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Perturbation theorems for supercontractive semigroups

By

Wicham LEWICEERATIYUTKUL

Abstract

Let p  be a  probability measure on a Riemannian manifold. It is known that if the semigroup
is hypercontractive, then any function g  for which 11Vg11  1  w ill s a t is fy  a  Herbst inequality,

exp(ag 2 )cip < oc, for small a > O. I f  the semigroup is supercontractive, then the above inequality will
hold for all a>  O . For any a> 0 for which Z  = f exp(ag 2 )dp < oo, we define a measure pg  by dp g =

exp(ag 2 )4 .  We show that if p  is hyper- or supercontractive, then so is p g . Moreover, under
standard conditions on logarithmic Sobolev inequalities which yield ultracontractivity of the semigroup,
Gross and Rothaus have shown that Z  = exp(ag 2 lloglg)' )dp < co for some constants a,c. We in
addition show that the perturbed measure dp g = Z  exp (ag 2 llogigIndp is ultracontractive.

1. Introduction

Let (X , p ) be a  probability space and consider a sub-Markovian symmetric
contraction semigroup e- IA  o n  L 2 (X , p ) .  Recall that a semigroup e-

tA  i s  sub-
Markovian if fo r any f  e L 2 (X  , p ),0  < f < 1 implies 0 < e- tA f  <  1. Then, by
the Beurling-Deny conditions [D , p. 12-16 1, C I A  is LP-contractive from L 2 (-1 LP
into LP and hence from LP into LP by a density argument for any t > 0 and 1 <
p  <  co. We say that

e — IA  i s  hypercontractive if for 1 < p  <q  <  œ  there is a  to > 0 such that
< co for any t to.

C I A  is  supercontractive if  Ile- tAIILP—■Lq < 00 for any 1 < p, q < œ  and any
t > 0.
e — IA  i s  ultracontractive if le LP <  0 0  for any 1 < p  <  œ  and any
t > 0.

There are infinitesimal versions of these various contractivities in  terms of
Gross's logarithmic Sobolev inequalities. The following theorem addresses the
hypercontractive case.

Theorem 1.1. Let (X , p ) be a probability space and suppose that C I A  is  a sub-
Markovian sym m etric contraction semigroup o n  L 2 (X , p ) .  T hen e — IA  is hy per-
contractive if  an d  only  i f  there ex ist constants e > 0  and  fi > 0  such  that the
following (defective) logarithmic Sobolev inequality

(1.1) f  2 log f  2 cift e (f , f) + fillf112L 2 ( , ) +  11f112L2 ( , )  log 11f1120 , )  (f E g (e ) )
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holds, w here e(f, f )  ( V T i f ,V T 4 f ) ,g ( e ) = g ( N 1  is  the Dirichlet form  asso-
ciated to A .  M oreover, we have

(1.2) Ile - tA < 4 /1 ( 1 /P 1 / )  f o r 1 < p  < g  < o o  and any  t > log (
q  1  

— 4 p — 1)•

E is called a  logarithmic Sobolev constant and f i is called a  defective term.
Originally, Gross [G1] proved this theorem for two important classes of Dirichlet
forms, namely Dirichlet forms given by a gradient: e(f, f )  = L  V f 2 d,u and the
finite difference form on the two-point measure space. Stroock ([S], see also
[DeS]) later extended Gross's proof to the general case . We refer the proof of this
theorem and general background regarding logarithmic Sobolev inequalities and
various contractivities of semigroups discussed here to the expository paper [G3].

Note that in (1.2), if we can reduce E arbitrarily small by increasing fi, we then
have supercontractivity of the sem igroup. The converse also holds by an in-
terpolation argument.

Theorem 1.2. A ssume that the same assumption of Theorem 1.1 holds. T h e n
E- 1 A  is  supercontractive if  and only  if  there is a function fl : (0, co) —> [0, oo) which
satisfies

(1.3) (2  ' co ,  f 2 d p  <  g 6(.1 J ) + fi(E)lifli 2L20.c
j

+ log 11f112L2(,) E  g ( e ) )

f o r any  e> 0. Moreover, one can tak e 13 to be decreasing and convex.

The only condition on f i  for the semigroup to be supercontractive is that
fl(E) < oo for all e > 0. One need not specify how fast fl(e) tends to oo as E —> 0+.
Intuitively, if fl(E) does not grow "too fast" as E approaches zero, the semigroup
will be ultracontractive. However, a condition on /3(.) which is equivalent to
ultracontractivity is not known. See [C ] for further discussion of this. The
following theorem gives a sufficient condition for ultracontractivity. We will use it
as a basis for proving results concerning ultracontractivity via logarithmic Sobolev
inequalities in this paper.

Theorem 1.3 (Davies and Simon [D S ]). A ssume that (1.3) holds and that for
each t > 0  there ex ists a function e: [2, cc) —> (0, co) such that

"
t = f c(p)

 d p
,  P

and

I 2 f l ( c

p

( p ) )
dp < co.2
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Then the sem igroup e'A  is ultracontractiv e and

<
Let us recall the ground state transform fo r a  Schr6dinger operator on X  —

R " . Denote by A  the Laplacian in Rn . L et V be a  potential in  R" and assume
that the  form sum , — A  + V , has a  form closure, H , which is a  semi-bounded
self-adjoint operator in  L 2  (R" , dx) and  which has a  un ique  lowest normalized
eigenfunction 0 0 ,  i.e. Hçbo  = e0 0 w here e = inf spec (H ). 0 0 can be taken to
be strictly positive almost everywhere. Define a  probability measure dp(x ) =
00 (x) 2  dx  a n d  th e  unitary map M  : L 2 (R" , dx) L 2  (R" , p) b y  M O o f = f/Oo•
Then A  = Mo o (H — e)Mo

-
o

l i s  th e  operator o n  L2 (R",,u) given by the Dirichlet
form

(1.4) (L  f )  =  x lV f (x)1 2

The domain o f  consists of those functions f  in L 2 (X , p) whose weak gradient V f
is also in  L 2 (X „u ) .  T h e  Schr6dinger operator H  o n  L 2 (X , dx ) is said to be
intrinsically hyper- , super - ,  or ultracontractive [DS] if the associated operator A  on
L 2 (X ,p )  is hyper-, super-, or ultracontractive, respectively.

We now look  a t th e  one-dimensional c a s e .  We will see in  th e  following
theorem that the  type  o f contractivity depends o n  how fast the  potential term
grows.

Theorem 1.4 ([D S1). Consider the Schr&linger operator H  = — A  + V  on R '.
(a) If  V (x ) =1x1 a  , then e - tH is intrinsically  ultracontractive if  a > 2 , in-

trinsically hypercontractive but not supercontractive if  a = 2 , and not even intrin-
sically hypercontractive if  a < 2.

(b) If  V (x ) = x 2 [1og(2 + lx1 2 )] b ,  then e- f i l  is intrinsically  ultracontractive if
b > 2  and is intrinsically  supercontractive (but not ultracontractive) if  0 < b < 2.
In this case, the asymptotic behavior of the ground state 00 is given by  —log 00 (x ) —
x 2 (loglx1) b12 as 1x1 —÷ co , f or b O.

