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Ellipticity of certain conformal immersions
By

Chung-Ki CHO and Chong-Kyu HaN

Abstract

We study prolongation of the conformal embedding equations. Let (.#,g) be a C* Riemannian
manifold of dimension n>3 and (#,j) be a C® Riemannian manifold of dimension n+d, d <
Ln(n—1). Suppose that f: M — M is a conformal immersion with conformal factor v. If the
conformal 1-nullity of f at a point P € .# does not exceed n — 2, we prove that the system of conformal
embedding equations admits a prolongation to a system of nonlinear partial differential equations of
second order which is elliptic at the solution (f,v). In particular, if (.#,g) and (., §) are analytic and

f and v are of differentiability class C? then f and v are analytic on a neighborhood of P in .#.

0. Introduction

Let # be a smooth (C®) manifold of dimension n, n>2, with C®
Riemannian metric g and let .# be a C® manifold of dimension n+ d with C®
Riemannian metric . A C' mapping f of .# into .4 is a conformal immersion if
f§ = vg, for some positive function v of .#. 1In terms of local coordinates, fis a
conformal immersion if and only if f satisfies

n+d b
. ou® ou ..
(1) ;l gab(u)ﬁ Fi v(x)gy(x), i, j=1,...,n,
a,b=
where x = (x',...,x") and y = (»',..., y"*) are local coordinate systems on .#
and ., respectively, and

Jd 0 . [ 0 0
gij(x) = g(ggyﬁ) and Ja(¥) = g<6_y“’a_yb>'

Since g; =g, the number of equations in (1) is jn(n+1). The unknown
functions are u = (u',...,u"*¥) and v. Thus the system (1) is overdetermined if
d <in(n—1)—1 and underdetermined if d >1n(n—1)—1. v is the conformal
factor and a solution u of (1) with v =1 is an isometric immersion.

In this paper we are concerned with the ellipticity of solutions of (1). We
define a conformal immersion f to be elliptic if (1) admits a prolongation which
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is elliptic at f, or equivalently, the equation for the infinitesimal conformal de-
formation of f satisfies a linear elliptic system (Definition 1.1). Geometric
consequenses from the ellipticity are the global rigidity as studied in [16] and the
regularity of the mappings as in [7] and [8].

The notion of ellipticity of immersions was first introduced in [16] by N.
Tanaka to study the global rigidity of isometric immersions: He called an im-
mersion f : 4" — R"™ to be elliptic (we shall call T-elliptic in this paper) at P € 4
if for every normal vector n to Tp.# in R”, the second fundamental form
associated with n has at least two eigenvalues of the same sign. By counting the
dimensions one can easily show that if there exists a T-elliptic immersion .#" into
R” then m < in(n+1). Tanaka showed that if f:.#" — R"™ is a T-elliptic
immersion then the infinitesimal isometric deformations of f satisfy a system of
elliptic linear partial differential equations of second order, and thus, if .# is
compact the space of the infinitesimal isometric deformations of f is finite
dimensional. We say that an immersion f is infinitesimally rigid if the dimension
of the space of the infinitesimal isometric deformations is equal to {m(m+ 1),
which is the dimension of the infinitesimal isometry of R™. We denote by
Imm(.#,m) the set of all immersions of .# into R™ equipped with C* topology.

Let {,)> be the standard Riemannian metric of R"™. Tanaka proved the
following rigidity theorem:

Theorem 1 ([16]). Let f be an immersion of a compact Riemannian manifold
M into R™.  Suppose that f is infinitesimally rigid and f is T-elliptic at every point
of M. Then there is a neighborhood U(f) of f in Imm(.,m) having the following
property: If fi, f, € U(f) are embeddings and f{{,)> = f3{,), then there is a
unique euclidean transformation t of R" such that f| = 1o f,.

A strictly convex compact surface in R® is an infinitesimally rigid T-elliptic
embedding, see Theorem 10 in Chapter 12 of [15]. Thus Theorem 1 is a gen-
eralization of the classical Cohn-Vossen theorem, which states that compact convex
surfaces in R? are rigid. It remains an open question whether an isometric
immersion f of a compact Riemannian manifold .# into R” is necessarily rigid
if f is elliptic (in Tanaka’s sense, or more generally, elliptic in our sense). See
Problem 55 of (17]. :

In [4] the authors showed that an isometric immersion f :.#" — R" is
T-elliptic if and only if the first prolongation of (1) with v = 1 together with the Gauss
curvature equations, which come from the second prolongation of (1), forma (nonlinear)
system which is elliptic at the solution f. As a result, f'is analytic if (.#,g) is ana-
lytic. This follows from the deep theory on the analyticity of elliptic solutions, see [11]
and [12].

