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On regular surfaces of general type with p g  = 3
and non-birational bicanonical map

By

Ciro CILIBERTO and Margarida Mendes LOPES

Abstract

In this paper we classify all regular surfaces of general type with /39 = 3  and
non-birational bicanonical map which do not have a pencil of curves of genus 2.

Introduction

The bicanonical m ap of a  smooth curve of genus g> 2 fails to be birational if
a n d  only if g= 2. T h i s  phenomenon has a n  echo in  dim ension 2, namely if a
smooth surface S  of general type has a  pencil of curves o f genus 2, i.e. it has a
rational m ap to  a  curve whose general fibre F  is  a  smooth irreducible curve of
genus 2, then the line bundle Cos (Ks )OOF  is special on F, and therefore the bicanonical
m ap 4) of S  cannot be birational.

W e shall refer to the above exception to  the birationality of the bicanonical
m ap 4) as to  the standard case. A non-standard case will be the one of a surface
of general type S  for which 0 is not birational, bu t there is no  pencil of curves of
genus 2. Bombieri (see [B], thm. 5) proved that if K2 > 10 and n > 6 then all surfaces
for which 4) is not birational present the standard case. H e also gave an example
(see [B], pg. 194), already found by Du Val (see [DV]), of a minimal surface with
K2 =9, pg =6 exhibiting the non-standard c a s e . Later o n  I. Reider proved in [R]
that the hypothesis 10> 10 alone ensures that one has a standard case if 4) is not
b ira tional. F rom  these  resu lts it fo llow s that there  is on ly  a  finite number of
families of minimal surfaces of general type presenting the  non-standard case for
the non birationality of the bicanonical map.

In the case of regular surfaces, i.e. those surfaces S  for which q:=1/ 1 (S,Cos )= 0,
the problem of classifying the  non-standard cases with pg >2 has been considered
by Du Val in the quoted paper [DV]. He implicitely makes a few rather restrictive
assumptions, under which however he is able to  com e to  a  detailed classification
(see theorem (1.2) below).

Later on Xiao Gang studied the same problem in the p ap e r [X 1 ]. He mainly
took  the  po in t o f view of the projective study of the image of the bicanonical
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m ap. H e  thus found a  list of numerical possibilities for the invariants of the cases
which might occur, determined some properties of the surfaces in question and gave
some examples.

In  recent years the non-standard cases with p g > 4 have been classified in full
detail in  th e  paper [CFM], whose results essentially confirm the classification
proposed by Du V a l.  In particular, all the non-standard cases with p g > 4 are regular.

The irregular surfaces with p g  =3 presenting the non-standard case have been
studied in the paper [CCM ]. It turns out that if S  is a minimal irregular surface
with p g  = 3 presenting the non-standard case for the non-birationality of the bicanonical
map then S  is isomorphic to the symmetric product of a smooth irreducible curve
of genus 3, thus p g  =q = 3 and K2 = 6.

More information on the problem and on the results quoted above are contained
in the expository paper [C].

The purpose of this article is to finish the classification of the non-standard cases
with p g  =3, by dealing with the case of regular surfaces. We thus complete here
the full classification of surfaces with p g > 3 and with non birational bicanonical map.

Briefly, what we prove here is that, for minimal surfaces with p g  =- 3 and q= 0,
in addition to  the non-standard cases obtained by specialization from the families
described in [CFM ] and besides the well-known case of double planes branched
along octic curves, there is only one more family of non-standard cases, having
K2 = 8 .  A ll these cases are  either the  su rfaces in  D u  V al's classification or
specializations of those surfaces.

The present paper is organized as follows. In section 1 we describe in  some
detail the surfaces appearing in Du Val's classification theorem (1.2) and state our
classification theorem (1.6), whose proof occupies the rest of the paper. Section 2
and 3, which are rather technical, are devoted to establishing various properties of
the canonical curves of minimal regular surfaces of general type with non birational
bicanonical map, and canonical system not composed with a  pencil. In section 4
we prove that, in fact, the canonical system of a regular surface with p g = 3 presenting
the non-standard case is not composed with a pencil, so that the results from section
2 and 3 can be safely applied. Finally, in sections 5 and 6 we show that all surfaces
with p g = 3 and q = 0 presenting the non-standard case belong to the families of Du
Val's examples described in section 1.

Various technical results, that are used repeatedly throughout the paper and
can be of independent interest, are proved in  an  appendix which we put, for the
reader's convenience, in section 7 a t the end of the paper.
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O. Notation and conventions

We will denote by S a projective algebraic surface over the complex field. Usually
S  will be smooth, minimal, of general type.

W e will say that S  presents the non-standard case for non birationality of the
bicanonical map, or simply that S  presents the non-standard case, if S  is a surface
of general type with non  birational bicanonical m ap and  containing no  pencil of
curves of genus 2.

W e denote by Ks ,  o r  simply by K  if  there  is n o  possibility of confusion, a
canonical divisor on  S .  We denote, as usual, by p g  th e  geometric genus of S  and
by q:= q(S)=h 1(S, (9s )  the irregularity of S.

By a  curve on S  we mean an effective, non zero divisor on  S. We denote by
p a (C) th e  arithmetic genus o f  a  curve C .  A lso C D  w ill deno te  the intersection
number of the divisors C, D on S, and Ca  the self-intersection of the divisor C .  We
denote by th e  linear equivalence fo r  divisors o n  S  a n d  by th e  n u m e r ic a l
equivalence. IDI will be the complete linear system of the effective divisors D,
and OD : S—>P(H° (S, (9s (D)v )=IDIv  the natural rational map defined by IDI.

The bicanonical map 0 2 K
 will be usually simply denoted by 0 .  If the bicanonical

m ap is of degree 2 onto its image, there is an  involution 1:S—>S, such that for a
general point x eS , one has 0(x)= 4)(i(x)). We will refer to i  a s  to  the bicanonical
involution of S.

If  C  is a  curve o n  S  and m  is  an  integer, one says that C  is  m-connected if,
for every decomposition C =A +B  with A  and B  curves, one has A •B >m . Notice
that this definition makes sense even if m is non-positive.

If x is  a  po in t o f S , D  is  a  divisor a s  above and  n  is  a positive integer, we
will denote by ID — npl the  linear subsystem o f  IDI formed by all divisors in  IDI
having at p  a point of multiplicity at least n.

In  general, if  V  is a  complete variety and is a  line bundle o n  V , one can
consider the complete linear system WI determined by 2' .  I f  V is a  curve and
has degree d and dim' = r, one says, as usual, that VI is a gr.,' o n  V .  An irreducible
curve C of arithmetic genus p a (C)> 2 is called hyperellip tic if it possesses a g ,  which
is then uniquely determined by the fact that the canonical series of C is composed
with it.

We will say that a  singularity of a curve lying o n  a  smooth surface is of type
[n, n], o r  briefly a [n, n]-point, i f  i t  is  a  n-tuple poin t which has another n-tuple
point infinitely near to it. M ore generally we will speak o f [n,...,n]-points for an
n-tuple point which has another n-tuple point infinitely near to it and  so  on, all
the consecutive points lying o n  a  given linear branch.

Finally, th e  symbol d e n o t e s  in  general a n  isomorphism between objects
under consideration.

1. Surfaces with non birational bicanonical map

In this paragraph we will describe the surfaces with non birational bicanonical map,
not possessing a  pencil o f curves o f genus 2, which appear in  o u r  classification
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theorem (1.6).
D u V al is probably the first author who dealt, in  [D V ], in  a  systematic way

with the problem under consideration. He supposes that the bicanonical map is not
birational for the surface S on which he implicitely makes the following assumptions:
(a) the surface S is regular, i.e. q = 0;
(b) the general canonical curve Ce IK1 is smooth and irreducible.

(1.1) Remark. (i) Notice th a t if (a) and (b) above occur, th en  C  is hyperelliptic.
Conversely if the general canonical curve of a surface S is (smooth and) hyperelliptic,
then clearly the bicanonical map cannot be birational, and, if q= 0, its degree must be 2.

(ii) There is a  typical situation in which the bicanonical map is not birational.
Consider a double cover ir: S-4X, with S, X smooth, irreducible, complete surfaces,
with branch curve B  on X .  Then we have:

7r.(9 S ° X C I 9 X( O(KS) = 7r*V9 X(KX ))

where e x .(20 Cox (B). Hence:

7r„Co s (2Ks) , - ,  x (2(IQ+ ))()(0 x (2Kx  +

Therefore 12K5 1 factors through p  if e(X,(9 x (2K5 + ) ) = 0 .  W e will see various
examples of this situation later on.

D u Val's result from [D V ] is as follows:

(1.2) Theorem. L et S  be  a  sm ooth m inim al surface of  general type. A ssum e that
pg >3, q=0, the general canonical curve CelKI is sm ooth and  irreducible and the
bicanonical m ap os S is not birationat Then either we are in the standard case, i.e.
S has a pencil of  curves of  genus 2, or S is one of  the surfaces, so-called D u  Val's
examples, described below in the list of  examples (1.4). Their invariants are shown in
the following table:

P g K2

6 8* 9*

5 7 8
(1.3)

4 6 7 8*

I
3 5 6 6 7 8* 2*

For each pair of invariants (pg, K2 ) in  the  above table, the corresponding Du
Val's examples fill up an irreducible family of double covers of which we will describe
the general member in (1.4) b e lo w . The explanation for the  arrows in the table
(1.3) is the following:
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means that one imposes a [3,3]-point (i.e. a  triple point w ith an  infinitely near
triple point, namely with three coincident tangent lines) to the branch curve of the
double cover. A s it is well known, this operation drops the geometric genus and
1(2  b o th  b y  1;

means that one imposes a 4-tuple point to  the branch curve of the double cover,
which drops the geometric genus by 1 and 1 0  by 2.
This also explains why we put the asterisks in the above table: the surfaces marked
by them  a re  the  ones we really need to describe, since th e  others a re  obtained
by imposing th e  aforementioned singularities to th e  branch curve. W e will call
the surfaces of these families Du Vats ancestors, because they generate all the other
examples.

Now we come to the description of the Du Val's ancestors:

(1.4) Examples. All the examples S  we are going to introduce now are double covers
and present the non-standard case. Indeed by their description it is easy to rule
out the presence o f a  genus 2  pencil (compare[C], pg. 63, where "line" has to be
replaced by "conic"). Furtherm ore , by  tak ing  in to  account th e  d o u b le  cover
representation, it is easy to see that, for all the examples, one has q= O. W e leave
all this to the reader and refer to [CFM ] for the details. F o r further information
about these examples see also [C].

(i)po = 6, K2 =8.

This is the double cover of the plane Tr: S - 4 ) 2 , branched along a  smooth curve
B  of degree 10. One has:

s(K ).'-ir*(0p2(2)), ir/95p 2  0  p 2 (  — 5)

and therefore

n.es(210 (91■2( — l)$ (9 p2(4 )

Hence we are in the situation described in  remark (1.1, ii).

(ii) p o =6 , K2 =9.
This example can also be found in [B], pg. 193. Consider the diagram:

— )  s

f i i g

F2 Q0

Here F2 is the Hirzebruch surface P(0,1 Opi( — 2)). We denote by C, the (-2)-section
of F2 , by F  the ruling and by H = C0  + 2F the divisor class which maps F2 to P 3

as a  quadric cone Q0 . Furthermore:

(a)f:S'—*F2  is the double cover branched along a smooth curve B =C o +B ' where B'
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is a  general member in  171/1;
(b) p: S'-+S  is  the contraction to  a point x  of the exceptional curve E  of S ' which
lies above C0 in  th e  cover f:S'—>F2 ;
(C) f  induces the double cover g: S-+ o f  th e  quadric cone Q0 , which is branced
a t the vertex V  and along a  general septic surface section of Q0 .

One has:

(9 y(K )=./V 9F2(2 Co+ 3F)), fi9s' O F 2e 0 F2( — 4C0  —  
7f)

and therefore:

fC0s ,(2K)_^26F 2 (4C0 +6 F)0 0 F 2 (—F)

i.e. we are in the situation described in  remark (1.1, ii), hence the bicanonical map
of S ' factors through f  Notice that the pull-back to S  of the lines of the ruling of
Q, vary in a linear pencil ID] of hyperelliptic curves of genus 3, with the base point
x, such that 3D is linearly equivalent to Ks . The point x  is  a Weierstrass point
of the g l  o n  C  and therefore 12KI cuts ou t on  C  the triple of the g l  which is still
composed with the g l itself. T here fo re  the presence of the pencil C is responsible
for the non birationality of the bicanonical map of S (compare proposition (4.4) below).

(iii) p g = 4, K 2 =8.

This surface S  is extensively described in  [CFM ], to which we defer the reader
for further information about it. The surface S is defined by the following commutative
diagram:

S'

f 1 1 g
Q—P 1 x1' 1 c P 3

where:

(a) n: Y—t Q is the double cover of a smooth quadric Q c P 3 branched along a  curve
B of type (10,10) with four ordinary 6-tuple points, of the form B =Ii i +q 2 +  +  +B ',
where th, th  are two distinct lines of one ruling of Q, r(2  a re  two distinct lines
of the other ruling, and B' is a  curve of type (8,8) with 4 ordinary quadruple points
a t the  points x i i =thryti i', j ,  j= 1, 2, and smooth elsewhere;
(b) Y has four singular points y, i  over the points z i p  i, j=  1, 2. The surface S ' is
the minimal resolution of the singularities of Y, but it is not a minimal surface. It
has four exceptional divisors corresponding to the lines th , r f i ,  i f ,  of Q .  By
blowing them down to four points p i , 132 ,  p '„ p , one has the surface S.

Let Z  be  the cycle of degree 12 defined by the intersection of the square of
the ideals of the points x ,  i, j=  1, 2 in  Q .  Standard properties of double covers
yield that the image of IK5 1 on Q via trof  is the linear system kf z ,(2(3)1=  +/./2 + Ifi +
11'2 +16,2 (1)1. This means that 'K s ' has dimension 3 and four base points at the points



Regular surfaces of general type with p g = 3 85

P t , p 2 , p'1 , p'2 . Furthermore the rational map g = n o fo p - 1  i s  the canonical map of
S .  Hence th e  general canonical curve o f  S  is hyperelliptic, a n d  therefore the
bicanonical map is not birational (see remark (1.1, i)).

A few remarks are in order. First, there is a degeneration of the surface S which
has not been mentioned by D u Val. It is obtained by letting, say, n i a n d  g , come
together, in which case the canonical system of S  acquires a  fixed part (see [CFM]
for details).

Secondly, one proves that Tors (S ):= T ors (H i (S , Z))'=" Z2. O ne way of seing
this is to  realize  S  as a  doub le  cover of the  p lane  g: S - 4 ' 2 ,  by composing the
canonical map g with the stereographic projection of the quadric to the plane from
one of the points  x i ,. T h e  branch curve G  is  then  o f the  form  G =a 1 +a 2 +G',
where a l  an d  a , a re  d is tin c t lines, and G' is a  curve of degree 12. The singularities
of G' are as follows: G has a 4-tuple point a t y= a 1 r la 2 , and two [4,4]-points cl i c a i ,
different from each other and from y, where the infinitely near 4-tuple point to  a ,
lies on the line a i , i=  1, 2. The aforementioned degeneration of S  for which the
canonical system has a  fixed part corresponds to  the possibility one of the points
oci becomes infinitely near to y  along a i.

