Self homotopy group of the exceptional Lie group G_2

By

Hideaki Оsніма*

1. Introduction

Let G be a connected Lie group and $\mu: G \times G \to G$ the multiplication of G. For any space A with a base point, the based homotopy set [A, G] becomes a group with respect to the binary operation $\mu_*: [A, G] \times [A, G] = [A, G \times G] \to [A, G]$. Even if A is a simple space such as the sphere, it is difficult to calculate the group [A, G]. A general result was given by Whitehead (p. 464 of [10]):

(1.1)
$$\operatorname{nil}[A, G] \leq \operatorname{cat} A,$$

where nil and cat denote the nilpotency class and the Lusternik-Schnirelmann category with $cat\{*\}=0$, respectively. In [5], we determined the group structure of [G,G] and proved nil[G,G]=2 when G is SU(3) or Sp(2). We want to study nil[G,G] for other G's. Though we have very few results, it seems reasonable to set the following:

Conjecture 1.1 If G is simple, then $nil[G, G] \ge rankG$.

A weaker one is

Conjecture 1.2. If G is simple and rank $G \ge 2$, then nil $[G, G] \ge 2$, that is, [G, G] is not commutative.

Let G_2 be the exceptional Lie group of rank 2. Then the purpose of this note is to prove the following which supports 1.1.

Theorem 1.3. $nil[G_2, G_2] = 3$.

Two conjectures are false in general without the assumption of simpleness of G.

Example 1.4. (1). $\operatorname{nil}[S^3 \times S^1, S^3 \times S^1] = 1$ and $\operatorname{nil}[U(2), U(2)] = 2$. Notice that $S^3 \times S^1$ and U(2) are homeomorphic but not isomorphic.

(2). If $G = S^3 \times \cdots \times S^3$ (n times), then rank G = n and nil[G, G] equals 3 if $n \ge 3$

^{*} Supported by Grant-in-Aid for Scientific Research (C) 10640087 Communicated by Prof. G. Nishida, July 13, 1999

and n if n < 2.

In §2, we indicate notation, recall some results from [3], [4], [6], [7], and state Theorem 2.2 which contains Theorem 1.3. We prove Theorem 2.2 in §3 and Example 1.4 in §4.

2. Notation and a main theorem

We do not distinguish notationally between a map and its homotopy class. Even for non-commutative group, the multiplication is denoted by +. For elements x, y of a group, we write [x, y] = x + y - x - y, the commutator. We say that a group Γ has nilpotency class n and write $\operatorname{nil}\Gamma = n$ if the iterated n-th commutator $[x_1, [x_2, \cdots [x_{n-1}, x_n] \cdots]]$ is non zero for some n elements x_1, \cdots, x_n of Γ and every iterated (n+1)-th commutator is zero. For a space A with a base point, $d_n: A \to A \land \cdots \land A$ (n times) denotes the diagonal map. For a topological group G, $c_2: G \land G \to G$ denotes the commutator map, $c_2(x \land y) = [x, y]$, and $\langle , \rangle : \pi_s(G) \times \pi_t(G) \to \pi_{s+t}(G)$ is the Samelson product. For a CW complex $X, X^{(n)}$ denotes the n-skeleton of X.

As is well-known, G_2 has a cell structure:

$$G_2 = S^3 \cup e^5 \cup e^6 \cup e^8 \cup e^9 \cup e^{11} \cup e^{14}$$
.

