
J. Math. Kyoto Univ. (JMKYAZ)
40-1 (2000), 13-35

Removable singularities for semilinear degenerate
elliptic equations and its application

Dedicated to Professor Norio Shimakura on the occasion of his sixtieth birthday

By

Toshio HORIUCHI

O. Introduction

Let N> 1 and p >  1 . Let 1 2 be  a  bounded open set with smooth boundary
and F  b e  a com pact set satisfying Fc f2 c RN . W e  a lso  se t fr =f2\OF, where
OF=F\IntF. W e assume tha t the measure of OF is z e ro . Define

(0-1)P =  — div(A(x)V •),

where A(x)EC1(fl') is positive in il\F and vanishes in Int F .  First we shall consider
removable singularities of solutions for degenerate semilinear elliptic equations.
Assume that un CAST)r-)0(12\F) satisfies the differential inequality

(0- 2) Pu + B(x)Q(u) C(x), in  ST,

for some nonnegative functions B(x) and C(x). Here Q(t) is continuous and strictly
monotone increasing on R satisfying the growth condition (1 -6 ) . For instance we
can adopt It ' t  w i t h  p> 1 and (elf' —1)sgn(t) for Q(t). Then we shall show under
some additional conditions on A(x), B(x), C(x) and Q(1) that

(0-3) lim sup u(x) < + co.

From this result we can deduce that if ueCALT)r)C 2 (1)\F) satisfies

(0- 4) Pu + B(x)Q(u)=f(x), in i f

for f BEL(S1), then there is a  bounded function in f2 which coincides with u in
i f  =f2\5F.

This result was established by H. Brezis and L. Veron, under the assumptions
th a t  F  consists of finite points, Q (t)=  t  and  A (x), B (x ), C (x ) are positive
constants. More precisely they proved in  [BV] tha t if u satisfies (0-2) with some
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additional assumptions on p, u can possess only removable singularities on F .  (See
also [VW I], [VV2] a n d  [V ] ) .  In  this paper w e generalize their results for an
arbitrary compact set F  in place of finite se t and  fo r wider class of (degenerate)
elliptic operators P .  Roughly speaking, the operators P considered here are permitted
not only to vanish infinitely on  a  com pact se t Fc  0 , bu t also remain unbounded
on F if IF1=0. The m ain tools for this aim are sim ilar to those in  [BY], namely
a  comparison principle, Kato's inequality an d  a  weak maximum principle. S in c e
the operators P are rather general, we need to modify them suitably. A s a result
we are able to derive a pointwise estimate of u. W e also prove the sharpness of
our results for the removability of singularities in  the  special case that F is either
a  s e t  o f  fin ite  points or an m -dim ensional com pact L ipschitz subm anifolds
(0<m < N — 1) of R N ,  a n d

A(x)= d(x)', B(x)= d(x) 2 fl , C(x)=d(x) 2 ,

Q(1)=Itr t, d(x )= dis t(x , F),

where p>  1 and a, fl and y are real numbers.
Secondly as an application, we shall consider the Dirichlet boundary problem

for genuinely degenerate semilinear elliptic operators:

(0-6)
Pu + B(x)Q(u)= f(x), in S2,
u = 0 ,  on an.

Then we shall establish the existence and  uniqueness o f bounded solutions u  for
this problem with f lB e L '(52). W hen P  is uniformly elliptic on C2, this problem
has been treated by m any authors. In  [S ], G. Stampacchia considered the linear
c a se . In  [BS] H. Brezis and W.A. Strauss proved the existence and uniqueness of
solution for f e IASI) w ith a m onotone increasing non-linear term in  u  (possibly
m ulti-valued). See also [BBC] a n d  [B G ]. T h e  quasi-linear case has been also
considered in  L ' —  framework by many researchers, for instance [L L ], [LM],
[BGDM], [R1], [R2], [R3], and so o n . B u t th e  development of the theory seems
to be rather limitted in  the study of genuinely degenerate operators.

This paper is organized in  th e  following w a y . In  § 1  we shall describe our
precise framework and main results which consisit of the removability of singularities
and the unique existence of solutions for Dirichlet boundary problem  (0-6). In §1
we shall also construct examples showing that in certain respects Theorem 1 gives
best possible results. §2 is devoted to prepare auxiliary lem m as. In §3 we shall
prove Theorem 1 by the use of weak maximum principle in Orlicz space. T h eo rem
2 will be finally established in §4 as an application of Theorem 1.