Motivated by the above theorem, we will find an  analog of it in the abstract
setting. W e  assume that there is a natural gradient operator, V, defined on a dense
subset of L 2  (X , p). Let A  be the nonnegative self-adjoint operator associated with
the Dirichlet form o n  X  given by V a s  in  (1.4).

I n  a n  unpublished letter to L. G ross, I. H erbst showed that for the
Dirichlet form e(f, f )  = J  f(x)1 2 4 (x ) o n  R , a  necessary condition for the
measure p  to be hypercontractive is that SR eccx2 dit(x ) < oo for some a > O. Such
exponential integrability under contractivity assumptions will be referred to as
Herbst inequalities. See [G R ] fo r  m o re  historical background of the subject.
Herbst inequalities have been studied extensively in  th e  hypercontractive case.
See, e.g., [A, AMS, AS, ASt, BG, G R , L 1, L2, R ] .  The supercontractive case is
a n  immediate consequence o f  th e  hypercontractive c a s e . We summarize these
results in  the  following theorem.
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Theorem 1.5. A ssume that 1.
(a) I f  e- I A  i s  hypercontractive, then f eŒ0 2  dp < oc f o r sm all a > O.
(b) I f  e- I A  i s  supercontractive, then f e 2 dp < oo f o r any  a > O.

T o  assure that th is is the right analog of the one-dimensional case, we will
also prove the following perturbation theorem.

Theorem  1.6. A ssum e th a t  MV O . °  1 .  F o r an y  a > 0  f o r  w hich Z  =
f e 1 2 dp < oo, define a probability measure ti g  o n  X  by  d,ug  =  Z - l e"g2 dp. If  p  is
hypercontractive (supercontractive), then so is p g .

Theorem 1.6 for hypercontractivity has essentially been proved in [AS, A]
in  a  slightly different setting. This result could be regarded as an extension of
the Holley-Stroock lemma [HS], which states that the perturbation of a hyper-
contractive measure by a bounded density is still hypercontractive. However, the
Holley-Stroock lemma only requires boundedness of the density without any
smoothness assumption. Theorem 1.6 allows the density to be unbounded, but
requires some smoothness.

W e now look a t  the ultracontractive case . W e will take Theorem 1.3 as a
basis for proving results about ultracontractivity. W e assume tha t the family of
logarithmic Sobolev inequalities (1.3) holds. In [GR], Gross and Rothaus show
tha t, under a standard assumption on )3  which ensures ultracontractivity, the
following Herbst-type inequality

e <  0 0

holds for some y> 0 where g is a measurable function on X such that Vg11 09 <  1 .
This result of [GR], w ith  a  slight generalization, w ill be stated precisely in
C orollary  5 .9 . W e a lso  study  perturbation theorems for ultracontractive semi-
g ro u p s . Assume th a t  p  satisfies logarithmic Sobolev inequalities which yield
ultracontractivity. Define dpg =  z -l e y g 2l1og l gli r a  where Z  i s  the normalization
factor, y and c are certain positive constants. We will show that dpg  also satisfies
logarithmic Sobolev inequalities which yield ultracontractivity.

In this paper, we consider Herbst inequalities and perturbation theorems under
supercontractivity and ultracontractivity assumptions. It consists of 2 parts, which
are independent of each  o the r. Section 3 and 4 deal with generalization of Herbst
inequalities to the case where the LP-norm of the gradient of g grows polynomially
in  p , w hile Section 5  and 6  concern w ith perturbation theorem s under the
boundedness assumption on the gradient of g.

Here is an outline of this w ork. A fter setting up our notation in Section 2,
we prove an estimate for the LP-norm of a function in terms of its L 2 -norm and
the norms of its  gradient in Section 3. This result extends those of Aida and
Stroock, [ASt], to the ultracontractive case. In Section 4, we obtain a Herbst-type
inequality f e(g)dp < oo, but here we allow the LP-norms of the gradient of g  to
grow polynomially in p .  W e re tu rn  to  the assumption 11Vg 11 co 1  in Section
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5, where we prove perturbation theorems for hyper-, super- and ultracontractive
semigroups, respectively.

There is also another point of view, [A, AMS, AS, HI, in how to extend
Theorem 1.4 to  a  general c a se . In  these papers, their authors assume the
exponential integrability of the square of the gradient of a function F ,  i.e.

ePlvF1 2 dp < oo for some 0 < p <  co. Under this assumption, it is shown that
f ePF d,u < co for small p > 0 in the hypercontractive case . Then they prove that
the perturbed measure d,ug = e 2 F d,u is  hypercontractive if p  is. We show that
similar results also hold for the supercontractive case. The difference between this
approach and the one in Theorems 1.5 and 1.6 is that the function g is modeled on
the map g(x) = x while the function F is modeled on the map F(x) = x 2 . We will
elaborate on these distinct viewpoints in Section 6.

2 .  Notation

We will adopt the terminology used in [AMS] throughout this work. We also
refer to [BH, D , FOT, RM] for the standard theory of Dirichlet form s. Let
(X, .4„u) be a probability space and 6' a Dirichlet form on L 2 (X , p). Let A  be a
nonnegative self-adjoint operator associated with &:

e(f , g ) = (\ f,VT4g), (f,g E g(&) = ge\/74)).

We assume that there exists a dense subspace g  in L 2 (X , p) satisfying
(A l)  g  g L' (X , p) n  (A),
(A2) 1 e 9  and g  is an algebra,
(A3) g  is a  core of the Dirichlet form 6'.

We define a Carré du cham p operator T : g x g  L l (X , p) by

F(f ,g) =1{Af•g + f • Ag — A(f • g)}.

We assume further that
(A 4 ) For f  E  g ,r( f  ,g )  E n,,,. L P  (X  1 1 ) .

Notice that our definition of F  differs from the one in [AMS] by a  sign because
we make a choice for A  to be nonnegative here. It was shown in [AMS] that the
map ( f ,  g) 1-4 F(f, , g) can be extended continuously to a map F  : g (e ) x g(e)
L 1(X, We also denote this continuous extension by F .  F  has the following
properties

( i ) F  is a  symmetric bilinear map from g(e) x 2' (6') into L l (X ,p),
(ii) F (f ,  f ) p — a.e. for each f  e g(61,
(iii) IT(f ,g)1 2 < F(f , f) • F(g, g) for each f ,g E

We will also assume the following derivation property of F:
(A 5 ) F(f g, h) -= f F(g, h) ± gF (f, , h )  for f ,  g, h E 9(e).

With the assumption (A5), we have
(iv) e(f , g ) =  fx  F(f , g)dp for any f  , g  g(e),
( y ) if u, v e R) and , f  e g(6'), then , , f,,) e

g(6 ') and
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F(u(Jet, • • • , fn) , v(A, • • • , L ))

=  E (.0,14)(f.,• • -, f , ,) (a iv ) ( fi , • • • , f n ) r u i ,/ , ) — a-e-
i,j=1

(vi) if q : R —> R is a normal contraction, i.e. 0(0) = 0 and I0(s) — 0(01
— II for all s ,  t e R, then 0 of e g(e) whenever f  E.g(e) and

T(0 o f , 0 o f )  < T ( f ,  f )  p — a.e.