Let $i_n: G_2^{(n)} \subset G_2$, $i_{n,n+k}: G_2^{(n)} \to G_2^{(n+k)}$ $(k \ge 0)$ and $\overline{i}_{8,11}: S^8 = G_2^{(8)}/G_2^{(6)} \to G_2^{(11)}/G_2^{(6)}$ be the inclusion maps. For n = 5, 6, 8, 9, 11, 14, let $q_n: G_2^{(n)} \to S^n$ be the quotient map and $\rho_n: S^{n-1} \to G_2^{(n-1)}$ the attaching map of the *n*-cell. The cohomology structure of G_2 (Théorème 17.2 and 17.3 of [2]) implies that $\rho_5 = \Sigma \eta_2$, the suspension of the Hopf map $\eta_2: S^3 \to S^2$, and

(2.1)
$$q_n \circ \rho_{n+1} = 2i_n \quad \text{for} \quad n = 5, 8,$$

where l_n is the identity map of S^n . Let $q_{11,6}: G_2^{(11)} \to G_2^{(11)}/G_2^{(6)}$ and $\bar{q}_{11,6}: G_2^{(11)}/G_2^{(6)} \to S^{11}$ be the quotient maps. We have fibrations

$$SU(3) \xrightarrow{j} G_2 \xrightarrow{p} S^6, \qquad S^3 \xrightarrow{i'_3} SU(3) \xrightarrow{p} S^5.$$

Let $v_4 \in \pi_7(S^4)$ and $\mu' \in \pi_{14}(S^3)$ be the elements of [9] and set $\eta_n = \sum^{n-2} \eta_2 \in \pi_{n+1}(S^n)$ for $n \ge 2$ and $v_n = \sum^{n-4} v_4 \in \pi_{n+3}(S^n)$ for $n \ge 4$. Write $\eta_n^2 = \eta_n \circ \eta_{n+1}$ and $v_n^2 = v_n \circ v_{n+3}$. We need

Proposition 2.1. (1)([6]). $π_3(SU(3)) = Z\{i_3'\}, π_{11}(SU(3)) = Z_4\{[v_5^2]\}$ and $π_{14}(SU(3)) = Z_4\{[v_5^2] \circ v_{11}\} \oplus Z_2\{i_3', \mu'\} \oplus Z_{21}, where <math>p_*[v_5^2] = v_5^2$. (2)([4]). $π_4(G_2) = π_5(G_2) = π_7(G_2) = π_{10}(G_2) = π_{12}(G_2) = π_{13}(G_2) = 0, π_3(G_2) = Z\{i_3\}, π_6(G_2) = Z_3, π_8(G_2) = Z_2\{[η_6^2]\}, π_9(G_2) = Z_2\{[η_6^2] \circ η_8\} \oplus Z_3, π_{11}(G_2) = Z\{\gamma\} \oplus Z_2\{j_*[v_5^2]\}$ and $π_{14}(G_2) = Z_8 \oplus Z_2\{j_*[v_5^2] \circ v_{11}\} \oplus Z_{21}, where p_*[η_6^2] = η_6^2$ and $i_3 \mu' = j_* i_3 \mu' = 0$. (3) (Lemma 1 of [3]). $(i_3, [η_6^2]) = j_*[v_5^2]$ and $(i_3, j_*[v_5^2]) = j_*[v_5^2] \circ v_{11}$.

(4) (Lemma 5.8 of [7]). $[G_2^{(11)}/G_2^{(6)}, G_2] = \mathbf{Z}\{\gamma'\} \oplus \mathbf{Z}_2\{\bar{q}_{11,6}^* j_* [\nu_5^2]\}, \bar{q}_{11,6}^* \gamma = 4\gamma' \text{ and } \bar{l}_{8,11}^* \gamma' = [\eta_6^2].$

Given integers $m \ge 1$ and n, we denote by $\Psi(x_1, x_2, x_3; m, n)$ or simply by $\Psi(m, n)$ the group with generators x_1, x_2, x_3 and relations

$$mx_3 = [x_1, x_3] = [x_2, x_3] = 0, [x_1, x_2] = nx_3.$$

Our main theorem is

Theorem 2.2. (1). There exists a central extension of groups:

$$0 \to \pi_{14}(G_2) \xrightarrow{q_{14}^*} [G_2, G_2] \xrightarrow{i_{11}^*} [G_2^{(11)}, G_2] \to 0.$$