Recently, the local rigidity of conformal immersions has been studied in [2]
and [5].

Let f: 4" — A" be an immersion and let « : Tp M x TpM — [Tf(p),/%]l
be the second fundamental form of f at the point Pe .#. Here Tp.# is the
tangent space of .# at P and [Tf(,z),//l]l is the normal space of fat P. Recall that
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the second fundamental form is a vector valued symmetric bilinear form defined by
a(X,Y) = (VxY)*, where V is the Levi-Civita connection of .#. A conformal
immersion f : 4" — A" s said to be conformally rigid provided that for
any conformal immersion f, : A" — M " there exists a conformal mapping t of
A" into itself such that fi=tof.

Definition 2 ([2]). Let s be an integer, 1 <s<d, let V* < [Tf(P)'//[]J- be a s-
dimensional subspace. A linear subspace W of the tangent space Tp.# is called
VS-umbilic if there exists an element { € V¥ satisfying

nysoa(X,Y) = f"g(X, Y)(, for all X,Ye W,
where 7y : [Tf(p)/l]L — V* is the orthogonal projection. The number
v¢(P) = max{dim W : W is V*-umbilic for some V* < [Typ).#]"}
is called the conformal s-nullity of f at P.

In [2] do Carmo and Dajczer proved the following

Theorem 3 ([2]). Let (M",g) be a C* Riemannian manifold, (JZ"M,Q) a
simply-connected complete C® Riemannian manifold of constant curvature, d <
min{in - 1,5}, and f:.4" — A" a conformal immersion. Assume that for
every point Pe M and every integer s, | <s <d, the conformal s-nullity v:(P)
satisfies vE(P) <n— (2s+1). Then f is conformally rigid.

We show in this paper that if the conformal 1-nullity satisfies v{(P) <n—2
then (1) can be prolonged to a system of second order partial differential equations
which is elliptic at (f,v). In particular, if (#,g) and (.#,g) are analytic and
(f,v) are C? then (f,v) are analytic.

All manifolds in this paper are assumed to be C® and all immersions are
assumed to be C? unless otherwise stated. Our main result is the following

Theorem 4. Let (M,g) be a C*® Riemannian manifold of dimension n >3
and let (M,§) be a C® Riemannian manifold of dimension n+d, d <in(n—1).
Suppose that [ : M — M is a conformal immersion with conformal factor v. If
vi(P) <n—2, then (1) admits a prolongation to a system of nonlinear partial
differential equations of second order which is elliptic at the solution (f,v). In
particular, if (M,g) and (M,§G) are analytic and f and v are of differentiability class
C? then f and v are analytic on a neighborhood of P in M.

Conditions like v{(P) < n —2 is necessary as the following example shows:

Let (x(s), y(s)) be a curve in R? parametrized by arc-length s. Suppose
that (x(s), y(s)) is C2? but not real analytic. Then the mapping f(s 11,1) =
(x(s), y(s), 11, 12) is an isometric immersion of R? into R*, which is C? but not real
analytic. We see that the 2-dimensional submanifolds s = constant are umbilic
and thus v{(P) > 2 at every point P.

The method of Theorem 4 is a jet-theoretic approach to differential equa-
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tions: We study the prolongation of (1) and find the conditions under which (1)
can be prolonged to an elliptic system. Now a conformal version of the rigidity
question naturally arises: Suppose that f:.# — .4 is a conformal immersion
such that v{(P) <n —2, for all P € .# and that .# is compact. Then the question
is whether f is necessarily conformally rigid.

Regularity of conformal mappings between equi-dimensional Riemannian
manifolds is well known in the theory of G-structures: Conformal structure is a
G-structure of finite type. Therefore, if the manifolds are analytic the structure-
preserving mappings satisfy a complete differential system of finite order with
analytic coefficients (see [9], [7] and [8]). Thus we have

Theorem 5. Let (.#,g) and (M,§) be analytic Riemannian manifolds of
dimension n > 2. Suppose that [ : M — M is a conformal map with a conformal
factor v of class C?. Then f and v are analytic.

