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Regularity bounds for projective subschemes of
codimension two

By

N. CHIARLL S. GREcol  a n d  U. NAGEL 2

Abstract

New regularity bounds for subschemes of codimension two are established. They
rest on the Serre correspondence to reflexive sheaves, a  study of cohomological
annihilators and the strong restriction property. Examples are described where
the bounds are sharp.

1. Introduction

Let Pn be the projective n-space over an algebraically closed field of characteristic
zero  and le t Xc / In  b e  a  (locally) Cohen-Macaulay subscheme o f  codimension
tw o . The purpose of this paper is to find integers mi ,  1 <j  < n -2 , such that the
vanishing statement H i( fx (t))= 0 holds if t>m i . We refer to such results as regularity
bounds, since they yield estimates fo r  th e  Castelnuovo-Mumford regularity of
X .  Now assume that X  is a  generically complete intersection. Then we can use
the well-known Serre correspondence to reflexive sheaves of ran k  tw o . For this
let e be the largest integer t such that cox ( —t) has a global section e which generates
cox ( —t) outside a  subscheme of codimension > 3 (in Pi'). T he section  e gives rise
to a  reflexive sheaf g  on Pn of rank  tw o . In the correspondence between X  and
g , the degree d  of X  and the smallest degree s o f  a  hypersurface containing X
occur naturally. There is one more integer we want to take into account. Since
X is locally Cohen-Macaulay there is an integer k  such that M k

 •  M() x )= 0 for all
j  with 1< j< n  —2. I n  that case X is called k-Buchsbaum. Similarly, it is defined
when g  is called k-Buchsbaum.

In  this paper we establish regularity bounds for X  depending on d , e, s, k,
n. We do this in two steps. First we generalize results of Migliore and Miró-Roig
[15] obtained for integral curves, to arbitrary codimension tw o subschemes of
Pn . This is done in Section 4. It requires regularity bounds for k-Buchsbaum
sheaves on  I " .  Here we proceed by induction on n  using the restriction to  a
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general hyperplane. The difficulty is that the restriction of a k-Buchsbaum sheaf is
n o t k-Buchsbaum any  m ore  in  genera l. T his problem  is dealt w ith  in Section
2. Since our sheaves are typically not locally free we have to extend the methods
of [2 0 ] . Combining the results of Section 2 with results of Hartshorne and Sauer
o n  s tab le  an d  unstable sheaves o n  a  p la n e , respectively, we prove th e  needed
regularity bounds for sheaves in Section 3.

In a second step we show that some of the bounds of Section 4 can be improved
if  we consider integral subschemes o f sufficiently large deg ree . T he  k e y  is  the
consideration of the strong restriction property. W e say that X  has the restriction
property if the general hyperplane section of X  is not contained in  a  hypersurface
of degree s — 1. Sufficient conditions which ensure the restriction property have
been obtained by Laudal, Gruson and Peskine, Mezzetti and S trano . However, if
X  has dimension > 2  it m ight happen that X  has the restriction property bu t its
general hyperplane section does not h av e  it . We say that X has the strong restriction
property if X  and all its consecutive (proper) general hyperplane sections have the
restriction p roperty . It is  the purpose of Section 5 to present sufficient conditions
for X  to have the strong restriction p rope rty . Note that some of the results of this
section hold true for subschemes of arbitrary codimension.

In the final section we show how the results of Section 4 can be improved if
one know s that th e  subscheme X  h as th e  strong retriction property. Then w e
describe infinite series of surfaces and curves for which our improved regularity
bounds are best possible.

W e want to thank the referee for a  very careful reading of the paper, and, in
particular, for pointing ou t a  few bad oversights.

2. Cohomological annihilators and regularity

The aim of this section is  to  relate regularity bounds of a module to those of
its restriction to  a  general subspace (cf. Proposition 2.2), by taking cohomological
annihilators into account. Since we want to apply these results in the next section
to sheaves which are not necessarily locally free, we cannot use [20] directly. Thus
we show how the methods of [20] can be extended in order to achieve the required
generalization.

Let R = 3 > 0 R  deno te  a  graded Noetherian ring such that R= R o [R t ]  and
K:=R 0  i s  a  field. Put m =  (:) , 0 R„ th e  irrelevant maximal ideal o f R .  L et M
denote a  finitely generated graded R-module o f Krull dimension 6. W e fix the
basic notation of [ 1 9 ] .  In particular, a homogeneous element x e R  is called M-filter
regular, provided 0 : ,  x  is an R-module of finite length. A system of (homogeneous)
elements x = {x i , •-•,x,.} is called an M-filter regular sequence whenever

(x i , •••,x ,_ ,)M :x i /(x i , •••,x i _ (i=1, •••,r)

is an R-module of finite length. For an arbitrary graded R-module N, let e(N) denote

e(N):= sup{jEZ I N i  0 }
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(where Ari  d e n o te s  th e  j- th  g ra d e d  p ie c e  o f  th e  graded R -m odule N ) . Thus
e({0}) = —

Furthermore we recall a definition, see [21], p. 266. F o r  a n  integer s> 0 put

rs (M):= max{i+ e(H (M ))li sl.

Then regM:= ro (M)= rd e p t h m (M) is called the Castelnuovo-Mumford regularity of M.
F o r  a  system o f  elements x = {x i , • • ,x,} o f  R  a n d  a n  integer let

x i = {x i , • • x i l. Note that x 0  i s  the empty set.

Lemma 2 .1 .  Let 1= Il l , • • •,1,1 c R 1 b e  an M -filter regular sequence. Suppose
there is an integer p>0 such that l u IP„,(M)=0, where 1<r <6—  i. Then there are the
following bounds:
(a) e(11(M)) p-1+ m ax{ e(M (M IIM )), r i + 1(M)— i +11;
(b) (M)) p,-1+e(111„,. (M I1M)) if H'„,. (M)= 0, f o r all j w ith i<j< i + r.

P ro o f  According to [20], Lemma 3.3 it holds

e(H(M)) p — 1 + e(IP(M)111P(M)).

Hence [20], Theorem 2.3(a) yields

e(11!„(M)) p — 1 + max {e(1-P„,(M 1 1 M)), e(11 I bM))+ 210 r — 21.

Using ri(M I li M )<r i(M ) claim (a) follows.
In case (b) an easy induction shows tha t the assumption implies

1-P 1 (M iti M)= 0  if 0 < j< r — 2.

Therefore [20], Theorem 2.3(a) reads as

e(H1„,(M)I1H(M))e(IP„,(M /1M))

proving claim (b).