- (2). $[G_2^{(11)}, G_2] = \Psi(i_{11}, q_{11,6}^* \gamma', q_{11}^* j_* [v_5^2]; 2,1).$
- (3). Let $\alpha \in [G_2, G_2]$ be an element such that $i_{11}^*\alpha = q_{11,6}^*\gamma'$. Then $[\alpha, [1, \alpha]] = 0$ and $[1, [1, \alpha]] = q_{14}^*(j_*[v_5^2] \circ v_{11}) \neq 0$ so that $\text{nil}[G_2, G_2] = 3$, where 1 denotes the identity map of G_2 .
- (4). There exists $x_0 \in \pi_{14}(G_2)$ such that $2[1, \alpha] = 2q_{14}^*(x_0)$ and $\langle i_3, \gamma \rangle = \pm 4x_0$.

We can show that the order of $\langle i_3, \gamma \rangle$ is odd. We omit the details.

Problem 2.3. Determine the group structure of $[G_2, G_2]$ completely.

3. Proof of Theorem 2.2

Theorem 2.2 follows from 3.4, 3.6 and 3.7 below.

Lemma 3.1. (1). $[G_2^{(6)}, G_2] = \mathbb{Z}\{i_6\}.$

- (2). $[\Sigma G_2^{(6)}, G_2] = 0.$
- (3). The following is an exact sequence of groups:

$$0 \to [G_2^{(1\,1)}/G_2^{(6)}, G_2] \xrightarrow{q_{11,6}^*} [G_2^{(1\,1)}, G_2] \xrightarrow{i_{6,11}^*} [G_2^{(6)}, G_2] \to 0,$$

and $[G_2^{(11)}, G_2]$ is generated by three elements $i_{11}, q_{11,6}^* \gamma', q_{11}^* j_* [v_5^2]$ of which the last element is central.

Proof. Since $G_2^{(5)} = \Sigma(S^2 \cup_{\eta_2} e^4)$, it follows that $[G_2^{(5)}, G_2] \cong \pi_3(G_2)$ from 2.1 (2). Consider the following exact sequence of groups:

$$\pi_7(G_2) \longrightarrow \left[\Sigma G_2^{(6)}, G_2\right] \longrightarrow \left[\Sigma G_2^{(5)}, G_2\right] \xrightarrow{\Sigma \rho_6^*}$$

$$\pi_6(G_2) \longrightarrow \left[G_2^{(6)}, G_2\right] \longrightarrow \left[G_2^{(5)}, G_2\right] \longrightarrow \pi_5(G_2)$$

$$\stackrel{\pi_6(G_2)}{q_6^*} \longrightarrow \left[G_2^{(6)}, G_2\right] \longrightarrow \pi_5(G_2)$$

By (2.1) and 2.1(2), $(\Sigma \rho_6)^* \circ (\Sigma q_5)^* : \pi_6(G_2) \to \pi_6(G_2)$ is an isomorphism. Hence

 $(\Sigma \rho_6)^*: [\Sigma G_2^{(5)}, G_2] \to \pi_6(G_2)$ is surjective, and $(\Sigma g_5)^*: \pi_6(G_2) \to [\Sigma G_2^{(5)}, G_2]$ is injective so that it is an isomorphism, since $\pi_4(G_2) = 0$ by 2.1(2). By the above exact sequence, $i_{5,6}^*: [G_2^{(6)}, G_2] \cong [G_2^{(5)}, G_2]$ and $[\Sigma G_2^{(6)}, G_2] = 0$. Hence we obtain (1) and (2) from which the sequence of (3) follows. By p. 465 of [10], $q_{11}^*i_{1}[v_{2}^2]$ is central.

The following is easy and well-known.

Lemma 3.2. In any group,
$$[x, y+z] = [x, y] + [x, z] + [[z, x], y]$$
.

