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Perturbation theorems for supercontractive semigroups
By

Wicharn LEWKEERATIYUTKUL

Abstract

Let 4 be a probability measure on a Riemannian manifold. It is known that if the semigroup
eV'7 is hypercontractive, then any function g for which ||Vg||,, <1 will satisfy a Herbst inequality,
[ exp(ag?)dp < oo, for small « > 0. If the semigroup is supercontractive, then the above inequality will
hold for all « > 0. For any a > 0 for which Z = [exp(ag?)du < o, we define a measure u, by du, =
Z'exp(ag?)dp. We show that if g is hyper- or supercontractive, then so is y,. Moreover, under
standard conditions on logarithmic Sobolev inequalities which yield ultracontractivity of the semigroup,
Gross and Rothaus have shown that Z = [exp(ag?|log|g||‘)du < oo for some constants a,c. We in
addition show that the perturbed measure du, = Z~ " exp(ag?|log|g||)du is ultracontractive.

1. Introduction

Let (X,u) be a probability space and consider a sub-Markovian symmetric
contraction semigroup e 4 on L2(X,u). Recall that a semigroup e~ is sub-
Markovian if for any fe L?(X,u),0< f <1 implies 0 <e “f < 1. Then, by
the Beurling-Deny conditions [D, p. 12-16], e'4 is LP-contractive from L*NL”
into L? and hence from L? into L? by a density argument for any 1 > 0 and 1 <
p < o. We say that

— e~ is hypercontractive if for 1 < p < ¢ < co there is a #, > 0 such that

lle=*||r_ L« < 00 for any t > to.
e~ is supercontractive if |e~"4||,,_,, < oo for any 1 < p,q < oo and any
t>0.

— e is ultracontractive if |le=™||,,_;» < oo for any 1 < p < o0 and any

t>0.

There are infinitesimal versions of these various contractivities in terms of
Gross’s logarithmic Sobolev inequalities. The following theorem addresses the
hypercontractive case.

Theorem 1.1. Let (X, u) be a probability space and suppose that e~ is a sub-
Markovian symmetric contraction semigroup on L*(X,u). Then e ' is hyper-
contractive if and only if there exist constants ¢ >0 and >0 such that the
following (defective) logarithmic Sobolev inequality

(L1) Jszlogfzdﬂseé’(f,f)+ﬂ||flliz(,,)+|If||iz(,,)log||flliz(,,) (f e 2(8))
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holds, where &(f,f) = (VAf,VAf),D(&) = D(VA), is the Dirichlet form asso-

ciated to A. Moreover, we have
(1.2) Nle ™|l rmpe < ePU/P=1D for 1 < p<qg< oo and any t> 210g<%_—1).
¢ is called a logarithmic Sobolev constant and f is called a defective term.
Originally, Gross [G1] proved this theorem for two important classes of Dirichlet
forms, namely Dirichlet forms given by a gradient: &(f, f) = [, [Vf |2d,u and the
finite difference form on the two-point measure space. Stroock ([S], see also
[DeS]) later extended Gross’s proof to the general case. We refer the proof of this
theorem and general background regarding logarithmic Sobolev inequalities and
various contractivities of semigroups discussed here to the expository paper [G3].
Note that in (1.2), if we can reduce ¢ arbitrarily small by increasing 8, we then
have supercontractivity of the semigroup. The converse also holds by an in-
terpolation argument.

Theorem 1.2. Assume that the same assumption of Theorem 1.1 holds. Then
e~ is supercontractive if and only if there is a function f : (0,00) — [0, 00) which
satisfies

—tA

(1.3) | r2108 2w < s8(r.1)+ BN

SN2 logl flly  (f€2(6)

for any ¢ > 0. Moreover, one can take B to be decreasing and convex.

The only condition on g for the semigroup to be supercontractive is that
B(e) < oo for all ¢ > 0. One need not specify how fast f(¢) tends to oo as ¢ — 0%,
Intuitively, if f(¢) does not grow “‘too fast” as ¢ approaches zero, the semigroup
will be ultracontractive. However, a condition on f(-) which is equivalent to
ultracontractivity is not known. See [C|] for further discussion of this. The
following theorem gives a sufficient condition for ultracontractivity. We will use it
as a basis for proving results concerning ultracontractivity via logarithmic Sobolev
inequalities in this paper.

Theorem 1.3 (Davies and Simon [DS]). Assume that (1.3) holds and that for
each t > 0 there exists a function ¢ : [2,00) — (0, 00) such that

_[Tep)
t_Jz p %

and

iy = [,

< 0.
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tA

Then the semigroup e~' is ultracontractive and

le™ | oy < €M,

Let us recall the ground state transform for a Schrodinger operator on X =
R”. Denote by 4 the Laplacian in R". Let ¥ be a potential in R” and assume
that the form sum, —4 4+ V, has a form closure, H, which is a semi-bounded
self-adjoint operator in L?(R",dx) and which has a unique lowest normalized
eigenfunction ¢,, i.e. Hg, = ed, where e = infspec(H). ¢, can be taken to
be strictly positive almost everywhere. Define a probability measure du(x) =
do(x)?dx and the unitary map My, : L2(R",dx) — L}(R", 1) by My f = f/4,.
Then A = My, (H —e)M, ! is the operator on L?(R",x) given by the Dirichlet
form

(14) aﬂn=LWﬂm%n

The domain of & consists of those functions fin L2(X, u) whose weak gradient V f
is also in L2%(X,u). The Schrodinger operator H on L%(X,dx) is said to be
intrinsically hyper-, super-, or ultracontractive [DS] if the associated operator 4 on
L*(X,u) is hyper-, super-, or ultracontractive, respectively.

We now look at the one-dimensional case. We will see in the following
theorem that the type of contractivity depends on how fast the potential term
grows.

Theorem 1.4 ([DS)). Consider the Schridinger operator H = —A4+V on R'.

(a) If V(x)=|x|", then e~ s intrinsically ultracontractive if a>?2, in-
trinsically hypercontractive but not supercontractive if a =2, and not even intrin-
sically hypercontractive if a < 2.