1. Main results and Applications

I n  th is  section we describe our precise fram ework a n d  m a in  results. Let
N > 1. L e t F  and  n b e  a  c o m p a c t se t a n d  a  bounded open  se t with smooth
boundary respectively, satisfying FS2cR N

, and set

(0-5)
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(1- 1) -=S2\0F,

where DF is defined a s  aF=F\Interior of F .  In  th is paper w e assume tha t the
measure of OF is z e ro . F o r  example if F is a  smooth compact subset of R N ,  then
the measure of OF is zero.

In  the next we define a  modified distance t o  F.

Definition 1 . Let d(x)ECNST) be a  nonnegative function satisfying

d(x)
(1- 2) C(0).<  < 1, xeff,

dist(x,OF)

loyd(x)i C0y0dist(x, F) 1,  x  en' , y 00,

where y is an arbitrary multi-index and C(Iy1) is positive number depending on each
I A  For the construction of a modified distance d(x), see [T ] for example.

First we assume the following [H-1] on  the  nonnegative functions A(x), B(x)
and C(x).

[H-1].
A(x)eC 1 (S2')nLL(S2),

(1-3) A(x)=0 in  Int F = F V F ,
A(x)>0 in  SI \F,

5
(1- 4)

B(x)e1 (52 ')na,(0 ),
B(x)> O  in f2' =Q\aF,

and

(1-5)
C(x)eL;';',),(52')na,(52),
C(x) 0  in n.

Secondly we assume the following [H-2] on the  nonlinear term Q(t).
[H-2]

Q(t) is strictly monotone increasing and  continuous o n  R  such  that Q(0)=0
and Q(t)t> 0 for any teR \ {0 }. Moreover we assume that there is a positive number
60  such that

(1-6) lim sup  < +  cc. (Super-linearity)
iti— +.0 1001

We need more notations.

Definition 2 . Let us set for any xeST =S W F
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A(x) = A(x)+ d(x)1V A(x)I,
(1- 7) (1)(x) = ess-sup iy _xi < d(2x)

T(x)= ess-sup iy _ ,d(p .

Then we assume that:
[ H - 3 ] .  For the same positive number S o >0 as in [H -2], it holds that

(1-8) A(x)[ /  (13(x)

2 

) 3 0  

+ 1

1 
 1

Ea c(f1)
d(x) d(x)

and

(1-9) lim inf
1 (D(x) dx

<d(x)< ,
A ( x )  

[(C1(X)21 1  d ( x ) <

W e also assume that:

[H-4].
C(x)

(1-10) sup  <+c0 .
x E r?  B(x)

In the application, it will be useful to introduce the following subclass consisting
of admissible weight functions A (x ). Namely:

Definition 3. Let L > 1 . A (x )E  (Ii)  is said to belong to the class SL  if  there
is a positive number C such that d(x)L IVA(x)I < C . A(x), in 52' where C is independent
of each x.

It is easy to see that if A ESL for 1, then the following [H -5] implies (1-9)
in  [H -3] with the same 60 .

[H-5]. There is a positive number So such that

1 T(x)  )6 0+ <  +  0 0  .
liminf — A (x ) R

d(x )' d(x fE .10 g cI2 < d(x)<

Remark 1. In  Definition 3, if F is assumed to be smooth and A  vanishes on
aF uniformly in finite order, then by the mean-value theorem we may take L = 1 . On
the other hand if A  vanishes infinitely o n  aF, then w e see L > 1. For instance,
F={ 0} , A(x)=exp(— 1/14`), ocele , then L = a + 1 .  If A eS L w ith  L =1 , then (1) is
equivalent to T.

Remark 2 .  The conditions (1-9) in  [H-3] and [H -5] mean that B(x) does not
vanish much faster than A (x ). If  1 < N<2, then either A o r (1) must vanish on 8 F
in  order to satisfy (1-9) in  [H -3 ] .  See also [H-5].

Remark 3 .  If w e  assum e  the  following condition [H -6 ], then  [H -3 ] is
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satisfied. In  fact, the bo th  conditions (1-8) and  (1-9) in  [H -3] a re  weaker than
(1-12) in  [H -6 ] . We shall give an  example in  Theorem 3 which does not satisfy
[H -6] but satisfies [H -3 ]. (See Remark 6 in  §2.)
[H -6 ]. F o r  th e  same positive number .50 >0 as in  [11-2], it holds that

(1-12) A (x ) [( 4)( ) 6° + 1 ]  1   eLlo AP.
d(x) 2C A W

Let D be an open subset of Q .  In  order to state our main results, we prepare
more definitions.