Lemma 3.3. (1). $[i_{11}, q_{11,6}^* \gamma'] = q_{11}^* j_* [v_5^2].$ (2). $2q_{11,6}^* \gamma'$ is central in $[G_2^{(11)}, G_2].$

Proof. Write $x = q_{11,6}^* \gamma'$ and $y = q_{11}^* j_* [v_5^2]$. Let k be any integer. Then $[i_{11}, kx] \in \text{Image}(q_{11,6}^*)$, since $i_{6,11}^*[i_{11}, kx] = 0$. Hence there exist $m_k \in \mathbb{Z}$ and $n_k \in \{0, 1\}$ such that $[i_{11}, kx] = m_k x + n_k y$. We have

(3.1)
$$\lceil i_{11}, 2x \rceil = 2\lceil i_{11}, x \rceil + \lceil \lceil x, i_{11} \rceil, x \rceil$$
 (by 3.2)

$$(3.2) = 2\lceil i_{11}, x \rceil \quad \text{(since Im}(q_{11.6}^*) \text{ is commutative)}.$$

Inductively, we have $[i_{11}, 3x] = 3[i_{11}, x]$ and $[i_{11}, 4x] = 4[i_{11}, x] = 4m_1x$. Since $4x = q_{1,1}^* \gamma$ by 2.1(4) so that 4x is central by p. 465 of [10], it follows that $4m_1 x = 0$ so that $m_1 = 0$. Therefore $[i_{11}, x] = n_1 y$ and $[i_{11}, 2x] = 0$. Hence 2x is central in $[G_2^{(11)}, G_2].$

The rest we must prove is the equality: $n_1 = 1$. There exists a map $f: S^{11} \to S^3 \wedge S^8$ which makes the following diagram commutative up to homotopy:

$$G_{2}^{(11)} \xrightarrow{d_{2}} G_{2}^{(11)} \wedge G_{2}^{(11)} \xrightarrow{i_{11} \wedge q_{11,6}} G_{2} \wedge G_{2}^{(11)} / G_{2}^{(6)} \xrightarrow{1 \wedge \gamma'} G_{2} \wedge G_{2}$$

$$\downarrow c_{2}$$

$$\downarrow c_{2}$$

$$\downarrow c_{2}$$

$$\downarrow c_{3} \wedge \overline{c}_{8,11} \qquad \downarrow c_{2}$$

By using cohomology of \mathbb{Z}_2 -coefficients, it follows that the degree of f is odd so that $[i_{11}, x] = c_2 \circ (1 \wedge \gamma') \circ (i_{11} \wedge q_{11,6}) \circ d = q_{11}^* \langle i_3, [\eta_6^2] \rangle = q_{11}^* j_* [v_5^2]$. Hence $n_1 = 1$ as desired.

By 2.1(4), 3.1 and 3.3(1), we have

Proposition 3.4. $[G_2^{(11)}, G_2] = \Psi(i_{11}, q_{11,6}^*, q_{11}^*, j_*[v_5^2]; 2, 1)$ which is of nilpotency class two.

Lemma 3.5.
$$\Sigma \rho_{14}^* = 0 : [\Sigma G_2^{(11)}, G_2] \to \pi_{14}(G_2).$$

Proof. Write $\bar{\rho}_{14} = q_{11,6} \circ \rho_{14} : S^{13} \to G_2^{(11)}/G_2^{(6)}$. Since ρ_{14} is stably null-homotopic and $\bar{\rho}_{14}$ is in stable range, $\bar{\rho}_{14}$ is null-homotopic. It follows that $\Sigma \rho_{14}^* \circ \Sigma q_{11,6}^* = \Sigma \bar{\rho}_{14}^* = 0$ and $\Sigma \rho_{14}^* = 0$, since $\Sigma q_{11,6}^* : [\Sigma G_2^{(11)} / G_2^{(6)}, G_2] \to [\Sigma G_2^{(11)}, G_2]$ is surjective by 3.1(2).