This description will remind the reader of the double plane representation of
a  general Enriques surface ( s e e  [E ]  o r , fo r  a  m o d e rn  reference, [CD]), and
therefore will suggest to him the  assertion about the torsion. Indeed, from this
double plane representation, one sees that there is o n  S  a base point free pencil
IDI o f curves of genus 3, i.e. the pull-back on S  via g of the pencil of lines through
y, which has two double fibres, which are the pull-back to S  of the lines ai,  i = 1,
2. T h e  difference o f  th e  tw o  double fibres is  a  to rs io n  element o f  o rd e r  2  in
P ic(S ). T he torsion  g roup  of the surface canno t be  b igger than  Z 2  (compare
proposition (1.5) below).

W e notice tha t the derived case p g =3, K 2 =6 in table (1.3) has been studied
in  detail by Bartalesi and Catanese [BC].

(iv) p g = 3, K2 =8.

This surface S  is described by the following commutative diagram:

S

f i 1 g
Q

Y p 2

where

(a) 7E: Y—>P2 is a double cover with branch curve B= 11 L i + B', where L i , i =1, 6
are the six sides of a complete quadrangle with A 1 , • A4 vertices of multiplicity 3
and A 5 , A6, A , vertices of multiplicity 2, and  where B ' is  a  general curve in the
linear system of plane curves of degree 14 having 5-uple points at each of the points
A 1 , ..., A 4  a n d  4 -u p le  p o in ts  a t  e a c h  o f  th e  p o in ts  A5 ,  A 6 ,  A ,, a n d  n o  other
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singularity. Such a  curve is easily seen to exist by Bertini's theorem;
(b) f:S ' - >Y is a minimal resolution of the singularities of Y , which are the points
a, over the points A i , i =1,•••, 7. The surface S' is not minimal: it has six exceptional
divisors corresponding to the  lines L i ,  i= 1, • 6. By blowing them  down to six
points 6, one has the surface S.

O n e  s e e s  th a t  th e  im a g e  o f  Ws .' o n  13 2  v i a  nof i s  t h e  linear system
,  L i + l(9p ,(1)I. Hence 11‘5 1 has dimension 2 and six base points a t  the points lb

1= 1, 6 .  T h e  ra tiona l m ap  g=nopp - 1 is  th e r e fo re  th e  canonical m ap for
S. A gain th e  general canonical curve o f  S  i s  hyperelliptic, a n d  therefore the
bicanonical m ap is not birational.

Although the present example may seem very different from the previous one,
they a re  in  fact similar. This can be seen in  the  follwing way. M ake a  quadratic
transformation a: P 2 -*P 2  based at A2 , A 3, A 4 .  Then one has a cartesian square:

Y Y

f  1 f
p2 p 2

where f' : Y -4 3 2  is a new double cover and s: Y - ' Y  is a birational map. The branch
curve G  of f ':  Y--4. 2  i s  the proper transform of B via  a , hence it is o f the  form
G=a i  +a 1 + a 3 + G', where a l , a2 , a3  a re  three distinct lines passing through a point
y , and G' is a  curve of degree 13 whose only singularities are: a  5-uple point a t  y
and three [4,4]-points a i eai distinct from y, where the infinitely near 4-pie po in t to
ai lies on the line ai , i= 1, 2, 3.

Now we see the similarity with the example (iii), and we can also see that there
is  a  pencil IDI of curves o n  S w ith D2 =0, with arithmetic genus 3 a n d  w ith 3
double cu rves. This shows that there is an  embedding .Z . q Tors (S) and we will
prove in proposition (1.5) below that actually Tors (S) Zi.

W e want to m ake a final remark concerning these surfaces which also shows
their similarity with the ones in the previous example. By letting, in the late double
plane representation, the points oci , i= 1, 2, 3, become collinear along a  line L, the
canonical system acquires a  fixed component, i.e. the pull-back on S of the line L,
which is an elliptic curve with self-intersection -1. A similar situation takes place if
one of the points ai becomes infinitely near to y along a i . This degeneration, again,
has not been mentioned by D u Val.

(v) pg -= 3, K2 =2.

This is the double cover rc:S-W 2  branched along a  smooth curve B of degree
8. The analysis is similar to the one of the example (i) above.

Before stating our classification theorem, which extends D u Val's one (1.2), we
owe to the reader a proposition announced in the course of the discussion of examples
(1.4, iii, iv):
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(1.5) Proposition. ( i )  L e t  S  b e  a m inim al surface w ith p g =3, q=0, K 2 < 8 . If
Z,c_,Tors (S) then Tors (S ) -Z 2 .
(ii) L et S be a minimal surface with p g = 3, q= 0, K 2 = 8 and with no pencil of  curves
of genus 2. I f  Z ic4 T o rs  (5 ) then Tors (S) Zi.

P ro o f  Suppose we are in case ( i ).  Then we have an irreducible étale double
cover f :S '— )S . Since 1 4  < 2 x (0 0 , S ' is regular (see [B], lemma 14, pg. 212). So
we may apply [X2], corollary 4, pg. 141, which says that if 4  < 1  (x (0 0 -2 )  and
S' is regular, then S ' is algebraically simply connected. This ends the proof.

As for (ii), we proceed in a similar way. The subgroup Zi of Tor s(S) determines
an étale quadruple cover f: S' S. In  this case we have l a  = 2 x (0  < i (x (0  —  2).
Now S' is regular. Otherwise, by [H], S' would possess a  pencil of curves of genus
2, and the same would happen for S, a contradiction. Then we can conclude as in (i).

We finish this section by stating our classification theorem, which we will prove
in the following paragraphs.

(1.6) Theorem. L et S  be a  smooth minimal surface of  general type. A ssume p g >3,
q= 0, and the b icanon ica l map of  S not birational. Then either we are in the standard
case or S  is obtained as in table (1.3) as a specialization of  a D u V al ancestor.

(1.7) Remarks. (i) W e want to stress that the difference between this statement and
D u Val's one (1.2) lies in the basic fact that we do not make any assumption at all
on the canonical system. This makes our work technically much more complicated
than D u Val's.
(ii) The cases p g >4, q=0 in  the  statement of theorem (1.6) have been worked out
in  [CFM]. Therefore in  what follows we will only deal with the case p g =3, q=0.
(iii) There are no surfaces with p g > 4, q> 0, non-birational bicanonical map and no
pencil of curves of genus 2. This has been proved in  [CFM]. The case p g =3, q>0
has been worked out in [CCM]. Thus the present paper concludes the classification
of surfaces with p g > 3, non-birational bicanonical m ap and  no  pencil of curves of
genus 2.

2. Non birational bicanonical map: general properties of canonical divisors

Let S  be a minimal regular surface of general type and let IKI =IMI + F where IMl
is  the  moving p a rt o f  IK1 and  F  the  fixed p a r t .  I f  Im  OK  i s  a surface then, by
Bertini's theorem, the  general curve in M I is  irred u c ib le . If p g = 2  and q = 0, the
general curve M  in  IMI is also irreducible: otherwise M  would be composed of
k > 2 curves o f  a  rational pencil, a n d  therefore p g =1P(S, 0 5 (M ))= k + 1> 3 , a
contradiction.

(2.1) Proposition. L et S  be a m inimal surface of  general type with p g  2 ,  q = 0 .  As
above we le t IK1=IM I+F. A ssume that the general curve M  in  IMI is irreducible,
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and that the bicanonical map of  S  is not birational. L et S:= Pg  —2. Then:

(i) the general curve M in  IMI is hyperelliptic;
(ii) f  FO , th e n  th e re  is  a  decomposition F=F i + ••• +F„, where are
1-connected curves such that (9 m (Fi)--'y (where lyl is the g l  on M ), (9F ,(Fk) -9 F , and
such that either Fr<Fk o r Fi n Fk =0, for i, ke{ 1,•••,n} , k<i;
(iii) the linear system IMI cuts out on M  a complete special linear series of dimension
s which is l e m ( M ) I = I Y ® s l + D , I Y ° s I ,  the movable part of  the series, is composed with IYI,
an d  D , th e  f ixed div isor o f  th e  series, has degree d=M 2 - 2 s =M 2 —(2pg -4 )=
p a (M)— 2s — n-1 and it is such that  M (2D )=y ';
(iv) if , in addition, Im cpi c  is  a surface (i.e 3) then deg O K =  2.

P ro o f  Since 4 9 2 K  separates different curves in  1K1 and  11C+MI1 2 1(1, (Px+m is
not birational on M .  Since q=0, the restriction map H

°
(S, s (K + M)) —> fr(M, co m )

is surjective and therefore M  is hyperelliptic. This proves assertion (i).
If FO 0, we can apply theorem (7.1) to two sm ooth points x, y  of K  =M +F

such that x , y eM  and cp2K(x)=(P2x(Y), and we obtain (ii).
The first assertion of (iii) follows from q = 0 .  In  particular 10m (M)I =ly®sl +D,

where D  is some fixed divisor of degree d= M 2 —2s = M2 —(2pg -4).
If F=0, i.e. M =K , we have Cm (2K)=com =y ® ", with n= K 2 , hence 0m (2 D )= y ,

with d=K 2 —2s=p,,(M)— 1 —2s, concluding the proof of (iii) in  this case.
Let FO O. B y  part (ii) and by the adjunction formula, one has:

YP°("1 ) - 1 - 044 em(2 M )0 (9 m(F)=
y2 s 00m(2D)00m(F1)0 • • • 0 e m (Fa)- y ' + "0 O m (2D)

whence (iii) easily follows.
Assertion (iv) is obvious.

(2.2) Proposition. Under th e  same assumptions, th e  general curv e M  in  IM l is
smooth. Furthermore D =p i + • • • +p d  where p i , • • • , P d  are distinct W eierstrass points
of M.

P ro o f  If M  is not smooth then there exist multiple base points for the linear
system IMI. Let then p  be a multiple base point of M I and let a be its multiplicity
o n  th e  general curve M  in M I .  L e t  .9- :S S b e  th e  blow-up o f  S  a t p , E  the
exceptional divisor and A? the strict transform of M .  Since IK-g + +  El is contained
in  10-*(K+M)1= 1K g 117 + (a-1)El, IK -&-+  +  El cuts the complete canonical system
on f t+E  and 9K + m  is  no t birational, we can apply theorem (7.1) to S i n c e
for the general curve M  in  IMI the curve il7+E has exactly two components and
R .E =a, theorem (7.1) im plies that a=2 a n d  tha t 0,a(E) is  a  g l o n  11-1. Denote
this gi by From q=0 and e (g , CA M +E))=h ° (g, (9g(1171))=p g , one has h° (/17/+E ,
(.9 E(1  + E)) = (A-1,( 9 id- ( I)) = p g  1 .  Since -A  i s  hyperelliptic w e  have (a )

(3'(P. - 2 ) 0.97 , with .97 an  invertible sheaf on 1171 such that h
°
(R, ( 9 a(F))= 1. Now

the exact sequence:
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0 — >CE(E + E (M+ E)— q (A  + E)-40

gives rise to an isomorphism:

fr(A71+ +071 + Truci,ok-ua+EP
since:

H° (E , E (E))= I -11 (E, (9E (E))= O.

But this is a contradiction, because:

eii(A;1 + CROFIK) (9 R (E ) e (Pg  "O F ,

thus r cannot be an isomorphism. Therefore IMI has no multiple base points and
so by Bertini's theorem the general element of the linear system IMI is smooth. The
remainder of the assertion follows by (2.1, iii).

(2.3) Proposition. L et S  be as above. Assume that p g > 3 and let Fi be  a fixed part
of 1K] as in (2.1, ii). Then
(i) h° (S, e s (M — F))=p g — 2;
(ii) 1m yo,(Fi) is a line;
(iii) any curve C in IM —FI is such that 3 > h ° (C, (9c ) > 2.

P ro o f  Since F i is 1-connected and S  is regular, one has h i (S ,0( —F))=0.
Considering the long exact sequence obtained from

0—>es( —Fi)-+Os (M -

one has h°(S, Cs (M—Fi)) =h ° (M, (9 m(M —Fi)). By (2.1, ii, iii) one has IP(M, Cm(M —Fi ) )

=s=p g — 2, hence (i).
Part (ii) is an immediate consequence of (i).
To prove part (iii) consider the long exact sequence

0  H °  (S ,  s ( — (M — HA S, s(FiP - + HAM , m1F

—>H1(S,Cs (—(M—F)))—>H1(S,(95 (F))—>111(M,Com (F))-4•-•

Since Cm (Fi) is the gl on M  and by the theorem of Riemann-Roch h1(S,(95 (F))=1,
we obtain 1 <111(S, C s ( — ( M — F i ) ) )  2 .

Let C  be any curve in From q= 0, we have h i (S,C5 ( —(M —F1)))=
h° (C,(9e )— 1, proving (iii).

3. Further properties of canonical divisors

Let S be a minimal surface, with pg = 3 and q -= 0, and non birational bicanonical
map. We will keep notation and assumptions on S  from §2. In particular, we
still assume that the canonical system is not composed with a pencil. In the present
paragraph we collect some technical lemmas concerning this case.
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(3.1) Lem m a. L et S  be as above and  le t p :=p, be a base point of  1M I . T h e n :
(i) the linear sy stem  IM -3p1=1M -2p1 is not em pty . M ore precisely  there is one
single curve M p EIM -3p1 and p is exactly  of  multiplicity three f or M p ;
(ii) any  other base point of  M  is  a non-singular point of  M p  and  any curve MelMi
not containing any component of M p  intersects M t, only  at the base points p =p i , •••,pd

with intersection multiplicities m 1 =3, m 2 =••• =m d = 1;
(iii) if  u:S '->S  is the blow-up of  S  at p, then the strict transform  M ' of  M p  o n  S ' is
such that h °01',(V m ,)=3.

P ro o f  Remark first that, since p  is a base point of IM l, and h°(S , s (M))= 3,
the  linear system  IM -2 p1  is  n o t e m p ty . B y  (2.2) one h a s  IM - 2 p1=IM - 3 P1.
Furthermore (2.2) and p g = 3  im ply  that there  is a unique curve M p  in  IM-3p1.

L et M  be any curve in IMl which does not contain any component of M p . Let
i = 1, • • • ,d, be the intersection multiplicity of Mp a t  the base point p. of IM I. B y

(2 .1 , iii), w e  have M2 = m, +•••+m d >3 +m 2 +•••+m d >3 +( d - 1 ) =M 2. Hence
m1 = 3  and m2 = - •=m d =1 , finishing the proof of (i) and proving (ii).

As for (iii), let E  b e  the exceptional divisor of the blow -up at p .  W e set
M"=o-*(M p )- 2 E , whereas M '=o-*(M p )- 3 E .  Since p  is  no t a base point of com

for the general curve M  in IMl and q=0, then p  is not a base point of IK + M I. By
a theorem of Francia (see [F ] or theorem (1.1) of [M]) we have IMM",(0,,,,,,,)=1.

Since p  i s  a Weierstrass point of the genera l curve  in  IM I, w e  have
IK +M -p1= IK +M -2p1 . By theorem (1.3) of [M], this implies that e(M',Co m .)=
h°(M ",0 3 1 -)+2 , proving (iii).

(3.2) Lemma. L et S  be as above and let Fi b e  a f ixed com ponent of  IK1 as  in  (2.1,
ii). L e t  C  be the unique curve in (see ( 2 . 3 ,  i)). Then:

li°(C,(9 c )= 3;
(ii) C  is 0-connected;
(iii) either Fi2=  - 1  or F7= - 2  (and thus K Fi = 1 or K F i =0  respectively);
(iv) all base points of  'M I lie on C  and are non-singular points of  C  and therefore
the rational map determined by IMI contracts every component of C.

