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1. Introduction

Let G be a connected Lie group and u:G x G — G the multiplication of G. For
any space 4 with a base point, the based homotopy set [4,G] becomes a group
with respect to the binary operation p,:[A4,G] x[4,G]=[A4,GxG] - [4,G]. Even
if A is a simple space such as the sphere, it is difficult to calculate the group
[4,G]. A general result was given by Whitehead (p. 464 of [10]):

(L.1) nil[4, G] <cat 4,

where nil and cat denote the nilpotency class and the Lusternik-Schnirelmann
category with cat{x} =0, respectively. In [5], we determined the group structure
of [G,G] and proved nil[G,G] =2 when G is SU3) or Sp(2). We want to study
nil[G, G] for other Gs. Though we have very few results, it seems reasonable to set
the following:

Conjecture 1.1 If G is simple, then nil[G, G] >rankG.

A weaker one is

Conjecture 1.2. If G is simple and rankG >2, then nil[G, G] =2, that is, [G, G]
is not commutative.

Let G, be the exceptional Lie group of rank 2. Then the purpose of this note
is to prove the following which supports 1.1.

Theorem 1.3. nil[G,,G,]=3.
Two conjectures are false in general without the assumption of simpleness of G.

Example 1.4. (1). nil[$?xS",8°xS!']=1 and nil[U(2), U(2)]=2. Notice that
S*x S' and U(2) are homeomorphic but not isomorphic.
(2. IfG=Sx---xS% (n times), then rankG=n and nil[G, G] equals 3 if n>3
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and n if n<2.

In §2, we indicate notation, recall some results from [3], [4], [6], [7], and
state Theorem 2.2 which contains Theorem 1.3. We prove Theorem 2.2 in §3 and
Example 1.4 in §4.

2. Notation and a main theorem

We do not distinguish notationally between a map and its homotopy
class. Even for non-commutative group, the multiplication is denoted by +. For
elements x,y of a group, we write [x,y]=x+y—x—y, the commutator. We say
that a group I' has nilpotency class n and write nill"=n if the iterated n-th commutator
[xy,[x35 - [%p—1,X%,]:--]1] is non zero for some n elements x,,---,x, of I' and every
iterated (n+1)-th commutator is zero. For a space A4 with a base point,
d,:A— AA--- AA (n times) denotes the diagonal map. For a topological group G,
¢,:GAG — G denotes the commutator map, c,(x Ay)=[x,y], and {, ) :n(G) x n(G)
— 7., (G) is the Samelson product. For a CW complex X, X denotes the n-skeleton
of X.

As is well-known, G, has a cell structure:

G,=S3ue’uebuelue®ue! tue!?,

Let i,: G Gy, iy pii: G = G§HP (k>0) and iy 4, : S* =GP /GP — GY'V/GP be the
inclusion maps. For n=35, 6, 8, 9, 11, 14, let g,: G - S" be the quotient map and
pn:S" 1= Gy Y the attaching map of the n-cell. The cohomology structure of G,
(Théoréme 17.2 and 17.3 of [2]) implies that ps=ZX#n,, the suspension of the Hopf
map #,:5% - S?%, and

2.1) GnoPns1=21, for n=5,8,

where 1, is the identity map of S". Let g, ¢:G4" - G4V /GP and g, ¢:G3"/GP —
S'! be the quotient maps. We have fibrations

j p i3 p
SUQ3) » G, » S5,  §° - SU(3) - S°

Let v,en,(S*) and p'en,4(S%) be the elements of [9] and set #,=%""2n,em, . ,(S")
for n>2 and v,=X" *v,en,, 4(S") for n>4. Write n2=mn,on,,, and v}=v,ov,, 3.
We need

Proposition 2.1. (1X[6]). =3(SUQ3))= Z{i;}, T, 1(SU(3))=Z4{[V§]} and m,,
(SUQ)=Z4{[vi1ovi 1} @ Z,{is i} D Z,,, where pvi1=vi.

