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Ellipticity of certain conformal immersions

By

Chung-Ki CHo and Chong-Kyu HAN

Abstract

We study prolongation of the conformal embedding equations. Let (A , g )  be a  Cc° Riemannian
manifold of dimension n 3  and (d i ,  4 )  be a  C  Riemannian manifold of dimension n +  d, d  <
n(n — 1). Suppose that f: d t — ■  d i is  a  conformal immersion with conformal factor v. If the

conformal 1-nullity of f  at a point P e d i  does not exceed n — 2, we prove that the system of conformal
embedding equations admits a prolongation to a  system of nonlinear partial differential equations of
second order which is elliptic at the solution ( f ,  r). In particular, if (di , g )  and (di, 4) are analytic and
f  and v are of differentiability class C 2 then f  and v are analytic on a neighborhood of P  in .1Y.

O. Introduction

L et 4  b e  a  sm oo th  (C " )  manifold of dimension n , n  > 2, w ith  C '
Riemannian metric g  and let 4  be a  C ' manifold of dimension n ±  d with C "
Riemannian metric 4. A  C ' mapping f  of .41 into i s  a conformal immersion if
f* -0" = vg, for some positive function y of d i .  In terms of local coordinates, f  is a
conformal immersion if and only if f  satisfies

n+d ab(u)a u a  a Li b

ax , ax i = V ( X ) g  i i ( X ) 'a,b=1

where x = (x , . . xn) and
and 4 ,  respectively, and

(1) i, j = 1 , . . . , n ,

y  = (y 1 , , yn+d )  are local coordinate systems on .41

g1 (x ) 
= g ( a 'x i  a'xi)

and / \
g a b (Y ) —   a y b )

Since gy  = g f t ,  th e  num ber o f  equations in  (1) i s  In(n  + 1 ) .  T he unknown
functions are u = (u l , u n + d )  and y. Thus the system (1) is overdetermined if
d < 1-i(n —1) — 1 and underdetermined if d  > n (n  — 1) — 1. v  is  the conformal
factor and a solution u  of (1) w ith y = 1 is  an  isometric immersion.

In this paper we are concerned with the ellipticity of solutions of (1). We
define a  conformal immersion f  to be elliptic if (1) admits a prolongation which
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is elliptic at f ,  o r  equivalently, the  equation fo r the  infinitesimal conformal de-
formation o f  f  satisfies a  linear elliptic system (Definition 1.1). Geometric
consequenses from the ellipticity are the global rigidity as studied in  [16] and the
regularity of the  mappings a s  in  [7] and [8].

The notion of ellipticity of immersions was first introduced in  [16] by N.
Tanaka to study the global rigidity o f isometric im m ersions: H e called a n  im-
mersion f  : R`" to be elliptic (we shall call 1-elliptic  in  this paper) at P e ./11
if  f o r  every norm al vector n  to  T p d ,  in t h e  s e c o n d  fundamental form
associated with n  has at least two eigenvalues of the same sign. By counting the
dimensions one can easily show that if there exists a 1-elliptic immersion d i"  into
R '"  then m  < n ( n  + 1). Tanaka showed that if f :  — >  is  a  T-elliptic
immersion then the  infinitesimal isometric deformations of f  satisfy a  system of
elliptic linear partial differential equations of second order, a n d  thus, if d l is
com pac t the  space o f  t h e  infinitesimal isometric deformations o f f  is finite
dimensional. We say that an immersion f  is infinitesimally rigid if the dimension
o f  th e  space o f th e  infinitesimal isometric deformations is equal to Im (m  + 1),
which is the  d im ension  o f the  infinitesimal isometry o f  Rm. We denote by
Imm(4, m) the set of all immersions of 4 '  into R'" equipped with C3 topology.

L e t < , > be the  standard  Riemannian metric o f  Rm. Tanaka proved the
following rigidity theorem:

Theorem 1 ([16]). Let f  be an im m ersion of  a com pact Riemannian manifold
./N into Rm  . Suppose that f  is infinitesimally rigid and f  is T-elliptic at every point
of  d l .  T hen  there  is  a neighborhood U (f )  o f f  in Im m (M ,m ) having the following
property : If  f 1 , f 2 c  U ( f )  are  ernbeddings and f  < ,> -= f  2

* < , > , then there is a
unique euclidean transformation -I- o f  R'" such that f 1 =  T 0  f 2 .