P ro o f  Suppose f irs t  th a t  M2 = 2 , i.e. the linear system  IM l h a s  no base
points. Notice that h°(S, C5 (2M ))=6 because lem(2 M)1= IY° 2 1. Since M -Fi = 2, then
M -C =M •(M -F,)=0  and thus Oc (M )(0 c .

Consider now the restriction sequence obtained from

0-49 ,(M +Fi)-*C s (2M)->O c -4).

Since IM S,C s (M +F e))= 3 and IM S,0 5 (2M))= 6, we get h°(C,C,) 3. Therefore
h°(C,(9c )=3  by proposition (2.3, iii). So we proved part (i) of the assertion for
M2 = 2.

Let now M2 > 2, i.e. IMI has d base points p i , ••• p d , which also lie on the curve
particular curve C + F i elM I . Since by (2.1, ii) 10m (Fi)I is the g on a general curve
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of M I ,
 a n d  by (3.1), a base point of IMI has either multiplicity 1 o r  3 o n  a  curve

of 1M I, a ll the points P i ' I 'd  lie  on C, and they are non-singular points of C . This
proves (iv).

Let n: g-45' be the blow-up of S  at p i , • •-,pa . Let 11-/-  b e  the strict transform
of the general curve in  IMI, and let C be the strict transform o f  C .  We can then
apply th e  same reasoning as in  the  case  M 2 = 2  t o  121 a n d  C  thus obtaining
h
°(C,C9e-.)= 3. Since the  poin ts p i ,•••,p d  a r e  non-singular p o in ts  o f  C , w e have
(C , c )  = (C  , e ), concluding the proof of part (i).

It is sufficient to prove assertion (ii) fo r C .  Suppose th a t C decomposes as
C = G + H, with G• H = a < O. By 1-connectedness of A71=G +H +n*(F 1) (see lemma
2.6 of [M]), we have G• 71*(Fi ) 1 —  a, 1/ - 7E *(Fi) 1 —  a and hence n*(Fi) . C  2 _ 2  4 .
Now remark that —2<F7, since Ff . K =  M  +  =  2+F? and K is nef, and remark
also that 2= M • F i implies that F C = 2—F?. Therefore, from ir*(Fi)• C = 2— 2a > 4,
w e ob ta in  n 

*(F )2_..
 - 2 , a =  —1, C• n*(Fi)= 4, H • 7r*(Fi ) 2  a n d  G- 7r*(Fi) _ 2  and

therefore H • n*(Fi)= G • n*(Fi)= 2. This yields G • (f l- — G)= H • (M- — H) = 1 a n d  thus
-=112 = —1, since every component o f  C is contracted by O m. A l s o  fo r this

re a so n  a n d  s in c e  G-Ii= G2 =H 2 = — 1, (7 .4 ) im p lie s  th a t  H = G  a n d  G  is
1 -connec ted . S o  o n e  h a s  t h a t  t h e  curve XI— G =G +n * (F)  is s u c h  t h a t
h°(g,e§(R— G))=2, because G  is contracted by c iv . B ut th is  is  a contradiction
since 11(51 is not com posed w ith a  pencil a n d  n*(Ks )>  + n*(Fi)=2(G+7E*(Fi))=

— G ) . This proves (ii).
To prove (iii), it suffices to notice that, since C is 0-connected and h°(C, CO= 3,

C  breaks in  three curves (see (7.3)) w hich all m eet F i positively because M  is
1-connected. Therefore F C > 3. W e have seen above that F > —2 and  F C =
2—F? and therefore we have (iii).

(3.3) N otation. In  what follows, we will keep the notation used in  th e  proof of
(3.2), i.e 7r:g— S will be the blow-up of S  at the d base points o f  1M ]. We
will denote by XI the strict transform of the  general curve in  IMI, whilst we will
denote by r the strict transform of a  curve r under 7E.

We keep the notation of proposition (3.1) and we prove now the:

(3.4) Lemma. Let p  be a base point of  M I ,
 le t  Alp  b e  the unique curve in  IM-3p1

and let M ' be the strict transform on S ', the blow-up of  S  at p, of  M p . Then, if the
curve M ' is 0-connected, the curve M p  decomposes as:
(I) M p =A 1 +21 2 +A 3 , where A i , A 2 , A 3 are  1-connected curves such that:
(i) A 1 A 2 =A 1 A 3 =A 2 -A 3 =1;
(ii)peA i nA 2 nA 3  and p  is a non-singular point of  A i;
(iii) IMS,C 5 (M—A 1))=2 , i.e. the rational m ap determ ined by  IM I contracts each A i,
i=1 , 2, 3 to  one point.

I f  M ' is not 0-connected, then M p  decomposes as:
(II) M p =2G +D , where D , G  are 1-connected curves such that:
(i) p is a  non-singular point of  D and G;
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(ii) G2 =0, G•D=1;

0G(00 0G;
(iv) h°(s, 0,3( 1— D))=h ° (S,Cs (M—G))= 2, i.e. the  rational map determined by IMP
contracts each of  D  and G  to a point.

Furthermore case (II) happens if  and only if  the curve M p  has a  decomposition
M p =13 1 +B 2 w ith B 1 •B2 =1, pEB 1 nB 2 . In particular if  IK ] has no f ixed part the
decomposition of  M p  is  of type (I), since in that case M p  is 2-connected.

Proof  By proposition (3.1), from which we keep the notation, the curve M ' is
such that h° (M', 0,0=3 and therefore it is not 1-connected. Since M p  is 1-connected,
if M '=A '+B ' with A'> 0, B'>0 and A'.B' <0, then there exist curves A , B  such
th a t  M p  =A + B , A' =a*A — E, B '=a*B -2E  and either A• B= 1 and A'•B'= —1,
or A •B =2 and A'•B' =0, (cf. [B], pg. 183).

Assume tha t M ' is not 0-connected. W e will prove we are in case (II). Let
M p  = A + B with A •B= 1 and p e A n B . Since p  is a triple point of M p  and A• B=1,
A  and B must have common components. Thus we can write A =G  +D , B =G +F
w here  G  i s  a  cu rv e  a n d  D  a n d  F  are effective divisors without common
com ponents. N ow  1 =A • B = G2 +G- D+ G• F + D• F a n d  1 < G.(M— G)= G2 + G• D
+G•F imply that D•F= 0 and G2 +G .D +G .F= 1. Therefore D n F =0 .  Since p  is
a triple point of M , then pEG, p is a simple point of G  and, say, p e D , p 0 F. In
particular D 0 .  S in c e  pEG, we have 1  M. G = 2G2 + G• D +G• F= G2 + (G2 + G- D
+ G• F)= G2 + 1 implying O .  N o w  G2 + G.D+ G.F= 1 a n d  G2 0  imply
G• D + G• F< 1. Since A  =G +D and B =G + F are 1-connected (by lemma (A.4) of
[CFM]) and D 0, we must have F=0 and G2 =0, D G = 1.

Notice that, again by lemma (A.4) of [CFM], both  G and D  are 1-connected.
Hence we have a decomposition as in (II) satisfying properties (i), (ii).

As for property (iii) we recall that q=ld(S,(9 s )= 0, and so w e have the exact
sequence:

0—+ HAS, (9 5 )—) HAS, (9 s (G))—) HAG, G (G))-40

If CoG (G) (9G ,  then we would have lP(S,(95 (G))=2, hence M  w ould  be  composite
with the pencil IGI, a contradiction.

Now we turn to property (iv). Since p  is a non-singular point of D and G, then
D and  G, a s  well a s  D  and  G , a re  1-connected (see (3.3) for notation). From
M- .B =S 1.0= 0, which is an immediate consequence of (3.1, i), we have immediately
(iv).

Assume now  that M ' is 0-connected. So we can apply proposition (7.3) to  M'
obtaining a  decomposition M '=A ',+A +A , w ith  A +A '.i = 0, f o r  1 < i<j< 3.

Using the same trick from [B], pg. 183, we mentioned before, we see that there
are curves 41, on S  such that A:=a*(A i)— E, i=1, 2, 3. Then M p = A ,+ A2 -I-A3 is
a  decomposition of type (I) and satisfying properties (i), (ii). Now for property (iii),
it is enough, as usual, to show that A. is a  1-connected curve for i= 1, 2, 3. Suppose
otherwise. T h e n  A i =C +D , where C> 0, D> 0 and C.D<0. Since Ac(A i +A k )= 2,
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if ], k i ,  and , by 1-connectedness of M , C.(D+A i +A k ).-1, D•(C+A i +A k)> 1, we
must have C D  =0 and C (A ; + A k) = D • (A  + A k)= 1 . Now p is a non-singular point
of A i and so, say, peC , pO D . If we le t C ' be  the strict transform o f C by a, we
h a v e  C'•(M '- C')= (a *(C) - E)• (o- *(M - C)- 2E) = C • (M -  C )- 2=  - 1 ,  contrary to
the assumption that M' is 0-connected. This proves that the curves A i , 1=1, 2, 3, are
1-connected and (iii) also follows.

Finally, the last assertion is now immediate.

(3.5) Lemma. Suppose that F, is a f ixed component of 1K1 as in proposition (2.1, ii),
with n= - 1  an d  le t C  b e  the unique curve in  1M -  F .  T h e n  C  decomposes as
C=A 1 +A 2 +A 3  w here A 1 , Ay, A3 are  1-connected curves such that:

(i) A 1 •A 2 =A 1 A 3 =A 2 •A 3 =0;
(ii) A 1 •Fi =A 2 •Fi =A 3 •Fi =1;
(iii) and M•A k <1, f o r k =1 , 2, 3, and i f ,  in addition, A k < C - Ak, then
M • A k=0;
(iv) IMS,C s (M - A k))= 2, i.e. the rational map determined by IM 1 contracts each Ak,
k = 1, 2, 3 to one point.

P ro o f  Since M• Fi = 2, then C•Fi = 3. Now, by lemma (3.2), C is 0-connected
and 1P(C, (.9c )= 3, and so we can apply proposition (7.3) to obtain a  decomposition
C=A 1 +A 2 +A 3  where A 1, A y , A3 satisfy (i).

Since every curve in M I is 1-connected (by lem m a (2.6) o f  [M ]), w e have
Ak*(M - Ak)= A k . Fi > 1, for k = 1, 2, 3. From Fi • (A i + A 2 + A 3 ) = 3, we have assertion
(ii). The fact that the curves Ak are 1-connected comes from lemma (A.4) of [CFM],
since the curves in  IMI a r e  1-connected and A k .(M - A k)= 1, for k =1 , 2, 3.

N ow  w e turn to assertion (iii). Notice tha t M•A k , for k = 1, 2, 3, is equal to
the number of base points of IM1 lying on Ak which are all non-singular points for
C and therefore also non-singular for each curve Ak , k  =1, 2, 3 see (3.2, iv)). Thus
the second part of (iii) follows right away.

A s  f o r  th e  f irs t  p a r t  o f  (iii), w e  no tice  t h a t  A k •(M - A k)=A k •Fi = 1 and
W M -  Ak )_ M • Fi = 2, hence (M  - A k)2  1 .  If, for some ke {1, 2, 3}, 4  >0 , then, by
the index theorem we have 4  M  - 2 A k and M 2 =4 (cf. lemma (2.6) of [M ]) . This
cannot o c c u r . Indeed, since M 2 =4, there is some base point p for IM I.  B y applying
lemma (3.4), w e w ould  h a v e  a  decomposition M p =Z i  + Z 2 +Z 3 w i th  M •Z i >0,
i=1, 2, 3, and 4= M 2 =M •Z i  +M*Z 2 + M 'Z 3 .  This implies that one of the numbers
M•Z, is odd, and therefore M  cannot be numerically divisible by 2. Therefore, for
k =1 , 2, 3, A1<0 and so M•A k =A  +1<1.

Assertion (iv) follows by (3.2,iv) and  1-connectedness of the curves Ak.

(3.6) Lemma. Suppose that Fi i s  a f ixed component of 1K] as in proposition (2.1, ii),
w ith F7= - 2  an d  le t C  b e  the unique curve in  1M - F i l. T hen C  decomposes as
C=A 1 +A 2 +A 3  w here A t, A y , A3 are curves such that:

(i) A 1•A 2=A 1A 3=A 2-A 3=0;
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(ii) A i •Fi =A ,.Fi =1  and A,• Fi = 2, f o r {j, k, =  { 1 ,  2, 3};
(iii) if  A i .Fi =1, then M•A i <1  and if  Ak< C - Ak then M .A ,=0;
(iv) hAS, (9s (M—A k))=2 , i.e. the rational m ap determ ined by  'M I contracts each A,,
k =1 , 2, 3 to one point.

P ro o f  Since Cis 0-connected, we can apply again (7.3) to obtain a decomposition
of C as the sum of three curves C=A 1 +A 2 +A 3  where
(a) lz° (A i ,(9„ i ) =1, for i l, 2);
(b) CA ,(A2 + A 3 ) to_ A i  a n d  0 .42(A3)= C A2 ;
(c )  A 1 .A2 =A 2 -A3 =A 1 .A 3 =0.

The same arguments as above a n d  C.Fi =4  im ply  that A f F,=A ,.F i =1  and
A 1 Fi =2, fo r  { j,k ,l} ={ 1, 2, 3} a n d  therefor, by lemma (A.4) o f [CFM], A i  and
A , are 1-connected. Therefore we have hAA„(9 A, )=  1, for i =1, 2, 3, unless, possibly
A 3'F, = 2. In  this case we have A ,-(M — A ,)= A 2 ( 1 -  A 2 ) = 1, thus = M =  —I
(see (3.3) for notation). Hence, by lemma (7.4) we conclude that either, A 1 <A 2 o r
A 1 nA 2 = 0 .  In  the  later case w e have (9,,,(A2 ) 0A i , b u t th is is a lso  true  in the
form er case. This is a  trivial consequence of (9 Ai (A2- - A3) A i  and (9A 2 (A 3 )--(9, z .
Thus by the last part of (7.3), the image of the restriction map r: H° (C, (9c)— )H°(A  C A ,)
is  1-dimensional. By taking into account (3.2, iv), one sees that this implies that
the image of the restriction m ap r':1-r(S, (9s (M))—*1-1

°
(A 3 ,0,,,(M)), which is not the

zero map, has dimension a t m ost 1, hence it has exactly dimension 1 . Thus we
proved assertions (i), (ii) and (iv).

The proof of assertion (iii) is identical to the proof of assertion (iii) of lemma (3.5).

(3.7) Lem m a. If  A  is a curve such that M. A =.4 2 +1 and the image of the restriction
m ap r:HAS,(95 (M))—>kr(A,(9A (M)) is  1-dimensional then:

(0  0  M A  <1  (and thus — 1 41 2 . 0);
(ii) if  M A  = 1, there is an unique base point p of  M  ly ing on A  and the curve M I,
has a decomposition of type (II) as in lemma (3.4), with M p =2A +H;
(iii) A  is 1-connected and for every fixed component F i of 1K] as in (2.1, ii), one has
0<A •Fi <1; furthermore if  A.F,=-1, then A  <C where C is the unique curve in 1M —Fi l.

P ro o f  F o r  ( i )  n o tic e  first t h a t  s i n c e  M I  h a s  n o  fixed components,
M .A >0 . Now, since A  is contracted by O m, IM—AI is a linear system of dimension
1. Therefore M-(M — 2, hence (M — A)2 = M.(M — A)— A-(M — A)= M.(M — A)
— 1>1.