In  c a s e  r  1  Lemma 2.1(b) has also been observed in [8].
Now we are ready for the m ain result of this section.

Proposition 2 .2 . Let 1= {l i , • • •,1,1 c R 1 be an M-filter regular sequence. If  r> 0
suppose there are integers p„ • ••, p i , r _ 1 , where 0<  i <6— r, such that

4'4 i _i lltn (M )=0 f or all integers j w ith i<j<i+r.

Then it holds:

ri(M)<ri(MI1M)+ci,,

where
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ci ,r =max{0, ••• —1}.

P ro o f  We induct on r > O. The case r=0 being trivial, we assume r > O. N o w
we use descending induction on i. If i= r  then ri(MI1M)=i+e(1-P,,,(M11M)) and
[20], Proposition 4.3. shows the claim.

Let 0 < i<6 — r. Then we know by the induction hypothesis

ri-F 1(M )ri+1(M  /

Since ri + i (M I _1,._ 1 M ) r i(M  lM ) we obtain

(*)
 

I1M)+

By definition it holds i+e(H (M 11M ))r i(M IIM ). Therefore the  Lemma above
implies

i+e(g„,(M)) ri(M I lM)+ ci+ 1 , r  -  1  +

proving i+e ( H ( M ) r i(M  I1M ))+ c i II -4- -I- LIi,r5 f  i -  4 1  •  • • •  •  r  i+ r- I  >0. Otherwise it follows
Hi

m
+ 1 (M)= • • • = H i

m
+  1 (M)= 0  and Lemma 2.1(b) provides

i+e(H (M ))i+e(11 1.,„(M11M))+ /1M))+ co ..

Hence we have shown in any case that

i + e(Hi,,,(M )) r i(M I1M)+ co .

Using the estimation (*) it follows

ri(M)=max{i+e(IP„,. (M)), ri + i (M)} l_M)+ co .

We will measure the "size" of the cohomology modules of M by the integers

iti(M)=min{À.E/Vimq-P„,(M)= 01.

Note that ili(M) is finite if and only if I-P,„(M ) has finite length.

Corollary 2 .3 .  Suppose H ( M )  h as  f in ite  le n g th  f o r  all — 2. Let
1= {1,, • • •,1,.} R i  b e  an M-filter regular sequence. Then it holds fo r  all i <(5 —r

ri(M ) r i(M I 1M)+ do .

where

clo =max{0,4M)+ • • • + 1(M) - 1}.

Remark 2.4. In the corollary above we do not assume that M n
-  1 (M) has finite

length. Indeed, in our application this module is typically not of finite length. Thus
the methods of [17] do not apply.
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3. Reflexive sheaves of rank two

In  this section we will generalize the vanishing theorems of [15] for reflexive
sheaves of rank 2 on P 3 to results for such sheaves on P .  F irst w e consider stable
sheaves and then unstable ones.

F rom  now  o n  R  w ill be  the polynomial ring K[x o , • • •, x„], where K  i s  an
algebraically closed field of characteristic zero and n> 2. L e t  g  be a coherent sheaf
on P".= Proj(R). W e denote by M(I) the graded R-module 0 , E,Hi(Pn, g(t)). For
short we write .1P(g(t))= IP(P",g(0). The sheaf e is called normalized if its first Chern
class c , equals either 0 or —1.

Consider th e  m o d u le  E =1 -1 (‘) . T h e  isomorphisms I-14,+  i (E)L- Hi(I), i> 1,
allow us to apply the results of the previous section to  the sheaf g.

For an  integer s> 1 we define

rs (I)= max fj+ 1 +e(1-».(I))1j_s}.

T h e n  it  h o ld s  r ( g ) = r + 1 (E )  for s > 1 .  N o t e  a ls o  th a t  r e g g =  r , ( I )  i s  the
Castelnuovo-Mumford regularity of e  in the sense of Mumford [18].

Definition 3 . 1 .  A reflexive sheaf g  of rank 2 on P" is said to be k-Buchsbaum
d m kM (g)=0 for all j  with 1 2.

Note that the module E=.1e(1) is in general not k-Buchsbaum in the sense of
[17] or [20], if the sheaf e is k-Buchsbaum. The reason is that we do not require
a  knowledge on  the  annihilator of 1/7 - 1 ( I)  in  the  definition above. Instead, the
definition is made up in  such a  way that I is k-Buchsbaum if and only if the zero
scheme of a general section of g(t) is k-Buchsbaum for sufficiently large t (cf. Section 4).

The following preparatory result follows immediately from [6], Theorem 7.4.

Lemma 3 .2 .  Let g be a normalized stable reflexive sheaf of rank 2 on P 2 . Then
it holds

111(g(t))=0 i f cl— 2.

Now we are ready to generalize [15], Theorem 1.4.

Theorem 3 .3 .  L et e  be a  normalized stable ref lexive sheaf o f  rank  2  on P",
n> 3. Suppose g is k-Buchsbaum. Then it holds for all integers j, with 1<j <n— 2:

H i(g(t))=0 if  c2 — cl  —2—j +(n —1—j)k,

unless j =1  and the restriction of  g  to  a  general linear subspace of dimension 3  is
the null correlation bundle. In  this case we have

111 (g(t))= 0 if  t _c2 — c — 2 + (n —2)k,

namely the previous bound increased by 1.



42 N . Chiarli, S . Greco and U. Nagel

P ro o f  If  k = 0, then m m = 0 fo r  all j ,  w here 1 —2. Thus we m ay
assume k > 1 . Let L 2 cL„_ 3 c•••cL o = P" be a  flag of general linear subspaces
such that L. h a s  dimension n—i.

First, let us assume that the restriction e to L 2 is a stable vector bundle. Hence
1-r(g, n _ 2) = 0  and eL 2(—c1) im p ly  b y  Serre  duality  H2 (g L n  2 (t)) = 0 if
t> — 3 —cl . A c c o rd in g  to  Schwarzenberger (cf. [6 ] ,  L e m m a  3.2) it  h o ld s
4c2  >c. Therefore Lem m a 3.2 shows

(* ) c2 — c, — 1.

Corollary 2.3 provides for j  w ith 1 <j<n —2

j+  1 + e(I-1!(g)). _ i ) + (n —j —1)k —1

1 (e L „ _2 )+ (n — i — 1)k — 1 by induction on j>  1

<c 2 —c 1 —2+(n —j-1)k

where the last estimation is due to  (*). O ur claim follows in  this case.
Second, let us assume that is not stable. T h e n , d u e  to results of Barth

a n d  H artshorne the restriction is  iso m o rp h ic  to  t h e  null correlation
bundle. Thus w e have r2 ( g ,  2)=0 and C 1( 0, C 2 ( 3) = l. Arguing as in
the first case we obtain, if j>  2,

j+  1 + eV-0 6 T  2(4
1
 L.,_ 3) +(n —1 —fik —1

=c 2 —c 1 -2+(n— j-1)k.