(2)[4]). 714G =75(Gy)=7+(G;) =70(G;)=7,(G2)=7,3(G,)=0, ny(Gy)=2Z
{is}, 16(Gy)=Z;, ng(Gy)= Zz{['lg]}’ no(G,) = Zz{['lé] ong}®Z3, my1(G))= Z{'Y}@Zz
{1‘["%]} andn14(Gz)=Zs@Zz{i.[V§] V1) BZy, where p,[nZ]=n% and iy ) =jizu =0.

(3) (Lemma 1 of [3]). <is, [12]> =j.[v3] and <is,j[v3])> =j[vilovyy
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(4) (Lemma 58 of [7]). [GY'V/GY),G,]=Z{y}®Z,{qt: ¢.[v3]}, 3116y =4y and
"_13{,1171 = [’7%]-

Given integers m>1 and n, we denote by W(x,, x,, x5 ;m,n) or simply by ¥(m,n)
the group with generators x,,x,,x; and relations

mxy=[xy,x3]=[x3,%x3]1=0, [x,x,]=nx,.
Our main theorem is

Theorem 2.2. (1). There exists a central extension of groups:

*

q i’:l
0 - 1,4(G5)—> [G,, G, ]—[G4V,G,] - 0.

2. [GYV,G1="Y(,,, qt1.6¥s 911 [viL 2.1).

(3). Let ae[G,,G,] be an element such that ifia=qt, ¢y'. Then [o,[1,0]]=0 and
[L[Lo]]=g¥(.[v3]ov,,)#0 so that nil[G,,G,]=3, where 1 denotes the identity
map of G,.

(4). There exists xoem,4(G,) such that 2[1,0]=2q},(x,) and {is,y)= +4x,.

We can show that the order of (i;,y) is odd. We omit the details.

Problem 2.3. Determine the group structure of [G,, G,] completely.

3. Proof of Theorem 2.2
Theorem 2.2 follows from 3.4, 3.6 and 3.7 below.

Lemma 3.1. (1). [GY,G,]=Z{is)}.
2. [Z69,G,]=0.
(3). The following is an exact sequence of groups:

4},.6 i;,l 1
0 - [G4V/GP, G,1—=[G4V, G,] —[GF), G,] — 0,

and [GY'V,G,] is generated by three elements iy, q}, ¢V, q¥.j.[vE] of which the last
element is central.

Proof. Since GY' =3%(S*u,,e*), it follows that [GY),G,]=n4(G,) from 2.1
(2). Consider the following exact sequence of groups:

*

’%
n(G2)—[ZG, G,]1—[2GP, G, ] —

ns(Gz)'T' [G(26)’ G,] - [G(zs), G,]—75(Gy)

96 's.6

By (21) and 2.1(2), (Zpe)*-(Zgs)*:ns(G,) = ne(G,) is an isomorphism. Hence
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(Zpe)*: [£GY, G,] - n6(G,) is surjective, and (£gs)*: m¢(G,) = [EGY, G,] is injective
so that it is an isomorphism, since 7,(G,)=0 by 2.1(2). By the above exact sequence,
i¥6:[GP),G,]1=[GY,G,] and [EGP,G,]=0. Hence we obtain (1) and (2) from
which the sequence of (3) follows. By p. 465 of [10], ¢},j.[v2] is central.

The following is easy and well-known.
Lemma 3.2. In any group, [x,y+z]=[x,y]+[x,z]1+[[z x],»]

Lemma 3.3. (1). [ill’qu,6‘yl]=qikljt[v§]'
(2. 2q} .6Y'is central in [GYV,G,).

Proof. Write x=gq}, ¢y and y=gq}j[vi]. Let k be any integer. Then
[i11,kx]elmage(gf, o), since i& ,[i;;,kx]=0. Hence there exist m,eZ and n,€{0,1}
such that [i;,,kx]=mx+ny. We have

G.1) [y, 2x] =200, x]+ [[x, 0111, x] (by 3.2)

(3.2 =2[iy;,x] (since Im(q¥; ¢) is commutative).