Definition 4 .  F or u, uA and ulVAIELL(D), we set

(1-13)< P u ,  q'> =<— A(uA)+V(uVA),9>

for all yoeC(D).

Definition 5 . F or u, IVul and A l V u l E L L ( D ) ,  w e  set

(1-14) <Pu,9>-<—V(AVu),9>

for all 9EC(D).

Here we note that from [H-1] and [H-3] we have A  and IVA le a c(D)nL IT,c(D').
Therefore if u is bounded on D, then Pu  is well defined by (1-13) as a distribution
on D .  It is also obvious to see that if A  is a smooth function, then (1-13) coincides
with the usual definition of the d istribu tion . Moreover we show the following.

Lemma 1- 1. A ssume [H - 1] a n d  [H - 3 ] .  L e t u eLL (fr) an d  le t  Pu  b e  a
distribution defined by Definition 4 w ith D = -0 '. Suppose that f'ueLL,(LT), then
AlVuleV(51') and the distribution Pu defined by Definition 5  with D =SY coincides
with P u . In particular PuELL(52') and we have

(1-15) <Pu ,9>=  Pu•9d x, f or all 9 e

P ro o f  From  [H -1] w e see that the operator P  is elliptic in  fr . H ence  w e
see that if ueLlo,(0 ') and  PueLL,(0), then FuleL,

1
0,(Q'). (For the  detailed proof,

see [K ; Lemma 1] for example.) Since A  a n d  IVA e a c(D)nL:c.(ST), we see that
A lV uleLL(M . Hence we see for cpeC(ST)

< lsu,9>= — f  u(AA9+VA•V(p)dx= f uP 9dx=<Pu,9>.

This proves the statement.

Now we are able to  state  our main results.
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Theorem 1. A ssume [FI - 1], [H - 2], [H - 3 ] and [H - 4]. A ssume that ueL ro c(S2')
satisfies PueL (S T ) in the distribution sense. Moreover we assume that f o r almost
all xe {xeff ;u (x ) 0},

(1-16) fiu+B(x)Q(u) C(x).

T hen w e hav e u+ e L ( 0 ) ,  th at  is  to  say , ess-supx , u u„.(x )<+oo . H ere u + (x)=
max(u(x), 0).

Remark 4. It follows from Lemma 1-1 that under the assumptions in Theorem
1, the distribution 13 u  on f/' definesd by (1-13) is the function Pu E L L (a). Then,
Theorem 1 says that u, eL ro c (a )  can be extended as a  locally bounded function on
a w hole  f. S ince  the measure of OF is zero, this extension coincides with u ,  except
on a  set of measure zero.

The following is a direct consequence of this Theorem.

Corollary 1. A ssume [H-1], [H-2] and [ H - 3 ] .  Instead of  [H-4], assume that
.f ix )EL V M nac(n) satisfies f o r some positive number C

(1- 17) If(x)1 C.B(x), f o r almost all xeLl.

A ssume that ueL roc(a )  satisfies

(1- 18) f iu+B (x )Q(u)=f , in '(1- 1').

Then there exists a function veL r(Q) such that

I3 v + B(x)Q(v)= f in g ' (c2)
t  yin , = u.

Here by gli2') and g'(51) we denote the set of distributions on f/' and SI respectively.

P ro o f  From Theorem 1 we have u , e L ( f2 ) .  The function —u satisfies (1-18)
with replacing f  and Q(t) by  —f and  — Q(— 0 respectively. Since — Q(—t) satisfies
the same assumption as the one for Q(t), we see in a similar way u _ e L ( 0 ) .  Accord-
ing to  R em ark 4, u  is extended a s  a  locally bounded function o n  SI. B y  v we
denote this extension of u to a  w hole D . Thus veLro c (f2) and v1,= u. From [H-1]
and [H -2] w e also see that B.Q(v)eLr„(f1). Here we note  that since A (x)= O on
FV F, u(x)=v(x)=Q -

1 (f(x)1B(x)) on F V F .  Then it follows form Lemma 2-3 in §2
th a t v is extended as a  so lu tion  o f the  same equation o n  a  whole a  Here we
remark that the uniqueness of solutions of (1-19) in  L roc(f1) follows from the same
argument in the proof of Theorem 2 in §4.