A  strictly convex compact surface in R 3 is  an  infinitesimally rigid T-elliptic
embedding, see Theorem 10 in  Chapter 12 o f [15]. Thus Theorem 1 is a  gen-
eralization of the classical Cohn-Vossen theorem, which states that compact convex
surfaces in R 3 a r e  r i g id .  It remains an  open  question  whether a n  isometric
immersion f  of a com pact Riemannian manifold .4( into R'" is necessarily rigid
if f  is elliptic (in Tanaka's sense, or more generally, elliptic in  our sense). See
Problem 55 of [17].

I n  [4] th e  authors showed that a n  isometric immersion f  ,./Nn R n + d  is
T-elliptic if and only if the first prolongation of (1) with y = 1 together with the Gauss
curvature equations, which come from the second prolongation of (1), form a (nonlinear)
system which is elliptic at the solution f  As a result, f  is analytic if (di, g) is ana-
lytic. This follows from the deep theory on the analyticity of elliptic solutions, see [11]
and [12].

Recently, the local rigidity of conformal immersions has been studied in  [2]
and  [5].

-Let f :  ./N" —> d i
n + d

 b e  an immersion and let a : T p d i x  T p.it [ T f ( p) M] l

be the second fundamental form of f  a t the  po in t P e d l .  Here T p Jf  is  the
tangent space of 4 '  at P and [Tf ( p) ,/ff] I  is the normal space off at P .  Recall that
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the second fundamental form is a vector valued symmetric bilinear form defined by
a(X , Y ) =- (G Y) 1 , where fr is the Levi-Civita connection of d i .  A  conformal

-n+dimmersion f n -- i+ s said  to  be conformally rigid provided that for
-n+dany conformal immersion f ]  : n

 — > ,/11 there exists a conformal mapping T  of
n+- d  .

.4' into itself such that f ] =  r o f .

Definition 2  ([2]). Let s  be an integer, 1 d , let V ' c  [Tf ( p) ,111±  be a s-
dimensional subspace. A linear subspace W of the tangent space T pdi is called
Vs-umbilic if there exists an element 4 E V s satisfying

n v , o a(X , Y ) = f* j(X ,Y )C, for a ll X, Y  E  W,

where n  : [Tf(p),W] j -V s  is the orthogonal projection. The number

v  (P) = max{dim W : W  is  Vs-umbilic for some V s c  [Tf u ld1] ± }

is called the conformal s-nullity of f  at P.

In [2] do Carmo and Dajczer proved the following

Theorem 3  ([2]). L e t (4  n , g )  be  a  C "  Riemannian m anifold, (
4 n + d  - g )  a

simply-connected complete C  R iem annian m anifold of  constant curvature, d G
minqn — 1,51, an d  f  : n —+ di n + d  a  conform al im m ersion. A ssum e that for
every point P e d i  and  every  integer s, 1 s  <  d , th e  conformal s-nullity v f(P)
satisfies v sc(P) n  —  (2s + 1). T hen f  is conf orm ally  rigid.

We show in this paper that if the conformal 1-nullity satisfies v{(P) < n — 2
then (1) can be prolonged to a system of second order partial differential equations
which is elliptic at ( f ,  v). In particular, if (d l,  g )  and (4 , 4) are analytic and
(f , v ) are C2 then ( f ,  y ) are analytic.

All manifolds in this paper are assumed to be C '  and a ll immersions are
assumed to be C2 unless otherwise stated. Our main result is the following

Theorem 4. Let (d l, g )  b e  a  C '  Riemannian manifold of dimension n 3
a n d  le t  ( . i , )4 )  be a  C '  Riemannian manifold of dimension n + d, d .< In(n —  1).
Suppose that f : dl — > di is a conform al im m ersion w ith conform al factor v . If
q (P )  n  —  2, then (1) adm its a prolongation to  a  sy stem  o f  nonlinear partial
dif ferential equations of  second order w hich is elliptic at the solution (f  ,v ). In
particular, if  (dl, g) and (di, 4) are analytic and f  and v  are of  differentiability  class
C2 th e n  f  and v  are  analy tic o n  a neighborhood o f  P  in  JP.