Inductively, we have [i;,3x]=3[i;;,x] and [i,,,4x]=4[i;{,x]=4mx. Since
4x=gq},y by 2.1(4) so that 4x is central by p. 465 of [10], it follows that 4m,;x=0
so that m,; =0. Therefore [i,,,x]=n,y and [i;{,2x]=0. Hence 2x is central in
[GSY, G,

The rest we must prove is the equality: n, = 1. There exists amap f: S*! —» S> A S8
which makes the following diagram commutative up to homotopy:

i11Ag116 1Ay

da
GHN——GYVAGYEY ———— G, AGEV/GP G, AG,

\ i3Ads 11 c2
q11

sit SPAS® G,
s <is In2D>

By using cohomology of Z,-coefficients, it follows that the degree of f is odd so

that [iy,x]=c,o(1AY)o(iy; Agyy,6)od=q}{is, 151> =q¥1j.[vE]. Hence n,=1 as
desired.

By 2.1(4), 3.1 and 3.3(1), we have

Proposition 3.4. [GY'V,G,1="Y(i,1,9%1 .67, q9}1/.[V:i]; 2, 1) which is of nilpotency
class two.

Lemma 3.5. Zp* =0:[ZGYY,G,] » m,4(G,).

Proof. Write p1a=¢116°p14:5° > GYV/GY.  Since p,, is stably null- homo-
topic and pj,, is in stable range, p;, is null-homotopic. It follows that
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Zp¥soZqt6=2Zpfsa=0 and Zpf, =0, since Zgt.6: [2GYV/GY,G,] - [ZGY",G,]
is surjective by 3.1(2).

By applying [ —,G,] to the cofibre sequence

P14 iy q14 Lpia
S13 _ G(zll) —_ G2 R S14 ZG(ZII)

we have

Proposition 3.6. The following is a central extension of groups:

9, iy
0—71,4(G,) — [G,,G,] — [GYV,G,]—0.

Proof. The exact sequence follows from 2.1(2) and 3.5. It is a central extension
by p.465 of [10].

Let ae[G,,G,] be an element such that if(a)=qf, ¢y. Then [G,, G,] is
generated by Im(g¥,), 1 and «.

Lemma 3.7. (1). [a,[1,a]]=0.

@ [LILadl=gt0.0v31ov1y).
(B). There exists xo€m,4(G,) such that {iy,y) = +4x, and 2[1,0]=2q}4(x,).

Proof. There exists a map f:G, = G3V AGSY" which makes the following
diagram commutative up to homotopy:

d2 an[l,a] c2

G,AG, G,AG,

\ IillAil‘ IV'/\I.‘[V?
i

G(zll)A G(zll) G(zll)/G(26)Asll

G,

G,

q11,6 Ad11

Since (¢1,6 A ¢11)°f=0, we have [, [Lal=c, (¥ Aj[v3]) > (@116 Ag11)of=0. This
proves (1).

Let the pair (a, b) be ([1,0],7,[v%]) or (4a,7). There exists a map g: S'* —» S*> A S*!
which makes the following diagram commutative up to homotopy:

GyAG,—22— G, AG,

d2 i
fiAl it Ab &2

G f L Ag
2 ——’G‘z“)/\ G(zll) G(zn)/\S“ G,

N ]
i311A1
S14 (i3 b

a S3 A St
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By using the integral cohomology, we have that g is a homotopy equivalence. Hence
[170] = i'qr4<i3v b>’ that iS, [1’ [1’ d]] = q?‘4<i3’jc["§]> and

(3.3) [1,40] = £q74<i5, 7).

By 2.1(3), we then have (2). Since if;[2a,1]=0 by 3.3(2), it follows that [2a,1] is
central and from 3.2 that [1,4a]=2[1,2«] and [1,20]=2[1,a]+[[e, 1],2]=2[1,2]
by 3.7(1). Hence [1,4a]=4[1,a] and 4[1,a]= +¢¥,{i3,7D> by (3.3). On the other
hand, since ¢, °p,,=0, there exists a map §,,:G, —» S'' such that §,,0i,, =q,,.
Write f=jo[vi]og,,:G, > G, Then if;f=q¥j[v2] and B is of order 2 in
[G,,G,]. Since if[1,a] =i¥, B, there exists xo€7m,4(G,) such that [1,a] =B+ g (x,)
Hence 2[1, 0] =2q%4(xo) and 4[1,a]=¢q},(4x,). Therefore <iy,y>=+4x, This has
proved (3).