A s an  applica tion  w e consider the D irichlet boundary value problem  for
degenerate semi-liniear elliptic equation:

fiu + B (x )Q(u)=f  in S2
u = 0  on Of/

(1-19)

(1-20)
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We prepare m ore notations. L et D  be an open subset of R N .  L e t  q> 1 and
let j  be a positive integer. By

 H i ( D )
 we denote the spaces of all functions on D,

whose generalized derivatives avu of order <j satisfy

/q
(1-21) E to rd x )

1

 <  + .
Si D

Also, HO(D) is  a local version of  H ( D ) ,  a n d  b y  110  co w e  d en o te  the  essential
supremum of u. By H ( D )  we denote the completion of g ( D )  w ith respect to
th e  norm  defined  by  (1-21). Conventionally we s e t  111(D)=111'2(D), 1110,(D)=
H ( D ) ,  and M ,(D )=IIV (D ). Then we have

Theorem 2. A ssume [H -1], [H-2] and [H -3]. Instead o f  [H -4] assume that
f (x )EL (I) satisf ies f o r some positive number C

(1- 22) tf(x)I C.B(x), f o r alm ost all xeS).

M oreover we assum e that A(x), B(x)eC ° ((2). T hen there ex ists a unique function

ueL 'Pn-H L O  \F)(1- 23)

w hich satisf ies the  homogeneous Dirichlet boundary  value problem  (1- 20) in the
distribution sense and satisfies

(1- 24)

Here and C ' is a positive number independent of each function f

R em ark 5. If Q is  Lipschitz continuous, then u e la c(f l\F) as w ell. For the
proof of Theorem 2 we shall regularize the problem . B y virtue of Theorem 1, we
shall prove that the solutions of this approximating nonlinear elliptic equations
converge to the unique bounded solution of the original eq u a tio n . The monotonicity
o f  th e  nonlinear term  Q  o n  R  w ill be  needed  to  estab lish  th e  uniqueness of
solutions. Therefore it suffices to assume in Theorem 1 tha t the re  is  a positive
number C such that Q(t) is monotone increasing for te R \[ -  C, C].

Counter examples to Theorem 1. In the rest of this subsection we shall construct
examples showing that in certain respects Theorem 1 gives best possible results. Let
F  be either the orig in  0  or an m-dimensional C "  compact submanifolds in  R N

without boundary for 0<m <N - 1, and  le t d(x) b e  a  modified distance function
defined by Definition 1. If F consists of the origin 0, then we put d(x)= lx i . W e
set for some positive smooth functions b(x) and c(x),

(1-25) f  L au= -
25)

Q(u)=IuIP -  u, B(x)=b(x)d(x) 21' and C(x)=c(x)•d(x)2v.
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Lastly we assume (h-3) which is equivalent to [H-4].

p_>_p,t, if a<fl+1,{
p > p := 1 ,  if ce l3+1,

N — m — 2
a >  
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Assume that real numbers a , fl and y  satisfy the  following conditions. First
we assume (h-1) which is equivalent to [H-1].

(h-1) N—m N—m
fi >  -  and y >  

2 2

Here we note that the condition on a is included in  (h-2) below.
Let us set for 0< m < N -1

(1-26)

1—a+fl( 1+ 2  , if a</3+1,

t 1 , 
N + 2 -2— m

if cre /3+1.

Then we assume (h-2) which is equivalent to [H-3].

(h-3)

Let us set u + = max[0, Li] and u_=max[0, — u].
By L„ii we denote the distribution defined by Definition 4 with P=L Œ and

A =d(x) 2 Œ.

Theorem 3 .  L e t  F  be either the origin or an m -dim ensional C com pact
submanifolds in le r without boundary f o r 0 <m <N -1 . A ssu m e  [h-1], [h-2] and
[h -3 ]. A ssum e that ueL ro c (LT) satisfies L OEueLlo c (g )  in the distribution sense.
Moreover we assume that f or almost all xe{xeS2';u(x) 0}

(1-27)4 u + b ( x ) d ( x ) 2 f l u P c ( x ) d ( x ) 2 ,

f or some positive smooth functions b(x) and c(x ). Then we hav e u ,eL ro c(S2).