N ow , b y the index theorem, we have that either A 2 < 0 , hence M A  <1  or
A 2 =1, A — M —A  yielding M -2 A  and M2 = 4 . This last possibility cannot occur;
this can be proved with an argument we already m ade in the proof of part (iii) of
(3.5). Therefore we have M .A 1 ,  proving (i).

Since A is contracted by Om , M A  is exactly the number of base points of M
which lie on A  and so, if M A  =1 , there is an unique base point p  of IMI lying on
A .  Then, since h

°
(S, (9,(M— A ))=2, there exists a  curve D  in  IM—AI such that

pED, a n d  thus D+ A EIM-2p1. By lemma (3.1, i), D +A =M p ,  a n d  s o  A Mp.
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Since p  is  a  non-singular point of A , and A•(M — A )= 1, by lemma (3.4) the curve
M p  h a s  a type (II) decomposition, proving (ii).

As for (iii), remark first that A2  = —1 (for notation see (3.3)). Hence by lemma
(7.4), the curve A  is 1-connected a n d  therefore so is A .  Furthermore A .2= 0.
Suppose th a t  A •Fi > 2 .  T hen, since M =C+ir*(F i)  w ith  C  a s  in  (3.2), we get
a := C< —2 and therefore (C-24) 2 = C2 — —  4> C2 + 4 .  Now, since the inter-
section form on  curves contracted by (kg is negative definite, we get C< — 4. On
the other hand, since C .2 = 0 , w e have  — C2  = C7C* (F,), and  th u s  — C2 =  C * < 4
(see (2.1, ii) and (3.2, iii)). Therefore (C-2A) 2 = 0 and thus, by (7.4), C= 2 A . Thus C
is not 0-connected, a n d  therefore also C is not 0-connected, contradicting (3.2,
ii). Therefore A •Fi < 1.

Suppose now that 13:= A•Fi .  —1. Notice that A- n*(F)=A •Fi = Then i r *(F1)
and A have common components. W rite then A= D+ F and n*(Fi)=D +G , where
F  a n d  G  h a v e  n o  com m on com ponents. From A =0 n*(F,), we have
G 0. Then F2  — 2F • G + =(A —  n*(F i))2  — 1  — 2/3+ n*(Fi)2  1 + n*(F) 2 , and the-
refore F 2 + G2 > n*(Fi)2  +1 +2 F- G > + 1.

If  n _1, w e obta in  F2  +G 2 > 0  and if F =  —2, w e obta in  F2 + G2 > —1,
with equality holding if fi= —1. Since any curve contained either in A or in 7E*(F1)
has negative self-intersection, the former case is  im possible . W e claim that also
the latter case cannot occur. In  fact, if F2 + G2 > —1, we must have F2 + G2 = —1,
a n d  therefore G 2 =  —1 a n d  F = 0 , thus 21<n*(F1). T his  i s  im possib le . In  fact
• = —1 a n d  ii•n*(Fi) , — 1 im ply  tha t n*(Fi )  is not 1-connected. O n  the  other
hand Fi is 1-connected by (2.1, ii), hence also e ( F i) is 1-connected, which proves our
c la im . In conclusion, we have proved that 0 <A •Fi < 1.

In order to prove the last part of (iii), it suffices to remark that if A•Fi = 1, then
A.(2— n*(Fi))= —1. If  n=_ 1, then by lem m a (3.5) w e have C= A1 + A2 + A3/
where C is the curve in  1M— F11. Notice tha t C2 =M 2 — 5, hence C2 = —3 because
we blow-up the d= M 2  —2 base points of 1M 1. Since < —1, for j= 1, 2, 3, because
the curves A  are  contracted by 121, we have —1, for j= 1 , 2 , 3 . Applying
(7.4) we have that A =A ;  for one of the curves A . and so A <M —Fi . If n= —2,
2— ir*(Fi)= A,+ A2+ A3, where Al = A  =  — 1, a n d  A7 = —2, f o r  { j, k, 1} = {1, 2,
3}. Notice that the proof of (3.6) implies that A i • Fi = 2, whereas A i . Fi = A,- Fi = 1. If
Â ,, ,T a n d  Â  AL, one has, by (7.4), 4. "T;  A • J, = O. T here fo re  AA, i mplying
a g a in  b y  (7.4), th a t  e ith e r  A<A i o r  A ,<A . B u t  in  th is  la s t  c a se  o n e  has

= A,+ B .  Then —1 = A. A",= +  A,. B= — 2 + A, • B , hence •  B = 1, which yields
B2 = — 1. F u r th e r m o r e  w e  h a v e  2 - B = 0  a n d  B•n*(F1)=Â'7C*(F1)—iii -rc*(F1)=
1—  2= — 1, which is impossible by the first part of assertion (iii).

(3.8) Lem m a. Suppose M  has a ty pe (II) decomposition at two distinct base points
p, q of  M l ,

 say  M p =2A 1 +H 1 an d  M g =2A 2 + H2. Then:

(i) A 1 nA 2 =0
(ii) H ,= H2
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(iii) A 1 0A  2  but 2A 1 -=2A 2.

P ro o f  Since M.A 1 =M•A 2 = 1 a n d  peA 1 , qeA 2 ,  o n e  has A 1 A 2  and
A2 A 1 .  Then (i) follows from = —1 a n d  lemma (7.4).

Notice now that, by (3.1) and (3.4), all base points of  M l lie  on H i and  are
non singular points of H i , for i= 1, 2. So, since M•H i  =2+1/?, we have M = —2,
i = 1 ,2 .  Since A i • A2  = 0, we have also:

2+ In=M •11,=(2A 2 + H 2 ).H 1 =2A 2 •11,+H i • H 2 =

= 2A 2  .(2A +H O + H I .H 2  = 2A 1 .M +  licH 2  = 2 + 1/ 1 .H 2

Therefore one has l i 1 H 2 =1/f , thus also R 1 .172 = — 2. Then, by (7.4), we have
=172  implying H , = H 2 , i.e. (ii).

Part (ii) yields 2A 1 2 A 2. Since by (3.4) we have ()0 0 0 CA I and by (i) we know
that A nA 2  =0, we see that A, 0A 2 ,  thus proving (iii).

4 . Exclusion of composed with a  pencil

In this section we are going to prove the following theorem, which will enable us
to apply the properties of §2 and §3 to the canonical system of the surfaces we want
to describe.

(4.1) Theorem. L et S  be a m inim al surface of  general ty pe with p g =3, q= 0, non
birational bicanonical map, presenting the non-standard case. Then IN is not composed
with a pencil.

From [R] and [CCM], we know that if K2 >9, p g <5  and the bicanonical map is
not birational, then S  presents th e  s tan d a rd  ca se . Therefore we may assume
K2 < 8 .  T he  proof o f  this theorem consists o f several steps. First we need the
following numerical data:

(4.2) Lem m a. L et S  be a m inim al surface of  general ty pe with p g =3  and K 2  <8,
and assum e that IK] is composed with a pencil .9  of  curves of gun us3 .  Then:
(a)g  is a rational pencil and thus K =2C + Z where Ce 9  and Z is an effective divisor.
(b) The only numerical possibilities are:
(P1) K 2 =8, C2 =0, K •C=4, K •Z =0 and Z 2 = —8.
(P2) K 2 =8, C2=2, K •C =4, Z =0 and .9 has tw o simple (either proper or infinitely
near) base points.
(13

3 ) C 2 =1, K •C=3, C Z = 1 ,  Z 2 =0  o r Z 2 = — 1 o r Z 2 = —2 (giving respectively
K 2 =8, K2 = 7  and 10=6) and the pencil Y  has one simple base point o.

Furthermore in case (P3 ) the curve Z  is 2-connected.

P ro o f  Since IN is composite with a  pencil .9, K — aC+Z , where C is a  curve
in  Y  and Z  is the fixed part o f IN . W e  have p g = 3<a+ 1 , hence a > 2 .  Notice
that one has a - 2  if and only if g  is a  rational pencil and K 2 C + Z .  Since O(K)
is nef, one has
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(t) K•aC=a 2 C + aC .Z < K 2 <8.

Suppose firs t tha t C2 = O . Then, from the assumption g= p a (C)> 3, one has
C .Z 4  and thus, by (t) the only possibility is case (P1).

Suppose now  that C2 > 0 .  Then the pencil .9  having base points, is rational
and therefore a = 2. H ence, by (t), necessarily C2 2 .  If C2 = 2 , th e n  C.Z=0,
implying, by 2-connectedness of K , th a t Z = 0  and one has possibility (P 2 ). Let
C2 = 1 . Since K. C+ C2  =2C 2  + C.Z+ I O  (mod. 2) w e must have C Z -  1 (mod.
2) and thus ZOO and (t) yields C Z =  1. Since K .Z O , we have the possibilities
in (P 3 ).

For the last assertion, suppose that, in case (P 3 ), one has Z=A +B , with A,
B curves such that A.B< 1. Then, by 2-connectedness of the curves in 1K], we have
A•2C>l, B.2C>1 and so A .C> 1, B.C> 1, contradicting C Z =  1.

(4.3) Lemma. W ith the  same assumptions and notation o f  (4.2), suppose that the
bicanonical m ap is not birationaL Then the general curve C  in  Y  is hyperellip  tic.
Furthermore, letting ri be the line bundle on C such that inl is the g l  on C, one has:

Case (P 1 ): Z=2Z 1 ,  w here Z = —2 and ec(Zi)'= 71.
Case (P 2 ) :  e c (C)-17 and q>0.
Case (P 3 ): (9c (C). (9c (o).-(9 c (Z) and ( 9 ( 2 o )  i .  Furtherm ore in this case o  is a

sim ple point of  Z , there ex ists C'E.9 such that Z <  C' a n d  every f ibre o f  .9  is
2-connected, with the possible exception of C'

P ro o f  Let x, y be two general points such that ço(x)= yo(y). Then x, y are on
the same fibre C  o f  Y  and therefore we can apply theorem  (7.1) t o  the curve
D=2C+Z, obtaining a  decomposition D=D 1 +D 2 , where D i , D 2  are curves such
th a t  D 1 D2  =  2  and D I  I n  c a s e  (P 1), since  C_D 1 nD 2 ,  w e  must have
K.D 1 =K-D 2 = 4  and, by the index theorem, D I  —D2 . Therefore D 1 =D 2 and thus
Z =2Z 1 , as stated.

To prove the remainder of the statement we look at the linear system 1K+ C+ AI,
w here A := C+Z i in  c a s e  (P ,), A := C  in  case  (P 2 ) an d  A := C + Z  in case
(P 3 ). Consider the exact sequence

0 —)C s (K + A)—( 9 s (K + C + A)—coc (A) O.

In all three cases A-(K—A)=2, implying, by 2-connectedness of the canonical
divisors and lemma (A.4) of [CFM], that the curve A  is 1-connected. Then, since
A2 > 0 , one has h 1(S,(Ps (K+A))=0 and so  1K+ C+ A 1 cuts out a complete linear
series of degree 2g on C .  Since 1K+ C + AI c 12KI, 0K + c+  A  is not birational. There-
fore C is hyperelliptic and e c (K+ C + e g ,  where 1q1=g1 on C .  W e also have
(9 c(A)'= 11.

Now we consider the three cases separately.
In case (P,), in order to conclude, it suffices to remark that (9c (C )-(9 .
In case (P 2 ) the assertion about the irregularity of S  follows immediately by

considering the long exact sequence obtained from

0-40 s —■es (C)—,0c (C)—)0
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and using Oc (C) ,:_-_
In case (P3), since K + C = 3C + Z, (9c(K + C )  r e "  and e c (C+Z )- ri we obtain

(9c (2C) , (0c (C+Z) ,-,T h e r e f o r e  the base point o of 1 CI is  a Weierstrass point of
C and Z  intersects a  general curve of a t o. Since Z  is 2-connected and o is  a
simple point of Z , Z  is contained in  some curve C' of .9.

Notice that every curve in  .9  is 1-connected because .9  has a base point (cf.
lemma (2.6) of [M]). Suppose that C" in  Y  decomposes a s  C"=A 1 +A 2 , with A ,,
A 2  curves such that A 1 A 2 = 1 . S in ce  C is nef and C2 = 1 we will have, say, C•A 1 =1
and 2 =0 a n d  thus o  lies on  211. B ut, by 2-connectedness o f the  canonical
divisors, we must have A 2  (K — A 2) = A 2  (A 1 + C+2  and thus A 2 * Z 1 , implying
A 1 - Z <0 .  Since oeA i nZ , necessarily A , and Z  have common components and thus
C'=- C'.

Now we can give the:

Proof  of  (4.1) By (4.3), possibility (P2) can only occur if q > 0 .  To prove the
theorem we have to  show that also possibilities (P 1) and (P3) d o  no t occur. First
let us suppose that (P 3) happens.

In  this case by upper semi-continuity we have IP(C, Coc (2o))> 2, for every curve
C in Y . Recall that every curve CE 9  different from C' is 2-connected. Then for
every CO C' in  Y , we have e(C, Cc (2o))=2 and Oc (2o) is generated by its global
sections (see [CFM], propositions (A.5) a n d  (A.6)). N ow  w e w an t to  show that
this also happens for C'.

Notice that, since C' is 1-connected, then the restriction map H°(C',0 c .(2o))—>
H°(Z,(9,(2o)) is injective by lemma (A.1) o f [C F M ]. Since 12C1 induces o n  C ' a
section vanishing only at o, then r c ,(2o))1 has no  fixed components o n  C'. Since
Z  is 2-connected, by lem m a (A.5) a n d  (A.6) o f  [C F M ] o n e  has necessarily
h°(C', Oc ,(2o))= 2 and Oc ,(2o) generated by its global sections unless possibly if Z  is
irreducible and rational, i.e. unless K2=6  and Z  is an  irreducible ( -2)-curve.

W e a re  go ing  to  see  tha t a lso  in  th is  case h°(C',0 c ,(2o))=2 a n d  e c 42o) is
generated by its global sections. Suppose then that K 2 = 6. Let C '=Z +B  and notice
th a t  Z -B =3 . O n e  h a s  3 C .K +B .  Consider th e  linear system  1K+ Cl. Since
1K+ C1=1Z+3C1, the base points of 1K+ CI can only lie on Z .  Since S is regular,
1K+ cl cuts the complete canonical series  w c 1 on every curve C in Y  and therefore
o cannot be a  base point of 1K+ Cl. O n the  other hand, since (K+C)2= 13 and
the map determined by 1K+ C I is not birational, then 1K+ C I has at least a base
point peZ , without however having Z  as a  fixed component, because o e Z .  Since
(K +C)•Z= 1, then 1K+ CI has a unique simple base point peZ .

Consider the exact sequence

o es(30)-)InS, e + 1-1°(Z, (0 (K + 0).

As we saw above, Im r is 1-dimensional. Since, by the Riemann-Roch theorem,
h°(S,C,(K+C))= 6 ,  th e n  h°(S,(9,(3C))= 5 , im ply ing , by  Riemann-Roch, th a t  10
(S , s (K+ B))= h 1 (S, s (3 C))= 1. Since g = 0, we have then IMB,C0B)= 2.
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Consider the long exact sequence obtained from

0— *  z (2o — B)—>C c (2o))—> ( B — >0.