(b) If V(x)=x[log(2+ |x|*)|°, then e~ is intrinsically ultracontractive if
b > 2 and is intrinsically supercontractive (but not ultracontractive) if 0 < b < 2.
In this case, the asymptotic behavior of the ground state ¢, is given by —logdy(x) ~
x?(log|x|)%* as |x| — oo, for b= 0.

Motivated by the above theorem, we will find an analog of it in the abstract
setting. We assume that there is a natural gradient operator, V, defined on a dense
subset of L2(X,u). Let A be the nonnegative self-adjoint operator associated with
the Dirichlet form on X given by V as in (1.4).

In an unpublished letter to L. Gross, I. Herbst showed that for the
Dirichlet form &(f,f) = [z |f "(x)|*du(x) on R, a necessary condition for the
measure u to be hypercontractive is that [p e""‘:du(x) < oo for some o > 0. Such
exponential integrability under contractivity assumptions will be referred to as
Herbst inequalities. See [GR] for more historical background of the subject.
Herbst inequalities have been studied extensively in the hypercontractive case.
See, e.g., [A, AMS, AS, ASt, BG, GR, L1, L2, R]. The supercontractive case is
an immediate consequence of the hypercontractive case. We summarize these
results in the following theorem.



652 Wicharn Lewkeeratiyutkul

Theorem 1.5. Assume that |Vg|, < 1.
(a) If e is hypercontractive, then fe“gzd,u < oo for small a > 0.
(b) If e='* is supercontractive, then fe“-"zdu < oo for any o> 0.

To assure that this is the right analog of the one-dimensional case, we will
also prove the following perturbation theorem.

Theorem 1.6. Assume that ||Vg||, <1. For any o >0 for which Z =
fe“”zd,u < o0, define a probability measure p, on X by du, = Z7edy. If pis
hypercontractive (supercontractive), then 5o is u,.

Theorem 1.6 for hypercontractivity has essentially been proved in [AS, A]
in a slightly different setting. This result could be regarded as an extension of
the Holley-Stroock lemma [HS], which states that the perturbation of a hyper-
contractive measure by a bounded density is still hypercontractive. However, the
Holley-Stroock lemma only requires boundedness of the density without any
smoothness assumption. Theorem 1.6 allows the density to be unbounded, but
requires some smoothness.

We now look at the ultracontractive case. We will take Theorem 1.3 as a
basis for proving results about ultracontractivity. We assume that the family of
logarithmic Sobolev inequalities (1.3) holds. In [GR], Gross and Rothaus show
that, under a standard assumption on S which ensures ultracontractivity, the
following Herbst-type inequality

J erollogldl gy < oo
X

holds for some y > 0 where g is a measurable function on X such that |Vg||, < 1.
This result of [GR], with a slight generalization, will be stated precisely in
Corollary 5.9. We also study perturbation theorems for ultracontractive semi-
groups. Assume that u satisfies logarithmic Sobolev inequalities which yield
ultracontractivity. Define dy, = Z- e’ lloeldl gy, where Z is the normalization
factor, y and c are certain positive constants. We will show that dy, also satisfies
logarithmic Sobolev inequalities which yield ultracontractivity.

In this paper, we consider Herbst inequalities and perturbation theorems under
supercontractivity and ultracontractivity assumptions. It consists of 2 parts, which
are independent of each other. Section 3 and 4 deal with generalization of Herbst
inequalities to the case where the L”-norm of the gradient of g grows polynomially
in p, while Section 5 and 6 concern with perturbation theorems under the
boundedness assumption on the gradient of g.

Here is an outline of this work. After setting up our notation in Section 2,
we prove an estimate for the L”-norm of a function in terms of its L?>-norm and
the norms of its gradient in Section 3. This result extends those of Aida and
Stroock, [ASt], to the ultracontractive case. In Section 4, we obtain a Herbst-type
inequality fe"’(-")d,u < oo, but here we allow the L?-norms of the gradient of g to
grow polynomially in p. We return to the assumption ||Vg|, <1 in Section
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5, where we prove perturbation theorems for hyper-, super- and ultracontractive
semigroups, respectively.

There is also another point of view, [A, AMS, AS, H], in how to extend
Theorem 1.4 to a general case. In these papers, their authors assume the
exponential integrability of the square of the gradient of a function F, i..
[ePVF’dy < oo for some 0 < p < oo. Under this assumption, it is shown that
[erfdu < oo for small p > 0 in the hypercontractive case. Then they prove that
the perturbed measure du, = e?fdu is hypercontractive if u is. We show that
similar results also hold for the supercontractive case. The difference between this
approach and the one in Theorems 1.5 and 1.6 is that the function g is modeled on
the map g(x) = x while the function F is modeled on the map F(x) = x2. We will
elaborate on these distinct viewpoints in Section 6.

2. Notation

We will adopt the terminology used in [AMS] throughout this work. We also
refer to [BH, D, FOT, RM] for the standard theory of Dirichlet forms. Let
(X,%,u) be a probability space and & a Dirichlet form on L*(X,u). Let A be a
nonnegative self-adjoint operator associated with &:

E(f,9) = (VAf,VAg),  (f,9€D(6) = 2(VA)).

We assume that there exists a dense subspace 2 in L*(X,u) satisfying
(Al) 2 < L*(X,1)N2(A),
(A2) 1€2 and 2 is an algebra,
(A3) 2 is a core of the Dirichlet form &.

We define a Carré du champ operator I' : 9 x 9 — L'(X,u) by

I'(f.9)=3{Af g+ /[ Ag—A(f-9)}.

We assume further that

(Ad4) For f,g€D,I(f,9) €[\ cpee L7 (X, 10).
Notice that our definition of I" differs from the one in [AMS] by a sign because
we make a choice for 4 to be nonnegative here. It was shown in [AMS] that the
map (f,g) — I'(f,g) can be extended continuously to a map I" : (&) x 2(&) —
L'(X,u). We also denote this continuous extension by I. I has the following
properties

(i) I' is a symmetric bilinear map from 2(&) x 2(&) into L'(X,p),

(i) I'(f,f) >0 u—ae. for each f e 2(&),

(iii) |I'(f.9)1* < T'(f.f)-I'(g.9) for each f.geD(&).
We will also assume the following derivation property of I

(AS) I'(fg,h) = fI'(g,h) +gI'(f,h) for f,g,he 2D(&).
With the assumption (AS5), we have

(iv) &(f.9) = [y I'(f,9)du for any f,ge 2(6),

(v) if u,ve C}(R",R) and f,..., f, € D(&), then u(f,...,f,),vo(f,....f,) €

2(&) and
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L(u(fis-- o fu) oy f)

=Y @) (fis-- - L)@ frso o SIS ;) 1= ace.

ij=1
(vi) if ¢: R — R is a normal contraction, i.e. #(0) =0 and |¢(s) — ¢()| <
|s—t| for all 5, teR, then gof e P(&) whenever f € 2(&) and
I(gof,¢of)<I(f.f) n-ae.