P ro o f  Since Q(u)=juIP - l u, we can put SO =p - 1  to obtain (1-6). Putting A(x)
=d(x )2 Œ, B(x)=b(x)d(x) 2  a n d  C(x)=c(x)d(x) 2 Y, we shall apply Theorem 1 and the
rem ark just after it. Then these obviously satisfy [H-1] a n d  [H -2 ] . Hence, it
suffices to show that the condition [H-3] is satisfied. A direct caclulation leads us to



(

—2(1—a+ 8l
d(x) 3 0 +1)d(x) 2 - 1 dx

J,( 2 a - 1 2/1+1N

e/2
d(x)P- 1 (P — 2a—  ji+  ck x )2a — 1 d x

<d(x)<E

dp
2 Œ — 1 2 8 + 1  
d(x)P -  1 (P

— 2a— 1) + d(x) 2 a — 1 -1(x)
EI2 d(x)=- p
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<Cdiam (Fr p2pg
— I) +  p 2a— 1 p / V — m— 1 dp

6 E l 2

(  
N + 2 a — m -2 , N 4-28— nt N

=  C d i a M ( F r  8  P - 1  k P —  N +  2 a —  m —  2 )  +  2a +N —  m — 2

= 0(1). (h-1) and (h-2)

This proves the assertion . H ere  IIN - 1 (x ) i s  the (N— 1)— dimensional Hausdorff
measure, and we used the fact: There is a positive number C  such that we have

(1-29) 1{0 <d(x)<E}l<CE'd iam (F)m , O <E  < 1.

Remark 6. Here we note that if p = p;,„ then [H-6] is not satisfied in this example.

The following is also a direct consequence of this whose proof is omitted.

Corollary 2 .  Assume [h-l] and [h-2]. Instead of  [h-3], assume that b(x) is a
positive smooth function on SI and f (x )e L is :c (M n a c ( n )  satisfies f o r some positive
number C

(1-30) [f(x)1- Cd(x) 2 , f or almost all x eS2.

Assume that ueLZ c(fr) satisfies

(1-31) 1 1 4  +b(x)d(x) 2 filuIP - 1 u = f in g'(L2').

Then there exists a unique funciton veLZ,(0) such that

t o ,  +b(x)d(x) 211 1v1P- 1 v =f, in g'(51)
v1D, = U.

Here by gliY ) and g'(f2) we denote the set of distributions on SY  and respectively.

Counter-examples to Theorem 3. We shall see that Theorem 3 is best possible in
certain respects, provided 1 < p .  Let F  be either the origin or an m-dimensional
Cc° compact submanifolds without boundary in RN  for 0 < m  N— 1. We note that
F= OF holds. Since it suffices to construct the counter-examples in  a  small ball

(1-32)
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contained in  some neighborhood of F, we may assume d(x)= dist(x , F) and d(x) is
smooth on F` so that we have IVd(x)I = 1 near F .  Let W be a small neighborhood
of F .  Now we consider a  funciton U in  W \F of the form

(1-33) U(x)=d(x) M, for M > O.

Let U be a solution of the following equation for some M > O.

(1-34) LOE U(x)+ b(x)d(x) 213 U(XY = 0, in  W \F.

Equivalently we have

(1-35) M(d(x)Ad(x)++ 2 -  1 -  M)+ b(x)d(x) 2 ( 1  - a + M ( P  1 )  = 0.

Since d(x ) is sm ooth  and d(x)A d(x) is bounded, in  o rd e r  to  g e t a n  unbounded
solution it suffices to make M , p, a, fl and b(x) satisfy

2(1 - a 
- f)(1- 36) p =1 + , M(d(x)Ad(x)+ 2a -  1 -  M)+ b(x)= O.

Here we note that b(x) becomes a  smooth positive function in  W \F as desired, if
it holds that

(1-37) M>d(x)Ad(x)+ 2a - 1.

For sake of simplicity, we examine (1-37) when F is a plane. Let us set F= F„„ where

Fm ={ x =(x i , x 2 , •••,x N):x m + i = •••=x N =0} ,
(1-38) for 1 <m <N - 1 ,

F ,= {0}

Then we immediately see that

(1- 39) dist(x, Fm ) = E x7 and dist(x, Fm )Adist(x, Fm ) = N - m  -1.
t=m-Fi

Remark 7 .  When F is an m-dismensional compact smooth manifolds without
boundary, we can also show that

(1- 40) lim dist(x, F)Adist(x, =  N  -  m -  1.

For the proof of this formula, see Lemma 2-2 in [V] for example.

Then the condition (1-37) becomes in a sufficiently small neighborhoods of F,

(1- 41) M > N - m +2a - 2.