Since &(2o —B) has degree —1 o n  Z , we see that lz
°
(C',(9 c ,(2o))-=2. Suppose that

e c ,(2o) is not generated by its global sections. Then, since 120 induces o n  C ' a
section vanishing only at o  , the point o  is a  common zero of the global sections
of (9c ,(2o) and so IP(C',(0,,(o))= 2. But this would imply that o is a base point of
'cod ,  and we are going to see that this is a  contrad ic tion . In  fact 1K+ ci cuts the
complete canonical system on every curve C in included C'. Since, as we saw
before, o  is no t a base point of 1K+ CI, then o  cannot be a base point for Iwc .1.

In conclusion, we have seen that for every C  in  Y  one has 10C , e c (2o))=2
and Oc (2o) is generated by its global sections. Hence we can now imitate an argument
from [CFM], proposition (1.7).

Let a :g—>S be the blow-up of S  at o and let E be the exceptional divisor. We
denote by p : .g.-41' 1 th e  morphism determined by the strict transform on  g  of the
pencil Y. Since IP(C,(9 c (2o))= 2 for every curve C eY , the sheaf p*(0 -g(2E)) is locally
free of rank 2. Moreover we have 10 1 3 1 ,p,.(64(2E)))= 1, hence p(0g(2E)) 0piC)Copi
(—e), where e  is  a positive in tege r. A s usual, we se t Fe = Proj(Opi e(9pi(—e)), we
denote by F a fibre of the structure map Fe - 4• 1 , and by C o the section of Fe — >P 1

such that 0 =  —e.
Since for every curve Cc Y  the  sheaf P ( 2 o )  is generated by global sections,

the natural map p*p*(0§(2E)) —>C0(2E) is surjective and defines a  morphism g — ) F ,
over F" which is generically finite of degree 2 and such that n*(C„,)=2E. Then C o

is a  component of the branch locus of it a n d  e= —2E2=2.
Now

o-*(3C) —E=n*(Co+ 3F)

and this is a contradiction since

h° (F2 , (9,2(C0 + 3f)) = 6
whereas

h °(, *(3 — E))< 6

In fact h
°
(S, (0s (K+ C))=6, K +C —Z 3 C  and Z , as we saw, is not a  fixed part of

the linear system 1K+ CI. In conclusion, we have proved that possibility (P 3 ) cannot
occur.

Next we consider possibility (P 1). Since q =0, we have le (C + Z i , ec+z i (C+Zi))
= 1. Moreover, by the adjunction formula, Cc+ z,(C+ Zi) ® 3  (0 c  z i . Then we can
apply lemma (7.2) to  C + Z ,  and conclude that, for the general curve C  in
C nZ i =IP, Q1, where P, Q  are distinct points of C  such that & ( P +  Q ) ,  where
11/1 is the g l o n  C.

Since K =2(C +Z 1) , every divisor o n  S  has even  self-intersection. T hus the
curves of Y  are either 2-connected or are multiple curves.

Suppose that every curve in  Y  is 2-connected. Then Z 1 induces on every such
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a curve a base point-free 8, 1 (cf. the discussion of case (P3 )). Using a similar argument
as above, we realize S  as a double cover p: S - 4 1 , which sends Z 1 generically 2 to
1 to  the section Co o f  F 1 w ith  self-intersection — 1. But this, as above, leads to
a contradiction. In fact Cos (K+ C) w ould then be the pull back of (9, 1(2C0  +3F),
but h° (S, +  C ) ) =  6 whilst h°(F i , 0,,(2C 0  + 3.0)=9.

Thus we may assume there is at least a curve C of .41' which is not 2-connected,
hence C= 2F, where F is a  2-connected genus 2 d iv iso r . Notice that the existence
of this double curve and the 2-connectedness of the canonical divisorson S  easily
imply that Z , is irreducible. Since S is regular, the restriction map Ir(S, 0 s (K + F))—
Ir(F,co F ) i s  surjective and therefore h°(S,(9s (K +F))=5 . O n  th e  other hand

s (K + F— C ) = s (C  F + 2Z i )  and thus IM S , s (K  F — C))= 2 , im plying that for
any curve  C  in  Y  the restriction m ap  Ir(S ,2 5 (K+F)) —)11° (C,coc )  i s  surjective.
Since (K+F)•Z i  = I  a n d  f o r  C  general i n  . 9  t h e  rational m ap determ ined
by K+F9 identifies the two distinct points in which Z 1 intersects C, the restriction
m ap  I1° (S,C5 (K+F)) -41-r(Z 1 ,e z 1 (K +F)) is  n o t  surjective. Therefore IK+F1 w ill
have a base point p on Z 1 . Since F is 2-connected, p does not lie on F (see [CFM],
proposition (A.7)). This implies that there is a curve C"e Y, different from C, such
that Icoc d is not generated by its global sections. Thus there exists another double
fibre F'. But then /1:= (05 (F— F') is a non-zero 2-torsion element in Pic(S). By the
Riemann-Roch theorem we have:

21?(S, Cs (C+ Z 1)0/2)= 3 + h1(S,(93 (C+ Z i )Op.)

Hence /OS, e s (C+Z I )O p )  2 .  Consider the exact sequence

0--+05 (F+ F')-49 s (C + Zz )012--49z ,—+0.

Since 1P(S, s (F + F'))= 1, the restriction map Ir(S,19 s (C + Z 1)0 0 - 4 1 A Z  z  i ) is not
the zero map. This implies that also the restriction map I r ( S ,  s (K))—.1-r(Z  1 ,C 0 i ) is
not the zero map, which is a contradiction to  IK] having Z , as a fixed component.
Therefore also case (P 1) is ruled out.

W e finish this paragraph with a proposition which will be useful later on in
order to recognize specializations of the Du Val ancestor with pg  =6, K2=9  which
we met in example (1.4, ii). Its proof uses some ideas from [CFM ], which are also
essentially contained in the proof of theorem (4.1) above.

(4.4) Proposition. L et S  be a surface with 3, q= 0 , whose bicanonical m ap is
not birational. Suppose there is on S an irreducible curve C such that C2=1, K .C= 3
and Cl1  is a pencil. T hen S  is a  specialization of  the D u V al ancestor with p g =6,
K2=9  (example (1.4, ii)). I f  S  presents the non-standard cases the specialization in
question is as  indicated in table (1.3).

P ro o f  To prove the proposition it suffices to show that:

(i) every smooth curve in the pencil ClI  i s  hyperelliptic and the base point p  is  a
Weierstrass point of the g l  on it;
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(ii) h°(S,Cs (2C))=4 and the linear system I2CI is base point free.
Having (i) and  (ii), w e can apply  th e  same reasoning a s  in  lemma (2.6) of

[CFM] to obtain the description of S  as a double cover of F2, which shows that
it is  a  specialization of the D u Val ancestor with p g = 6, K2 = 9.

A s for the type of singularities of the branch locus tha t can  occur, let m  be
the maximum multiplicity o f  a  singularity o f the  branch lo c u s . Since p g > 3 we
have m < 7 . If m = 6, 7 one has p g = 3, and it is easy to see that the minimal surface
corresponding to the double cover has K2=2 and no pencil ICi as in the statement
of the  present proposition: we leave the  details to  th e  reader who is advised to
project down to P2 from  the point of multiplicity m , thus realizing the surface in
question as a double plane with a  branch curve of degree 8 (see proposition (5.1)
below). Therefore we may assume m < 5 .  Actually the case m =5 is a  specialization
in  moduli of the case m = 4 (cf. remark (2.7) of [CFM]). Finally one notices that,
if the branch curve has more than one 4-uple (or 5-uple) point, the surface S contains
a  genus 2 pencil, i.e. the  one which is the pull-back o n  S  of the  pencil of plane
sections through such two singular points of the branch curve.

Finally we have to prove (i) and (ii) ab o v e  B y  Riemann-Roch we have:

2 + e(S, (9 5(K — C))=p g + h 1(S,(95 (K — C)).

Since p g > 3, w e have IMS,C s (K —C))> 0, i.e . there is a  curve C' K— C. Notice
that, since (K—C).C= 2 then every curve C'elK — CI is 1-connected by lemma (A.4)
of [C FM ]. A t this point, with the same reasoning a s  in  lemma (2.5) of [CFM],
one proves (i).

Consider then the restriction m ap r: Ir(S, Cos (K))--,1-r(C ,C c (K)). Notice that,
by adjunction, 0,(K)f._-' ec (p)Ori, w here  W I is th e  g i  o n  C .  F ro m  th e  above
propositions (for p

9
=3) and from proposition (1.7) of [CFM] (for p9 ..4) we know

that the canonical system of S  is not composed with the pencil ICI. Therefore the
rank  o f r is  2, hence h

°
(S, es (K— C))=pg — 2 and  (ii) again can be proved as in

lemma (2.5) of [CFM].

(4.5) Rem ark. Suppose S  is  a minimal surface of general type with K 2 > 4 and C
is a  curve on it such that h°(S , s (C))> 2 and K. C < 3. By the index theorem, one
has that the movable part of ICI is either a  pencil of curves of genus 2 o r a  pencil
of curves of genus 3 with a base point, like in  the  statement of proposition (4.4).

5 .  The case p g  = 3, q=0 and the canonical system without fixed components

Let S be a minimal surface, with p g = 3 and q=0, and non birational bicanonical
m a p . We will keep the notation as in the previous paragraphs. We will also assume
that IK1 is not composite with a  pencil, which, as we saw in  §4, will always be the
case if S  does not contain a  pencil of curves of genus 2 . W e will suppose here
that IKI has no fixed component, i.e., with the above notation, M = K . Let /31 , • •-,p,
be the base points of 'Kb which are smooth, transversal base points. Furthermore
one has d= K 2 — 2 (see proposition (2.2)).
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Let it :  g  S  be the blow-up of S  at p ,  • • • ,p d , and let E 1 , • • Ed be the exceptional
divisors of the b low -up. The base point free linear system MI = in — Et — • •• —Ed ]
determines a double plane, i.e. a morphism := 0 ),T: g-4) 2 , which is generically finite
of degree two. W e will call such a double plane the canonical double plane of S.

In the present paragraph we will describe the double planes arising in this way,
by describing their branch curves B  in  P2 . Notice tha t the curves B  are reduced,
and we will in  fact describe their isolated singularities.

W e start with the following proposition whose immediate proof we omit:

(5.1) Proposition. L et S  be as above. Then is base point free (i.e. d =0 ) , if  and
only if  K 2 =2. In  this case the corresponding canonical double plane has a  branch
curve B  which has degree 8 and has at most irrelevant singularities.

Thus, from now o n  we will assume th a t 1K1 is  n o t base point free, i.e. d > 1
and therefore K2 > 3. In  th e  following lemma we collect some basic information
about the branch curve of the canonical double plane of S:

(5.2) Lemma. L et S  be as above and let B  be the branch curve of  the corresponding
canonical double plane. Then:
(i) B  has degree 2d+ 8 ;
(ii) the exceptional curves E 1 ,•••,E d  are  mapped by 4) to d distinct lines L 1 ,•••,L d  in
P2 , which are contained in B;
(iii) the essential singular points of  B  all lie on L ,u  • • •u L d  and on each line L i there
are at m ost three singular points of  B ;
(iv)every intersection point of two of the lines L 1 , • • Ld is a relevant singular point of B.

P ro o f  Assertion (i) follows by Hurwitz's formula and by adjunction.
Assertion (ii) is a  consequence of proposition (2.2).
Let z e B  be an essential singular p o in t .  Then there is some irreducible curve

F o n  g  contracted by 0  to  z. Then M F  =0.O . If  F•E i = 0  for a ll i = 1, •••,d, then
it isomorphically m aps F  to  a  rational curve o n  S  w ith self-intersection -2. This
situation would only produce non  essential singularities o f  B  a t  z. So we may
assume that there is a  ie {1, • • d I  such that F•E i >0, which implies that z eL i . This
proves the first assertion in (iii). The remainder of (iii) follows from lemma (3.1, iii).

Let z =L i n L i ,  w ith 1 Since L i [resp. L i ]  is the im age via 0  of E.
[resp. Es ], and since E i n E i = 0, there must be a  curve A  o n  g  contracted by 0  to
z , not containing E. a n d  E"; but m eeting bo th  E. and  E .  The im age of such a
curve on S  via n has positive intersection with K .  Therefore the resulting singularity
of B  a t z  cannot be irrelevant.

Now we want to explain which kind o f singularities o f B  may occur along
one of the lines L i, i =1, • • •,d. Let L  be such a line. It is the image of an exceptional
divisor E  on g , which in  turn  corresponds to  a base point p  of IK1 on S.

Let us go back to lemma (3.4) and le t us summarize the information it gives
us in the present situation. First we notice we are in case (I) of tha t lem m a. Let



Regular surfaces of  general type with p 9 = 31 0 3

/17/p e1/11 the curve o n  g  corresponding to M .  S i n c e  'lap contains 2E, the image
via ifr o f  M .  is  ju st the line L .  Therefore the strict transform A o n  g  of a  curve
A :=A 1 o f  t h e  decomposition o f  t y p e  (I) is c o n tra c te d  b y t o  a  p o in t
z e L .  Accordingly A  is contracted by the map O m (see lemma (3.4, I, iii)), therefore
if M  is  the general curve in M I ,

 the  po in ts M n A  are  exactly the base points of
IMl o n  A .  Lemma (3.1) yields that every such a base point is smooth for A , and
M  and A  intersect transversally there.  H e n c e  the number of base points of
on A  is just M A , i.e . K.A.

W e have the following lemma:

(5.3) L em m a . In  th e  above situation, the point z  belongs to A 2 +2 lines am ong
L 1 ,•••,L d . Furtherm ore it has m ultiplicity  2A2  +6 f o r B .  Finally  if  L 1 ,•••,L d  pass
through the same point z , then S has a pencil of curves of genus two.

P ro o f  One has M • A = A  =  +  2. Hence IMI has A2 +2 distinct base points
on A , proving the first assertion. Notice now that A 2  = —2. T h e  arithmetic genus
of A  is g=A 2  + 2 . S in c e  the base points we blow-up are smooth points of A , this
is also the arithmetic genus of A. Hence the second assertion easily follows.

A s fo r the  la s t assertion, the curve A  contracted by O m  t o  z  is such that
A 2  d —  2, hence z  is a point of multiplicity 2d+2 for B .  Therefore the pull-back to
Ç of the pencil of lines through z  is a  pencil of cuurves of genus two.

A ccord ing  to  lem m a (5.2), w e  c a n  w r ite  B =  L i + -• • + L d+ B'. T h e  next
proposition gives us inform ation  about the  configura tion  of lines L 1 +•••+L d

occurring in B.

(5.4) Proposition. Let L 1 , bebe a set o f  d , d>3, d istinct lines in  P2 such that
each line m eets the union of  the other lines in at m ost three distinct points. Then
either all lines pass through the same point, or d< 6 and one has the following possibilities:

(C 3 ) :d =3  and the three lines form  a triangle;
(C„): d= 4  and the four lines are the edges o f  a quadrilateral;
(C„): d= 4  and three o f  the lines m eet in one point w hich does not belong to the
fourth line;
(C 5 ): d =5  and f our of  the lines are the edges o f  a quadrilateral and the f if th line
joins tw o opposite vertices;
(C6 ) :d =6  and the six  lines are the sides o f  a complete quadrangle.

P ro o f  Assume that not every line passes through the same p o in t. L e t h  be
the maximum number such that h lines L 1 , • • •, Lh with h<d meet at a point q. Then
Lk , k>h, does not pass through q, hence L ,n(L i u ••• uL h )  consists of h  distinct
points and therefore h< 3.