If j=  1 we have:
1 + 1 +e(1 1 .«.(61)-r1(eL 2) +(n —  1 — j)k —  1,

and the conclusion follows, being r1 ( 2)= 1.

Our next aim is to derive a vanishing result for unstable sheaves. A normalized
rank 2 reflexive sheaf g  o n  P" is said to be unstable of order r if gis not stable and
r is the largest integer for which H iv .(-00 0 .

We need the following result:

Lemma 3.4. L et g  be a  rank  2 reflexive sheaf on P", n >2, unstable o f  order
r. Then:
(a) ifL  c P" is a general hyperplane, then e  i s  a reflexive sheaf on L, unstable of order

r;
(b) f  e  is  normalized then c2 +r 2 +c 1 r> ();
(c) is g  is normalized and n=2, then

Ht(610)=1:) if  t c2 +r 2 +(I+ c,)r —1.
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P ro o f  All claims are in  [27]: (a) is Proposition 1.1, (b) follows from formula
(3) on p . 635 and (c) follows from Proposition 2.1 and Remark 2.3.1.

The following vanishing result generalizes [15], Theorem 1.5.

Theorem 3.5. Let g be a normalized reflexive sheaf of rank  2 on P e  which is
unstable of order r. Suppose g  is k-Buchsbaum. Then it holds fo r  all integers j
with 1<j <n — 2:

I-P(g(t))=0 if t c2 +(c 1 +1 )r+ r 2 -1—j-E(n-1—j)k.

P ro o f  Consider a flag of linear spaces as in the proof of Theorem 3.3. Lemma
3.4(a) and Serre duality imply

112 (g L n  JO= 0 if t > r— 2.

By Lemma 3.4(b) and (c) it follows:

r 1(g L n _2) _max{e2 +r 2 +( 1+c 1)r, =c 2  +r 2  +(1 +

Then the same reasoning as in  the proof of Theorem 3.3 provides the claim.

4. Subschemes of codimension two

In this section we will apply the vanishing results for reflexive sheaves in order
to obtain Castelnuovo bounds for subschemes of codimension 2 which are related
to  a  reflexive sheaf of rank 2 by the Serre correspondence.

Throughout this section we will assume that the subscheme Xc P" is a generically
complete intersection of codimension 2. N ote that every integral subscheme is a
generically complete intersection.

Under the assumption above, for sufficiently small integers t the twist cox ( —t)
of the dualizing sheaf of X  has a global section E  which generates wx ( — t) outside
a subscheme of P" having codimension >3. Thus there is an integer e=e(X) which
is the maximum over these integers t and then we choose a  corresponding section
E o f  wx ( — e). W e m ay think of E  as an  element o f Extl.„(fx (e+n + 1), (9p „) which
leads to an extension

The assumptions on X and c imply that g is a  reflexive sheaf (cf. [7], Theorem 4.1
and [24], Theorem 2.2). F or the  Chern classes of e  it holds according to [24],
Proposition 2.4: c 1(6)= e+n + 1 and c2 (e)= degX . F or hort will denote the degree
of X by d and put

s= minttezl in f x(t))oo).

The subscheme X is said to be k-Buchsbaum if
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ttelli.(A )= 0 for all j  w ith 1 <j<n  —2.

Using the exact sequence above it follows that X  is  k-Buchsbaum if  and  only if
g  has this property.

After these preparations we a re  ready to generalize [15], Theorem  3.1 to
subschemes of arbitrary dimension >  1 .  Regularity bounds using different invariants
and/or assumptions can be found, for example, in  [1 ], [8], [20].

Theorem 4 . 1 .  S uppose X  i s  k-Buchsbaum an d  e <2s — (n +1). I f  w e  put

P =  2
and assume p >0 , then it holds f o r all j  w ith 1<j<n — 2

H i( /x (t))=0 if  t > d— (e+n)p+p 2 — 2 —j+ (n —1—j)k,

unless j= 1  and the restriction of  X  to  a  general linear space of  dimension 3  is  in
the biliaison class of  the union of  tw o sk ew  lines. I n  this case the above bound
m ust be increased by  1.

P ro o f  As before consider the extension

Put = ( — p). T h e n  c i (g )-- c1( g ) - 2 p =e +n +1  2[e + n + 1 1E1-1,01, i.e., ,F  is
2

a  normalized reflexive sheaf. The assumption on e implies e+n + 1 — p  <s. T h e re -
fore the exact sequence above yields that the sheaf g  is k-Buchsbaum and

0 =- 11%fx (e + n + 1 — p))= (6 ( — p))= H° (,F),

th u s  .97 i s  s ta b le . S ince c2 (F)= c2 (g)— c i (g)p +p 2 = d— (e + n + 1)p +p 2 ,  and
(afx  (t+e+n+l— p))=H (.F(t)) fo r  1 n - 2, t h e  claim follows from Theorem
3.3. Note that the curves in 11 3  which are zero-loci of sections of the null correlation
bundle form the whole biliaison class of two skew lines.

Remark 4 .2 .  If X  is  a n  integral subscheme, then the assum ption p >  0  is
automatically satisfied. In fact, recall that the index of speciality o f an  arbitrary
subscheme X  of codimension 2 is

e' —e(117, - 2 (ex».

Hence Serre duality implies for a generically complete intersection X  that e '> e . If
X  is integral, then equality holds and therefore e +n +1  is positive (cf. [9]).

N ow  w e w an t to  ex tend  [15], Theorem  3.3. T h e  result complements the
previous one.

Theorem 4 .3 .  S uppose X  i s  k- Buchsbaum an d  e — (n +1). I f  w e  put
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p [

e + n + 1 1

=
2

then it holds for all j  w ith l j<n  —2

H(fx (t))= 0 i f  t_d— (e+n+2— s)s+e+n— j+(n— l— j)k .

P ro o f  Again we consider the extension

and the sheaf fr. = g(— p). Then .97 i s  a  normalized k-Buchsbaum sheaf of rank
2. Moreover, it holds

H° (.97 *(t e n + 1—  2p)) = Tr(,(0)=Hvxo — p +e+n + 0).