Therefore we see that U(x)=dist(x, F„,) '  becomes an unbounded solution to (1-34)
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if (1-36) and (1-41) h o ld .  After all we get

Proposition 1 - 1. A ssume that F= F„, f o r 0 <m< N —1. Moreover we assume
that [h-1]. T hen for the validity of Theorem 3, the assumptions [h-2] is necessary.

P ro o f  Assume tha t [h -1 ] . If ocOfl+1, then from the previous consideration
U(x)=dist(x,F„,) - m  b e c o m e s  a  counter-example f o r  a  su itab le  b(x ) provided
1 <p <p. I f  a= 16+1, then p.*= 1. Therefore we put p= 1. Since the equation is
linear, a  fundamental so lu tio n  o r  a  good  parametrix exists, a n d  it becom es a
counter-exam ple. H ere w e n o te  th a t  if oc< N - 11 - 2 ,  t h e n  U(x) becomes an
counter-example for any p, M, b(x) satisfying (1-36) and (1- 41).

Lastly we consider [h -3 ] . W e can show the following:

Proposition 1 - 2. Let us set F=F,„ for 0<m <N —1. Assume [h -1 ] . Then for
the validity o f  Theorem 3, the assumption /3_.y ([h-3]) is necessary if •a y + 1 . If
a <1+ m/2, then 13< y  +    +a) is necessary as well.

P ro o f  Assume that fl> y .  Let us set U(x)= —logd(x). Then it is easy to see
th a t  U(x) becomes a  counter-example, provided a > y + 1 .  Secondly we assume
a < 1 + m12. Since d(x)- ( N — m —  2  +  2 a )e Llo

c  

and Lc,c1(x)- ( N — m —  2  +  2 a ) 
0 in  SIV ,  we see

that 
f l < y ± p ( N - p 2 i - 2

 + a )  is needed to avoid this null solution.

2. Lemmas

We shall prepare auxiliary lemmas which will be needed to establish Theorem
1 in §1.

Lemma 2- 1 (Kato's inequality ). Assume that ueLL(ST) and l'ueLL(S1'). Then
we have

(2-1)P u ( f iu ) s g n + u , in g '( f l,

1, f o r u>0,
where sgn + u = 1/2, for u=0,

0, f o r u<0.

P ro o f  This follows from Kato's inequality. Let us set

(2-2) M(x, ax ) =  E  x i k ( X ) a , c k ) ,
j,k = 1

where d ik (x)eC 1 (0 \F ) is positive definite.
Then we have, for u and M(x,a)ueLlo c (Ll\F),

(2-3) Af(x, ax)lul > (M(x, 0„)u)sgn u in  g'(S2\F).

Since P is elliptic in D V  and identically zero in IntF and 2u, = jui +u, we get the
desired inequality. For the  detailed proof of Kato's inequality see [K].
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Next we make sure tha t Pço is a distribution on Q for any 9e C (Q).

Lemma 2-2 (P9 with (pe q (S 1 )) . Assume [H-1] and [H -3 ] . Then it holds that
P(pe0 0 )  f or any  cpeC(S 1). In particular, 13 9  satisfies

(2-4) <139,110 =fd x  = f  AV (p•Vtildx= <P9, ill>,

f or any tit eC(S -2).

Remark 8 .  If ti/eC(ST), then this is already proved in  Lemma 1-1.

P ro o f  First we show that PcpeL 1 (1) for any cp C (D ). B y  the definition of
the operator P  and Definition 2, we see that for some positive number C

(2-5) IP91=IA A9 -I- VA .V91 C—
d  

(IATI +IW O.

Then it follows form [H-3] that PcpeL 1 (f1). Since 9, IV91, A IV91 and IVAITELL(n)
we can define both fi9 and Pcp, and have

(2- 6) <f'9,tfr>= — Ç f  9(AAO+VAVI1J)dx

= div(A Vtfr)dx = I AVcp•Vtfrdx=<Pço,t11>.
Jo J o

Therefore we see P9= P9.

In  th e  next w e shall show th a t Pu w ith u  being a  bounded function o n  n
becomes a distribution on in  a  canonical way.

Lemma 2 - 3  (Extension). A ssum e [H -1 ]  a n d  [H - 3]. L et f eL L (S 2) and
u e L (D ). Let Pu b e  a distribution defined by (1- 13). Assume that u satisfies

(2- 7)p u  = f i n  g ' ( 2').

Then we have

(2- 8)P u  = f i n  g ' ( s 2 ) .

Here by g '(a) and g'(Q) we denote the set of distributions on Q' and SI respectively.