We write |Vf|=+/T(f,f) for fe2(&).

Example 2.1. Let X = R" and let du(x) = w(x)dx be a probability measure
on R". Assume that w > 0 on R”. Denote by V/ the usual gradient of f. Let
2 = C(R"), the space of smooth bounded functions on R” with derivatives all
bounded. Then there is a unique closed quadratic form & with core 9 such that

6(/0) = | W/0Va)u)  (fge D).
& is a Dirichlet form on (R",ux) and the associated operator 4 is given by
" f d of
Af(x) = ;<—a—x’;(x) - (a_x,logw> O_)c,-(x)>'

In particular, if w(x) =1/ (27z)"/ 2 exp{—|x|?/2} is the Gaussian density, then

n 62 0
A= ——+xi— .
;( ox? tx 6x,~>
In this case, I" is simply

I'(f,9)(x) = (Vf(x),Vg(x))gn-

Example 2.2, Consider an abstract Wiener space (B, H,u) and let 4 be the
Ornstein-Uhlenbeck operator, which we denote by L. We can take 2 to be
C*(B), the space of C;° cylinder functions on B. In this case, we have

I'(f,9)(x) = (Df (x), Dg(x)) -,

where Df denotes the H-derivative of f.

3. Moment estimates

We assume that there is a function f: (0, 00) — [0, 0] such that a defective
logarithmic Sobolev inequality

2

e s S du< B L)+ BN Ny (f € D(8))
”f”LZ(y)
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holds for any ¢ > 0. In this section, we obtain bounds on the LP-norms of
functions on X under a certain assumption on f and e.

Lemma 3.1. If f e 2(&) is positive everywhere and 2 <t < o0, then

2 _
£ 1) < IV A1

Proof. By property (v) in Section 2,

12 g1)2 % 1/2-12 2o 2
TR 1 = (3) GG = v

The lemma now follows from the above calculation and Hoélder’s inequality.
The next lemma is another form for Gronwall’s inequality.

Lemma 3.2. Let x, g and k be continuous real-valued functions defined on an
interval |o, ) and suppose that k is differentiable on («,B). If

t

(3.2) x(t) < k(1) + J g(s)x(s)ds (a<t< p),

o

then, for o <t <,

(3.3) x(1) < exp (Jt g(s)ds) [k(a) + Jt exp(— Jz g(s)ds)k’(t)dr] .

o o o

Proof. Let U(f) = k(f) + [, g(s)x(s)ds. Note that U(x) = k(a) and x(1) <
U(t). Then

U'(t) = k'(1) + g(0)x(r) < k'(2) + g(1) U(2).

Multiplying the above inequality by exp(— [ g(s)ds), we have

% (exp(— LZ g(s)ds) U(t)) < exp(— L: g(s)ds)k’(t).

Integration from « to ¢ gives

exp(— jlg(s)ds> U(t) - U(x) < Jtexp(— Jr g(s)ds)k’(r)dr.

o o o

Hence,

U(t) <exp (J’ g(s)ds) [U(cx) + Jt exp(— Jt g(s)ds)k’(r)dr]

o o o

= exp (L: g(s)ds) [k(oc) + L, exp(— J: g(s)ds) k’(r)dr] ,

from which (3.3) follows.
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In the next theorem, we obtain bounds on LP-norm of functions under a
certain assumption on ¢ and f.

Theorem 3.3. Assume that (3.1) holds and that ¢:(0,00) — (0,00) is a
continuous function for which the function p — foe(p) is continuous. Let

(3.4) D(t) = L' % ‘;f(s) ds (2<t<w)

Then, for any f e (&),
p
63 W< 11+ 5[ 0w s | @< <)
Proof. Since I'(|f|,|f]) < T'(f,f) for any fe2(&), cf. property (vi) in

Section 2, it suffices to prove the theorem for f > 0. By the logarithmic Sobolev
inequality (3.1) and Lemma 3.1, we have

/!
||f||

< %IIfIIf"(E(t)é"(f’/z,f’/z) +Bos()lf11)

d .o 2,
GV =Z 10 [ ritog

2
< %IIfIIf"(s(t)%IIVfIIfIIfII,"Z +pec0lfI)

() ()

=2V A7 + 117

Integration from 2 to ¢ yields
"e(s Zﬁo (s
712 <11+ [ L iwrizas+ [ L2820

Applying Lemma 3.2 to the above inequality by writing

=113 o= wma k) = W+ [ S wsiias

we immediately have (3.5).

Corollary 3.4. Under the same hypothesis as in Theorem 3.3, suppose further
that

(o]
M-:-D(oo):J 2,;Zg(s—)ds<oo
2

Then

(3.6) /]2 < &M [Ilfllz ! 8(’)||Vf||2dz] (f € 2(&)).
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Proof. It follows from the facts that D(2) =0 and the map ¢ — D(¢) is an
increasing function on [2, c0).

Remark. The inequality (3.6) is an extension of the inequality (3.5) in [ASt]
to the case where ¢ and f are nonconstant.

In [GR], Gross and Rothaus have derived an inequality for the Laplace
transform E(e’), where g is a function with bounded ‘‘gradient” by adapting
techniques from [LI]. We now show that our method also yields the same
inequality.