Conditions like q(P) < n —  2 is necessary as the following example shows:
Let (x (s), y (s)) be a  curve in  R2 parametrized by arc-length s. Suppose

that (x (s), y (s)) is  C2 b u t  not real analytic. Then the mapping f (s , ti, t2) =
(x(s), y(s), t1, t2) is an isometric immersion of R 3 into R4 , which is C2 but not real
analytic. We see that the 2-dimensional submanifolds s = constant are umbilic
and thus v f (P) > 2 at every point P.

The method of Theorem 4 is  a  jet-theoretic approach to differential equa-
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t io n s :  We study the prolongation of (1) and find the conditions under which (1)
can be prolonged to an  elliptic system. Now a  conformal version of the rigidity
question naturally arises: S u p p o s e  that f : ff —> is  a  conformal immersion
such that q (P )  n  —  2, for all P e .4' and that ./N is com pac t. Then the question
is whether f  is necessarily conformally rigid.

Regularity o f  conformal mappings between equi-dimensional Riemannian
manifolds is well known in the theory of G -structures: Conformal structure is a
G-structure of finite ty p e .  Therefore, if the manifolds are analytic the structure-
preserving mappings satisfy a  complete differential system o f  finite order with
analytic coefficients (see [9], [7] an d  [8 ]) . Thus we have

Theorem  5. L e t  (.4 , g )  an d  (.4  ,g )  be analy tic R iem annian m anifolds of
dimension n > 2. Suppose that f : .1/ —> d i is a conformal map with a conformal
f actor v of  class C 2 . Then f  and y  are  analytic.

A  direct proof of Theorem 5  is given a s  a  special case of Theorem 4. As
another special case, we consider the  case  o f cod im ension  1 , and  prove the
following

Theorem  6. L e t  (.4 , g )  b e  an  analy tic R iem annian manifold of dimension
n > 4  and le t  be an analy tic  R iem annian m anifold of  dim ension n + 1.
Suppose th a t  f : — 4  is a conform al immersion of  c lass C 2 w ith conform al
factor y  o f  c lass C 2 . If  the  maximal multiplicity  of  principal curvatures at f (P )
does not exceed n — 3  then f  and y  are necessarily analytic on a neighborhood of  P
in  .4 .

In section 1 we briefly review the basic jet theory which are needed for our
discussions. In  section 2 we construct a  system o f  compatibility equations by
following th e  process described in  section 1. Section 3 is devoted to proving
Theorem 4 , Theorem 5  and Theorem 6.

1. Preliminaries

Consider a  system of r-th  order partial differential equations

(1.1) z „(x , u(r) ) =  0, 1 < v < /,

for unknown functions u -= (u 1 , ,  um) of n variables x = (x 1 , ,  x " )  e  Q ,  where
Q  is an open subset of W . W e  w ill assume that (1.1) is Cc°, that is, each .61, is
Cc° in its argum ents. In (1.1), ti (r) denotes all the formal variables representing all
the partial derivatives o f unknown functions upto order r , that is,

ti ( r )
 (14 .O E7)1 <2<m, O<IJ1<r ,

where J denotes a  usual multi-index and 1J1 denotes its order. We denote by  R(r)
the u(r) space, which is an euclidean space of some large dimension. The product
space Q  x R( r ) is denoted by J r(Q, R"') and called the r-th order je t space of the
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underlying space Q x Rm. Regarding (1.1) as a  system of algebraic equations on
J r  (S2 ,11m )  (1.1) defines a  subset

{ (x, u ( t ) )  e  J r (S2, le") : „(x, u ( r) )  = 0, 1 /1

of J r  (S2,R m ) ,  which is called the solution subvariety of (1.1). Then a  C r map
F = (F 1 , . . . , Fm) is a solution of (1.1) if jF E  Y A  for all x e Q, where 4 F  is the
r-jet of F  a t  x ,  tha t is,

al.11Fu
j F  =

x j
(x)

0

The principal symbol of (1.1) is a  1 x m  m atrix  M () =  M A ( ; x, u(r)) whose
(v, a) entry  is the homogeneous polynomial

M,„ (; x, u (r) ) =  E [ " "  (.x ,u( 0 ) ] • , ,au.
1.1 1=r

of degree r  in = , • • n) •

Definition 1.1. Given a point (x o , u (0r ) E ,9°4
= (ee  R n(a) a non-zero vector is  a noncharacteristic direction

(respectively characteristic direction) to (1.1) at (xo , u(
or) )  if IN 4j(; X0, ti (or ) )  is of rank

m  (respectively rank < in).
(b) A  hypersurface fx e Q10(x) = cl of Q  is noncharacteristic (respectively

characteristic) to (1.1) at (xo, u (
o

r ) )  if =  grad t/i(x0) is noncharacteristic (respec-
tively characteristic) to (1.1) at (Xe, u (

o
r ) ).