By applying $[-,G_2]$ to the cofibre sequence

$$S^{13} \xrightarrow{\rho_{14}} G_2^{(11)} \xrightarrow{i_{11}} G_2 \xrightarrow{q_{14}} S^{14} \xrightarrow{\Sigma \rho_{14}} \Sigma G_2^{(11)}$$

we have

Proposition 3.6. The following is a central extension of groups:

$$0 \longrightarrow \pi_{14}(G_2) \xrightarrow{q_{14}^*} [G_2, G_2] \xrightarrow{i_{11}^*} [G_2^{(11)}, G_2] \longrightarrow 0.$$

Proof. The exact sequence follows from 2.1(2) and 3.5. It is a central extension by p.465 of [10].

Let $\alpha \in [G_2, G_2]$ be an element such that $i_{11}^*(\alpha) = q_{11,6}^* \gamma'$. Then $[G_2, G_2]$ is generated by $\operatorname{Im}(q_{14}^*)$, 1 and α .

Lemma 3.7. (1). $[\alpha, [1, \alpha]] = 0$.

- (2). $\lceil 1, \lceil 1, \alpha \rceil \rceil = q_{14}^*(j_*\lceil v_5^2 \rceil \circ v_{11}).$
- (3). There exists $x_0 \in \pi_{14}(G_2)$ such that $(i_3, \gamma) = \pm 4x_0$ and $2[1, \alpha] = 2q_{14}^*(x_0)$.

Proof. There exists a map $f: G_2 \to G_2^{(11)} \wedge G_2^{(11)}$ which makes the following diagram commutative up to homotopy:

Since $(q_{11,6} \wedge q_{11}) \circ f = 0$, we have $[\alpha, [1,\alpha]] = c_2 \circ (\gamma' \wedge j_*[\nu_5^2]) \circ (q_{11,6} \wedge q_{11}) \circ f = 0$. This proves (1).

Let the pair (a, b) be $([1, \alpha], j_{\bullet}[v_5^2])$ or $(4\alpha, \gamma)$. There exists a map $g: S^{14} \to S^3 \wedge S^{11}$ which makes the following diagram commutative up to homotopy:

By using the integral cohomology, we have that g is a homotopy equivalence. Hence $[1, a] = \pm q_{14}^* \langle i_3, b \rangle$, that is, $[1, [1, \alpha]] = q_{14}^* \langle i_3, j_* [v_2^2] \rangle$ and

$$[1,4\alpha] = \pm q_{14}^* \langle i_3, \gamma \rangle.$$

By 2.1(3), we then have (2). Since $i_{11}^*[2\alpha, 1] = 0$ by 3.3(2), it follows that $[2\alpha, 1]$ is central and from 3.2 that $[1, 4\alpha] = 2[1, 2\alpha]$ and $[1, 2\alpha] = 2[1, \alpha] + [[\alpha, 1], \alpha] = 2[1, \alpha]$ by 3.7(1). Hence $[1, 4\alpha] = 4[1, \alpha]$ and $4[1, \alpha] = \pm q_{14}^* \langle i_3, \gamma \rangle$ by (3.3). On the other hand, since $q_{11} \circ \rho_{14} = 0$, there exists a map $\tilde{q}_{11} : G_2 \to S^{11}$ such that $\tilde{q}_{11} \circ i_{11} = q_{11}$. Write $\beta = j \circ [v_5^2] \circ \tilde{q}_{11} : G_2 \to G_2$. Then $i_{11}^* \beta = q_{11}^* j_* [v_5^2]$ and β is of order 2 in $[G_2, G_2]$. Since $i_{11}^* [1, \alpha] = i_{11}^* \beta$, there exists $x_0 \in \pi_{14}(G_2)$ such that $[1, \alpha] = \beta + q_{14}^* (x_0)$. Hence $2[1, \alpha] = 2q_{14}^* (x_0)$ and $4[1, \alpha] = q_{14}^* (4x_0)$. Therefore $\langle i_3, \gamma \rangle = \pm 4x_0$. This has proved (3).