Hence th e  assumption o n  e  implies Ir(F*(s— l— p))=0 and H ° (.97 *(s—p))00.
Therefore is unstable of order p — s and Theorem 3.5 provides the claim.

W e w ish to point out that bounds for the  vanishing of H '( / ( t ) )  are  also
proved in [1]; these bounds, which are better than ours, are given under a  stronger
assumption on X.

5. Restriction results

In this section we study the restriction maps in low degrees. We define what
we mean by "restriction property" and "strong restriction property" and establish
sufficient conditions w hich ensure that a subscheme has these properties. In
particular we first give sufficient conditions for a curve in P3 to  have the restriction
property, which are complementary to the known ones (cf. Lemma 5.5), and then
we show that the strong restriction property for an equidimensional scheme X  can
be checked using a  "general curve section" of X  (cf. Theorem 5.11).

Let Xc P n  be a subscheme of arbitrary codimension. We denote by s(X) the
integer

s(X)= min{ t  ZI H°(,,x (t)) 0 01.

Suppose that the dimension of Xis at least o n e . Then we say that X has the restric-
tion property if it holds for a general hyperplane H  that

s(X )=s(X nH).

A general hyperplane H  gives rise to an exact sequence

0— /y ( — l)— -- /,,— +O.

Taking global sections we get natural restriction maps

H° (/s(t)) -- HAfxr,u(t)).

It follows that X  has the restriction property if and only if these maps are surjective
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fo r  a l l  t< s (X ). I n  general the surjectivity for som e  in tege r t m eans tha t the
hypersurfaces of degree t passing through X nH  can be lifted to hypersurfaces of
degree t containing X.

The first sufficient conditions for the restriction property were given for integral
curves in  P 3 by Laudal. H is lem m a has been im proved by G ruson and Peskine
(c f . [5 ]) . T h e  p roof in  the  "borderline cases" h a s  b een  g iv en  b y  S tran o  (cf.
[2 9 ]) . There are other generalizations of Laudal's lemma due to Mezzetti (cf. [12]
and  [13 ]). F o r example, an  integral surface Xc P 4  o f  degree d>s 2 —s+2 has the
restriction property.

However, if dim X> 2 and we take more than one hyperplane section of X new
phenomena o c c u r . Consider, for example, the quintic elliptic scroll X c P 4 . It fits
into an exact sequence

0 -4 (9,4)5 -421.4(3)-4fx (3)-0 ,

which shows that X  does have the restriction property bu t its general hyperplane
section does not have  it. Thus we give the following definition which will be used later:

Definition 5.1. Let X g P " be a closed subscheme of dimension m> I. W e  sa y
th a t  X  h a s  th e  strong restriction property if  X  a n d  all its consecutive general
hyperplane sections XnH i n•••nil i, (i<  dim X ) have the restriction p ro p e rty . This
is equivalent to  say that s(X)=s(XnL), where L  is  a  general linear subspace of
codimension m.

In order to investigate the restriction maps we will use the so-called Socle Lemma
of H uneke and U lrich. W e need som e n o ta tio n . L e t M  b e  a  finitely generated
graded R-m odule. Then the socle of M, soc(M), is defined to be the  annihilator
Annm m . It is  a lw ays a  finite-dimensional K-vector space. It can be trivial, but if
M  has finite  length it is certainly n o t .  Indeed, in  th is  case e(M ) is finite  and
[m ] e(m ) c soc(M).

We denote the initial degree of a module M  by

a(M)= min{ t eZ I[M ], 0 0}.

Then we can write s(X)= a(Ix ) where /x  c R is  the homogeneous ideal of X.
Now we can state the Socle Lemma (cf. [11], Corollary 3.11).

Lemma 5.2. L et leR be a general linear form and consider the exact sequence
induced by multiplication by 1:

—Ocer M( — 1) —> coker

Then we have: If  k e r  0  then a(ker)>a(soc(coker)).

The Socle Lemma may be viewed as the crucial step of a technique which is
due to Strano and often called Strano's method. The following result is essentially
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due to  Strano (cf. [28], Teorema 4) and  follows quickly from the Socle Lemma
(cf. [11]).

Corollary 5.3. L e t  C c P "  b e  a  curve an d  H  a  general hy perplane. If  the
restriction m ap Y ) ( f c (t))—>IrC f c , H (t)) is not surjective, then  [T or_  (

 
k rn i0 C I

f o r som e i<t+n-1 , w here  S  is  the homogeneous coordinate ring of  H and I c , f f  S
the homogeneous ideal of  CnH.

From  this one can deduce the  following form o f  Laudal's Lemma (cf. [29],
Proposition 1 for details):

Lemma 5.4. L e t  C c P 3 b e  an  integral curv e o f  degree d. I f  t h e  general
hyperplane section of  C is contained in a plane curve of degree b, then C is contained
in  a surf ace of  degree b prov ided d>b 2 + 1  o r d =b 2  +1 , b >4  an d  C  is  n o t the
zero-locus of  a section of  the null correlation bundle twisted by b.

We want now to complement this statement by considering curves of degree 10.

Lemma 5.5. L e t C c P 3 b e  an integral curve of  degree 10 and genus g> 8. If
the general hyperplane section of  C is contained in a plane curve of  degree 3, then
C is contained in a surface of  degree 3, unless C is the zero-locus of a section of the
null correlation bundle twisted by 3.

P ro o f  The proof shares some similarities and  should be compared with the
proof o f [29], Proposition 1. Thus we will focus on  the  differences and  refer to
Strano's paper for more details of the remaining part.

L e t H c P 3 b e  a  general hyperplane defined by th e  linear form  l e R .  Put
Z =C n H  and S =R /IR .

Suppose C  is no t conta ined  i n  a  cubic su rface . Then L em m a 5.4 implies
s(Z)= 3. Thus Z  is contained in  an  irreducible cubic curve G  because Z  has the
uniform position property. Moreover, since C has not the restriction property, the
homogeneous ideal Iz  of Z  must have a syzygy of degree < 5 (cf. Corollary 5.3). Since
G is irreducible this implies that Iz  has a t least tw o minimal generators of degree
4. It follows that the H ilbert function of Z  is  1  3  6  9  1 0  .... Now we use [2],
Theorem 2.1 to conclude that /, has no minimal generator of degree >  5 . Altogether
we get that Z  has the following minimal free resolution

0  S(— 6)0 S(— 5) —) S2 ( — 4)e)S(— 3) --)Iz —> O.

Moreover, we have I r (f z (4))= 0 and thus H2 () c (3))= 0. Hence the Riemann-Roch
theorem provides

10 /c (4 ))= g - 6  + h 1 Cfc(4 )).