(c) T he system (1.1) is elliptic at (xo, ti(
o

r ) )  if  there  is n o  characteristic di-
rection at (xo, ti (

o
r ) ).

O n  th e  regularity o f so lu tions o f elliptic system s we h a v e  th e  following
theorem (see [12], [13]).

Theorem 1.2. Suppose that (1.1) is determined or overdetermined, that is, 1 >
m , and that F is a  C r solution. If  (1.1) is elliptic at (xo, jxr0F )  then F is necessarily
C "  on a neighborhood of  xo in Q . Furtherm ore, if  the left side of  (1.1) is analytic
in  its arguments then F  is analytic.

Prolongation of (1.1) is a  process of differentiation and algebraic operations.
An equation obtained by prolongation of (1.1) is called a compatibility equation of
(1.1). M o r e  precisely, for each positive integer k ,  the k-th prolongation 4 ( k )  o f
(1.1) is the ideal of the ring of C x functions of Jr+k  ( Q ,  generated by all the
partia l derivatives o f  4 ,, y = 1 , . . . , 1, u p to  o rder k. I f  a(x, u(r+k ) ) c 4 (k ) th e n
a(x, u (r+k ) ) =  0  is called  a  compatibility equation o f  (1.1). W e a re  particularly
interested in  finding a  compatibility equation

E
i  j i= k  b vi ( x , A(k)



1 „ , 1
+  -

2  

Lgik mull + g ii(x )v ik  - gjk(X )V il g il(X )V jk f  —  —

2 a,b,c,d=1

n+d
tifitij b. 4 4 ' )
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that depends only on (x, u ( r+k
 -

1) ) , where D denotes the total differentiation. This
occurs when the principal part is cancelled out in the process of prolongation.
The cancellation of the principal part is  due to  the symmetry in  (1.1) (cf. 114,
Lemma 2.851), and gives informations on the regularity of solutions that are not
contained in the principal part of the original system . The curvature equations
(2.3) are compatibility equations for (1) of this type.

2. Compatibility equations

In this section we construct some compatibility equations for (1). We begin
with rewriting (1) as

n+d
(2.1) E 4-4,b(oup —gu (x ) ,:= Fu(x, u ( 1 ) , v) = 0,

a,b=1

w here the subscripts to  the unknown functions u "  an d  v  denote the partial
derivatives, as in section 1. First, we consider -  D k F u  +  D i F k i )  : =  Hijk ,
which gives

n+d +d
(2.2) E urjab(u) —

2
i
 u k  a y a  ( u )  +   y b  ( u )

u  + uub 1a  b c r b c a4ca ab
 (u )1a y ,

- + gk i (x )v;  -  g u ( x ) v d

2
1 [ag.ikg k  

ax
 (x) (x ) gk  (X )]V

aX J X

= (X  U (2 ) , V (1 ) )  = 0 .

Notice that D iF j k = H i j k  + H k y .  T h u s  th e f irs t prolongation F (I) o f  (2 .1) is
generated by {Fij , FLA} I <1

'

 k  < n •  I t  is  easy  to  see  tha t the last colum n of the
principal symbol of (2.1) is a zero vector and therefore (2.1) is not elliptic at any
solution. For the sam e reason (2.2) is not elliptic at any solution.