A direct proof of Theorem 5 is given as a special case of Theorem 4. As
another special case, we consider the case of codimension 1, and prove the
following

Theorem 6. Let (M,g) be an analytic Riemannian manifold of dimension
n>4 and let (M,§) be an analytic Riemannian manifold of dimension n+ 1.
Suppose that f: M — M is a conformal immersion of class C* with conformal
factor v of class C*. If the maximal multiplicity of principal curvatures at f(P)
does not exceed n — 3 then f and v are necessarily analytic on a neighborhood of P
in M.

In section 1 we briefly review the basic jet theory which are needed for our
discussions. In section 2 we construct a system of compatibility equations by
following the process described in section 1. Section 3 is devoted to proving
Theorem 4, Theorem 5 and Theorem 6.

1. Preliminaries

Consider a system of r-th order partial differential equations
(1.1) 4,(x,u") =0, l<v<l,

for unknown functions u = (u',...,u") of n variables x = (x!,...,x") € Q, where
Q2 is an open subset of R”. We will assume that (1.1) is C®, that is, each 4, is
C® in its arguments. In (1.1), «) denotes all the formal variables representing all
the partial derivatives of unknown functions upto order r, that is,

(N — (y*
u = (u.l)lsaSHLOSIHSr‘

where J denotes a usual multi-index and |J| denotes its order. We denote by R"
the u") space, which is an euclidean space of some large dimension. The product
space 2 x R is denoted by J'(22,R™) and called the r-th order jet space of the
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underlying space Q x R™. Regarding (1.1) as a system of algebraic equations on
J"(2,R™) (1.1) defines a subset

Ly i={(x,u) e J(2,R™) : 4,(x,u) =0, 1 <v<}

of J'(2,R™), which is called the solution subvariety of (1.1). Then a C" map
F=(F',...,F™) is a solution of (1.1) if jIF € %, for all x € Q, where jF is the
rjet of F at x, that is,

, oV Fe
JF = (W (x :
I<a<m, 0<|J|<r

The principal symbol of (1.1) is a / x m matrix M(&) = M4(&; x,u™) whose
(v,a) entry is the homogeneous polynomial

[BA,,

o
ou§

Mva(é? X, u(r)) = Z

Mi=r

(x, “(r))] £,

of degree r in & = (&),...,¢&,).

Definition 1.1. Given a point (xo,u))) € %4,

(a) a non-zero vector & = (él,...,é") e R" is a noncharacteristic direction
(respectively characteristic direction) to (1.1) at (xo, ) if Ms(&; xo.u() is of rank
m (respectively rank < m).

(b) A hypersurface {x e Q|y(x) = c} of Q is noncharacteristic (respectively
characteristic) to (1.1) at (xo,uf)r)) if ¢ = grady/(xp) is noncharacteristic (respec-
tively characteristic) to (1.1) at (xo,uf,')).

(c) The system (1.1) is elliptic at (xo,u(()')) if there is no characteristic di-
rection at (xo,u().

On the regularity of solutions of elliptic systems we have the following
theorem (see [12], [13]).

Theorem 1.2. Suppose that (1.1) is determined or overdetermined, that is, | >
m, and that F is a C" solution. If (1.1) is elliptic at (xo, j; F) then F is necessarily
C® on a neighborhood of xo in Q. Furthermore, if the left side of (1.1) is analytic
in its arguments then F is analytic.

Prolongation of (1.1) is a process of differentiation and algebraic operations.
An equation obtained by prolongation of (1.1) is called a compatibility equation of
(1.1). More precisely, for each positive integer k, the k-th prolongation 4%) of
(1.1) is the ideal of the ring of C*® functions of J™**(2,R™) generated by all the
partial derivatives of 4,,v=1,..../, upto order k. If a(x,u"*¥)e A% then
a(x,u¥) =0 is called a compatibility equation of (1.1). We are particularly
interested in finding a compatibility equation i

! J (r+k) (k)
Zv:l Z|J]=k by (x.u"™")D; 4, € 4
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that depends only on (x,u*¥=1)), where D denotes the total differentiation. This
occurs when the principal part is cancelled out in the process of prolongation.
The cancellation of the principal part is due to the symmetry in (1.1) (cf. [14
Lemma 2.85]), and gives informations on the regularity of solutions that are not
contained in the principal part of the original system. The curvature equations
(2.3) are compatibility equations for (1) of this type.