We write I V f l  = V F ( f , f )  for f  E  g (e ).

Example 2.1. Let X  = Rn and let d,u(x) = w(x)dx be a probability measure
on R". Assume that w > 0  on Rn . Denote by V f the usual gradient of f. Let
g  = Cr (Rn), the space of smooth bounded functions on Rn with derivatives all
bounded. Then there is a unique closed quadratic form e  with core 9  such that

ev , g) = (V  f (x),V g(x))dp(x) (f  ,g e g ) .
It"

e  is a Dirichlet form on (Rn , p) and the associated operator A  is given by

A f (x) =
— 1 (

a2f, (x) ( — (3 lo g  w) ( x ) )ax, a x ,  a x ,  •

In particular, if w(x) = 1/ (27r) n /2 exp{ — Ix12 /2} is the Gaussian density, then

n a2
A  = E +  X, —

8X?i=1

In this case, F  is simply

F(f , g)(x) = (V  f (x),V  g(x)) w .

Example 2 .2 .  Consider an abstract Wiener space (B , H  u) and let A  be the
Ornstein-Uhlenbeck operator, which we denote by L .  We can take g  to be
C bcc(B ), the space o f  C r  cylinder functions on B .  In this case, we have

F(f  , g)(x ) = (Df (x), Dg(x)) H . ,

w here D f  denotes the H-derivative of f .

3. Moment estimates

We assume that there is a  function )6' : (0, cc) [0, cc] such that a  defective
logarithmic Sobolev inequality

(3.1) f f 2 log t 2
2

dki ( f  f )  13(011f q,20,)E  ( 6' ))
• 11./11/.2(„)
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holds for any e> O. In  this section, we obtain bounds on the LP-norms of
functions on X under a certain assumption on /3 and e.

Lemma 3 .1 . If  f  E  .g (e ) is positive everywhere and 2 < t < co, then

6. ( f (/2
,r / 2 ) <  t 2

4 II V  fe l l f1 r 2 .

P ro o f  By property (v) in Section 2,

2tr ( f o , f 1,2)( 2t) 2 (f I ) 2 F ( f , f )  4  f . 2 2—

The lemma now follows from the above calculation and Holder's inequality.

The next lemma is another form for Gronwall's inequality.

Lemma 3 .2 . Let x, g and k be continuous real-valued functions defined on an
interval [ , f i )  and suppose that k  is differentiable on (a,13). If

(3.2) x(t) k(t)+ g(s)x(s)ds < t <f i),

then, for a < t <f i,

(3.3) x(t) exp g ( s ) d s ) [ k ( a ) +  exp ( —  j OE g (s)d s)k / (T)d-cl.

P ro o f  Let U (t) = k(t)+  foè  g ( s )x ( s )d s . Note that U (a)=  k (a) and x(t)
U ( t ) .  Then

U'(t)= k'(t) + g(t)x(t) < k'(t) + g(t)U(t).

Multiplying the above inequality by exp (—  g (s )d s ) , we have

citd  ( exp ( _
g (s )d s )U (t))  <  exp ( —  I g(s)ds)k/( t).

a a

Integration from a  to t  gives

exp (—  g(s)ds)U (t)—  U (a) exp ( —  g (s )d s )k t (r)dr.
OE

Hence,

U(t) exp (f g(s)d s) [U (a )+  f t exp ( —  g ( s ) d s ) e ( r ) d -ri
OE

= exp (f g (s )d s)[k (a )+  j

t  

e x p  ( —  

f r  

g ( s )d s )k i( r )d d ,
a a a

from which (3.3) follows.
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In the next theorem, we obtain bounds on LP-norm of functions under a
certain assumption on e  and ) 6'.

Theorem 3 .3 .  A ssum e that (3.1) holds an d  that 6 :  (0, co) (0, co) is  a
continuous function f o r which the function pf i  o  e ( p )  is continuous. Let

(3.4) D(t) = f f 2 fi ° 28 ( s )  ds (2 t 00).
2 s

Then, for any f  c  (e),

(3.5) Ilf II; e l ) ( P ) [11.fil; f 2
P e - 1 ) ( t ) e(t)11V f dt] (2 < p < cc).

P r o o f  Since T (If l, If I) ['( f ,  f )  for any f  e  g ( e ) ,  c.f. property (vi) in
Section 2, it suffices to prove the theorem for f >  0. By the logarithmic Sobolev
inequality (3.1) and Lemma 3.1, we have

Ilf = Ilf J'xf log lIff
2 2_, t/2 t/211f11, (E(t)e(f , f + fi o  011fIl it)

11f11 -  ̀(8(t) Ilv f +J8. 011/.110

g(t) II
2

 + 213 0e(t)2
= — , IlfIlt •2 •  /2

Integration from 2  to t  yields

IfI l f  II; + E (
;

) Ily.feds + .1'21 2 1 6 0
s 2

E ( s )  Ilf11js.

Applying Lemma 3.2 to the above inequality by writing

x(t) .= go.) 2fi o e(t)
t2 and k(t) =  Ilf 11; + j'

2
1 E (

2
s ) Ilvf

we immediately have (3.5).

Corollary 3.4. Under the same hypothesis as in  Theorem 3.3, suppose further
that

M  D(oo) =
2 1 6  o  E ( s )  

ds <
2 S2

Then

(3.6) II.f em [If II; + f2
P  e (

2
t )  I1V.f ( f  6  g(6'))•
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P ro o f  It follows from the facts that D(2) = 0 and the m ap t D ( t )  is an
increasing function on [2, co).

Remark. The inequality (3.6) is an extension of the inequality (3.5) in [Asti
to  the case where e and fi are nonconstant.

In [GR], G ross and  Rothaus have derived an  inequality for the Laplace
transform E(e'lg), where g  is  a  function with bounded "gradient" by adapting
techniques from  [L11. W e  n o w  show tha t ou r m ethod  a lso  y ie lds the same
inequality.

Proposition 3 .5 .  A ssum e that (3.1) holds. L et g  be a  real-valued measurable
function such that 11VglI co1 .  Then

(3.7) E(ePg) < E(e 2g) I /2 exp I—
[2 2

+ 2f3 p  <  c o .f E(t) o c(t)} d t ] ,2 <
2 t2

P ro o f  Let f  e9 . T h e n

F(f f) = F (eg , eg) = e 2g F (a, g ) =  f 2 F (g , g).

Hence, 11V911„ < 1 implies Ilvfllf f  for any 2 < t < co. It then follows from
(3.5) that

eD(') [lifq CD(s)E(s)lIfeds] (2 < t < cc).

Applying Lemma 3.2 to  the above inequality with

x(r) = lit k (t ) =  11f11; and g (t) = 
e(t)

for 2 < t < cc, w e  have

eD ( P ) 11f11; exp [f2
P  E (

2
t )  dt] =  11f11; e x p  f P  f E(t) +  2,6 o e ( r ) ldti .

By writing IlfIlp = E(ePg) I  P  this im m ediately gives (3.7).