Proposition 3.5. Assume that (3.1) holds. Let g be a real-valued measurable
Sunction such that ||Vgl||, < 1. Then

(37)  E(e”)'? < E(e%)'?exp B Jp{e‘(zt”)ﬁﬁ ff(t)}“’]’ 2<p< .
2

Proof. Let f=e¢9. Then
I'(f,f)=1T(e e’) = e*I(g,9) = [T (g.9)-

Hence, [[Vg||,, <1 implies |V f||, < ||f||, for any 2 < < co. It then follows from
(3.5) that

LY _p
17 < e Uf1 45 [ e POeiia] @ si<am)

Applying Lemma 3.2 to the above inequality with

&(t)

x(0) = e POf7 kO =13 and g =22

for 2 <t < o0, we have

17 < e iens [ D] = i3enp {52+ 220N

2 2 2 12

By writing || f]|, = E(er9)'/? | this immediately gives (3.7).

4. Exponential integrability for a measure satisfying LSI

As is now well-known ([A, AMS, AS, ASt, BG, GR, L1, L2, R]) a probability
measure u on a space X satisfying a logarithmic Sobolev inequality has exponential
integrability in the form

(4.1) J e“fzd,u < o0
X

for o sufficiently small where f is a function for which ||Vf||,, < 1. This kind of
exponential integrability under LSI assumption is known as a Herbst inequality.
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In all these papers except [GR], the measure u is assumed to satisfy an LSI for a
fixed ¢ and with or without assuming that # =0. In [GR], Gross and Rothaus
assume that ¢ and f satisfy standard assumptions which ensure ultracontractivity
and that the function f has bounded gradient. In the present work, we will
assume standard conditions on ¢ and f for ultracontractivity, but we allow the
L?-norms of the gradient of f to grow polynomially in p. With explicit forms of
the function &(-), we can improve inequality (4.1). The techniques here are those
of Aida and Stroock’s, [ASt, Cor. 3.7].

Proposition 4.1. Let f € D(&) be such that there exist C >0 and A > 0 such
that |Vf], < Cp* for all 2 < p < 0. Assume further that
(1) (3.1) holds,
(ii) there exist a function o : [2,00) — (0,00) and constants y > 0,B > 0 such
that

a(s) < B/s"  for any s> 2,
and M = [}° 2B(a(s))/s?ds < oo
(i) 24 —y+1>0.

Let b=2/(2A—y+1). Then, for any k >0 such that keb

eMBC2p\ ?
5y

42) jX 1" dp < explk((2eM) )1 1l 200)") + S

M 27y b/27 71
l_ke,,<#) ]

n
where S = suanO% (g) . In particular, |, ek|f|bd,u < o0.

Proof. By the assumptions above,

24—y+1
#77dr < BC2L = éBCZ pHPrtl

P
2 20 —-y+1 2

P 2 2
w(0)|V f|2dt < BC
2
Hence, by Corollary (3.4),

BC?b _ )
e e I S

The inequality (a + b)k < 2K(a* + b*%), for any a,b > 0,k > 0, implies that

n . ., BC?b nb/2 .,
17117 < (2¢™) ”/2|||f||2b+( 4) (nb)"|  for nb>2.

Moreover, we know that || f],, < | f|l, for nb <2. Using the preceeding esti-
mates in the power series expansion of the left-hand-side of (4.2), we have
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=1
ANy — _knJ " du
| eHran > k] 1
@© © 21\ nb/2
1 My\nb/2 nb 1 n MBC b n
< Ezon—k (2e™)™ 71 £l +nE=0ak 2e 2 (nb)".

<oty + (s (2)'} 5 e (227

This immediately yields (4.2).

Next, we consider the case when a(s) tends to infinity slower than those in the
previous proposition.

Proposition 4.2. Assume the same hypothesis as in Proposition 4.1 except that
here we assume that there exist constants y >0, A,B >0 such that

(X(S) < MTBOgS)Y for all s > 2.
Let b= 2 Th
et b= T en
(4.3) J ekmhd,u <o  for any k > 0.
b

Proof. Since it is not our purpose to get a good estimate for the bound of the
integral in (4.3) here, we may and will assume that B = C = 1 for simplicity in the
calculation. For any J > 0, there is a constant Cs such that

22+1

a4 p (2 PPN
. B — < —_—
(4.4) L(A+logt)7 r< 040 g T

for any p > 2. For the idea how to obtain this estimate, see, e.g., [GR, Cor. 4.7].
Therefore,

£l = (1L 113) "

) i ) 14+ 8 (nb) 2+ nb/2
< (2eM)™12 || 720 4 {% n C&}

1 +()‘)nb/2(nb)n b2
< 2€M nb/2 nb + 2nb/2 ( + Cn /
( ) ||f||2 (lognb)"b”/z (]

for nb > 2. Let n, be the smallest integer such that n, > 21+ 1=2/b. Since
£ < |I£112 for nb < 2, we have
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>, . w1 k"(4eM)™12(1 46)™ (nb)"

par A on! (log nb)"b"/2

o0
1 Mnb/2 nbj2
+Zoak"(4e )y,
n=

Clearly, the first and the third sums are finite for any k > 0. We now consider the
second sum.

§o LK) P+ 0 )" {Su . (f)} 3o (Ketde 4 o) '
n! (log nb)"/? = Losont \e (lognb)"""? .

n=ng n=n,

For a fixed kK >0, given 0 < a <1, we can find n; such that

kbe(4eM (1 +6))%/2

)by/Z <a<l

An
(lognb

for any n>n,. Consequently, > 7°

n(4,)" < 3 0a" < co. From this, we have
(4.3).

5. Perturbation of supercontractive semigroups I

In this section, we perturb the measure u by densities of the form e®9) where
IVgll, <1 and @ : R — R is a real-valued function on R. We will see that the
stronger contractivity the semigroup has, the faster growth of @(u), for large u, we
can allow on the perturbation and still preserve the same contractivity.

First we look at the hypercontractive case.

Theorem 5.1. Let (X,u) be a probability space. Assume that there exist
constants ¢ >0 and B >0 for which the following logarithmic Sobolev inequality

f2
2
“f”LZ(/l)

holds. If g: X — R is a measurable function such that ||Vg||, <1, then Z =
[ €9 du < o for any « for which 20 < 1/e.

(5.1) jf2log du<ed(f,1)+BIf I (f €2(8))

Proof. See, e.g., [GR, Example 4.1].