According to our assumption g> 8 we see that C is contained in two quartic surfaces
F i , F2 . W e use them in  o rder to  link  C  to  a  curve C ' of degree 6. Then Z  is
linked by F 1 n F 2 nH  to Z '= C 'n H .  It follows that Z ' has a free resolution as follows
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0 —* S(— 5)C)S2 (— 4) S 2( — 4)C1S(-3)C)S(— 2) —> 0.

This resolution is not minimal. In fact, since a  quadric and a  cubic can have at
most one syzygy of degree 4 we conclude that /z , has at most one minimal generator
of degree 4. Thus there are at most two possibilities for the minimal free resolution
of Z'.

First, let us assume that

-- S( - 5) —* S(-3)(9S(-2)— q z , —0'‘)

is the minimal resolution of Z ' .  Then Corollary 5.3 shows that the quadric containing
Z ' can  b e  lif ted  to  a  quadric Q  containing C'. N ow  w e can  fo llow  Strano's
argument and link the curve C' by the complete intersection, say QnF,, to  a curve
C" which must have genus — 1. Thus we obtain g= 11 which implies that C is
the zero-locus of a section of the null correlation bundle as claimed.

Second, let us assume that the minimal resolution of Z ' is

0  S( — 5) CIS( — 4) —> S( — 4)C, S( — 3)0 S( — 2) —) O.

W e are seeking for a contradiction. Indeed, the fact that the quadric and cubic
minimal generators of I .  have a syzygy of degree 4 shows that they have a linear
form h  as com m on divisor. The ideal generated by h  and the quartic minimal
generator of I . d e f in e  a subscheme of Z ' of degree 4  which is contained in the
line defined by h. Now we claim that C' contains a plane curve D'of degree 4. To
show this we shall first prove that C' is contained in at least one cubic surface. By
liaison C' has genus g' =g— 8  O. M oreover h 1(/.(3))=0, w hence lik fc (t)= 0 for
t >  2 . It follows:

lk f c ,(3 ))= 1Mep3(3 ))— h° g9c,(3 ))+h 1Cic,(3 ))

> 20 — [X(c 9 c(3)) + h1(0 c( 3))]

= 20 —(18 —g' -E1) 1

Hence there exists at least one cubic surface F containing C '.  Now, if H  is a
general hyperplane we have FnHDC'nlin  A, where A is a 0-dimensional subscheme
of Z ' of degree 4 on a line h. Then FnH contains h, which implies that F contains
a plane z (where n n H = h ). Let D ' be the curve obtained from nnC' by removing
the 0-dimensional components; since HnD' = A, D' is the curve of degree 4 contained
in C ' we were seeking. It follows that D ' is linked by F i nF , to a curve D  which
contains C .  Since cop, (913, (1) we obtain the exact sequence (cf., for example, [22],
Lemma 3.5)

o fF in F 2  
--) /D -1.6° D.( - 3 ) — *0 .

It follows immediately that D is contained in a cubic surface. Thus the same applies
to  C, which contradicts our assumption in the beginning of the proof.
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Remark 5.6. I t  is  n o t  possible to  skip the assumption o n  th e  genus in the
last statem ent. The reason is that there is a  sub-canonical curve of degree 10 and
genus 6 which is not contained in  a  cubic surface, but whose general hyperplane
section is contained in a plane c u b ic . This curve is the general hyperplane section
of an abelian surface which is the zero-locus of a general section of eHM(3) (cf. [10]),
where gy m  denotes the Horrocks-Mumford bundle.

The preceding result sconcerning the restriction property can be generalized as
follows:

Proposition 5.7. L et Cc P 3 be an integral curve of degree d and genus g. L e t
Z =C n H  be its general hyperplane se c tio n . I f  C  has degree d>13,2 +1, then the
restriction map H°( fc (t))--- Ir(/z t)) is surjective for all t u n le ss  d = b 2  +1 and either

C is the zero-locus of  a section of  the null correlation bundle twisted by b, or
b= 3 and g <8, or
b=2.

P ro o f  If I r ( /c (b))=0, then Laudal's lemma 5.4 and  Lemma 5.5 respectively
imply IliV z (b))=0 and we are done. O therw ise C is contained in  an  irreducible
surface F of degree Now we argue by contradiction. If the m ap 1-r(fc (t))—
H° (/ ( t ) )  is not surjective for some then there is a plane curve G  of degree t
passing through Z  such that G does not contain F n H .  It follows that G nFnH  is
a  complete intersection of degree <b•t<b 2 which contains Z .  But this contradicts
degZ = deg b2 -i- 1.

The preceding proposition gives sufficient conditions for a curve of codimension
two to have the restriction p rope rty . The next lemma will be useful for concluding
the strong restriction property of higher-dimensional schemes.

Lemma 5.8. L et X c P" be an equidimensional subscheme of dimension> 2. Let
H ,1 1 ' P" be two general hyperplanes. Pu t Y = X nH and Z =Y n H '.  L et b be an
integer. T hen it holds: if  the restriction m ap  Ir( /(b ))-1 1 °(,fy (b)) is not surjective,
then there ex ists t b  such  that the restriction m ap H °(,fy (0)— >Ir(fz (t)) is not
surjective.

P ro o f  Consider the following two exact sequences

leGfx) —)14 )(f r) 111(/x)(-1)--+ M(fx) M (A )

ker coker

0 0 0 0

and
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HT(A) --1-11) (A) 11:(AX —1) —>11!(A) 1-1!(A )

ker' coker'

0 0 0 0

O ur assumption means a(ker)< b. Since X  is equidimensional the module I-1.1(A )
is finitely generated due t o  [22], Lemma 2 .1 2 . Therefore the Socle Lemma 5.2
yields the existence of a  non-zero element y e coker o f  degree u < b  such that
m •y= 0 . Viewing y  a s  a n  element of 1-1!(/ )  this m eans in  particular that y  is
annihilated by the linear form defining H ' .  Therefore we see that y e R e r1 + 1  and
our assertion is proved because t := u +1 <b.

Let X c P "  be a  subscheme of dimension m  > 1. We call the intersection of X
with a  general linear space of codimension m —1 the general curve section of X .  If
m =1 it is understood that the general curve section of X coincides with X.

Corollary 5 .9 .  L et Xc P" be an equidimensional subscheme of dimension m > 1,
and let C be its general curve section. L et Z  be a general hyperplane section of  C
and assum e that s(Z)=s and that the restriction map

11°(/(s)).- , IrLfz(s))

is surjective. Then X has the strong restriction property.