LJ2 t 2 t2 f

4. Exponential integrability for a measure satisfying LSI

As is now well-known ([A, AMS, AS, ASt, BG, GR, L 1, L2, R]) a probability
measure p on a space X satisfying a logarithmic Sobolev inequality has exponential
integrability in the form

(4.1) TX e" dp  <  co

for a sufficiently small where f  is a  function for which IlVf < I. T h is  kind of
exponential integrability under LSI assumption is known a s  a  Herbst inequality.
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In all these papers except [GR], the measure p  is assumed to satisfy an LSI for a
fixed e and with or without assuming that fi = O. In [GR], Gross and Rothaus
assume that e and ,6 satisfy standard assumptions which ensure ultracontractivity
and that the function f  has bounded gradient. In  the present work, we will
assume standard conditions on e  and /3 for ultracontractivity, but we allow the
LP-norms of the gradient of f  to grow polynomially in p .  With explicit forms of
the function e(•), we can improve inequality (4.1). The techniques here are those
of Aida and Stroock's, [ASt, Cor. 3.7].

Proposition 4.1. L e t f  E  (e) be such that there ex ist C > 0 and A  > 0 such
that 11V Cp2 for all 2 p  < o o .  Assume further that

(i) (3.1) holds,
(ii) there ex ist a function a : [2, co) — > (0, oo) and constants y>  0,B > 0 such

that

a(s) B I s Y f o r an y  s> 2,

and M  = f2. 0  2fl(a(s))1s 2ds < oo
(iii) 22 —  y + 1 > O.

L et b = 2/(22 —  y + 1). T hen, for any  k  > 0  such that keb
(

e m  B b / 2

2

C 2 b )

< 1,

e M B C 2 b
(4.2) I  ekl

)b/21  I
f b  d exp[k(( 2 em ) 1/2 1if 420, 01+ s [ 1.- keb( 2  

1 (n ) n

w here S  suPn>o • In particular, fx  ekif b diu < oo.

P ro o f  By the assumptions above,

2,1—y+1
ot(t)11Vf11,2dt BC 2t 2 A - Ydt B C 2

 2A
P _ y ± 1—  b.1.13 2

BC2 p2 A - Y+1

2 2

Hence, by Corollary (3.4),

11f11b e m
+ B C 4 2 b

( n b ) 2'1 - Y+1 ] i f  nb > 2.

The inequality (a+ b)k  < 21c (ak +b " ) ,) for any a, b > 0 , k > 0, implies that

pemyb/2[11frb+ 
(  

 4 ( n b ) "
B c2b)"b/2 1 for nb > 2.

Moreover, we know that 11.f 11f112 for nb < 2. Using the preceeding esti-
mates in the power series expansion of the left-hand-side of (4.2), we have
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co

e kl f l b d kn nb
X n! Xn=0 ij 1

1 k n  p e m nb12
2

oo

) +
k "  ( 2

_
e
m B C 2 b ) n b 1 2  

(nb) n .
n! 4n=0 n '

\ n )  op M BC 2 b ' 61 T
exp(k(2em)boHfg) + {sup E[e b k ( e ) •

2n>on! e n=0

This immediately yields (4.2).

Next, we consider the case when a(s) tends to infinity slower than those in the
previous proposition.

Proposition 4 .2 .  A ssume the same hypothesis as in Proposition 4.1 except that
here w e assume that there ex ist constants y >  0 ,  A, B  > 0  such that

Œ(s) <
(A + log S)

L et b =
+ 1. 

Then

f o r all s  > 2.

2

(4.3) f o r any  k  > O.

P ro o f  Since it is not our purpose to get a good estimate for the bound of the
integral in (4.3) here, we may and will assume that B  = C = 1 for simplicity in the
calculation. For any ô > 0, there  is a constant Co such that

11+1f P t 2 ) "
(4.4)

j2 (A  + log 07 
d t  ( 1  + 6 )  

(A  + log p)Y  
+

for any p >  2. For the idea how to obtain this estimate, see, e.g., [GR, Cor. 4.7].
Therefore,

II f = ( II f  2II ,,b) n b  I 2

nb12
< (2e M  )nbl2 Ilf 11 +  

( 1  +  6 ) ( n b ) 1 1 + 1

(log nb) c0

„  6\012 tn b )n
(2 em )nb/2 [11f11;11) + 2"b/2 { ' '  '  ' + C n b l 2 }1

(10g nb) nn YI2

for nb > 2. Let n o  b e  the smallest integer such that n , > 22 + 1 = 2/b. Since
nb nb11f110 11f112 for nb < 2 , w e have
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klflb —
1

e E
n l

kn j. If Inb dii
X0 n!

-< —kn(2eM)nb1211fIlb+ r ,oe
knoemyb/ 2 0  +6) n b 1 2 (11b) n

n = 0  
n! n!n=no (log nb) nbY12

nbl2e nb12
2
÷°.

_, — k"(4e m )
n = 0  

n
•

Clearly, the first and the third sums are finite for any k  > 0. We now consider the
second sum.

G° 1  kn (4e i l l ) b/2 ± ( 5 ,

2

(nb)n

E n ! (log nb) nbY1)21V

n

{s u p  1 C y (kbe( (41e0 M
g n( bl )+4 6/2))

b 1 2 ) n

n=no n_>_0 n! e n=no

For a fixed k  > 0, given 0<  a < 1, we can find n1 such that

kbe(4e m  (1 + 6))
b12

< a < 1
(log nb) 4 1 2

for any n  > n 1 . Consequently, En7 (A n )" En7 a"  < o o . From this, we have
(4.3).

5 .  Perturbation of supercontractive semigroups I

In this section, we perturb the measure tt by densities of the form e° ( g) where
IV g  <  1  and cP : R ---At is a real-valued function on R. We will see that the
stronger contractivity the semigroup has, the faster growth of 0 (u ), for large u, we
can allow on the perturbation and still preserve the same contractivity.

First we look at the hypercontractive case.

Theorem  5.1. L e t (X  „ u) b e  a  probability  space. A ssum e that there ex ist
constants e > 0  and 11 > 0 for w hich the following logarithmic Sobolev inequality

(5.1) f  2 a ( f ,  f )  + fillf  1120p) (f  E  g(e))f2log c11,1

Ilfll L2 (p)

holds. I f  g : X  –412 is  a  measurable function such that 11Vgilco 1 , then Z  =
fx  e2.92 0 < 00 f o r any  a f o r which 2a <  lle.

P ro o f  See, e.g., [GR, Example 4.1].

Under the assumption of Theorem 5.1, we fix a such that 2a < 1/e and define
a  probability measure pg b y  dpg =  Z e

2 2d p .  Then g  is dense in L 2 (X„u g ).
See [AS, Lemma 2.3] for the proof of this fact. Denote by g , the Dirichlet form
associated to the measure pg,
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(5.2) 6'g (f  , f ) = f x  F(f  , f )d p g .

By assumption (A4), Sg is well-defined on g ,  so we take g  to be a  predomain of
&g • In  fa c t , (6'9 , g )  is closable. We defer the proof of this fact until the end of
Section 6.

Theorem 5.2. A ssum e that p satisf ies the logarithmic Sobolev inequality (5.1)
f o r some constants e and [3. Then there are constants a n d  f t  such that

f 2 log f  2d f i g  Eeg (f f) + gll f II 2L2 p ( f  G
Ilfg2(p9)

W e can restate this theorem  in  terms of semigroups associated w ith Dirichlet
f o rm s . L et {P,} an d  { P n  be  the semigroups associated w ith the Dirichlet forms
g  and S ,  respectiv e ly . I f  {Pt }  is hy percontractiv e, then { P}  is also hy per-
contractive.