Suppose first tha t h = 3 .  Then L 4  meets L 1 ,  L 2 , L 3 , in  three other distinct
points q 1 , q 2 , q 3 and thus, if there is a fifth line L 5 , it necessarily meets L 4  in one
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of these three poin ts. O n the  other hand L5  meets L I ,  L ,, L3 in  three distinct
points s i , s2 , s3 , respectively one of which coincides with a point qi , say q 3  =s 3 . T h e n ,
if there is a sixth line L6, it meets L , in, say, q 1 a n d  therefore meets L2 in s 2 and
L 3 in  another point r 3 . So the six lines are the sides of the quadrangle determined
by q, q l , s 2 , S3 . If 7  then L.7 would necessarily have to pass through the non
collinear points q 2 , s ,  and r 3 a contradiction.

Suppose now that h = 2. I f  th e  number of lines d is 3 we have case (C3 ), whilst,
if d> 4, clearly the only possibility is case (C4 A ).

We are finally in a position to describe also the behaviour of the part B'of the
branch curve B  of our canonical double planes. This is  d o n e  in the follwing
theorem, which is, in practice, a new, more precise version of Du Val's statement (1.2):

(5.5) Theorem. L et S  be a m inim al surface, with p g  = 3 , q= 0 , and non birational
bicanonical m ap, which presents the non-standard case. S uppose AlI  h as  no fixed
components, but only  d>0 base points. T hen one has 5 < K 2 <8  an d  accordingly
3 < d< 6 and one has the following possibilities:

K2  =5, d= 3: L 1 + L2 + L 3 i s  a triangle, B ' has degree 11, has 4-uple points at  the
vertices of  the triangle, three 3-pie points one on each line L i , and B  has no other
relevant singularities;
K2 =6, d=4 (case (A)): L 1 + L 2 + L 3 + L 4  form  a quadrilateral, B ' has degree 12 and
has six  4-uple points at the vertices of  the quadrilateral, and B  has no other relevant
singularities;
K 2  =6, d =4  (case (B)): L 1 + L 2 + L 3  pass through a point z  whereas L4 does not; B'
has degree 12 and has a 5-uple point at z  and 4-uple points at the intersections L i nL 4 ,
i=1 , 2, 3, and three more 3-pie points along the lines L i ,  i=1 , 2, 3, and B  has no
other relevant singularities;
K 2  =7, d=5: L 1 + L2 + L3 + L4 form a quadrilateral, and L5 joins two opposite vertices
z 1 , z 2 ,  of  it; B ' has degree 13, has 5-uple points at z ,, z2 ,  has 4-uple points at the
remaining vertices of  the quadrilateral and a 3-pie point on L 5 , and B  has no other
relevant singularities;
K2  = 8, d= 6: L 1 + L2 + L3 + L4 + L5 + L6 form a complete quadrangle; B' has degree 14,
has 5-uple points at  the four triple vertices of  the  complete quadrangle, has three
4-uple points at the double vertices of  the complete quadrangle, and B  has no other
relevant singularities.

The surfaces one thus finds are exactly the Du V al examples with p g = 3 appearing
in table (1.3).

Proo f . The line configurations and the multiplicities of B ' are dictated by (5.3)
and (5.4). The fact that there are no further relevant singularities easily follows
with a direct double plane computation since p g = 3, q =O.

The last assertion is clear for the case K 2  =8  by taking into account example
(1.4, iv). Consider now the case K 2 = 7 . L e t  u s  make a  quadratic transformation
of the plane based at z 1 , z 2 and at one of the remaining vertices of the quadrilateral,
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for instance a t  z=L 1 nL 2 . This transformation contracts L 1 a n d  L 2  to  distinct
points a l , a2 , and L5 to a point Œ . Furthermore L3 and L4 are mapped to different
lines a 1 , a 2 passing through Œj  a n d  a 2 . We let y =a, na 2 . The curve B' is in  turn
m apped to  a  curve G ' o f  degree 12 w ith  tw o  [4,4]-points at e a i ,  where the
infinitely near 4-uple point to  a i lies on the line a i , i = 1, 2, another 4-uple point at
y , a n d  a  p o in t  [3.3] a t  a .  The original double plane is therefore birationally
equivalent to the new double plane with branch curve given by G =a l +a 2 + G '.  By
comparing this description with the double plane description of the Du Val ancestor
with p g  =4, q= 0, K2 = 8, given in example (1.4, iii), we conclude that our surface is
a  specialization of the aforementioned D u Val ancestor as shown in table (1.3).

A  similar analysis works for the case K2  =6, case  (A ). W e leave the  details
to  the reader.

Again a  similar argument would easily work also for the case K2  =5, showing
tha t it is  a  specialization of the D u V al ancestor with p g = 6, K2 = 8 as shown in
table (1.3). However case (B) with K2 =6 is more difficult to analyse in this w a y . So
we present another argument which works for both  cases K2  = 5 and K 2 =6, case
(B). The observation here is that in both cases the surface possesses a  pencil 1C1 of
curves of genus 3 with a  base  po in t. Such a pencil is provided by the pull-back on
the surface of the pencil of lines through the point L 1 nL 2 . Then, applying proposition
(4.4), w e see  tha t bo th  surfaces are specializations o f  th e  D u  V a l ancestor with
1,9 =6, K2 =9.

(5.6) Rem ark. A s a consequence of our analysis, we have the following fact: if  S
is a minimal surface, with p g = 3, q = 0  and non birational bicanonical map, such that

has no fixed components and is not composite with a pencil, then either K 2  <8 and
we have one of the cases listed in theorem (5.5) or S has a pencil of curves of genus two.

6 .  The case p g = 3, q =0  and the canonical system with fixed components

In  order to finish our classification theorem, we study in  this section the minimal
regular surfaces S  with non-birational bicanonical map, presenting the non-standard
case, whose canonical system has fixed components. The result we will prove here
is the follwoing theorem:

(6.1) Theorem. Suppose S  is  a  minimal surface with p g =3, q=0, non-birational
bicanonical map, presenting the non-standard case, and having canonical system with
fixed components. Then S is a  specialization of a D u V al ancestor as indicated in
table (1.3).

This result will follow a s  a  consequence of propositions (6.5) and (6.6) below.
A t the end we will explain how the  specialization of the  D u V al ancestors takes
place in order to produce fixed components o f the  canonical system (see remark
(6.6) below).

By §4, we know that IK1 is not composed with a  pencil, and therfore we can
use  the  properties o f  th e  canonical divisors studied in  g2 a n d  3. Also, a s  we
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already remarked, from [R] and  [CCM], w e know  that if K2 > 9, p g <5  and the
bicanonical map is not birational, then S presents the standard  case. Thus we may
assume K 2 < 8. Since in proposition (4.4) we described the  minimal surfaces with
non birational bicanonical map, containing a  pencil ICI such that C2 =1, K .C=3,
to  keep  the  proofs shorter we will assume a lso  tha t S  does not contain such a
pencil. W e start by showing the following proposition which makes more precise
in  our case the result of proposition (2.1):

(6.2) Proposition. S uppose S  i s  a  m inim al surf ace w ith p 9 =3 , q =0 , K 2 <8,
non-birational bicanonical map, presenting the non-standard case, and having canonical
system  w ith f ixed com ponents. Assume furtherm ore that S  has no pencil ICI with
C2 =1 and K. C= 3. Then IKI=IMI+F, with IMI the movable part which is irreducible
and has d> 0 simple base points, and F is a  1-connected fixed curve such that M .F= 2
and either F2 = —1 or F2 = —2.

P ro o f  Let us first notice that if K= M + F1 + • • • + Fg ,  then K 2 =M 2 + 2n +K .
F,+ • • • + K. Fg . By hypothesis K 2 8 ,  and  therefore n< 3, with equality occuring
only if K. F, = K. F2 = K. F3 = 0  and M 2 =2.

Suppose there is a  fixed component F, w ith PI= — 1. Since K .F, is then odd,
we cannot have n = 3 .  Now we will see that also n =2  cannot occur. Assume in
fa c t th a t n = 2 .  Consider a  decomposition M — F1 = A 1 + A 2 + A 3 ,  a s  in  lemma
(3.5). O n e  h a s  M.A,=i4,2 + 1, hence K•A i +A 7=M •A i +FrA i +F 2 •A i +A f=2A
+2+A cF 2 , for i=1 , 2 , 3 .  Therefore A i .F2 m ust be even for all i =1, 2, 3. Since
F2  =  0  and F2 M = 2, there  is ie { I, 2, 3} such that A i . F2 = 2. This contradicts
lemma (3.7, iii).

Therefore if n > 2  all the fixed components Fi have self-intersection —2.
Suppose that n = 2  and let M —F 1 =A 1 +A 2 +A 3  be a decomposition as in lemma

(3.6). T h e n  w e  h a v e  A,•F1 =1, Fi =1  a n d  Ak • F t = 2 ,  f o r  ti,j,k1= {1,2, 31.
Furtherm ore, o n e  h a s  A g •M =Ja+A ,•F ,, f o r  h =  1 ,  2 ,  3 .  N o tice  a lso  tha t
K2 =K. M = K A I + K. A 2 + K. A 3. By lemma (3.6, iv), we have h°(S, 05 (M— A „))= 2,
for h=1 , 2 ,  3 .  Consider the  pencil ICI corresponding to h° (S,Cos (M—A k )). Then
K.C<K•A i +K-A i . The same argument used above in the case of a fixed F with
F2 = — 1, shows that A i • F2 = A  F2 = 0, A,. F2 , and therefore K.A i =A 7+ 2, K-A . i =
i q  + 2 .  By lem m a (3.7), w e have O<M-A i =A1•+1 < 1 , hence — 1  'if  < 0 , and
similarly —1 <M  < O . Accordingly 1 <K A , < 2  a n d  1 < K. A i < 2. Since w e are
excluding the existence of pencils ICI with K .C 3 ,  we must have K.A i =2,
and A  =  = 0 .  By lemma (3.7) and lemma (3.2, iii), there are two distinct base points
p,g of IMI which lie in A i and  A . respectively and the curves M g  and  M q have type
(II) decomposition M p  =2A, + H, A lq =2A i +H  where 124,1=124J is  a base point
free genus 3 pencil.

Consider now the two divisors G=A i +A i +F, and G' =A  k F i +F 2 . One has
G 2 = 2, G' 2 = z q  +4, G -G ' =2. By the index theorem  we m ust have G' 2  <2 , i.e.
'U . < —2. On the other hand, we have 0 < M' Ak= AZ+ 2. Hence we have A Z= —2,
M • Ak = 0, which yields M 2 =4, K 2 =8 and G  G '.  This implies that A i + A ; A k + F2.
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On the other hand since clearly A,—A i  we have Cos (2A,)— Os (A k + F2 ). Since ICA4(2A,)1
and Kom (Ak +F2 )I are the sam e g l o n  a  general curve of M I ,  a n d  therefore
0„,(2A i —A k —F2 ) is trivial on a general curve of M I w e  have, by proposition (1.6)
of [CFM], Cos (2A,) 0 s (A k +F 2 ). So IN is the sum of the two pencils lAk +F i  +F 2 1
and I /11 -1- A i + F1 1, a contradiction. Therefore the case n = 2 does not occur.

Finally we turn to the case n=3, in which, as we saw already, one has M2 = 2,
i.e. 1M I  is  base point free. C onsider again  the decomposition of the curve
M —F1 =A 1 +A 2  +A 3, where A,..E1 =1,A FF 1 =1 and A k• =2, for ti,j, lc} = {1,2, 3}.
In this case, since IMI has no base points, we have M •A „=0, for h=1 , 2, 3, hence

=  =  —1, =  — 2.
Since K.(M —A k)=IC.A i +K.A i  we must either have K•A 1 >1 or K•A i > 1, because

otherwise, the pencil corresponding to 10s (M—A,31 would be a genus 2 pencil. Sup-
pose K. A i > 1. Since K. A ,=1+ F2 A i +F,• A i ,  F2 'A i+ F3 A , is  positive and even,
and so, by lemma (3.7, iii), we must have A cF2 =A i •F3 = 1, yielding K.A 1 =3.

Consider the pencil I(.95 (M—A 1)1 and le I VI be its movable p art. We have then
M = V + A  where VI is a pencil without fixed components, A ,< A  and A- V> 1, by
lemma (2.6) of [M ]. Since M 2 =2  and M  is nef and not composed with a  pencil
we have that M• V= 2, M •A =0 and therefore either:
(i) V2 = 0 , A 2 =  - 2 and  V-24= 2;
Or
(ii) V2 = 1, A 2  = -  1 and V A = 1.

Remark that lem (V)1 is the gl on the general curve MEIMI and similarly le(M)1
is a gl on the general curve V e 11.

Consider case (i). Since 8 > K2 = K• M = K• V + K• A, K• A > K. A i = 3 and we are
assuming that I VI is not a  genus 2 pencil, we must have K .A =4 and K• V=4.
Thus:

FrA +F2.A +F3.A =K A — M •A =K .A -=4

F i . V +F2 . V+ F3' V =K-V — M•V =2 (*)

In particular we have 0< V•Fl <2  and 0 < A •F,< 2, 1=1, 2, 3. First we see that
the case V .F,=A .F1 = 1 cannot occur. Suppose in fact that V •F,=A •F,= 1. Then
we claim that there is a curve in the pencil A +I VI containing F1, but F, is not contained
in A .  Suppose in fact that there is no such a  curve in A + I VI and let F be the
unique curve in  IM—F,I. T h e n  IMI is  spanned  by  the  penc il A -W I  and by

+ F , .  S ince  A •F,=1 , t h e n  IM I c e r ta in ly  h a s  so m e  base po in ts on  F ,  a
contradiction. However A  cannot contain  F , because, a s  we recalled already,
h°(S, e s (M— F,))= 1 by proposition (2.3, i). This proves the claim.

Since V .F,= 1, there is an irreducible component A of F1, which is a smooth,
rational curve, such that VA =1, whereas for any other irreducible component 4'
of F,, one h a s  V• A ' = O . Let us prove that A =2A +A ', where A ' is effective.

First of all w e prove that A  contains A . O therwise, in fact, there would be
no curve in A + I VI containing A hence containing F,, contrary to what we saw
before. N ow  w e prove that, in fact, A  contains 24. Let V  be the general curve
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in I VI and let p  be its intersection point with A. Since, of course, the bicanonical
involution fixes V and F1, it  fixes p , which is therefore a Weierstrass point of the
gl on V .  On the other hand, since lev (M)I is the gl on  V, then lev (A)1 is also the
g . H e n c e  A  has multiplicity of intersection 2 w ith  V  a t p , therefore p  lies on
A - A .  Since, a s  V  moves in  I VI, the point p  describes the whole of A, we have
the assertion.

With the same argument one proves that a curve in 12KI containing A contains
A with multiplicity at least 2, i.e. A is a  fixed component of 2K -A I.

Now, by taking into account (*), we see that if V  F,= 1, there is another curve
Fh  such that V.Fh =1, with h  0 1 . Since A is the only irreducible component of A
meeting the curves in  I VI, we see that A is contained in both F„ and F,. Suppose
that 1 <1<h < 3 . Then, by (2.1, ii), we see that F,, <F1 an d  e F h (F,) ,- (9F h .