2. Compatibility equations

In this section we construct some compatibility equations for (1). We begin
with rewriting (1) as

n+d
21 > 4 Gup(w] = gy(x)v := Fy(x,u, 0) = 0,

a,b=1
where the subscripts to the unknown functions u“ and v denote the partial
derivatives, as in section 1. First, we consider %(D,ij — DiF;j + D;Fy) := Hyx,
which gives

n+d n+d ~ ~
a 0 c agc‘a 0 a

0D S sty > utuu |0+ % ) - S )
a,b=1 a b, c=1 y y

— 3 k()0 + gy — gy ()

1 [Og OGki ag;j
E[W(xHW(X) 2k X[V

= Hy(x,u?, 00y = 0

Notice that D;Fy = Hjx + Hyg;. Thus the first prolongation F of (2.1) is
generated by {F;, Hy} <, x<, It is easy to see that the last column of the
principal symbol of (2.1) is a zero vector and therefore (2.1) is not elliptic at any
solution. For the same reason (2.2) is not elliptic at any solution.

Now consider %(D”ij + D Fiy — Dy Fjy — D;Fy) := Kjjy.  Then all the third
order derivatives cancel out in the process of addition and subtraction and we have

n+d n+d

(23) D (ufeu — uiug) s (u) ) Y (ufuluf + wiuluf — uiulug — ujuluf)
a,b=1 a,b,c=1
agab aq((l 6qbc
(G + P - S
1 n+d
+ 319 ()01 + gin(X)vik — g (x)0ir = gur(x)vre] = 5 Z wluguf’)

angd 62 ~ac 62917( 6zgad
|:ayuayc( ) avbayd( ) d(u)_ [(u)
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[0g;1 ogjk 1 [0gik 9g;
ax—jk(x) —a—;;(x) vit5 W(x) _E’i(x) vj

1 [g; ogi 1 [0gix gk
'55WVWWP%Eﬁ”aH”W

N -

1| dgy () + O’ gi () — 8% ) 0%gi (x)lv

OxJox! axiox! " oxioxk
= K (x, 4, 0?) = 0.

In particular, (2.3) with v = 1 is the classical Gauss equation [4]. Notice that (2.3)
involves the derivatives of u and v up to order 2 only. In the next section we
show that the second order system (2.2)—(2.3) are elliptic at certain solutions.

3. Proof of the theorems

Let f:.# — M be a conformal immersion with conformal factor v. Let
P e . be a given reference point of .#. Let (x',...,x") be a Riemannian normal
coordinate system at P with the coordinate vector fields d,:,...,0,» and let
(»',..., ") be a Riemannian normal coordinate system of .# at f(P) with the
coordinate vector fields ay.,...,aym. There is no loss of generality in assuming
that Typ).# is spanned by {0,1,...,0,+}, and that {0ym, ... M} forms a basis
of [Typ)#]". For convenience, we assume that df( 6x.|P VU(P)Oyil ipys 1=
l,...,n. In terms of these coordinates, f and v satisfy the system of partial
differential equations (2.1)—(2.3) and by the assumptions on the coordinates we
have

6.1 woulpavl =m0 = {1
(3.2) 90yl (py> Oyel pp)) = Gun(0) = {(1) i? Z ; Z ;
Lo {0 1

(34) awﬂuﬁﬂu)=a§§i£%;ﬂ04@mmm

To prove Theorem 4 we will show that the ellipticity of the system

Hiy (x,u®, (1)) = 0, ik=1,....m
(3.5)
Kiie (6, u® 0@y =0, i jk=1,....n

is equivalent to the conformal nullity condition of the theorem.



604 Chung-Ki Cho and Chong-Kyu Han

Proof of Theorem 4. 1t suffices to show that a hyperplane W in Tp 4 is
characteristic to (3.5) at (O, j3f, j3v) if and only if W is V'-umbilic for some
1-dimensional subspace V! of [T/(p)/l]l.