Example 5.3. Gaussian c a s e : X  = R I a n d  di./ =  (1 /-,7 r)e - x2 / 2 d x .  In this
case, it is well-known that the logarithmic Sobolev inequality (5.1) holds with e = 2
and fi = O. W e can perturb p  by any density ecx2 where c  < 1 / 2 .  Hence, the
above theorems are sharp in  this case.

Proof  o f  T heorem  5 .2 . The proof here is essentially th e  same as [AS,
Theorem 3.1] adapted to the above setting. Let f  c g .  Then we have f e lg 2

g (6 ')  and

r ( f  e . 92 f  e 2) F  ( f  f ) e 2a12 4 0 c f g e 2a9 2
r ( f ,  g )  4 0 c 2 f  2 g 2 e 2Œ82 F  ( g  g ) .

Note that

614cxf , gF(f , g) 2(2af g )  r  ,  f )V  F(g, g) +
r ( f  f )  ' 40t 2f 2 g 2  ( g  g ) .

a, 
The second inequality follows from the inequality 2ab < a2 +  e b 2 . Therefore,

1
g(f  e l g 2  feŒg 2 ) < (1  + — )g g ( f  f )  + 4a2(1 + 6 1 )  f 2 g 2 d

61

Note that r ( g , g ) 11 V 9 20 0  <  1 . Now, substituting f  e " `  into (5.1) and using the
above calculations, we have

(5.3) f  2 log f 2 dp g +  2 a f 2 g2 dp g E  ( 1  ±  )  f  f  )  +  4eŒ2 (1 + 6 1) f  2 g2 dpg

+ fill f11,20 ,0  + 11f11,20 ,0  log II f112
L 20 0 .

By Young inequality, st < s log s s  + e t  for s > 0, t R,

f 2 g 2 ((52f2)(g2/62) <  (52f 2  lo g  •-.2J  + 1002 — (52)f 2 ± eg2/62.



662 Wicharn Lewkeeratiyutkul

Choose 62 > 0 large enough so that 2a + 1/62 < 1/e. Hence,

Ileg2/62111) ( pg ) =  jeg 2 2 clpg  =  e g 2 ( 2 "+116 2 ) dp < co.

Now, (5.3) becomes

(5.4) i f  2 log f 2 dpg k ) e g ( f , f ) +  (4e 2 (l + 61) — 2a)62 f  2 lOg f 2 dpg

+ {13  + (4 2 (1 +O) — 2 a)(6 210 02 — 6 2)}ilf

+ (4ea2 (1 +61) — 2 1 )11e82/62 11L1040 +11f 112/.2 log 11f( 2( )

Note that (4ea2 (1 +61) — 24 )62 = 2162(2ae6i + 2ae — 1) and 2ae — 1 < 0 b y  the
assumption. So we can choose 61 such that (4ea2 (1 +61) — 2° )62 < 1. The rest
of the proof follows from the following Lemma.

Lemma 5.4. Let p be a probability measure and Q a densely-defined quadratic
form  on L 2 (p). Suppose that there exist real numbers a, b and c such that for any f
in  the domain o f  Q,g(Q),

f 2 log f 2 dp + a I If 112 + b + cMf 2 log 11f112 .

Then, for f e

(5.5) (f ) +  (a+ b) fI lot ilj f  2 log(f2/11f1.2, <

P ro o f  For f  e g (Q ) with Ilf -= 1, we have

(5.6) f2 log f 2 d,u Q ( f ) +  a + b.

For any nonzero f  e  (Q), putting f/Ilf 11 in (5.6) and multiplying everything by
f  112, we obtain (5.5).

Remark. Although this Lemma does not give the best constant, it is enough
for our purpose. See, e.g., Lemma 2.2 in  [G2] for a sharper result.

Next, we look a t  th e  supercontractive case . T h e  following Corollary is
immediate from Theorem 5.1.

Corollary 5.5. A ssume that there ex ists a function fi : (0, co) —> [0, co) such
that the following logarithmic Sobolev inequality

f 2
(5.7) f 2 log

2  
d p  au, f ) + Ilflq;200( f  6  9 (61)

Hf 110 )
holdv f o r  a l l  > 0. I f Vg co .1 ,  then f, e2 "g2 d p < cc  f or any  a e R.
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Theorem 5.6. Under the same assumption as in Corollary 5.5, fix a e R and let
dpg = e2"2clpl S

2 g 2 1 1 1  T h e n  th e re  e x is ts  a  function ft : (0, cc)) [0, oo) such
that

(5.8) f 2 log di/0 f ) +  ft(E)Ilfg2(pg ) ( f  E g )
11f112L20.0 •

f o r any  ë> 0. In  other words, if  the semigroup {P 1 }  is supercontractive, then the
perturbed semigroup {P }  is also  supercontractive.

P ro o f  We will only sketch the proof here. We follow the steps in the proof
of Theorem 5.2 but we will simplify the constants in the supercontractive case.
We can take 6 1 =  1  and 62 = 1 since eg2 e  LP (p ) for any p > 0. Moreover, we
can drop the term f 2af 2 g2 dpg  from the inequality (5.3) to simplify the calculation.
(We cannot drop it in the hypercontractive case because it gives a critical value for
Œ.) The inequality (5.4) now becomes

f 2 log f 2 dpgf ) ±  8e 2 f  2 log + fl(E)Ilf II 2i2(,,,)

+ 8eot2 Ileg2 11,,,( N )  + II f p  9 ) log 11f112( N ) .

Choose CO > 0  so  that 0 <  8E0 2  <  1 / 2 .  Then 1/2 < 1 — 8ea 2 <  1  for 0 < e <
CO. It follows that

f 2 log f 2dpg4 E e  g (f , f) + 2 f l ( e ) 1 1 f 1 1 ; , 2 " )  + 1 6 e0c2 ile0 2 I L I ( N )

+ 21Ifq,2( N )  log 11f112L200

for any c e ( 0 ,8 0 ].  By Lemma 5.4, we have

f 2 lo g  f 2 dt i g  < 4Eeg (f , f ) {2fl(e) + 1 6 ea2 lleg ILI ( f 1121.2(pg)

+ 11/V2(pg ) log II f  112/.2 (N )

For 0 <  e <  8 0 ,  we write A(E) = 2,6(E)+ 16Ea 2 lieg2 11 iodo• Let e =  4E and define

f A(E/4) = A (e )  if 0  <  <  480;
ft(Z) = 

A ( E 0 ) if ë>  4E0.

We now have (5.8).

We can see from the formulas defining E and [3 that the perturbation of p by
the density e2 0 2  a lso  ho lds for the ultracontractive case as summarized in the
following Corollary.

Corollary 5.7. Under the assumption o f  Theorem 5.6, i f  f or each  t> 0, there
is a function ri : [2, œ) (0, oo) such that
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t = fo o  

ri(P)/PdP
2

and 2 f l ( t / ( P ) ) / P 2 dP < '3 0

2

then, f o r any  t > 0 , w e can f ind a function ij : [2, oo) (0, co) such that

co

t = ii(P)/PdP
2

and 2 f (p))/p 2 dp ,  e C
2

In particular, the semigroup 13 associated w ith e q  i s  ultracontractive.