Let k O h, 1. W e notice tha t Copk (Fh) -(9F k . The assertion trivially holds if
Fh n Fh = 0 .  Otherwise, since Fk cannot contain A, by (2.1, ii) we see that Fk <Fh

and the assertion follows. Similarly one proves that (9F k (F1) OFk .
Now we consider the exact sequence:

(S, (95 (K+ M + Fh ))- ■H° (S , 5 (2K -  FI))-+ g3(Fh , F h ).

Since 12K-F,1 is contained in 12K-AI, but F, contains A as a simple component,
because V- Fl = 1, we see that A has to be a fixed component for I2K-F ,I. Therefore
the last map to the right in the above sequence is the zero map, because A <Fh. Hence
h l (S,(9s (K+ M + Fh ))> 0, i.e. h ° (M + Fk, 9 M  F d >  1. But this is clearly contradicted
by the exact sequence:

0--■014(-F k)-Com + F k - e m + F k Oe F k ->0

since Cm +  FkO eF ,,= c9 F k . In fact M + Fk =-F k )  and 0 (K ) (- F
• h ,

In conclusion, we have proved that we may assume that V- Fl = 2, V.Fh = V- Fh = 0,
i.e. A  F1 = 0 ,  A- Fh = A• Fk= 2, {/, h,k} = {1, 2, 3}. R e m a rk  n o w  th a t  o n e  has
( V + F1)2 =(A + Fk+ F = (V + Fi)* (A + Fk Fk) = 2. Hence by the index theorem we
have V+F I - A + Fh + F k .  Since C m ( V+F1)_-_, Ch f (A + Fk+ Fk), as before proposition
(1.6) of [CFM] implies that Cs (V+ F =O P +Fh + Fk). Therefore we would have

V+ A + Fi + Fh+ Fk = 2(V+ Fi), hence IK1 would be composite with the pencil Ill,
a contradiction.

Consider now case (ii). A s above, w e see that in  th is case K- V < 5 and
K A  > 3. But, by assumption, we must have K. V> 3, which yields K- V= 5 and
K- A = 3. Then:

FrA  +F,- A + F3 -A =F I -V + F,• V + F3 V =3. (4-0

Since 0=M -A =A 2 + 1  and  A  is 1-connected, by lemma (3.7, iii) w e have
0 < A. Ft <1, 1=1, 2, 3, and so by (**) we must have A• Fl = A - F2 = A-F3 = 1.

Consider now the restriction m ap r: H° (S , 5 (210)- * Ir(V , ,(2K )). W e have
H°(S,0 s (K+ A + F, + F 2 +  F 3 )). Notice that for any irreducible component

0 of F1,1=1, 2, 3, one has K -0=0 an d  V- 0> 0, hence 0-(K+ A + Fi + F2 + F3)= 0"
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(2K — V )<0 . Since F,•(K+A + F 1 + F2 + F3)= - 1 and F, is 1-connected, by corollary
(A.3) of [CFM] we see that OF 1 (K +A +F 1 +F 2 +F3 ) has no global sections, hence
IK+A + F 1 +F2 +F3I IK+A  + F2 + F31+ F1. By (2.1, ii), (9F 2 (F1) , (0

F 2  and therefore,
by the above argument, for any irreducible component 0 of F2, we have K.O=F1 -0= 0,
hence 0.(K+A  +F2  + F3)= 0 (2K— V— F2 +  F3) 0 , implying a s  above  tha t IK+ A
+F 1 +F 2  F 31= 1K + A  +F 3 1 +F, +F2 . F ina lly  in  th e  sa m e  w a y  w e  se e  th a t
IK+A +F i  +F2+F31=IK+Al +F 3 + F i + F 2 ,  th u s  h

°
(S,(9s (K +A  +F 2 +F 3 ) -=h °

(S,Cs (K+A ))=5, since A  is 1-connected (by lemma (A.4) of [CFM]) of arithmetic
genus 2. Then 12KI cuts on a general curve of I VI, which is a  smooth curve of
genus 4, a complete e m . This contradicts the fact that the bicanonical map is not
birational.

Therefore also case (ii) does not occur and we proved the proposition.

Next we prove the following:

(6.3) L e m m a . Under the same assumptions as in (6.2), either M 2 =4 or M 2 =5.

P ro o f  Suppose t h a t  F2 = - 1, i.e. K .F=1 . B y  le m m a  (3.5) w e  have
M —F=A 1 +A 2 +A 3 ,  w here A i •F=1, A rA 2 =A 2 .A 3 =A 3 .A 1 =0 , hence M A =
A ;+1, i= 1, 2, 3, and therefore K•A i =M•A i +F.A i =A ?+ 2, i= l, 2, 3.

By lemma (3.5, iv) w e know  that 1?(S, e s (M—A i))= 2, i= 1 , 2 , 3 . Let IQ  b e
the corresponding pencil. As usual, w e m ay assume K.C f >4 , i=1 , 2 ,  3 .  This
immediately implies A ; + AZ> — 1 for j0 k , jO i and k  i .  So we see that at most
one of the curves A i ,  1=1, 2, 3, has nagative self-intersection. This implies that
M 2 =M•F+M•41 1 +M.A 2 +M.A 3 =2 +3 +A ;+A l+A l>4 , since, by lemma (3.7),
A?> —1 for 1=1, 2, 3.

Suppose now that F2 = — 2, hence K.F= O. W e apply lem m a (3.6) and we have
M —F=A 1 +A 2 +A 3 ,  where A i •F=1, A i •F= 1  and A :F =2 , for { i, j, lc} = {1, 2,
3}. Notice tha t w e have M. A i =A ?+1 and M.A ; =A ;+ 1, and so  K-A i =A ?+2
and K-A i =A . + 2 .  By lemma (3.7, i) one has 0> A7 >  - 1  and O> A > —1.

By lemma (3.6, iv), h° (S,(Ps (M — Ak))= 2. If we consider the corresponding pencil
ICI, we may assume K.C> 4. This implies A ?+ A ;> 0  and therefore A?= A; = 0
yielding M 2 4 .

On the o ther hand  8 > K 2 > K .M =M 2 +F•M= M 2 + 2 , proving that M 2 <6.
Now we will see that the case M2 = 6  cannot occur.

Suppose tha t M 2 = 6 .  F r o m  the assumption K 2 < 8  and K 2  =K•M+ K•F=
M2 + 2 +K .F, we necessarily have K 2 =8, and K•F= 0, implying that F2 = — 2. Then
we have M— F=A 1 +A 2 +.113 , where A i •F=1, A i •F= 1 and Ak •F=2, for j, =
{ 1 , 2 , 3 }. S o  6 =M 2 M . F+M . A i  +M . A 2 +M . A 3 = 2 + 4 +A ? + A3+21 and
therefore A i +A l +A i= O . As above, because we are assum ing that S  does not
contain a pencil 1C'I with K C ' <3, we have il?=A ; = 0 , hence also AZ = O . T hus
(A i +A i +1) 2 =(A k +F) 2 =(A i +A i +F)•(A k +F )=2 . B y the index theorem we have
then A i + A i +F —A k + F and therefore A i + A i — A k . Now lem m as (3.7) and (3.8)
imply that 12,411= I2Ai l is a genus 3 pencil without fixed components or base points
and A k " C .  Since C.A k =0, every component of A k is contained in a fibre of the
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pencil Cl.I  F r o m  h
°
(S,CO5 (A,J)=1, AZ=0, K•A , =4 and we see that the only

possibility is A k =D i +D 2 ,  w here 2D1
 - 2D2 =- C a n d  D , D 2 ( s e e  [BPV], pg.

90). Notice that D I and  D 2  a re  different from A i and  A p  otherwise we would have
a contradiction to lemma (3.2, iv). O n  th e  other hand being D i , D2, A i , A i  pairwise
distince contradicts both lemma (3.2, i ) and proposition (1.5, ii). Therefore the
case M 2 =6 is excluded.

In  the  next tw o propositions we will freely use some elementary facts about
resolutions of double planes singularities and actions of Cremona transformations
to  double planes and their branch curves, which the reader will certaianly be able
to easily work out on h is  o w n . Howeover, for specific and complete references on
this subject, we refer to [Fe] and [Ca].

(6.4) Proposition. Under the same assumptions as in (6.2), suppose that M 2 = 4. Then
K 2 =6, 7 and S  is a specialization of  the Du V al ancestor with K 2 =8, p g = 4.

P ro o f  Suppose that M 2 = 4 . T h e n  fro m  K2 = K. M + K. F= +  2+ K. F, we
have the cases: (a) K2 = 7 if  F2 = —1, K •F=1, (b) K2 = 6  if F2 = —2, K-F=0.

Suppose w e are  in  case  (a). T h e n  the  analysis m ade  in  the  previous proof
implies that M — F= A l + A2+ A3, where A Z =M =0, A Z = — 1, for {i, j, =11, 2,
31. Also we have M-A h = Al +1, h=1 , 2, 3. Hence, by lemma (3.2, iv), the two
base points p, q, of M I lie one on A i, the other on A i . By lemmas (3.7) and (3.8)
the  curves /lip, M g,  a s  in  lemma (3.4), are  such that M q=2A i+H,
and 12'111=124J is  a  pencil of genus 3 without base points or fixed components.

Suppose w e  a r e  in  c a s e  (b ). A s  in  t h e  p ro o f  o f  (6.3), w e  h a v e  that
M —F=A 1 +A 2 +A 3 , where A t •F=A i •F= 1 and A k •F=2  fo r {i,j, k}= {1,2, 3}, and
A?. = 0 ,  A Z  =  — 2, and also M • A i = M . A i = 1, M • A„= O. A ga in  by  lem m a (3.2,
iv), the two base points p, q, of IMI lie  one  on  A i ,  the  other on  Ai  a n d  we reach
the same conclusion as before, i.e. the curves M r  M g  a r e  such that M p =2.4 1 +H,
M q =2A i +H , and  I2A1l =I2A i l is  a  pencil of genus 3 without base points or fixed
components.

Now we consider, in either one of the above cases, the canonical double plane
g-4 3 2  o f  S , or, equivalently, the rational map O m :S-4. 2  (see §2). The branch

curve G has, in both cases, degree 14: in fact (K +M )•M = 10, i.e. the general curve
M  in M I  h a s  g e n u s  6 . T h e  curve G  contains tw o distinct lines a ,  a n d  a2

corresponding to the base points p  and q of MI which are blown up on g (this can
be seen as in  lemma (5.2, ii)). The curves A i a n d  A»  w hich a re  1-connected, are
contracted to points a l e a , and oc2 ea2 . Furthermore H , which is also 1-connected
is contracted to the point y = a 1 na 2 .

Let G=a 1 +a 2 + G '.  Since H 2 =0, K •H=2, and the two base points which are
blow n up in  passing from S  to  g  a re  o n  H , the  po in t y  h a s  to  b e  a  po in t of
mutiplicity at least 6 for G, hence o f multiplicity at least 4 for G'. This can be
seen, by the way, also in  a  different manner: in  fact the pencil of lines through y
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pulls back on S  to  the base point free pencil of genus 3 curves I2Ai l -=12/11. Then
the assertion follow s by th e  Hurwitz's formula, w hich actually shows th a t  the
multiplicity in question is either 6 o r 7.

Since A7 = =0, since the genus of both A. a n d  A  is two, and M g =2A ,+ H,
M g =2A i +H , and the two base points which are blown up are one on A,, the other
on A p  we see that a, and cx2 a re  at least [5,5]-points for G with tangent lines given,
of course, by a ,  and a 2 respectively, i.e. they are  [4,4]-points for G ' with tangent
lines given by a ,  and a 2 . Since a, and a 2 cannot be contained in  G', we see that
the indicated multiplicities for a i , / 2 and y are the effective ones. N ow  a standard
double plane analysis show that G has to have another essential singularity x which
can either be a  4-uple point, yielding K2 = 6 , o r  a  [3,3]-point, yielding K2 = 7  (or
specializations of these: e.g. a  5-uple point instead o f  a  4-uple point is admitted,
etc.). Of course then x  must be the image of A3 and therefore x  must be on the
same line r  w ith  a , and  a2 . Such a  line r  is  in  fact the image of F .  Since F is
not contained in  any curve of the pencil 2A,I =1241, then r  does not pass through
y and therefore a l ,  oc2 a re  both distinct from y. Of course also x  is distinct from
Œ1 , a 2 o n  r.

In order to finish our proof, it suffices to recall the double plane description of
the D u Val ancestor with p g = 4, K2 = 8  given in  example (1.4, iii).

(6.5) Proposition. Under the same assumptions as in (6.2), suppose that M 2 = 5 .  Then
either K 2 =7 and S  is a  specialization of  the Du V al ancestor w ith K 2 =8, p g =4, or
K 2 =8  and S  is a (particular) Du V al ancestor w ith K 2 =8, p g  = 3.

P ro o f  Suppose tha t M2 = 5, and so  IMI has three base points p, q, r. Then
from K2 =  M + K. F= M 2  + 2 + K. F, we have the two cases: (a) K' = 7 if F2 = —2,
K. F=0, (b) K 2 =8 if  F 2 = — 1, K. F=1.

Suppose we are in case (a). Then, as usual, we have that M — F=A ,+A 2  + A 3,
where A cF=A i .F=1,A ,•F= 2 for j, = {1, 2, 3}, and A 7 —  = O .  Since M 2 =5
we deduce that 2q= —  1. By lemma (3.2, iv), tw o of the base points of M ,  say
p, q, lie one on A ,, the other on  A i . Then, as before, the curves M g , M g  a re  such
that M g  =2A i + H, M g =2A i +H , and 12A,I=12Ai l is a  pencil ClI  of genus 3 without
base points or fixed components.

Since A i .A ,=0, we see that A , is contained in curves of ICI. T h e n  the intersection
form is negative semidefinite on the space spanned by the irreducible components
of A „. If it is negative definite, then lemma (7.4) im plies that A , is 1-connected
and therefore it is contained in a unique curve of ICI. O therw ise  there  is  a  curve
Z  contained in A , such that Z 2  =0 (cf. [BPV], pg 90). Then, of course, 2Ze ICI. B y
using lemma (3.2, iv) as we already did in the previous proof, we see that Z  should
be different from A , and Ap  hence the pencil 12A would have three double curves,
a n d  therefore Zi c—*Tors(S), w hich, by proposition (1.5), contradicts K 2 =7. I n
conclusion we see that there is a  1-connected curve C of the pencil I2Ai l such that
C=A k + D .  S ince  A l=  —  1, o n e  h a s  A k •D =1  y ie ld in g  th a t A ,  a n d  D  are
1-connected. Moreover D 2 = —1, K. D =1.
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Notice that M g =2A 1+H  and, since A i contains only the base point p  of
one has re H .  Furthermore r is  a simple point of H  by lem m a (3.1, ii). Since
M —F=A 1 +A 2 +,4 3 , A i only contains the base point p  and A i  on ly  q, by lemma
(3.2, iv) we see that reA k and again it is a simple point of A , .  Hence r is in A k r)11,
and therefore it is a singular point of Ak +D +H , im plying that 111,.=A k +D +H
(see lemma (3.1, i)). Since r is only a double point of A k +H , it must lie on D  and
it is a smooth point of D  by lemma (3.1, i). Notice that 111-D=1 and actually the
general curve in I MI meets D  only  at the base point r. Hence D , as well as 111,
A i , A k  and H  is contracted by the rational map O m .