Under the assumption of Theorem 5.1, we fix o such that 2« < 1/¢ and define
a probability measure u, by du, = Z'e®dy. Then 9 is dense in L2(X,u,).
See [AS, Lemma 2.3] for the proof of this fact. Denote by &, the Dirichlet form
associated to the measure p,,
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(52) 8,(f.1) = jX I(f, f)du,.

By assumption (A4), &, is well-defined on 2, so we take & to be a predomain of
&,. In fact, (8,,2) is closable. We defer the proof of this fact until the end of
Section 6.

Theorem 5.2. Assume that p satisfies the logarithmic Sobolev inequality (5.1)
for some constants ¢ and B. Then there are constants & and [ such that

f2
2
g

We can restate this theorem in terms of semigroups associated with Dirichlet
forms. Let {P,} and {P!} be the semigroups associated with the Dirichlet forms
& and &,, respectively. If {P.} is hypercontractive, then {P}} is also hyper-
contractive.

| 1o duy <56, 1) +BIf N,y (D).

Example 5.3. Gaussian case: X = R' and du = (1/v2n)e */2dx. In this
case, it is well-known that the logarithmic Sobolev inequality (5.1) holds with ¢ = 2
and f=0. We can perturb g by any density e’ where ¢ < 1/2. Hence, the
above theorems are sharp in this case.

Proof of Theorem 5.2. The proof here is essentially the same as [AS,
Theorem 3.1] adapted to the above setting. Let f e 2. Then we have f e’ e
2(&) and

L(fes, fe") = T ([, [)e™ + 4afge™ ' I'(f,g) + 4o> [*g7™" I'(g, g).
Note that

r'(f,f)
0

4afgI'(f,9) <2Q20f9)\/T(f,/)VT(g,9) < +31402 f2g7I (g, 9).

The second inequality follows from the inequality 2ab < a?/e + eb%. Therefore,

E(fe", fe') < (1 + 5%) E,(f ) + 42 (1 +6)) szgzd,ug.

Note that I'(g,g) < ||Vg||§O < 1. Now, substituting fe*’ into (5.1) and using the
above calculations, we have

(5.3) sz log f2du, + Jzaﬁgzdﬂg < 8(1 + 5%) E;(f, f) + dea’(1 +6y) szgzdpg

2 2 2
+/”||f||1.2(uy) + ||f||L2(,ly) log ||f||L2(/¢y)~

By Young inequality, st < slogs —s+e' for s >0,7€R,

1297 = (021%)(g%/32) < 0af log f2 + (021088, — ) % + €97/,
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Choose 6, > 0 large enough so that 2a+ 1/d, < 1/e.  Hence,
||egz/5z||u(,,g) = Jegz/‘jzd,ug = Jegz(za“/‘sz)dy < o0.
Now, (5.3) becomes
(5.4) J fPlog f2du, < s(l + 511) E,(f, f) + (4ea(1 +3y) — 20)d; J f?log fdu,
+{B+ (4eo(1 +81) — 20)(32logd — )} f | 2,

2
+ (4eo(1+61) = 20)[1€7 | 110y + 1S 122, ) 108 IS 1 Z2 .

Note that (4ea®(1+6)) — 20)02 = 200,(2xed; + 206 — 1) and 2ae—1 <0 by the
assumption. So we can choose J; such that (4ea®(1 +6;) — 2¢)d, < 1. The rest
of the proof follows from the following Lemma.

Lemma 5.4. Let y be a probability measure and Q a densely-defined quadratic
form on L*(n). Suppose that there exist real numbers a, b and ¢ such that for any f
in the domain of Q,2(Q),

jfz log f2du < Q(f) +allf 11> + b + cll£1|* log | £1I*.
Then, for f € 2(Q),
(5.5) jf2 log(f2/NIfI1)du < Q(f) + (a+ )| fII>.

Proof. For fe2(Q) with ||f| =1, we have

(56) [ 1085 < 0t +a+o.
For any nonzero f € 2(Q), putting f/| f]| in (5.6) and multiplying everything by
L7113, we obtain (5.5).

Remark. Although this Lemma does not give the best constant, it is enough
for our purpose. See, e.g., Lemma 2.2 in [G2] for a sharper result.

Next, we look at the supercontractive case. The following Corollary is
immediate from Theorem 5.1.

Corollary 5.5. Assume that there exists a function f:(0,00) — [0,00) such
that the following logarithmic Sobolev inequality

2

2
1 W2

holds for all ¢>0. If |Vg|l, <1, then [, e’ dy < oo for any aeR.

(5.7) sz log du <e8(f, 1)+ Bz (S €2(8)
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Theorem 5.6. Under the same assumption as in Corollary 5.5, fix o€ R and let
du, = e dy/ Iy eX9’dy.  Then there exists a function f: (0, 00) — [0, 0) such
that

fZ
2
122y

for any € > 0. In other words, if the semigroup {P,} is supercontractive, then the
perturbed semigroup {P}} is also supercontractive.

58)  [roe duy < 86,1, 1) +BOI by (S D)

Proof.  We will only sketch the proof here. We follow the steps in the proof
of Theorem 5.2 but we will simplify the constants in the supercontractive case.
We can take 6, = 1 and &, = 1 since 9" € LP(u) for any p > 0. Moreover, we
can drop the term [ 2of zgzd,ug from the inequality (5.3) to simplify the calculation.
(We cannot drop it in the hypercontractive case because it gives a critical value for
a.) The inequality (5.4) now becomes

jﬁ log fdu, < 2e6,(f, f) + 8eo’ jf2 log f2duy + B f 11224

2 2 2
+ 8ea? e ||u(,lg) + ”f“LZ(yy) log ||f||1.1(,4g)-

Choose ¢ >0 so that 0 < 8ga? < 1/2. Then 1/2<1 -8 <1 for 0<e<
g. It follows that

| 2108 12, < 46, (7.1) + 28NN + 16557 e

+ 2||f||12,2(;4y) log “f”iz(#g)

for any €€ (0,g). By Lemma 5.4, we have

jf2 log /2dp, < 456,(f, /) + {2B(e) + 16a2([e*[| .1, £ 172

+ ||f||12.2(,1y) log ||f||iz(,4”)~
For 0 <& < &, we write A(e) = 2f(e) + 16sa2|le“’2||u(”y). Let & =4e¢ and define
@ = {A(§/4) = A(e) if 0 <& < 4e;
A(ep) if &€ > 4e.
We now have (5.8).
We can see from the formulas defining & and ﬁ that the perturbation of u by

the density e®9" also holds for the ultracontractive case as summarized in the
following Corollary.