P ro o f  Put X 0 :=  X  a n d  consider consecutive general hyperplane sections
X1, X„,_ 1 = C, X„,= Z of X .  Since by assumption the restriction maps H° (/(t)) —,
HAJ",(t)) are  surjective for a ll t_<_,s, a  repeated application of Lemma 5.8 implies
tha t the restriction m aps H° (,9,,(t))—■1-1°(5x ,,,(t)) are surjective for i =0, • • .,n1-1
and t < s .  In  particular s(X,)=s(Xi , i ) for i =0, • • •, m —1, which is our claim.

Remark 5 .1 0 . Corollary 5.9 is false if one assumes only that the general curve
section has the restriction property: take for example X to  be  the Veronese surface
in P 4 ,  or the  Palatini scroll in  P 5 (see Lemma 6.10 below for details).

Let X c P" be a  subscheme of dimension m  > 1. Then we can write its Hilbert
polynomial as

P x 0 ) = c 1
- (

m + t )
+ h„,_

 •

( I n  —  1+ t)
+ • • • + ho -

t

with integers ho , • • ., h„, _ 1. W rite h„,_ 1 = 1— d — g. T hen  w e ca ll g  the  sectional
genus of X , because it is the arithmetic genus of its general curve sec tion . Using
this notation we can state the main result of this section.
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Theorem 5.11. L et X c P",n>3 be an  integral subscheme of  codimension two
and let C be its general curve section. Then X  has the strong restriction property
if  one of  the following conditions is satisfied:
(a) d> (s(X)- 1) 2 + 1;
(b) C  is  n o t the  zero-scheme o f  a sec tion  o f  .A r(s(X )-1), w here ./1( is  the  null

correlation bundle on P 3 an d  either
()1) d=(s(X )-1) 2 +1, s(X ). 5; or
(b2) d= 10, s(X )=4 and the sectional genus of  X  is at least 8.

P ro o f  According to Bertini's Theorem the  general curve section C  o f X  is
integral, too. Hence the conclusion follows by Proposition 5.7 and Corollary 5.9.

Remark 5.12. Recall that a  subscheme X c P"  of dimension m  is said to be
arithmetically Buchsbaum if  Xr-)L  is 1-Buchsbaum fo r any linear subspace L  of
dimension > n - m  which intersects X  properly. It follows that a n  arithmetically
Buchsbaum subscheme is 1-Buchsbaum. Note that the converse is, in general, only
true for curves.

If  a  space curve C  is the  zero-scheme of a section of - 1) where s =s(X),
then C is arithmetically Buchsbaum and has sectional genus 5 3- 5s2 + 8s - 5. This
information can be used in order to check if condition (b) of Theorem 5.11 is satisfied.

We conclude this section by showing that our Lemma 5.8 also allows to
generalize a  classical result of Roth [26], who considered surfaces of codimension
tw o . A  weaker version of our result was proved in  [14].

Proposition 5.13. L e t X c P" b e  an  equidimensional subscheme o f  dimension
>2. L e t  Y  an d  Z  be consecutive general hyperplane sections of  X  as in  Lemma
5.8. Put cî=a(1-1(/)) and assume 10 ,6 ( 0 ) = 1 .  Then it holds HA ,Mo-))00.

P ro o f  Consider the exact sequence

H° Cfy(a H°Cfv(0-D-+H°Lfz(0).

Since hc ( f z (o-)) = 1  w e  ge t by  th e  definition o f  a- t h a t  e ( ,y (o))= 1. I f  we had
a(11(f ,))<o - it would follow h° (/ z (o))> 1. T h u s  w e  have a(H (A ))=

N ow  assume H A fx (o-D= O. T h e n  the restriction m ap  H° Cfx (6))->11̀ 3(f y (o-))
is not surjective, hence Lemma 5.8 says that there is an  integer t <o- such that the
m ap I n f y (t))->IP(A (t)) is  n o t  surjective. Since HA A (j))= 0  if j<c r, w e must
have t = cr. Using a( H ( jy ))= a we obtain the following exact sequence

0 -> H°(/),(o-)) -) H° (l z (o-)) -. M-* 0

w here  M  is a  n o n - t r iv ia l  K-vector space . B u t  th is contrad ic ts t h e  fact
h°(/r(a))= h °Lfz(a))= 1 and we are done.
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6. Subschemes of codimension two with the strong restriction property

In  this section we consider k-Buchsbaum subschemes which a re  a  generically
complete intersection of codimension 2. To these subschemes, in particular to the
integral ones, Theorem 4.1 applies. W e show that the bounds of 4.1 can be improved
if the schemes have the strong restriction property. Then we describe two smooth
surfaces which give rise to infinite series of examples where the new bound is sharp.

We use the notation of Section 4. Recall that e' denotes the index of speciality
of X  and tha t e <e' i s  the largest integer such that wx ( — e) has a section which
gives rise to a  reflexive sheaf. Recall also that e= e' if X  is integral.

O ur first main result is the following.

Theorem 6.1. Let X g P" be an integral k-Buchsbaum subscheme of codimension

2, with sectional genus g. A ssum e that s p:=
[ e + 1

. Suppose also that one of
2

the following conditions is verified:
(a) d>(s-1 ) 2 + 1
(b) d=(s-1 ) 2  +1 , s ..5  and gOs 3 —5s2  +8 s-5
(c) d= 10, s= 4 and g011.
Then it holds, f or all j w ith 1<j<n-2, that:

IP(fx (t))=0 i f  t d— (e+n)P+p 2 - 1 -j+  (n —1—j)k —q2

if  e+n+1 is even where q=min{ s— p,p} , and

H i(fx (t)) =0  if t._.d— (e+n)p+p 2 —2 —j+ (n—l—j)k—q 2  +q

if  e+n +1  is odd where q=min{s— p+

This theorem will be a  consequence of a more general result. Before we state
it we want to describe some examples where the bounds of Theorem 6.1 are attained.

Example 6.2. There is a  sm ooth rational surface Xc P 4  o f  degree 10 and
sectional genus 9 (cf. [4 ], example B1.15) which fits into an exact sequence

O- +  ( ; 4(  1 ) ) 2
P 4 (  

4 ) (  Pl. 4(  3 ) ) 2  / x  0 .

Thus we obtain that X  is 1-Buchsbaum with s=4 , e=e '= — 1. Then we can apply
6.1 and  get e(1-1!(,,„))._3 and  e(II.2 (f x )) 1. Both estimates a re  the  best possible
because WC/X(3)) = 2 and h 2 (f x (1))= 2. Note that X is not arithmetically Buchsbaum
according to [23].