4. Proof of Example 1.4

By Theorem 4.1(1) of [8], [S®xS",S®*xS']12Z@®ZPZ,. Let Oen,(UQ2)=Z
and aen;(U(2))= Z be generators, p: U(2)—S? the projection, and ¢: U2)~S* x S' =
(S? v S")u e*—S* the quotient map. There exists a map g which makes the following
diagram commutative up to homotopy:

d2

U2) — U2)AU(2)

H ll/\p
1Aa

UQR) UQAS? —— UQAUR)

ql IO Al l c2
St — S'AS? — UuQ)
g (8,0
By using integral cohomology, we see that g is a homotopy equivalence so that [1,
aop]=+q*{0, o), where <6, a) is a generator of n,(U(2))=Z, by [2]. Since the
attaching map p:S>—S>v S! of the top cell of U(2) is the Whitehead product of
13 and 1, it follows that Zp is null-homotopic so that g*:n(U(2))— [U(2), U(2)] is
injective. Hence [1,a0p]#0 and nil[U(2), U(2)]=2 by (1.1). Then [U(2), U(2)]=
¥(2,1) from Theorem 4.1(1) of [8]. This completes the proof of Example 1.4(1).
We write I1"S3=S3x --- 5 (n times) and A"S3>=S3A --- AS® (n times). We

define the iterated commutator map c,:A"S® — S® inductively by c,=c,°(1 Ac,_,)
for n>3. Then, given f,e[X,S] (1<i<n), we have [f},[fy, -[fo- 1Sl - J]1=cpho
(fiA---Af)od,e[X,S%]. The following is contatined in Theorem B of [1].

Lemma 4.1. The map c,: A*S® = S* is null-homotopic and so nil[X,S*]1<3 for
every X.

Proof. We have cy=c,o(1 Acy)o(1 Al Acy)emg(S?) ome(S)om,,(S%)=0 by [9].
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Hence the results follow.

The following contains Example 1.4(2).

Proposition 4.2. nil[T1"S3,T1"S3] =nil[11"S3, S*] and it equals 3 or n according
as n>3 or n<2.

Proof. The case n=1 is trivial. Since [X,I1"S*]1=[X,S*]®---®[X,S*] (n
times), nil[ X, T1"S3] =nil[ X, S*] for any pointed space X. Hence the case n=2 is
proved in Proposition 3.1 of [5]. Since the map p:11"S® - I1"" !S> defined by
plxy, -+ x,)=(xy, -+, x,—,) has a right inverse, p*:[I1"7'S3,5%] > [[1"S%,S%] is a
monomorphism and so nil[I1"~'$? $3] <nil[T1"S$3,5%]. Thus, by 4.1, it suffices to
prove nil[T1383,5%]>3.

Write G=I13S%. Let p;:G— S be defined by pfx,,x,,x3)=x; (i=1,2,3).
There exists a map g which makes the following diagram commutative up to
homotopy:

ds

G GAGAG

41 IPIAPZAP:;

S —— SPASAS—— §B
g9 €3

By using integral cohomology, we see that g is a homotopy equivalence. Hence
[P0, [P2o 2311 = £q*c; = +q*{15,{13,13»». We have a cell-decomposition: G=(S>
v 8§ v ShueSue®ue®u e®. There are exact sequences:

Ip» q*
@.1) [ZG®, $%]—— ng($°) — [G, 5°],
q*
[S7vSTvS", 8 ]— [2G®), %] — [S* v S*v §4,57]

Since n,(S*)=n,(S%)=Z, by [9], [STvS vS",S¥=[S*Vv SV S S*]~Z,0Z,®
Z,. Hence 22[ZG®,S$3]=0. On the other hand, as is well-known, 7,(S%)=Z,{{13,
{13,397} (see [1]). Hence Xp*=0 in (4.1) and the order of [p,,[p,pi]] is
three. Therefore nil[G,S]1>3. This completes the proof.
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