4. Proof of Example 1.4

By Theorem 4.1(1) of [8], $[S^3 \times S^1, S^3 \times S^1] \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_2$. Let $\theta \in \pi_1(U(2)) \cong \mathbb{Z}$ and $\alpha \in \pi_3(U(2)) \cong \mathbb{Z}$ be generators, $p: U(2) \to S^3$ the projection, and $q: U(2) \approx S^3 \times S^1 = (S^3 \vee S^1) \cup_{\rho} e^4 \to S^4$ the quotient map. There exists a map g which makes the following diagram commutative up to homotopy:

$$U(2) \xrightarrow{d_2} U(2) \wedge U(2)$$

$$\parallel \qquad \qquad \downarrow^{1 \wedge p}$$

$$U(2) \qquad U(2) \wedge S^3 \xrightarrow{1 \wedge \alpha} U(2) \wedge U(2)$$

$$\downarrow^{q} \qquad \qquad \uparrow^{\theta \wedge 1} \qquad \qquad \downarrow^{c_2}$$

$$S^4 \xrightarrow{g} S^1 \wedge S^3 \xrightarrow{\langle \theta, \alpha \rangle} U(2)$$

By using integral cohomology, we see that g is a homotopy equivalence so that $[1, \alpha \circ p] = \pm q^* \langle \theta, \alpha \rangle$, where $\langle \theta, \alpha \rangle$ is a generator of $\pi_4(U(2)) \cong \mathbb{Z}_2$ by [2]. Since the attaching map $\rho: S^3 \to S^3 \vee S^1$ of the top cell of U(2) is the Whitehead product of ι_3 and ι_1 , it follows that $\Sigma \rho$ is null-homotopic so that $q^*: \pi_4(U(2)) \to [U(2), U(2)]$ is injective. Hence $[1, \alpha \circ p] \neq 0$ and nil[U(2), U(2)] = 2 by (1.1). Then $[U(2), U(2)] = \Psi(2,1)$ from Theorem 4.1(1) of [8]. This completes the proof of Example 1.4(1).

We write $\Pi^n S^3 = S^3 \times \cdots S^3$ (n times) and $\Lambda^n S^3 = S^3 \wedge \cdots \wedge S^3$ (n times). We define the iterated commutator map $c_n \colon \Lambda^n S^3 \to S^3$ inductively by $c_n = c_2 \circ (1 \wedge c_{n-1})$ for $n \ge 3$. Then, given $f_i \in [X, S^3]$ $(1 \le i \le n)$, we have $[f_1, [f_2, \cdots [f_{n-1}, f_n] \cdots]] = c_n \circ (f_1 \wedge \cdots \wedge f_n) \circ d_n \in [X, S^3]$. The following is contained in Theorem B of [1].

Lemma 4.1. The map $c_4: \Lambda^4 S^3 \to S^3$ is null-homotopic and so $nil[X, S^3] \le 3$ for every X.

Proof. We have
$$c_4 = c_2 \circ (1 \wedge c_2) \circ (1 \wedge 1 \wedge c_2) \in \pi_6(S^3) \circ \pi_9(S^6) \circ \pi_{12}(S^9) = 0$$
 by [9].

Hence the results follow.

The following contains Example 1.4(2).

Proposition 4.2. $\operatorname{nil}[\Pi^n S^3, \Pi^n S^3] = \operatorname{nil}[\Pi^n S^3, S^3]$ and it equals 3 or n according as $n \ge 3$ or $n \le 2$.

Proof. The case n=1 is trivial. Since $[X,\Pi^nS^3] \cong [X,S^3] \oplus \cdots \oplus [X,S^3]$ (n times), $\operatorname{nil}[X,\Pi^nS^3] = \operatorname{nil}[X,S^3]$ for any pointed space X. Hence the case n=2 is proved in Proposition 3.1 of [5]. Since the map $p:\Pi^nS^3 \to \Pi^{n-1}S^3$ defined by $p(x_1,\dots,x_n)=(x_1,\dots,x_{n-1})$ has a right inverse, $p^*:[\Pi^{n-1}S^3,S^3] \to [\Pi^nS^3,S^3]$ is a monomorphism and so $\operatorname{nil}[\Pi^{n-1}S^3S^3] \leq \operatorname{nil}[\Pi^nS^3,S^3]$. Thus, by 4.1, it suffices to prove $\operatorname{nil}[\Pi^3S^3,S^3] \geq 3$.