Let £ =¢&,0, +--- + &,0,n be a normal vector to a characteristic hyperplane
W for (3.5) at (O, jif,j4v). Then the principal symbol matrix M(&) of (3.5) at
(0, j3f,j4v) is not of maximal rank, that is, M(¢) is of rank <n+d+1. We
decompose M(¢) into 2n blocks as

M} (&0, j3f, j3v)

. .2 ) ' ’ .2 2
3.6 M ;0, :2 -2 — (MH(év Oa.]Of’.]OU)> — MH(év OaJOf’]OU)
(.6 M@ 0.jofJov) = & 0. 127, o) ML(& 0, 73 f, j50)

MK (&0, )51, i5v)
where, for each i=1,...,n, My(&) is the principal symbol of the system of n
equations, H;(x,u?,v?) =0, j=1,...,n, and Mi () is the principal symbol of
the system of n? equations, Kyu(x,u®,v®) =0, j,k=1,...,n. Then, by (3.1)-
(3.3), for each i=1,...,n,

E 0.0 &£& 0.0 0 0---0 0
0 éiz...() EE 0.0 0 0---0 0

0 0---0 &¢& 0---0 gl? 0---0 0
7 T

i-th column n-th column

For Mg (&), the (n(j — 1) 4+ k)-th row corresponds to the equation Kz = 0. Its
(n(j — 1)+ k,a) component, | <a<n+d, is
2 (0):| éjéka

aZfa aqu aZfa
[6xf6x" (0)] 612 - laxiaxk (0):| éiéj - [axiaxj(o) (ax")

for y=(y',...,»"9) is a normal coordinate system at the reference point and
thus for each a,b,c=1,...,n+d,

agab agw agbt
320+ T 0) - P 0)]

aZfa

Cik +

n+d

— Z -aS(O [agrs 0) +agvb (0) agbc (0) _ f'lfc(o) _

where [§%] is the inverse matrix of [j,] and f“,ff is the Christoffel symbol for
M. On the other hand, the (n(j—1)+k,n+d+ 1) component of Mg (&) is
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(3.7) | %(fjék + 5jkf,-2 —0i¢ilk — owli&;)-

For My (), we note that the first #n columns are linearly independent and the rest
ones are zero vectors. Thus the last d + 1 columns of Mg (&) must be linearly
dependent, for (3.6) is not of maximal rank. Therefore, if we write the columns of
Mk (& 0, j5f, j5v) as Ay,..., Aurasr, there exist real numbers a,...,a; and b
which are not all zero so that

(3.8) ajAns1 + -+ agAnia = bAnras.

Since the last column of Mg (&) is a nonzero vector, not all ¢;’s are zero. Consider
the nonzero vector {, = ai0yn1 + -+ + @q0ynia € [Tf(p).//[]l. Then, by (3.1) and
(3.4), (3.8) can be expressed for all i,j.k=1,....n, as

G(a(&i0xs — &0, &0k — Ek0xi), ) = 3b9(Ei8xs — 051, Eidk — k).

It is easy to verify that the set of vectors {{;0,s — &;dyi}) <, j<n generates W. In
fact, if & #0, {&d — é,axk},sjsn forms a basis of W. Hence we have

g(a(X, Y),0,) = 3b9(X. Y),

for all vectors X, Y contained in W, which implies that W is ¥V''-umbilic, where V!
is the 1-dimensional subspace generated by {,. The converse can be similarly
proved.

Proof of Theorem 5. Theorem 5 is a special case of Theorem 4. This is the
case d = 0 and we see that (3.5) is elliptic at each C? conformal mapping without
any additional condition. In this case the principal symbol matrix M(¢&) of (3.5) is

of the form
A O
B C|

where A is an n* x n matrix of rank », B is a matrix of dimension n° x n, C is a
column vector of length n3, and O is a zero column vector. By direct calculation
one can show that C is not zero unless & is zero. In fact, the [n(i—1)+
n(j — 1) + k]-th component of C is the same as (3.7).

2 3

Proof of Theorem 6. For the case of codiminsion 1, let f: .#" — A" be a

conformal immersion and let P e .#. Let m® be the multiplicity of zero principal
curvature and let m be the maximal multiplicity of nonzero principal curvatures
at f(P) and let p, and p_ be the number of positive and negative principal
curvatures respectively, counting multiplicity. Then n=p, +m®+p_ and we
have

(3.9) vE(P) = max{m® + min{p,,p_}, m}.

Suppose the maximal multiplicity of the principal curvatures at f(P) does not
exceed n — 3, that is, max{m® m} <n-3. Then we get
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—m°_m°+n<(n—3)+n_ 3

: n
m® + min{p,,p_} <m® + =5 < 3 =n-z.

and hence m®+min{p,,p_} <n—2, which implies v{(P) <n—2. Then by
Theorem 4 we obtain Theorem 6.
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