Example 6.3. T here  is  a  smooth elliptic surface X c P 4  o f  degree 10 and
sectional genus 10 (cf. [4 ], Example B7.5) which admits an exact sequence

O (C p 4 ( — 5))2 (9f44( — 1) - - - -*(0p4( 4)) 3 v21,4( - 3) 0.
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This sequence implies that X  is 1-Buchsbaum, b u t not arithmetically Buchsbaum
(cf. [23]) and s = 4, e' =e =0, e(1-1!(fx ))= 3, e (H ( fx ))= 1. H ence th e  estimates
provided by Theorem 6.1 are optimal.

Rem ark 6.4. Observe, th a t the  bounds in  Theorem 6.1 are optimal for the
general hyperplane sec tio n s  o f  th e  su rfaces  described i n  t h e  two examples
above. These curves are  2-Buchsbaum bu t not 1-Buchsbaum since otherwise the
surfaces were arithmetically Buchsbaum. Observe, that one could also use Theorem
6.1 to conclude that these curves are not 1-Buchsbaum . In fact, if they had this
property they would violate the bound in  Theorem 6.1.

The following result will imply Theorem 6.1.

Theorem 6.5. L et X P "  be a  k-Buchsbaum subschetne of  codirnension 2 and

generically complete intersection. A ssum e that s>p:—
[ e  n  

l
and that X  has the

2
strong restriction property . Then it holds, f o r all j w ith 1<j<n —2, that:

M IA ) = 0 if  d — (e + n)P + p2  —1—j+ (n —1 — j)k — q2

if  e +n +1  is even and where q=min{s—p,p};

H (/(t))= 0  if  d — (e + n)p + p 2 — 2 —j+ (n — 1 — j)k — q2 +q

if  e+n+1 is odd and where q=min{s— p+1,p} .

P ro o f  The proof is very sim ilar to the one of Theorem 4.1. Thus we will
concentrate on  the  differences which are caused by using the restriction property
of X .  We distinguish two cases.

First, le t us assum e th a t e +n +1 =2 p . According to th e  assumption o n  X
there is a global section eeH° (wx (—e)) which provides an extension

0— ' 0 1.4 - 14 —' , — ) fx(p) —) 0

where Sr/ is a  reflexive sheaf with first Chern class cl = 0 . Let L c l "  be a  general
plane and put Z =X n L . Then a restriction of the extension above gives the exact
sequence

0  (.9 L ( —10—> Ye",  1,—, fz (p)—> O.

Let q=minljeZIH°(.:FL(h) 0 01. Since X has the strong restriction property we have

I n f z (s-1))= 0 and H ° (/(s)) 0 O.

Therefore the last sequence implies

q= mints — p,p).-0.
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Let c2  = c2 ( F ) .  According to [6], Theorem 7.4(a), it holds

1-11 (F L (j)) = 0 if c2  — q2 —1.

Serre's duality provides

H 2CFL(fl) —3 —./)) 1/%9 7 rf — 3  — .in

whence I/2 (97 AM = 0 if — q — 2. It follows that reg(F L ) max{ — q,c 2 — e } .  B y
the above bounds we have

Ir(Fr(q  —  
1)) = 1-12(-FL(9 — 1

) )

whence x (F L (q — 1))= — h1(.F i (q — 1)) O. B y  the Riemann-Roch formula (cf. [6],
p. 242) we get c2 + q ,  and thus, because of 0,

reg(F L ) max{ —q, c2 —q2 } =c 2 —q2 .

Now Corollary 2.3 provides, as in the proof of Theorem 3.3,

j+ 1 + e(Hj(F)) c2 —q2 —1+(n—j— 1)k.

Our claim follows because l i ( l x ( t ) ) 1 4 F ( 1 — p ) )  if 1 <j< n — 2.
Second, we assume e+n+1=2p — 1. Then there is an extension

Ci ,„( fx(p-1)— >0

where „*"-,  is  a reflexive sheaf with first Chern class e 1 =  — 1. Define L  and Z  as
before. Restricting the sequence to L  we obtain

q:= min {je H V F L (/)) 0  =  min { s — p +1,p}  1.

Hence [6], Theorem 7.4(b), yields

1-11(97
 L(J))= 0 if c2  — q2 q —  1.

As above, using Serre's duality and Riemann-Roch we get c2 > e ,  whence

reg(F L ) max{ — q+1,c 2 —q2  +q} =c 2 —q2  +q

and we conclude as in the first case.

Theorem 6.1 is im plied by Theorem  6.5, because its numerical assumptions
ensure that the strong restriction property is verified (cf. Theorem 5.11) and moreover

(see Remark 4.2).

Remark 6 .6 .  Let us compare the above theorems with Theorem 4.1. It turns
out tha t the stronger assumptions of Theorems 6.5 and 6.1 allow us to improve
the bounds of Theorem 4.1 by q2 — 1 if e +n +1 is even and q2 — q otherwise.

Next, we want to show that we can use the surfaces in Examples 6.2 and 6.3
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in  order to obtain infinitely many surfaces where the bounds of Theorem 6.5 are
a tta in ed . For this we need:

Lemma 6 .7 .  L e t  X c P n  b e  a  generically  com plete intersection such that
s < e +n +1 .  L et e be the reflexive sheaf associated to a suitable section of cox -(-e),
i.e., e f its into an ex act sequence

(.) o e-4/x(e+n+1)-+O.

Assume that e=e'(X )(e.g. X  integral). Let Y  be a subscheme of  codimension 2 which
is the zero-locus of  a global section of  e(t) f o r som e t > 0 .  Then it holds

e(Y) = e'( Y)  e +21

s(Y )= s +1.

Moreover, X  is k-Buchsbaum if  and only  if  Y  is k-Buchsbaum and X  has the strong
restriction property  if  and only  if  Y  does.

I f  t  is sufficiently large then we m ay assume th at Y  is an integral scheme.

P ro o f  Since c i (S(t))= c 1(6)+ 21= e+n+1+ 21, there is an exact sequence

(+ ) 0 Op„ -+ ‘(t)--+ f y (e+n +1+ 2t) O.

T h e  sequence (* ) implies e(117 - 1 (6)). - n  - 1 a n d  e(11:(e))-= -n - 1. Hence the
sequence (+ ) provides e((117 - 1 (A ) ) = e  2t proving the first claim.