We wish next to prove stronger perturbation theorems fo r  a  subclass of
supercontractive semigroups. So far, we have only used the fact that fl(e) <  co for
all e> 0 for an arbitrary supercontractive semigroup. However, if we know that
fl does not grow too fast as E approaches zero, we then can perturb the measure p
by densities e'''(g) for some functions 0  that grow faster than the previous cases.

The following Proposition and Corollary are slight generalizations of Cor-
ollaries 4.4 and 4.7 in [GR].

Proposition 5.8. L e t g  be  a  real-valued function on  X .  Suppose that there
ex ist constants K ,L ,M  and b  such that

E ( e )  <  e la+L2 2/(M+log A) b f o r any A

and that - g  satisfies the same inequality. T h e n

E(eN 211°g1911b ) < oo i f  0 < y < ( 4 L ) '.

P ro o f  For details of the proof, see [GR, Cor. 4.4]. We will only sketch the
proof here. Define 0(s) = ys2 (log+ s) b fo r s > 0  and let 0 =  0 ' .  Then 0(s) = 0
for 0 < s < 1 and

0(s) = ys(log S) b - 1  (b + 2 log s) = y(bs(log S)b-1 2s(log s)b) for s >  1.

Define the functions i/J and Vi from [0, co) to [0, cc] by

A
(11(A ) = inf {s 0 : A ofi(s)} and 0 (2 )  = 

o

Then 0  is a  nondecreasing, left continuous function, tJi(0) = 0 and i1/(0(s)) =  s for
any s >  1. Hence, the functions 0  and 7 ' form complementary Young's functions
[Z, p. 76-78], which yield Young's inequality, As 0(s) + W (A ), with the equality
if and only if A = O(s).

Choose so >  1, e.g. so = 2. Let s > so and write A = 0 (s ) . Then

(A) =  (0'(s)) - 1  =  y - 1 [2(log S) b3 b ( l o g s) b - 1 b ( b  -  1)(log s) b - 2 ]- 1 .

Hence, 0 ' exists and  is bounded on [R , cc) w h ere  R  = 0(5.0> O. T h u s , the
assumptions b. of [GR, Theorem 4.3] are satisfied. A t A = 0(s), for s >  1,
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=  
1 /1.2 (b + log s)(log 0(.0) b  

( 2 )  
Y (l o g  2)b (log S) b - 1  (b + 2 log s) 2

Se t u (2 ) =  (.1 ) [(4y ) - 1  .12 (M  + lop l) b]. I t  is  e a s y  to  v e r ify  th a t  u(2) —> 1 as

1—> oo. N o te  that

L 12 A2 [ u (A ) ]

(M ± log .1.)b V ( 1 )  =  (M  + log 2) b4 Y  •

Therefore, fr E (eAg)e-vi(À)dA < c o .  T h e  same argument app lie s  to  — g . S o  the

hypothesis o f  [G R , Theorem  4.3] a re  satisfied.

Corollary 5.9. A ssum e th at (5.7) holds an d  that there ex ist a function a :
[2, oo) —> (0, co) and constants B, b > 0 and C > 0 such that

(5.9) a(s) >, , s 2
(C + log s)"

and

(5.10) M
2 , f l ( a

2

( r ) )

<  0 0 .
2

I f  11V911.0 < 1, then

(5.11) E(e,P92110gIgilb < co f o r 0 < p < (4B) -1 .

P ro o f  See [G R ,  C o r .  4.7] fo r th e  p ro o f .  R e c a ll f ro m  the inequa lity  (4.4)
that fo r  any (5 > 0 , there  is a  constan t C,5 such that

1 
J21 (C+ log .r) b dz. ( I  + 6 ) (C +  log/1) h ±

fo r  any 2  >  2.

Remark. Cond ition s (5.9) an d  (5.10) for b >  1  guarantee ultracontractivity
by Theorem  1.3.

Remark. The  conc lu s ion  o f C o ro lla ry  5.9 is independent o f  C .  W e  pu t C
instead o f  1, a s  in  [G R , C o r . 4.7], in  th e  hypothesis to increase flexib ility o f  B.

N o w  assume t h a t  T O 1. F ix  a >  1  a n d  le t  y  b e  a n  arb itrary rea l

n u m b e r. I t  is  a  consequence o f C o ro lla ry  5.9 that Z  =  fx  e4 g211°g( igl+a)1 2 di( < cc.
D e fin e  d,ag = z- e

2yg2 ll o g( Igi+ a ) lb i ' d p .  T h e n  po i s  a  p robab ility  m easu re  o n  X.
D enote  by eg  th e  D ir ic h le t  form  associated w ith p g  a s  in  (5.2). N o te  tha t the

pow er o f log(10 + a)  is  b /2  and  no t b. A cco rd ing  to  the one-dimensional case

(Theorem  1.4), w e expect to  pertu rb  the measure ,u b y  a  density e2" 2110g( Igha)1b

However, the author has not been able to prove it in  this case because of a certain

technicality in  th e  m ethod o f th e  proof.
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Theorem 5.10. A ssum e that there are Junctions a  : [2, cc) —> (0, cc) an d  /3:
(0, oo) —+ [0, co) satisfy ing conditions (5.9) and (5.10) and  that the following log-
arithmic Sobolev inequalities

(5.12) f 2  log f  2E 6 ( f 7  f )  fl(E)Ilfq,2(,) ( f  E ) )
11f11 2L2(p)

hold for any e > 0. T hen there ex ist f unctions : [2, co) —> (0, co) and ft : (0, co) —>
[0, co) satisfying conditions (5.9) and (5.10) (w ith new  constants B  and C) which
m ak e the perturbed logarithmic Sobolev inequalities

f 2 log f  2

2

d u
g

i < E& g (f  , f ) + ft(011f112L2(,9) ( f  E
If  L 2)  

hold f o r all e" > 0.

P ro o f  W ithout loss of generality, we may assume tha t g 0. L e t  f  E 9.
It can be verified that

F(g 2 (log(g + a)) b n,g 2 (log(g + a)) b 1 2 )

= g2 (log(g + a)) b - 2  (2 log(g + a) + 2 F(g, g).

( 2 +  21obg0)
2 g 2 ( l o g ( g  +  a ) ) b  F ( g ,  g ) .