Corollary 5.7. Under the assumption of Theorem 5.6, if, for each t > 0, there
is a function 5 :[2,00) — (0, 0) such that
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0

z=j°°n(p>/pdp and 2" palp)/pidp < o
2 2

then, for any t >0, we can find a function 7 : [2,00) — (0, 00) such that

[e 9]

r=]°°ﬁ(p)/pdp ad 2| fap)/pap < o
2 2

In particular, the semigroup P} associated with &, is ultracontractive.

We wish next to prove stronger perturbation theorems for a subclass of
supercontractive semigroups. So far, we have only used the fact that f(¢) < oo for
all ¢ > 0 for an arbitrary supercontractive semigroup. However, if we know that
B does not grow too fast as ¢ approaches zero, we then can perturb the measure u
by densities e®® for some functions & that grow faster than the previous cases.

The following Proposition and Corollary are slight generalizations of Cor-
ollaries 4.4 and 4.7 in [GR].

Proposition 5.8. Let g be a real-valued function on X. Suppose that there

exist constants K,L,M and b such that

E(e™) < oKA+LA /(M +log )" for any 2> 1

and that —g satisfies the same inequality. Then
E(erlogdl’y < oo if 0 <y < (4L)7.

Proof.  For details of the proof, see [GR, Cor. 4.4]. We will only sketch the
proof here. Define @(s) = ys2(10g+s)b for s> 0 and let ¢ = @'. Then ¢(s) =0
for 0 <s<1 and

#(s) = ys(logs)”~" (b + 2logs) = y(bs(log )P + 25(log 5)?) for s > 1.

Define the functions ¥ and ¥ from [0, 0) to [0, 0] by

A
Y(A) =inf{s > 0: 1 < ¢(s)} and D(A) = J Y(v)dv.
0
Then  is a nondecreasing, left continuous function, ¥(0) = 0 and y(¢(s)) = s for
any s > 1. Hence, the functions @ and ¥ form complementary Young’s functions
[Z, p. 76-78], which yield Young’s inequality, As < @(s) + ¥(4), with the equality
if and only if A = ¢(s).
Choose s > 1, e.g. so =2. Let s>s¢ and write 1 = ¢(s). Then

W'(4) = (¢/(s)"" =y '[2(logs)” + 3b(logs)* ™" + b(b — 1)(logs)"*] .

Hence, ' exists and is bounded on [R,c0) where R = ¢(so) >0. Thus, the
assumptions b. of [GR, Theorem 4.3] are satisfied. At A = ¢(s), for s > I,
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A2 (b+logs)(logé(s))?

1
#)= y (logl)b (logs)b_'(b + 2logs)2 '

Set u(4) = &”(/1)/[(4)))_122/(M+logi)[’]. It is easy to verify that u(41) — 1 as
A — o0. Note that

LA? A u(A
= () = b[L— i)].
(M +logA) (M + log 4) 4
Therefore, fl e ¥Wd) < oo. The same argument applies to —g. So the

hypothesis of [GR Theorem 4.3] are satisfied.

Corollary 5.9. Assume that (5.7) holds and that there exist a function o :
[2,00) — (0, 0) and constants B,b >0 and C >0 such that

B
(59) tX(S) < m, §=>2
and
(5.10) M = J 2ﬁ( ( ))d < 0.
2
I Vglle <1, then
(5.11) E(er'loedl’y < oo for 0 < p < (4B)”!

Proof. See [GR, Cor. 4.7] for the proof. Recall from the inequality (4.4)
that for any J > 0, there is a constant Cs such that

i
J ———dr < (1 +§);b+
2 (C+log) (C+logl)

for any 4 > 2.

Remark. Conditions (5.9) and (5.10) for b > 1 guarantee ultracontractivity
by Theorem 1.3.

Remark. The conclusion of Corollary 5.9 is independent of C. We put C
instead of 1, as in [GR, Cor. 4.7], in the hypothesis to increase flexibility of B.

Now assume that ||Vg|| . Fix a>1 and let y be an arbltrary real
number. It is a consequence of Corollary 5.9 that Z = [, e¥9’loellgl+a)l "du < oo.
Define du, = Z~'e?%’ “llog(lgl+a)l™ ¢y Then M, is a probability measure on X.
Denote by &, the Dirichlet form associated with u, as in (5.2). Note that the
power of log(|g| +«) is b/2 and not b. According to the one-dimensional case
(Theorem 1.4), we expect to perturb the measure u by a density e2’llcg(l+a)”,
However, the author has not been able to prove it in this case because of a certain
technicality in the method of the proof. '
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Theorem 5.10. Assume that there are functions o :[2,00) — (0,00) and f:
(0,00) — [0, 00) satisfying conditions (5.9) and (5.10) and that the following log-
arithmic Sobolev inequalities

fZ
1122
hold for any ¢ > 0. Then there exist functions & : [2,0) — (0, 00) and f : (0, c0) —
[0, 00) satisfying conditions (5.9) and (5.10) (with new constants B and C) which
make the perturbed logarithmic Sobolev inequalities

f2
112

(5.12) jﬁ log du<e8(f. 1)+ BNy (f € 28))

[ 2108 du, <86,/ )+ OIS 3, (D)

hold for all & > 0.

Proof. Without loss of generality, we may assume that g > 0. Let f e 2.
It can be verified that

I'(g*(log(g + a))" g*(log(g + a))""?)

2
~ ¢ (loe(g + a)"*(21ow(g-+ a) +5) T(0.0).

b 2 2 b
< (2+ 210ga> g-(log(g +a))’I'(g,9)-
Hence,

b/2

I(fers*logla+a)™  rora*(loe(gta)"y

< 262970086+ P(f 1) 4 2 f2 (g% (log(g + @))%, g (log(g + a))*/?)]

< 29 (log(g+a)"?

