(x)=—1/x in (4.1), then we can have the following theorem. Let
¢(s) € C'(0,00) be an increasing convex function. Suppose

lim ¢'(e) =0, lim ¢'(s) = 400.

e—0+ §—00

Define ¢,(x) as
0.(x) = inf{p(s) - sx}.

From this definition, ¢, is a non-increasing concave function on (0,00). If we
denote by g(x) the inverse function of ¢’(s), then we have

9. (x) = 9(g(x)) — xg(x),

and

o(s) = i‘;‘g{‘”*(") + sx}.

Furthermore, for each s > 0, there exists a positive unique solution of
9.(x) + sx = ¢(s).

For example, if we put ¢(s) = 5%, for o > 1, then g(x) = (x/a)]/(“_l) and ¢,(x) =
(1= &) (/o) /7.

Theorem 3. Let ¢(s) and ¢,(x) be as above. Suppose u,(dx) be a sequence of
Radon measures on (0,00). If

[e o]
lim ! log J ", (dx) = p(s), for all s >0, (4.2)
n—oo N 0
then
1
lin;O P log u,(x, 0) = ¢,(x), for all x> 0. (4.3)

Conversely, if
1 o0
limsup — log J ", (dx) < oo, for all s >0,
n— oo n 0
then (4.3) implies (4.2).

Proof. Since the proof of Theorem 3 is essentially the same as that of
Theorem 1, we omit the details.

Now we study the relationship between Theorem 3 and Tauberian theorems of
exponential type which are already known. To see that Theorem 3 contains
Theorem B, it suffices to show the following proposition.
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Proposition. Let B > 0, and ¢(x) be a positive function varying regularly at co
with exponent a(0 < o < 1). Suppose u(dx) be a Radon measure on (0,00). If

lim % log Jw exp{nx/¢(n)}u(dx) = B, (4.4)

n—o0 0

then
o0
i+ log | * exp{nsx/(n)bu(dx) = B0,
n—= 0

Proof. For a given s >0, put £ =s'/(=%, Let ¢ >0 be arbitrary and put
n=(1+¢ /"9 Replacing n by ny in (4.4), we get

lim % log Jw exp{nnx/¢(nn)}u(dx) = By. (4.5)

n—oo 0

By the property of regularly varying function, there exists an N, > 0 such that

(1 —¢) <}7>°‘ < f((:”)) <(l+eg) (%)a, for n > N,. (4.6)

Applying (4.6) to (4.5), we have

0 (n) ()
e
_ % log J:o exp{"il(;;x} u(dx)
Hence,
lim inf ’11 log J:O exp {ni ‘(;)x} (dx) > aT 8;, i BE-

Similarly, we have

. N N I
lim sup - log J exp{W}#(dx) =< (IT)'/(I_T)BQ

n—oo 0

Since ¢ is arbitrary, letting ¢ | 0, we have

<o) I—a
lim 11ogj exp{mﬁ X},u(dx) — B¢,

n—o n 0 ¢(n)

which proves our assertion.
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Appendix

The following fact is well-known, but we give the proof for the convenience of
the reader.

Proposition. For p;,ps,...,p, >0, and q > 0,
S:= Lx{"—lxgrl cxP T (1 —xp = xp = = %) Xy - dx

_T(p)I'(py)--- T'(pa)I(9)
L(py+pyt+-+p,t4q)

where
K ={(x1,x2,...,xn) ER" | x1,x2,...,%s >0, x; +x2+---+x, < 1}.
Proof. We change the variables as follows:
Xi+x2+ -+ Xy, = U

X2+ X = Ul

Xp = UilUp * - - Up,
or equivalently,
x;1 =u (1 —u)

Xy = uluz(l — u3)

Xp = U U * Uy,
Then,

a(xl’”"x"):uil_lug_2~~ul 0
o(uy, ... uy)

Therefore,

1 1
S:J uf -ul)q"duuj W1 = )P ey -
0 0

1 1
a1 - _ _
X J Ul TP = g )P du,,_|J uP = (1 — )P 'du,
0 0

=B(pi+ -+ Py )B(py+ -+ ppp1) B(Pys Pucr),
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where B(p,q) denotes the usual beta function. Using the fact that B(p,q) =
I'(p)I'(q)/T'(p+4), we have

_ Tl (py)---I(p)I(9)
F(py+py+-+p,+4q°

which proves the assertion.
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