Now consider (DdFik + - DikFir - Di/Fik) := Kul(' . Then all the third
order derivatives cancel out in the process of addition and subtraction and we have

n+d 1 n + d

(2.3) E  (,,a ,,b ,,a, ), b  0  ( u )
"ik"j1 " i l " j k E (UlUb U`.1 I  u»u , u 4Ufb44 —  UjakUib Ùl )

a,b=1
2  

a, b, c=1

[

a -4 ab (u )  ± a4 ea ( .-41,c ( 0 1yc yb ya

a,b=1 a,b,c=1

a2h- a 2 ,-
[  a 2 4bd ubc a24 d 

y a (U)  (U)a y e a y ba y d a y aa y d 
( u )

y b a" ye 
( u )



(3.5)
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+

2

 [ag,, ( x )  a agx," ( x ) 1 v, +  rag:, ( x )  a a gx iki ( x ) ]
(3,Ck

+  r g fi. (x) a g i i• (x)1 vk + 1 r ik (X )  ° g ' jk  (X)1 vr2 Lax' ax./ 2  ax./ ax'

a2gii
axi Xk 

(x)1 v1 a2 a2

8ik a 2 gjk+  

2 ax iaxk  ( x ) O xiO xi ( x ) O x
(x)

iOxi

= K uki(x, u(2) , v(2) ) — 0.

In particular, (2.3) with e 1 is the classical Gauss equation [4]. Notice that (2.3)
involves the derivatives of u  and up to  order 2 o n ly .  In the next section we
show tha t the second order system (2.2)—(2.3) are elliptic at certain solutions.

3 .  Proof of the theorems

L et f :— > be a  conform al immersion with conformal factor v. Let
P E d i  be a given reference point of Let (x 1 , ,  x " )  be a Riemannian normal
coordinate system  at P  w ith  the coordinate vector fields a- xi • • • • • ex', and  let
(y 1 , yn+d) be a Riemannian normal coordinate system of 4  at f  (P)  with the
coordinate vector fields Oy i , , 0y ,,+d. There is no loss of generality in assuming
tha t Tf (p).W is spanned by fey i, , 1, and tha t {0,,+! , , forms a basis
of [Tf ( p)..1/]± . For convenience, we assume th a t df (0 x ,1p ) V V (P)ay tl f (p),  =

1, .  , n .  In term s of these coordinates, f  and e  s a t is fy  the system of partial
differential equations (2.1)—(2.3) and by  the assumptions on the coordinates we
have

1
if  i = j

g(axilp•Oxilp) = g u (° ) = 10 i f  i

(ay.I f (p), y b l  ( p ) )  = 0.1)(0 ) =  { 0

    

O f '
a x i  ( 0 )  = V v (0) if  i = a

t  0 i f  i a

if a  =  b
if a b ;

cx(axilp, Iv) = n+d a2fa

u=n-f-1 a Xi a X • (0)ja Y (P)•

To prove Theorem 4  we will show that the ellipticity of the system

111k (X , U( 2 ) , ll ( 1 ) ) = 0, i, k  = 1, . . .

k 11k (x ,u (2) , v (2) )  = 0,i , j,k  = 1, . . . ,n

is equivalent to the conformal nullity condition of the theorem.
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Proof o f  Theorem 4 .  It suffices to show that a  hyperplane W  in  Tp./11 is
characteristic to (3.5) a t (0 , j f , Ay) if and only i f  W  is  V1 -umbilic for some
1-dimensional subspace V I of [Tf ( p) ..,/}± .

L e t  =  ax , + • • • + f l a,,,„ be a normal vector to a  characteristic hyperplane
W for (3.5) at (0 , , A v ) .  Then the principal symbol matrix M() of (3.5) at
( 0 , , A v )  is not of maximal rank, that is, M () is  of rank < n + d + 1. We
decompose M() into 2n blocks as

I IVIli(; 19 , jO f,A v )\

2 IVIH(; A O )(3.6) M (; la', joy)
(1N4K(; O, jO f ,

0  i ô f
M I g ;

  

•
M g ;  0  ,  f  ,  A v )  I

where, for each i = 1, . ,n , 1V 4 i ( )  is the principal symbol of the system of n
equations, H i y (x, u( 2 ) , v( 2 ) ) = 0, j =  1,... ,n , and

 M k ( ç )
 is  the principal symbol of

the system of n2 equations, K k (x ,  u( 2 ) , v( 2 ) ) = 0, j,  k 1 , . . . , n . Then, by (3.1)—
(3.3), for each i =  1, . . . ,n,

/ o • • • o
l j o • o o o

e• • • 02 i 0 • • • 0 0 0  ...