2
) f2g*(log(g +a))’I'(g,9) |-

rU 47 (24 0

Here, we use the inequality I'(feF, fef) <2(e* I'(f, f) + f2e* I'(F,F)]. Write

— 92
C=2 2+210ga

2
) and recall that [I(g,9) < ||Vg||§O < 1. Substitute
ferd*loge+a)™” into (5.12). Tt follows from the above calculations that

(5.13) jfz log f2dps, + sz 2yg%(log(g + a))*dp,

< 266,(f.1) + Ce | 126 1ow(g +a)) iy + BOIS

2 2
+ ”f”LZ(y”) log ||f||1_2(y4,)'
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Since the second term on the left-hand-side is nonnegative, we can drop it and the
inequality still holds. By the Young inequality,

1292 (log(g +a))® <3/ log f* + (logd — ) 17 + (/o) oxlasa)”
Hence, (5.13) becomes
| £2108 72w, < 228,(7.) + €t | 17108 £

+ {B(e) + Ce(dlogo — 5)}||f||12}(;4y)

5 b 2 2
+ Cel|e!1/0)9" (logly+a) L1,y + 1 N2, 08I N 22 -

Note that

2 b
N = ”e(l/ﬁ)g (log(g+a)) “L'(ﬂg) =

R 5 I/p s w2 1/q
< { J oP/)52(08(g+)) du} {Jezng (log(g-+a)) dﬂ}

1 1 . .
where }_9+¢—I =1. By (5.11), the second integral on the right converges for any

J(l/a (ogg+a))” . 204 loelg+a) ™ g,

q > 0. To make the first integral on the right converge, choose p > 1 and d > 0

SO that 5 < le—? Now, choose g > 0 such that % <1-Cée< 1 for any 0 <e<

&. Therefore,

jf2 log f2du, < 46,/ /) + 2{(e) + Ce(6logd — )M/ 122

2
+ 2||f||L2(/1y) log”f”iZ(”q) + 2CeN

for any 0 < e <eg. Write A(e) =2{f(e) + Ce(dlogd — )+ CeN} for 0 < ¢ < &.
Let & = 4¢ and define

o [A(E/4) = Ale) if 0 < & < 4ep;
pe) = { Aleo) if &> 4.
We have
f2
jf2 o8 iy S 1.1) BN,  (feD).
L

By choosing & = 4a, we have proved the theorem.
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6. Perturbation of supercontractive semigroups II

In this section, we present an alternative setting used in [AMS, AS, H, A].
Let F be a measurable function and consider the weighted measure

duyp = ede,u/J e*Fdu,
X

assuming that e*f is integrable. Then uy is a probability measure on X. We will
prove perturbation theorems for hyper- and supercontractive semigroups for up.
The difference between this setting and the one in Section 5 is that we regard a
measurable function g for which ||Vg||, < | in Section 5 as a generalization of the
linear function g(x) = x on R, while we regard the function F above as a gen-
eralization of the quadratic function F(x) = x*> on R.

First, we look at conditions which ensure the integrability of the function 2.
The following theorem, which could be viewed as a kind of Herbst-type inequality
under the exponential integrability of the gradient, is essentially Theorem 3.1 in
[AMS].

Theorem 6.1 (hypercontractive case). Assume that u satisfies the following
logarithmic Sobolev inequality :

2
60 [reer izt ) 1B e

L3(p)

For any p>0, if FI" e LP(X, 1), then eFl € L2(X, ) for any a >0 for which
2
a* < p/e.

Example 6.2. Let X =R' and du = (1/v2n)e *"/2dx, the standard Gaussian
measure. In this case, u satisfies a logarithmic Sobolev inequality with Log-
Sobolev constant & = 2. Let F(x) = x%. Then ePVF" = ¢%%* ¢ L(p) if p < p, :=
1/8. Also, [eXFdu= [e*’du< oo for any 0 <a < 1/4, that is, a2 < 1/16 =
po/e. This shows that the above theorem is sharp in this case.

Corollary 6.3 (supercontractive case). Assume that u satisfies a family of
logarithmic Sobolev inequalities

2

f
112200

(62) jxleog du<e8(f, 1)+ B2y (f € D(8))

where B(g) < oo for all € >0. Then eVFI ¢ LP(X,p) for some 0 < p < oo implies
elfl e LP(X,u) for all 0 < p < oo.

We now turn to the perturbation theorems in this setting. First, let us look
at the hypercontractive case. We assume that

(6.3) e LP(X.p)  for some p > e
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Theorem 6.1 guarantees the integrability of e?f. By replacing F by F—

log [y e*Fdu, we can assume that [, e?du = 1. It can be verified that & is dense
in L2(X,ur). Denote by &¢ the Dirichlet form whose underlying measure is
urp. By assumption (A4), 2 < 2(8F), so we will take it as a predomain for &r.

Theorem 6.4. Assume that y satisfies the logarithmic Sobolev inequality (6.1).
Then there are constants & and [ such that

jX fHlog frdup <EEp(f, 1) + BN 20 + I 122 1081 f 122y (f € D).

In the language of semigroups, if {P,} and {PF} are the semigroups associated
with the Dirichlet forms & and &r, respectively and if {P,} is hypercontractive, then
{PF} is also hypercontractive.

For the proof, see [AMS, Lemma 3.1] and [A, Lemma 4.1].
By using Theorem 6.4, Aida and Shigekawa prove the closability of &F.

Proposition 6.5 ([AS], Prop. 3.2). (&F,2) is closable.

Now we look at the perturbation theorem under the supercontractivity
assumption. Assume that F is a measurable function such that
(6.4) VI e LP(X, u) for some 0 < p < o0.

By Corollary 6.3, ¢*f is integrable, so again we assume that [, e du=

1. Moreover, 2 is dense in L*(X,uz) and 9 < D(&F).

Theorem 6.6. Assume that p satisfies the family of logarithmic Sobolev
inequalities (6.2). Then there is a function f:(0,00) — [0,00) such that

jX fHog frdup < 86r(f. 1) + BEONSN 2y + 1172 (up) 1081 22y (f € D)

for any € > 0. In other words, if the semigroup {P,} is supercontractive, then the
perturbed semigroup {PF} is also supercontractive.