Hence,

r ( f e ,
8
20 0 5 (g + a n h/2 . f e  y g  2 (l0 g (g + a ))1//)

< 2 e 2 7 8 2 0
° g

(
g +a ) ) b R

[r ( f , f )  y+ 2 f 2 F(g 2 (log(g + a)) b/2 , g2 (10g(g +  a)) b / 2 )]

)2 f2 g 2 0 0 g (g r ( g ,  g ) ] .< 2e 2" 2 (log(g+a)) h12( f  f )  y2 ( 2  b  
2loga

b
2 log a)

f  e" 2(1°g(g±a))h12 in to  (5.12). It follows from the above calculations that

(5.13) f  2 log f 2 dfi g  +  f  2  • 2yg2 (log(g + a)) b dit g

- 2eeg ( f , f )  + Cc f f 2  92 (log(g + a)) b cilig  + fl(c)Ilfq.2 (,9)

+ 11.fq,20,0  log 11.f112c(po•

Here, we use the inequality F(feF , feF) 2 [ e 2 F  F(f , f ) f+ 2e2F r )i Write
2

C = 2y2 (2 + and recall that F (g , g) Go2 1. Substitute
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Since the second term on the left-hand-side is nonnegative, we can drop it and the
inequality still holds. By the Young inequality,

f 2 g 20 0 g ( a  a ))b <  f 2 l o g  f2  ( 5 1 0 0  _ )f2 e(img200g(g±aw,

Hence, (5.13) becomes

f 2 log f 2 dpg 2 e 6 9 (f , f) + C6e f 2  lOg f 2 dag

+ {fi(e) Ce(61og6 — (5 )1 11f11120 ,0

+ celleomg2 (1 °g(g+a ) b IlLI(mg) + 11f11;.2(99) log II f  q ,2(pg ).

Note that

(pi )N —= lie( 1 1 6 )g2 (log(g+a)) b_  e (116)g
2 00g(g+o)b e27g 2( l o g ( g + 0 ) 1,12

<  { f  e (p1(5)g2 (log(g+a))b e 2yqg
2 (l0g (9+anh/2

}1/q

where —

1

+ —

1  

= 1.
P  q

q > O. T o  m ake
p 1

so that < —
4 B

.

co. Therefore,

By (5.11), the second integral on the right converges for any

the first integral on the right converge, choose p >  1  and ô >  0

Now, choose eo > 0 such that < 1 — C6e < 1 for any 0 < e <

f 2 log f 2 a g 4 e e g (f , f) + 2{fi(e) + Ce(6log6 6 )}11f1112 2(N )

+ 211f11,2( ,9) loglIfq,20 0  + 2cEN

for any 0 < e C o .  Write A(e) = 2{ fi(e) + Ce(6log6 — 6) + CeN1 for 0 < e co.
L e t  = 4e and define

)6,( 0  =  f  A (04 ) =  A (e )  if 0 < 441;
A(eo) if > 4e0.

We have

f 2 log f  2 Eeg y, f )  + 11f10 ,,II f  2L 2 (p g ) g
12 ,) G

B y choosing = 4 ,  w e  have proved the theorem.
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6. Perturbation of supercontractive semigroups II

In this section, we present an alternative setting used in [AMS, AS, H, A].
Let F  be  a  measurable function and consider the weighted measure

d,uF  = e 2 F  d,u I  J e2Fdp,

assuming that e2 F  is integrable. Then ,uF  is  a probability measure on X .  We will
prove perturbation theorems for hyper- and supercontractive semigroups for ,uF .
The difference between this setting and the one in Section 5 is that w e regard a
measurable function g for which IVg11.0 < 1 in Section 5 as a generalization of the
linear function g(x) =  x on R , while we regard the function F  above as a  gen-
eralization of the quadratic function F(x) =  x 2 o n  R.

First, we look at conditions which ensure the integrability of the function e2 ' .
The following theorem, which could be viewed as a kind of Herbst-type inequality
under the exponential integrability of the gradient, is essentially Theorem 3.1 in
[AMS].

Theorem 6.1 (hypercontractive case). A ssume that p  satisf ies the following
logarithmic Sobolev inequality

(6.1) f2 log 
lIf

f

11;2 (,)
41 a ( f ,  f)+ fillf11;,2 ( ,) c 9 (61).

For any  p > 0 , if  e1vF12 e LP(X ,p ), then elF1 E L 2a(X,p) f o r any  a > 0 f o r which
a2 <p /c .

Example 6.2. Let X = R  and dp = (1/ )e - x2 /2 dx, the standard Gaussian
m easure . In th is  case, p  satisfies a  logarithmic Sobolev inequality with Log-
Sobolev constant e = 2. Let F (x )=  x 2 . Then ePivF12 = e 4Px2 e L 1 (p) if p < p o  :=
1 / 8 . Also, e2aFda = f e2""dp <  co  for any 0 < a <  1/4, th a t is, a2 <  1/16 =
pole. This shows tha t the above theorem is sharp in this case.

Corollary 6.3 (supercontractive case). A ssum e that p  satisf ies a  f am ily  of
logarithmic Sobolev inequalities

(6.2) f 2 log f 22d t t  e e ( f  f) + fl(e)11f11 2L2(p) g (4 ))
X IlfIlL2(,)

where fl(e) < oo f o r all e>  O. Then e1vF l2 E LP(X,,u) f o r some 0 < p < oo implies
elF I e LP(X„u) f o r all 0 < p < co.

W e now turn to the perturbation theorems in this setting. F i r s t ,  let us look
a t  the hypercontractive case . W e assume that

(6.3) eivFP c  Lp(x,p) for some p > e.
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Theorem  6.1  guarantees th e  integrability o f  e2 F . B y rep lac ing  F  b y  F —
log k  e2 F d,tt, we can assume that fx  e 2 F  diu  =  1 .  It can be verified that g  is dense

in  L 2 (X, itF ). D enote by 4  the Dirichlet form whose underlying measure is
By assumption (A4), g  g ( 4 ) ,  so we will take it as a  predomain for eF .

Theorem 6 .4 .  A ssume that ,u satisfies the logarithmic Sobolev inequality (6.1).
Then there are  constants an d  -

15' such that

f 2 log f 2 dp f , m 'F ( f , f ) + f112() + Ilfli 2L2(pF ) 112L2(pF) (f  E g ) .

In the language of semigroups, if  {P,} and { Pr}  are the semigroups associated
with the Dirichlet form s e  and 4 ,  respectively and if {P,}  is hypercontractive, then
{PT}  is also hypercontractive.

For the proof, see [AMS, Lemma 3.1] and [A , Lemma 4.1].
By using Theorem 6.4, Aida and Shigekawa prove the closability of 4 .

Proposition 6.5  ([AS], P ro p . 3 .2 ) . (4 , g ) is closable.

N o w  w e  look a t  the perturbation theorem  under th e  supercontractivity
assum ption. Assume tha t F  is  a  measurable function such that

(6.4)e 2  e  LP (X , ,u) for some 0 < p < oo

B y  C o ro lla ry  6 .3 , e 2 F  is  in te g r a b le ,  s o  a g a in  w e  assume t h a t  f x  e 2 F dp =
1. M o re o v e r , 9  is  dense in L 2 (X „tiF )  and g  g  g ( 4 ) •

Theorem 6.6. A ssum e that ,u  satisf ies the f am ily  o f  logarithmic Sobolev
inequalities (6.2). Then there is a A nction 13-  : (0, co) — > [0, op )  such that

X  f

2 log f 2 dyF f ) +  -g(011.f11 20 p F) 11f112L2(,F) loglIf11 2L2(pF) (f  6  g )

f or any  ^ > O. In  other words, if  the semigroup {P 1 } is supercontractive, then the
perturbed semigroup f i n  is also supercontractive.