Remark 9. We assume that [H-1], [H-3] and f e  L ( 1 ) .  In particular, it follows
from Lemma 2-3 th a t if u eL (D ') for LT =n\aF satisfies Pu =f  in  g '(a ), then u
can be extended as a solution of the same equation on a  w ho le  D . If the operator
P is not singular but uniformly elliptic on D having smooth coefficients, then this
result is already known provided that the set OF is sufficiently small. By u* we
denote the zero-extension of u to Q, that is, u*=u in 0' and u* =0 otherwise. From
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Definition 4 we see that /3 (u*) is also a distribution on Q  in a canonical w a y . Then
u* equals u a.e. and satisfies the assumptions of Lemma 2 - 3 .  Therefore Lemma
2-3 imlpies, roughly speaking, the set aF is so small in some sense that the support
of if)(0 ) as a distribution and the set aF have no point in com m on. As a result we
also have

Lemma 2-3' (Extension). A ssum e [H-1] an d  [H -3 ] . L e t feLL ,(0 ) and
uEL(SY). Let Pu be a distribution defined by (1 -13 ). Assume that u satisfies (2-7).
Then there is a function veL(L1) such that v=u  in  Q' and v satisfies the same
equation on a whole Q in the distribution sense.

Proof of  Lemma 2 - 3 .  Now we take a  smooth function ti(t)eC"(R) such that
for some positive number Co

(2-9) ti(t) 1, max[r(0)1,1,1"(01]. Co and  n(t)=

2

Then we put for any e >

(2-10) rie(x)= rgd(x)le).

Then by the definition o f Pu, Lemma 1-1 and  (2-7) w e have for any test
function (p e c (n )  and c> 0,

(2-11) <Pu,riecp>= j .  uP(ih(p)dx= ftwpdx.

We also have

(2-12) P(na)=[P,q ] (P+11.PT, for [P,I1 ] 9=P(w p) — nePT.

and

(2-13) iu[PME] C(Ed(x)) - 1 1ulil(x), for e/ 2 < d(x)<s,

where C is a positive number independent of each x  and e. Then we have

1
t< -.

1, for t > 1,

0, for 

(2-14) fo u[P, tie]q)dx Â ( x ) lu l
dx

c/2< d(x)<E d(x)

 

and

(2-15)

fE „ ,<  d(x)< c d(x) c/2 < d(x)<

[ 1141
dx

6° 1B(x)dx 1 +  6°
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Xr
1

f e /2 <d (x )<E

4 (x )

Toshio Horiuchi

(4)(x))4,  dx - V k
t:1(x)2 ) d(x )]

< C f— e/2 <d(x )<E
1141'0 + 1 B(x)dxi 1  + 6 ° —>0, ([H-1] and [H - 3 ]),

as e —01

Since P9eL 1(S2) and ueLZ,.(0), we have by  le tting  —4) in (2-11) that

(2-16) fou•P(pdx=i' f(pdx
o

for all goeC,(Q).

This proves the assertion.

Lemma 2- 4 .  A ssum e th at ueL ro c(LT) satisf ies A IEL L O ') in the distribution
sense. A ssum e [H -1]-[H -4]. Moreover we assume that f o r almost all
xe{xe1l';u(x)>0}

(2-17) u + B(x)Q(u)

Then we have, for some positive numbers C and eo ,

(2-18) u(x)_ C[0(x) 61.0d(x) 602 + 1], f o r x  with 0<d(x)<8 0 .

Remark 1 0 .  In particular if Fis an m-dimensional compact smooth submanifolds
of RN  and if A(x)=d(x) 2 2 , B(x)= d(x) 213 , C(X) = CAX)2 7  and  bo =p — 1 in this lemma,
then we get under the assumptions [h-1]-[h-3],

u(x) C d(x )', for d(x )<r 0 ,

(2-19) s=max[s1,s2],

s, =2 1 ;;ŒT8 s 2 =2(/3—y).

In particular if a <fi'+ 1 and p = p ,  then we have

(2-20) si = N— 2 + 2a — m a n d  s2 = 2 ([1 —

N+2/3—m

P ro o f  Let 5 satisfy

(2-21) (5.4 = 2.

Let x o eSIV , with 0 <d(x 0 ) < 1/ 2 . For R=d(x 0 )/2 and r=ix  —x0 1, we set

(2-22) G—{xeRN;lx—xol<R}.