Proof. The proof here is an extension of [AS, Lemma 3.1] and [A, Lemma
4.1] and is very similar to the proof of Theorem 5.6. Let f € 2. Then we have
fef e (&) and

r(fef fef) = r(f.f)+2fFr(f,F) + f*e* I(F.F).
Note that
ST F) < [T PEF)? < 3I(f, f) + 42T (F, F).
Here, we use the inequality ab < 1(a?+ b?). It follows that

I(fef, fef)y <2e¥r(f, f)+2f%* I'(F,F).
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Substituting fef into (6.2) and using the above calculations, we have

(6.5) J flog frduy < — J 2 2Fdup + 2660 (f, f) + 2¢ J fi0(F,F)dug

+ BENS N2 + 117200 108 LS 117 2, -

By the Young inequality, st < slogs—s+e’ (s>0,2eR),
FAF| = @1 /) (|F|/é1) <61/ logéif? — 61 /2 + €1/

=51/ log f2 + (61 logd) — 61)f2 + €F1/21.

Hence,

(6.6) jleFlduF <5 j Flog f2dug + (3110831 — 80)I1f 1 22y + €75 [
By the Young inequality again,
fAC(F,F) <3 f*log (02f%) — 0o f ? + "D/

=6, log 2 + (52 10gdy — 6y) f2 + €T (FFI%2,

Thus,

67) [ 7P Frdur <02 | 108 s
+ (62 logd, —(52)||f||22(,,,.) + ||er(F’F)/62||L1(ﬂF)

Putting (6.6) and (6.7) in (6.5), we have

(6.8) J fPlog fdup < (20, + 2&,) J flog f2dug

+ 2665 (S ) + 117200 108 1S 172,y
+{2(01 logdy — 1) + 26(32 10882 — 82) + P} S 117 2(s

+ 2|l Lt () + 28||9r(F’F)/62||L'(yF)-

The next step is to choose d;, J» and & so that 0 < 24, + 2ed, < 1 and
1 — (201 + 2&d,) is bounded away from zero uniformly on some interval (0,¢)] of
e. Choose ¢ such that 0 <c<p and let 6 =2/(p+c¢) so that 0 <c < 1/0 < p.
Now let §; = ¢d/2 and J; =J and choose & < (p —c¢)/4. Hence, 2J) + 2¢d; =
o(c+2¢). It is easy to verify that 0 <a <1 —0d(c+2¢) <1 for each ¢e (0,¢)
where o =1—3J(c+2¢) > 0. From these choices, (6.8) becomes
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(69) [ r108 £2dur <7 25861, 1) + 1 (s 08 1

+{2(31 logdy — d1) + 2&(32 logdz — 62) + B(e)}|f 13,

+ 2|17 L) 2¢||e" PV Lt (p)]

for any ¢ (0,¢9]. By Lemma 5.4, we obtain

2
| 721082 171t < Z 87,1 + 4@ Wi

for any ¢ € (0,&)], where

(6.10) Ae) = é {2(611ogd, — 61) + 2(32 logds — 83) + Ble)

+ 201V 1y + 26l EF 2 )

We note here that
”e'Fl/é'”Ll(ﬂF) _ Jezm/as ey — Iez('“/“”'”du < 0

by Corollary 6.3, and

1/pd 1/q
“eF(F,F)/éz”Ll(#F) — Je|VF|2/<5 . €2Fd/l < {JeP|VF|2dﬂ} {jequFldﬂ} < o0

by Hélder’s inequality, where 1/¢g+ 1/pd = 1. Since pd > 1, we have 1 <g <
and thus [le?1]|,,.,, < oo by Corollary 6.3. Now, let & =2¢/a and

@ A(0g/2) = A(e)  if 0 <& <2¢/a
&) =
A(OCE()/Z) = A({;‘o) if €> 280/0(.
We then have 0 < () < oo for all £> 0. This finishes the proof of the theorem.
The following Corollary is immediate from the formulas of & S and A(e):

Corollary 6.7 (ultracontractive case). Under the assumption of Theorem 6.6, if,
Jor each t >0, there is a function n: (1, 0) — (0,00) such that

oC

r n(t)/tdt < o and J B(n(1))/dt < o0,
1 1

then, for any t > 0, there exists a function 7 : [1,00) — (0,00) such that

[ee]

ro A(t)/tdt < 0 and J BH(1)/Pdr < oo.
1 1

In particular, the semigroup {Pl} associated with &r is ultracontractive.
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Finally, we indicate the relation between the two settings. In this section, we
assume the exponential integrability of |VF |2 and conclude the integrability of
eI, In Section 5, we assume that ||Vg||,, <1 and conclude the integrability of
e9". As mentioned at the beginning of this section, modulo constants, the function
F is a generalization of F(x) = x? and R and g is a generalization of g(x) = x on
R. Hence, if we assume that |Vg||,, <1 and write F = ag?, then we should be
able to obtain results in Section 5 from the corresponding ones in this section.
This is indeed the case due to the following lemmas.

Lemma 6.8 (hypercontractive case). Assume that p satisfies the logarithmic
Sobolev inequality (6.1). Let g be a measurable function such that ||Vg||, < 1.
Fix a positive real number o for which 20 < 1/¢ and write F = ag®. Then the
hypothesis (6.3) holds, i.e. eVF' e LP(X,p) for some p > e.

Proof. Note that IVF)? = 4a2¢2|Vg|* <4a?g®. If p=1/2a>¢ then
[eP"F dy < [e*9’du < oo by Theorem 5.1.

Lemma 6.9 (supercontractive case). Assume that u satisfies the logarithmic
Sobolev inequality (6.2). Let g be a measurable function such that ||Vg|, < 1.
Fix a real number o« > 0 and write F = ag®. Then the hypothesis (6.4) holds, i.e.
VFP e LP(X, 1) for some p > 0.

By using the above Lemmas, we see that Theorem 5.2 and 5.6 are immediate
consequences of Theorem 6.4 and 6.6, respectively. Moreover, we can deduce the
closability of the Dirichlet form &, from Proposition 6.5 and Lemma 6.8. However,
we do not have an analog for Theorem 5.10 for the perturbed measure uf.
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