Write $G = \Pi^3 S^3$. Let $p_i: G \to S^3$ be defined by $p_i(x_1, x_2, x_3) = x_i$ (i = 1, 2, 3). There exists a map g which makes the following diagram commutative up to homotopy:

$$G \xrightarrow{d_3} G \wedge G \wedge G$$

$$\downarrow q \qquad \qquad \downarrow p_1 \wedge p_2 \wedge p_3$$

$$S^9 \xrightarrow{g} S^3 \wedge S^3 \wedge S^3 \xrightarrow{c_3} S^3$$

By using integral cohomology, we see that g is a homotopy equivalence. Hence $[p_1, [p_2, p_3]] = \pm q * c_3 = \pm q * \langle i_3, \langle i_3, i_3 \rangle \rangle$. We have a cell-decomposition: $G = (S^3 \vee S^3 \vee S^3) \cup e^6 \cup e^6 \cup e^6 \cup e^9$. There are exact sequences:

$$(4.1) \qquad \left[\Sigma G^{(8)}, S^{3}\right] \xrightarrow{\Sigma \rho^{*}} \pi_{9}(S^{3}) \xrightarrow{q^{*}} \left[G, S^{3}\right],$$

$$\left[S^{7} \vee S^{7} \vee S^{7}, S^{3}\right] \xrightarrow{q^{*}} \left[\Sigma G^{(8)}, S^{3}\right] \longrightarrow \left[S^{4} \vee S^{4} \vee S^{4}, S^{3}\right]$$

Since $\pi_7(S^3) \cong \pi_4(S^3) \cong \mathbb{Z}_2$ by [9], $[S^7 \vee S^7 \vee S^7, S^3] \cong [S^4 \vee S^4 \vee S^4, S^3] \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Hence $2^2[\Sigma G^{(8)}, S^3] = 0$. On the other hand, as is well-known, $\pi_9(S^3) = \mathbb{Z}_3\{\langle \iota_3, \langle \iota_3, \iota_3 \rangle \rangle\}$ (see [1]). Hence $\Sigma \rho^* = 0$ in (4.1) and the order of $[p_1, [p_2, p_3]]$ is three. Therefore $\operatorname{nil}[G, S] \geq 3$. This completes the proof.

DEPARTMENT OF MATHEMATICAL SCIENCES IBARAKI UNIVERSITY e-mail: ooshima@mito.ipc.ibaraki.ac.jp

References

- [1] M. Arkowitz and C. R. Curjel, Some properties of the exotic multiplications on the three sphere, Quart. J. Math., 20 (1969), 171-176.
- [2] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J.

- Math., 76 (1954), 273-342.
- [3] Y. Furukawa, Homotopy-normality of Lie groups II, Quart. J. Math., 38 (1987), 185-188.
- [4] M. Mimura, The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6 (1967), 131-176.
- [5] M. Mimura and H. Oshima, Self homotopy groups of Hopf spaces with at most three cells, J. Math. Soc. Japan, 51 (1999), 71-92.
- [6] M. Mimura and H. Toda, Homotopy groups of SU(3), SU(4) and Sp(2), J. Math. Kyoto Univ., 3 (1964), 217-250.
- [7] S. Oka, Homotopy of the exceptional Lie group G_2 , Proc. Edinburgh Math. Soc., 29 (1986), 145–169.
- [8] H. Öshima, Self homotopy set of a Hopf space, Quart. J. Math., 50 (1999), 483-495.
- [9] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, Princeton Univ. Press, Princeton, 1962.
- [10] G. W. Whitehead, Elements of homotopy theory, Springer, New York, 1978.