P ro o f  The proof here is an extension of [AS, Lemma 3.1] and [A, Lemma
4.1] and is very similar to the proof of Theorem  5.6 . Let f  E  g .  Then we have
f  eF E g ( e )  and

r ( f e F, f ,F ) e 2 F / f )  + 2f e2 F  F(f , F) f 2e 2F F).

Note that

f F ( f ,F )  < f  r ( f , f ) 112 F(F,F) 112 _ < _ I F ( f , f ) + f 2 F(F, F).

Here, we use the inequality ab <  ( a 2 + b 2 ). It follows that

<  2 e 2F r ( f ,  f ) ±  2 1 2e2Fr ( F ,  F).
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Substituting f e F  into (6.2) and using the above calculations, we have

(6.5) f2 log f 2 ditF  < —  f  2 • 2Fd,uF  + 2 e 4 ( f , f) +  2 e  f 2 F(F,F)O F

+ 3 (E)lif 11.,2(14.)  + f 1121.2(pF)logll f 112L2(pA•

By the Young inequality, st slogs — s + e t  (s > 0, t E R),

f 2IF I _  o i f 2)(1F 1/
(51)

 <  (51 f 2 i 0 g 6 1 f 2 6 i f 2 c 1

_ 6 1 f 2 l o g  f2 log61 — (51)f2 e iF 1 .

Hence,

(6.6) f 2 1Fld "IF  < (5f f 2 log f 2 dpF  + (61 log6i — 6 0111'1112(pF ) + Ile rF1161 11L'(PF)•

By the Young inequality again,

f 2 F(F,F) < (52f 2 10 g  0 2 f 2) 6 2 f 2  e F(F,F)162

= (52f 2 log f 2 (6 2  1 0 0 2  —  6 2 ) f 2  e r(F,F)162

Thus,

(6.7) f2F(F,F)dpF < (52 f 2 lo g f 2d/ I F

+ (621°02 (52)11f 1121,2(p,) + Iler ( F '" 2 11L, (p,)

Putting (6.6) and (6.7) in  (6.5), we have

(6.8) f 2 log f 2<  ( 2 (51 + 2e,(52 ) f  2 log f 2 d PF

+2e&F(f  f ) +  II f 11 2( f ) log Hf  112L2(pF )

+ {2(6 i log 61 — (51) + 2462 log62 — (52) + [3(8 )}11.fer.,2(pF)

+  2 11e1F1/61 H L 1(„ F) + alle r
( F , F ) / 6 2

11 L i ( p F ) •

The nex t step  is  to  choose  61, 62 and co so that 0< 261 +2E62 < 1 and
1 — (2(51 + 2e62) is bounded away from zero uniformly on some interval (0. 4 ) ]  of
e. Choose c  such that 0<  c < p  and let 6 =  2/(p +  c) so that 0 <  c < 1/6 < p.
N ow  let 61 =  c 6 /2  and 62 = 6 and choose eo <  (p — c)/4. Hence, 261 + 2E62 =
6(c  +  2e). It is easy  to  verify  that 0  <  a 1 — 6(c + 2E) < I  for each E E (0, COI

where a = 1 — 6(c +2e0) > 0. From these choices, (6.8) becomes
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(6.9) f 2 lo g  f2d t i F  <  OE-1[2 E 4 ( f ,1) f II 2L2 log f 2 ( F )

+ {2(Oi log61 —61) +2E(021002 — 6 2) +fi(e)}11f 11 2
/.2(p,)

+ 211dF I/6 ' h i 0 ,0  + alle F 2 11 1

for any e E (0,E0]. By Lemma 5.4, we obtain

2E
f 2 log(f 2

for any e E (0,E0], where

(6.10) A (e) = 1  {2(61 log61 —61) + 2462 log62 — 0 2) + Mg)a

+ 2 11e1F1161 11LI(pF) + 2 elie F (F 'F )162 11LI(PF)}*

W e note here that

Ile lF 161 1iLi(pF )  = f e
2iFlica e 2Fd i i I  e 2(1-Filoav i d i u  <  00

by Corollary 6.3, and

Iler(F 'F)/62 (PA

1/q
e iVF12 /6 e 2Fd t i  < epIVF12 di t } e29i11dp} <  c o

by Holder's inequality, where 1/g + 11 pcS = I. S in c e  p6 > 1 , we have 1 < q <  co
and thus Ile215 1

1l L q ( p )  <  o o  b y  C o r o l l a r y  6 .3 . N o w ,  l e t  "E =  2 E / a  a n d

)6 (0 A  (ae72) = A(E) if 0 < 2E0/a;
1 A ( 4 / 2 )  --- A (8 0 )  if ë > 2 co/g.

We then have 0 < ( ë )  <  co for all ë>  0 .  This finishes the proof of the theorem.

The following Corollary is immediate from the formulas of and A(E):

Corollary 6.7 (ultracontractive case). Under the assumption of Theorem 6.6, (,
f o r each t> 0, there is a function 17 : [1, cc)( 0 ,  c o )  such that

c
ri(t)ltd t < co and

f 
f l(q(t))1t 2 d t < co,

then, f o r any t> 0, there exists a function : [1, co) —> (0, co) such that

J
o

-P(t)ltd t < co and fcc fi(0 ) ) 1 t 2 d t < co.

In particular, the sem igroup { Pr} associated with SF is ultracontractive.

/11f112/.200)4F g g f , f )  + A (e)1f112( f )
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Finally, we indicate the relation between the two settings. In this section, we
assume the exponential integrability o f IVFI 2 a n d  conclude the integrability of
elFH In Section 5 , we assume th a t  

V g l I c o
 < 1  and conclude the integrability of

eg2. As mentioned at the beginning of this section, modulo constants, the function
F is a  generalization of F(x) = x 2  and R and g  is a  generalization of g(x) = x on
R .  Hence, if we assume th a t  V9 ilco < 1 and write F = ag 2 , then we should be
able to obtain results in Section 5  from the corresponding ones in  this section.
This is indeed the case due to the following lemmas.

Lemma 6.8 (hypercontractive ca se ). A ssume that p satisf ies the logarithmic
Sobolev inequality  (6.1). L e t g  be  a  m easurable Junction such that 11Vg110, <1.
Fix  a positiv e real num ber a f or w hich 2 a  <  1/e and  w rite F = ag 2 . T hen the
hypothesis (6.3) holds, i.e. e " 1 2  e  LP(X,p) f or som e p > c.

40t 2g 2iv  0 ,12 < 4a 2g 2. I f  p /21 >P ro o f  N o te  that IVF1 2 = then
epiv,F124  <  f e2Œg2d,u <  co .  yb  Theorem 5.1.

Lemma 6.9 (supercontractive ca se ). A ssume that p  satisf ies the logarithmic
Sobolev inequality  (6.2). L e t g  be  a  m easurable function such that 11Vgll oc 1 .
Fix  a  real num ber a > 0  and write F = ag2 . Then the hypothesis (6.4) holds, i.e.

e LP(X,p) f o r som e p> 0.

By using the above Lemmas, we see that Theorem 5.2 and 5.6 are immediate
consequences of Theorem 6.4 and 6.6, respectively. Moreover, we can deduce the
closability of the Dirichlet form 6'9 from Proposition 6.5 and Lemma 6.8. However,
we do not have an analog for Theorem 5.10 for the perturbed measure pF .
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