As in the previous proof, we consider the canonical double plane :S---43 2  and
we proceed as above to describe the branch curve B  of the double plane and its
singular points. Since K M = 7, the degree of B  i s  16. In the present case B
contains three distinct lines lg , 1g and 1, corresponding to the base points p, q, r of

W e will call B' the residual curve of B  w ith respect to  1„, and 4, whose
degree is 13.

The lines I ,  and 4 pass through the same point y  which comes from the
contraction of the curve H .  Furthermore the contractions of the curves A i, A i , A k,

D give rise to singular points i e/I„ k e / p . ,  6 E 4 .  Notice that F is also mapped
to a line f  which contains 4  4 c and that the pencil of lines through x corresponds
to  the genus 3 pencil ICI on S .  Since F is not contained in any curve of IC1, then
fdoes not pass through x and we see that 4  4  are points of 1p , tq ,1 distinct from y.

As for the singularities presented by B  and B' a t  the aforementioned points,
arguments which are similar to the ones used in the proof of proposition (6.4) show that:

(a)x is  a point of multiplicity 8 for B, hence it is a point of multiplicity 5 for B';
(b) is a [5,5]-point with tangent line /p  and is a [5,5]-point with tangent line
1g , hence they are [4,4]-points for B', with the aforementioned tangent lines;

(c) k i s  a point of multiplicity 6 for B, hence of multiplicity 5 for B';
(d) 6 is a point of multiplicity 4 for B, hence it is a point of multiplicity 3 for B'.

Now, in order to  see  that such  a surface is  a specialization of the Du Val
ancestor with 1(2 =8, p g =4  as stated, we perform the quadratic transformation a)
based at the points X, 4 k .

 T h is  gives rise to a new double plane it : S'-+P2  which
is  birational to  the original one, i.e. there is a birational transformation o- ::5--*S'
such that wolli=o- o n .  Let G  be its branch curve. It is no more tha t an exercise
to verify that:
(i) G  has degree 14, and more precisely G =a 1 +a 2 +G ' where a1, a , are distinct
lines and G' is a residual curve of degree 12. Actually G' is  the proper transform
via co of B', whereas a, corresponds to ip  and a, corresponds to the fundamental point

• of (0 ;

(ii) the intersection point y of a , and a2 , which comes from the contraction via a)
of the line f ,  has multiplicity 6 for G  and 4 for G'. However the image via w of
the point 4  becomes infinitely near to y along a , .  Hence G ' has a [4,4,41-point
a t y with tangent line al;
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(iii) there is a  further [3,3]-point for both B  and B ' a t  the point z corresponding
to  45 along the line a 3 th rough y  corresponding to the fundamental point k  o f  co.

Now the assertion follows just by comparing with the example (1.4, iii). The
process o f performing th e  quadratic transformation co shows th a t  a direct, and
alternative, way of obtaining the double plane Tr E-413 2  from S is the follow ing. One
considers th e  2-dimensional linear system  111 =12M — Ak -  Ai -  HI=1M -  Ak+ Al.
Then the rational map O r  : S -4 3 2  gives rise to the double plane in question.

Finally, we suppose that K2 = 8. As usual, we have M —F= A i + A 2 + A 3, where
1 = M.A i = Al. +1= A t -F, for ic {1, 2, 3}, implying A ?=0,K .A i = 2, for ief 1, 2, 31. By
lemma (3.7) the  three base points p, q, r  of 1M1 will lie  in  /11, A ,  Ak respectively,
and the curves M,,, My , M r as in lemma (3.4), are such that M p = 2A,+ H, M y =2A  + H,
M r =2A k +H  and  12A,1=1244 =12Ak 1 is  a  pencil of genus 3 without base points or
fixed components.

Consider then the canonical double plane of S .  The branch curve B has degree
1 6 . The curve B contains three lines b 1 , b2 and b3 corresponding to the base points
p, q, and r of 1M 1. The curves A i, A . and Ak, which are 1-connected, are contracted
to  points fl i eb i ,  /32 eb 2 , /33 eb 3 . The points S i ,  )62 ,  163 h a v e  to be aligned since
M —F=A 1 +A 2 +A 3 . Furthermore there is a point (5 coming from the contraction
o f  H ,  w hich  is  a lso  1 -connec ted . F rom  t h e  above analysis it fo llow s that
(5=b i nb 2 nb 3 . Furthermore the line containing I3 ,

 /32 , )63 does not pass through
for the usual reasons.

Let B=-- B' +b i +b 2 +b 3 . The curve B' has degree 13 and  it is easy to see, with
the usual arguments, that its only relevant singularities are a  5-tuple point a t (5 and
three [4,4]-points a t f3i , )62 , fi3, having tangent lines b 1 , b 2 , b 3 , respectively.

This, in view of the example (1.4, iv), proves the assertion for K2 = 8.

(6.6) Remark. The analysis we performed in the proofs of the above propositions
(6.4) and (6.5) shows tha t the minimal regular surfaces with p 9 =3, with canonical
system having a  fixed part, with no pencil of curves of genus 2 and non birational
bicanonical map, are, all specializations in moduli of the same surfaces with canonical
system without fixed p a r t .  Moreover our analysis also shows exactly in which way
the specialization takes place. In conclusion the possible cases are as follows:
(i) K2 = 6  and the surface is  a  specialization o f the  D u  V a l ancestor with p 9 =4,
K2 = 8 described in  example (1.4, iii), from which we keep the notation. The case
in question corresponds to  the fact that the  branch curve G  of the double plane
described in  (1.4, iii) acquires a  4-tuple point x  a s  indicated in  general in table
(1.3). The fixed component for 1Ki arises when x  is collinear with the [5,5]-points
a ) ,  a ,  of G  and the image of the fixed part of IN is  the line containing the three
points x, a l , a 2 ;
(ii) K2  = 7  and  again the surface is  a  specialization o f the  D u  V a l ancestor with
p9 =4, K2 = 8 described in example (1.4, iii). As indicated in table (1.3), the branch
curve G  of the  double  p lane  described in  (1.4, iii) acquires here a  [3,3]-point
x .  However there a re  tw o possible specializations which enable 1KI to acquire a
fixed part:
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(ii 1 ) as in case (i), x is collinear with the [5,5]-points a l , oc2 o f  G and the image of
the fixed part of IKi i s  the line containing the three points x, « 2 ;
(ii2 )  one of the tw o points a l ,  oc2 , say a l , becomes infinitely near to y  along the
line a l , and the fixed part of IN  is contracted to y.

The two cases above are actually different, inasmuch as in the former one the
movable part M  of IKI has M 2 =4, whereas in  the later one has M 2 =5;
(iii) K 2 =8 and the surface is a  particular member of the family of Du Val ancestors
w ith  p g =3, K 2 = 8  d esc rib ed  i n  exam ple (1.4, iv ), f ro m  w h ic h  w e  k e e p  the
n o ta tio n . The particularity consists in the fact that the three [5,5]-points i =1,
2, 3, of the  branch curve B are  collinear along a  line w hich is the image of the
fixed part of IK1;
(iv) the surface contains a  pencil of curves of genus 3 with a base point, and it is
therefore a  specialization of the  D u V al ancestor with p g = 6, K2 =9 described in
the example (1.4, ii), from which we keep th e  n o ta tio n . A  fixed pa rt o f IN  can
be produced when more than  one essential singularity of the branch curve B' on
the cone Q0 , acquired as described in  table (1.3), happens to lie on one and the
same line of the cone.

7. Appendix

In this appendix we prove various results that have been used throughout the paper.

(7.1) Theorem. I)  L e t D  be a  2-connected curve on a surf ace S  and le t x, y  be
two distinct multiple points of  D . T h e n  x and y  are not separated by  1K+DI if  and
only  if  D  decomposes as  a sum  of  two curves A , B satisfying:
(i) A• B=2;
(ii) x, y  are  non-singular points of  A  and 0 ,(x + y )(9 A (B).

Furthermore if  x, y  are  not separated by  IK+DI, the decomposition appearing
above is such that A n B ={x ,y ) or A  •_B.

II) L et D  be a  2-connected curve with pa (D ) .2  on a surface S and let x, y  be two
smooth points of  D (possibly x  = y ). Then, if  x, y  are  not separated by  'co,' one of
the following occurs:
(a) either D  is an irreducible hyperelliptic curve and leD (x+y)1 is the unique g l on D;
(b) o r D  is reducible, x, y  belong to the sam e com ponent r o f  D , w hich is an
hyperelliptic curve, and D  decomposes as  a sum  F+F 1 + ••• +F„ satisfying:
(i) F 1 , ..., F  are  curves such that f • Fi =  2, f o r every ie{1,...,n};

(ii) (9,-(F1) _-(91-(x+y), f o r every iE{l, ...,n);
(iii) 10,-(x+y)l is a g l on f ;

(iv) F1•F i =0, f o r i 0j;
(y) 0,,(Fk ).•-• 0,, f o r all k<i;
(vi) F i is 1-connected f o r every ie{1, •••,n};
(vii) if  k < i, either F1nF k =0 or

(c ) o r x 0 y , and x e f ,  y e A  w here F, A < D  are  non-singular rational irreducible
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curv es. Furtherm ore either D.= + A, or D =F +  + F 1 + • • • +F„ where F1, • • F „ are
curves satisfying (iv) and (v) of (b) and such that F•F i = A•Fi =1, for every ie{ 1,•-•,n} .

P ro o f  P art I) o f this theorem is theorem 3.2 o f [M ], whilst pa rt II) except
assertions (vi) and (vii) is theorem 4.2 of [M]. Assertion (vi) is a trivial consequence
of the other assertions. In  fact assertions (ii) and (iv) imply that Fi .(D — Ft)= 2, for
every ie {1, • • n}. Using lemma (A.4) o f [C F M ] am d  2-connectedness o f D  one
has then assertion (vi). For assertion (vii) assume tha t F i n F k 0 0 .  Then we can
write Fi = 4 0 +A  „  Fk =A 0 + 4 2 , where A, is a curve and A 1, A2 are effective divisors
w ithout com m on com ponents. Suppose th a t  A ,  0 0 .  S in c e  b y  assertion (v),
(9F ,(Fk) (9F,, A, • (A, + A2 )= 0 . N o w  A , and A2 have no common components and
therefore necessarily A, •A, <O. This contradicts the  1-connectedness of Fi we just
proved, showing that A, =0.

(7.2) Lem m a. L e t D :=C +Z  be a curve with C an irreducible hyperelliptic curve, Z
a (-2)-cycle such that C. Z =2 a n d  c (Z)-- q where lni is the unique gl on C. Then:

(i) there exists a line bundle 2' on D such that is a gl on D and such that 2' ®" cop;

(ii) let d i be  an invertible sheaf on D su c h  th at t ® " - 2 ' , 2 ° P  and
2 1c . I f  there ex ists m eN  w ith ./11 ®"1..!-_' Y ®'", th e n  C n Z =P+Q , w h e re  P , Q  are
distinct points of  Z  such that (9 c (P+Q).- q.

P ro o f  Rem ark first that it is possible to  glue the trivial sheaf on  Z  and ri
o n  C  i n  such  a  w a y  th a t  f o r  th e  re su lting  shea f Y  o n e  has I 2 'l= g 1 .  Let
2pg(D)— 2 = 2n. Notice also that D is 1-connected. Since 2'®"—cop and 11°(D, Y®")
>n +1, using Serre's duality, the Riemann-Roch theorem and lemma (A.1) of [CFM],
one gets (i).

For (ii) remark that the hypothesis on .41 imply that Y®m(D.il ."" is  a torsion
element of ker(Pic ° (D)-313i0 C ) ) .  Therefore this kernel must be C* and so we have
the assertion.

(7.3) Proposition. L et D  be a  0-connected divisor such that IMD,C D ) = 3. Then D
decomposes as D = D i  +13) 2 + D 3 , where D 1 , D 2 , D3 are  curves such that:
(i) 11°(D i , D , ) = 1 ,  for ie {1,2} ;

a r ) ,(D2 +D 3 ) ,,, and (.9D 2 (D3 ) -(9D 2 ;
(iii) 'D2 = D2' D3 =D, •D3 =0.

Furthermore, if (.9D ,(D 2 )=C9D i , the image of the restriction map r: How, (PD )--4-10
(D 3 ,(00  is 1-dimensional.

P ro o f  Proposition  (2 .4) of [M ] s ta te s  th a t a  0-connected curve D  o n  a
non-singular surface su c h  th a t li°(D, CD )=n > 2 decom poses a s  D= D i + • • • +D„,
where D 1, •••, D„ are curves such that:

(a) h° (D„ C O = 1, for iell, • • •,n — 11;
(b) CD ,(D i +  , + • • • +D„)'- • CA  for all ie{1, • • •,n —11;
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Assertions (i) and (ii) of the lemma are just assertions (a) and (b) above . For
assertion (iii) notice that from 0-connectedness of D, we have D,-(D I +D 3 )>0 and
D 3 .(D 1 +D 2 )> 0 .  From D 1 (D2 +D 3 )= 0  and D 2 •D3 = 0  w e have then D 1 D2 =
D 1 . D 3= 0.

For the last assertion, let us notice that, since (9D ,(D 2 ) -Cop1 , we have the exact
sequence 0—+Cop i —01:11 + D2 -■ 9D2 -+ CI, whence IP(D i  + D2, 0 D , .4. D2)= 2. Moreover, since
OD, p 1 ( — D 3 ) , CD2 -= e)D2(— D3 ), a l s o  0 D1+ D2 =  D1 + D2( — D 3 ) .  Since Ker
f r(D  + D2, e ll- Di + D2( —

(7.4) Lem m a. L et C, D be curves on a surface S such that the intersection form  of
S  restricted to the subspace generated by the irreducible components of  C and D is
negative definite. Then:
(i) if  C 2 =D 2  = C. D, then C=D;
(ii) if  C 2  =D 2  = -1, C  and D  are 1-connected. Furthermore if  COD, then C.D=O
and either CnD=0 or C <D  or D < C;
(iii) if C2  = -1, D 2  = - 2 then - 1 < C. D <1 and if CD= -1 then either D <C or C <D.

P ro o f  For (i), notice first that, since the intersection form of S restricted to the
subspace generated by the irreducible components of C  and D  is negative definite,
C2 < 0  and D 2 < 0 .  Hence C.D<O and so  C  and D  have common components.
Write then C= A + B, D = A + E where B and E are effective divisors without common
components and A  is  a  curve. Then, since B .E >0 , the relation 0=(C—D) 2 =
B2  —2BE+ E2  implies that B 2 +E 2 > 0, which yields B 2 = E2 =0, hence B =E= 0,
proving (i).

The first part of (ii) is clear since any decompositon of C =A +B  with A .B <0
would have A 2 > 0 or B 2 >0. For the second notice that, since the intersection
form is negative definite, we get (C+D) 2 <0 and (C—D) 2 <0 and therefore, if C O D ,

o n e  h a s  C .D =0 . Suppose n o w  th a t C .D =0  a n d  C  a n d  D  have common
components. Then we can write C =A +B , D =A  +E  w here B  and E  have no
common components. Suppose b o th  B  a n d  E  are  non-zero . Then w e get
B2 — 2B• E 2= ( c , _ D ) 2 = (.2+132= —2 yielding .132  = =  —1 and B . E  O. This leads
to  a contradiction, because 0> (D + B)2  = — 2+ 2D. B = —2 + 2A • B > 0, since C  is
1-connected, and therefore B A  >0. Hence either B  or E is zero, thus either D <C
or C<D.

The proof of (iii) is very similar and we omit it.
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D 3 )), we have immediately the last assertion.
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