Now let be  a  general plane and let Z  be the zero-dimensional scheme
X n L . Since by assumption s- e - n - 1 10  we obtain using the sequences (*) and ( + )

Ir(e(s - e -n -1))0 0 and I r( g ( s - e  - n -  2))= 0

and thus s(Y )= s + t, establishing the second claim.
Similarly, we get that s(Z)=s( YnL)+ t if either X  or Y has the strong restriction

property. The fourth claim follows.
O ur two exact sequences also provide for j  w ith 1 <j<n - 2 :

MA() Miy)(t),

thus the third assertion. The last one is a  consequence of [25], Teorema 3.

Example 6 .8 .  (i) W e  w a n t  to  a p p ly  th e  la s t  r e s u l t  t o  th e  su rface  X
considered in  Example 6.2. Let be  the  reflexive sheaf associated to a  general
section of cox ( - e) and let Y„ (t > 0), be the zero-locus of a general section of e(1). x
meets the assumptions of Lemma 6.7. The latter ensures that Theorem 6.5 applies
to  the surface 17, and gives bounds which exceed the bounds for X  by  t. Since
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and the bounds are optimal for X the bounds for Y, provided by Theorem 6.5 are
also best possible for all t>0.

(ii) Repeating the construction of the surfaces Y, as above but starting with
the surface X  described in  Example 6.3 we get another infinite series of surfaces
where all the bounds of Theorem 6.5 are attained.

Thus we have just seen that Lemma 6.7 can be used to construct infinitely
many schemes where the bounds of Theorem 6.5 are optimal, provided we know one
such example.

Moreover, we want to point out that the bounds in  Theorems 6.1 and 6.5
improve the bounds which were known before in the case of curves. Indeed, in
the case of integral curves the bounds in Section 4  agree with the ones shown in
[ 1 5 ] .  But these bounds are improved in this section and optimal for the hyperplane
sections of the curves Y, of the privious example (cf. Remark 6.4).

Finally, we want to point out that the assumption on  the  strong restriction
property cannot be dropped in Theorem 6.5.

Remark 6 .9 .  If Xg P 3 is a quintic elliptic curve, we have e = 0, s=3 and hence
the bound for I-1.1(A) given by Theorem 6.5 is  1, while h1 (f x (1 ))0 0 . This is due
to  the  fact that X  does not have the restriction property, because the  general
hyperplane section of X lies obviously on a conic, and an irreducible quadric cannot
contain a  curve of degree 5 and genus 1.

In order to get further examples related to Theorem 6.5 we need the following
result.

Lemma 6 .1 0 . L e t  n > 4  an d  r>  n -2  be tw o integers, an d  le t  9: (97.: 2 C1
Op.(n—r —2)—>f1,,„(2) be a  general morphism. Then its degeneracy locus is  a  sub-
scheme Xs. P " whose ideal sheaf fits into the exact sequence

9
(*) —■ 61 2 0(9p.(n — r  2)--) Op(2)—+,,x (r

Moreover X has the following properties:
(a) X  is integral of  codimension 2, and is smooth if  and only if  n=4, 5;

(n — 2)(n — 3)
(b) deg(X)=ta—(n —3)r +1+ 

2
, s(X)= r + 1;

(c) f o r  1 j. n— 2  it holds: h (f , (0 )= 1  i f  (j,t)=(1,r —1), an d  h ( fx (0 )= 0  other-
wise;

(d) e(X)=2(r — n +1);
(e) if  L g P" is a general linear space of  codimension c, 1 < c  < n — 2, then s(XnL)=r

and e ( t  x ,,(r))=c;
(f) if  L  is as in (e), then for it holds: Of  , , L (0)= 1 if (j, t) = (1, r —1)

and O f  x , L (0)= 0 otherwise.
In particular, X is arithmetically Buchsbaum and does not have the restriction property,
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while all its subsequent general hyperplane sections have the strong restriction property.

Remark 6 . 1 1 .  If n= 4, 5 the above proposition gives two well known subschemes,
namely the Veronese surface in P 4  and the Palatini scroll in  P 5 .

P ro o f  The major part of this lemma is "well-known" (see e.g. the introduction
of [13]), but no explicit proof seems to be available. So for the sake of completeness
we sketch a proof here.

First of all we observe that X Ø for example,[22], proposition 6.3). Once
we know that X  exists, we get the exact sequence (*). It implies dim X = n —2, (c)
(hence (0) and that X  is arithmetically Buchsbaum, thus equidimensional.

Moreover from (*) and [3], Example 2.1 we have that X  is smooth if and only
if  n = 4,5, and dim(Sing X)<n — 4  for n >  6 ; and  since X  is equidimensional of
codimension 2 it follows easily that X is in teg ra l. This completes the proof of (a).

From (a) we get that e(X )=e(11:'(,fx )), and a straightforward calculation using
(*) yields (d).

Using repeatedly the  isomorphism (52,,„,) H  S2p.- ®Op— - — 1) where H  is  a
hyperplane, it is easy to prove (e).

Finally if Z :=X nL  where dim L = 2, we have an exact sequence

(**) 2 C p 2(n — r — 2)— 411,2(2)( p 2 ( 1 ) n  2 f z (r + 1) —■ 0.

Then dim Z =0, and hence

deg X = deg Z = (
r  +  3

) — x (fz (r+ 1)).
3

N ow  x ( fz (r + 1)) can be computed from (**), a n d  a  straight forward calculation
produces (b).

Remark 6 . 1 2 .  ( i )  Let n>4 , r>n  — 2 and let X P "  b e  a subscheme as in
Lem m a 6.10. The bound for the  vanishing o f H i ( fx (t)) given in  6 .5  is equal to
r — 1, while H i (f x (r — 1))00. This is  due  t o  the  fac t tha t X  does no t have the
strong restriction property. H ence for all n this assumption cannot be avoided in
Theorem 6.5.
(ii) I f  X  is  a s  in  (i) , the  general curve section Y  of X  is integral and  h as  the
restriction property . T hen  the bound of 6.5 for I-1„' applies, and it is sharp for all
these curves Y (to simplify the calculation of the bound recall that e+n+1=c,(‘),
where e  i s  th e  reflexive sheaf associated to X .  Since c 1 d o e s  n o t  change by
restrictiong to a  general hyperplane, the  only term s in  th e  bounds of 6.5 which
change when restricting to a  general hyperplane is n—q 2 i f  e + n + 1  is even, and
n—q2 +q, if e +n +1  i s  o d d .  Note also that q decreases by 1 when passing from
X to a general hyperplane section, and remains the same by passing to further sections).
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