\ 0 o  •  •  •  o o • • • 0 0  • • •

i-th column n-th column
For IN/q ( ) ,  the (n ( j — 1) + k)-th row corresponds to the equation Ky ik  =  0 .  Its
(n(j — 1) + k, a) component, 1 < a < n d, is

[

a2 f

X

a

aX ia k ( 0 ) ]
2 a2f a

aX iaX k(o)1 U 1

a 2 f a
1. kaX2ifaaX i ( 0 ) l i k  + [(ax i) 2  ( 0 )11"

for y  = (y',. ,  y n + d )  is a  no rm a  coordinate system at the reference point and
thus for each a ,b , c  = 1 , . . . ,n +  d

r a b
(o )  + ( o )( 0 )  

a
,
j b c

 ( 0 ) ]ay c ayb oya

n+d
-0 .a b ca= E -0 - (0 ) [ es(0)±  j,b,( 0) (0)] = f la,,(0) = 0,ay ay' a y ss=1

where wato is the inverse matrix o f 
[ a h ] and  f , the Christoffel symbol for

On the other hand, the (n (j — 1) + k,n + d + 1) component of Mic ( )  is

0 \

0 0

0 0/
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(3.7) 1 ( i4  +5 Jk —  6UU k

For M H (), we note that the first n  columns are linearly independent and the rest
ones are zero vectors. T hus the last d  + 1  columns of M K ( )  m ust be linearly
dependent, for (3.6) is not of maximal rank. Therefore, if we write the columns of
M K  0 , , j 26 v) a s  A 1 , • ',A n-Fd+1, there exist real numbers al,  ,  ad  and b
which are no t a ll zero so that

(3.8) al /4 +1 ' • • + adA n±d = bA n±d±l•

Since the last column of MK is a nonzero vector, not all a,'s are zero . Consider
the nonzero vector C a =  ala j g,+] + • • + aday „+d c [Tf ( p) ./11]± . Then, by (3 .1) and
(3.4), (3.8) can be expressed for a ll i ,  j ,k  = 1 , . . . , n ,  as

-0(agtax J — j ôx i ô x k — ka.„ , ),Ca) =b g ( U x i  — x, , Uxk —

It is easy to verify that the set of vectors -g,a x , — generates W . In
fact, if k 0  0 , g k ax , — V x 0  < J ,  forms a  basis o f  W . Hence we have

j(oi(X  , Y), ( a )  =1  by(X  , Y),

for all vectors X , Y  contained in  W, which implies that W is 1»-umbilic, where V I

is  the 1-dimensional subspace generated by ( a .  The converse can be similarly
proved.

Proof of Theorem 5. Theorem 5 is a special case of T heorem  4 . This is the
case d = 0 and we see that (3.5) is elliptic at each C 2 conformal mapping without
any additional condition. In this case the principal sym bol m atrix M () of (3.5) is
of the form

[ A O
B  C

where A  is an n2 x  n  matrix of rank n , B is a matrix of dimension n 3 x  n , C  is a
column vector of length n 3, and 0  is a zero column vecto r. By direct calculation
one c a n  show th a t  C  i s  n o t  zero unless i s  zero . In  fac t, th e  [n(i — 1)+
n(j —  1) + k]-th component of C  is  the same as (3.7).

Proof of  Theorem 6. For the case of codiminsion 1, let f : ./11" —> 4 - n "  b e  a
conformal immersion and let P E 4 1 .  Let m° b e  the multiplicity of zero principal
curvature and let m  be the maximal multiplicity of nonzero principal curvatures
a t  f ( P )  and let p+  a n d  p _  b e  the number of positive and negative principal
curvatures respectively, counting multiplicity. Then n  = p+  + m ° +  p  and we
have

(3.9) -q(P) = max{m ° + min{p + ,p_},m}.

Suppose the maximal multiplicity of the principal curvatures at f ( P )  does not
exceed n — 3 , tha t is, max{nt ° , m} < n — 3. T h e n  w e  g e t
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o 0 n — m
°
 m

°
 + n ( n  —  3) + n 3

m  +  min{ p4 , p_ } _<_ m +
2 2 2

 <  = n — —
2 '— 

a n d  h en ce  m
°
 + min{ p+  , p_} n — 2 ,  w hich  im plies  v(P) __ n —  2. T h en  b y

Theorem  4  w e ob ta in  T heo rem  6.
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