W e also put

N - 2 + 2a —m
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(2-23) 11= Q - 1 (3sup„EM )
2

v(x)= Aw - 3 + tt, w=R 2 - r 2  x e  G.

Now we determine a constant A so that v satisfies

(2-24)f l y  + B(x)Q(v). C(x), in G.

Then

(2-25) Pv = - (A (x)A + VA(x).V)v
a 2v

= -A (x )(  + (N  -1) -

1  

—
0 v

)- V A(x)•Vv
Or2 r ôr

= -22(5w - 6 - 2  x

[A(x)(NR 2 + (2(5 + 2 - 1V)r2 ) + wV A(x)•(x - x0)]

> - 216 CR 2 (A(x)+ d(x)IV M x ) *  
ô 2 ,

where C is a positive number independent of x 0 , x, an d  R .  From the monotonicity
of Q and the definition of it we have

C(x)1
(2-26) Q(1)- 

B ( x )  
+ -

3  
(Q(it/2 )+Q(1 w- j )).

Then we have

(2-27)f l y  +B(x)Q(v)

1
C(x)- 226 CR 2  A(x)w -  6 - 2  + - B(x)[Q(1.(12)+ Q(214 , -  6 )]

3

> C(x)+ -
1

I  6 °B(x)Q(Aw -  6 )(2 6 ° C '  Â (x )  (A w  6 ) 6 ' 1 + 1 •R 2 )
3 B(x) Q(2w - 6 )

1
+ - B (x )Q(212), in  G.

3

Here we note that 6+2=6((50 +1), C'= 66C, and C is a positive number independent
of each x.

Now we put

t<3. +
(2-28) .1.°°= C'f1)(x0)R2max[sup   •t 110 1)1 1 0 1 1/2 )1

If 2w ° > 1, then we immediately get the  desired inequality (2 -24 ). O n the
other hand, if 1w

°
< 1, then we use the inequalities
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(2-29)

Then we see

(2-30)

Toshio Horiuchi

1
_..C'(1)(x0 )R2  and  Aw- ' 2 <,1 - 4 .

I ait/ 2 )1

1
- BQ(1.212) (2CS)R 2 A2w - 6 -  2 .
3

Therefore we have the desired conclusion.
13e virtue of (2-17), (2-24) and Lemma 2-1, we have

(2-31)
—fi(u—v).sgn + (u—v)

B(x)(Q(u) — Q(v)).sgn + (u— 11) . 0 in .9'(G).

Since (u—v), =0 near 0G, it follows from a  usual maximum principle that

(2-32) u(x0)_v(x0)=AR-26

= 0:1)(xo )R6 R -  26 C

CO(X0)4 d(X0) -  4 +C,

and this proves the assertion. Here we used [H-2], d(xo )= R/2 and R__d(x) 3R
in  G, and C is a positive number independent of R.

Lemma 2-5. A ssume [H - 1], [H - 2] and [H - 3]. A ssume that ueLr„(a) satisfies
PueLL(LT) in  th e  d is trib u tio n  se n se . M oreov er assum e th at  f o r  alm ost all
xe{xeS2';u(x) 0}

(2-33) Pu+B(x)Q(u) C(x).

Then we have

(2- 34) B(x)Q(u + )e a c(n).

P ro o f  First we have from (2- 33) and Lemma 2- 1

(2- 35) Pu++B(x)Q(u+) C (x ), in  g '( 2').

For a nonnegative test function çoeC(!1), we have

(2- 36) <Pu++B(x)Q(u+),rvp>

=f [u P( 1rwp)+ B(x)Q(u 4 rie cp)]dx )rC(x v pdx .
0

Here {q,}, , c, is a family of nonnegative smooth functions defined in (2-9) and (2-10)
in the proof of Lemma 2-3.

As in Lemma 2-3, we have, for some positive number C,
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(2-37) fo u+ P(no)dx < C [
1

- (d(x)'A (x)+IVA(x)l)lu+idx
fe/2 <d(x)<E

 

(A(x)+IVA(x)Diu-f-Idx]
suPPV

and by Lemma 2-4 and [H-3],

1
(2- 38) (d(x)-1A(x)+IVA(4)1u+Idx

e i,12<d(x)<e

< Ç' 01)(x)T  i d x
Â (x )  

612 < d(x) <
[ ( +1 - 0 (1) .

d(x)2d ( x ).1 e

Similarly

(2-39) (A(x)+IVA(4)1u+Idx< + ([14-3])
isuppg,

Then by taking e•-40 we see that B(x)Q(u + )e L (0 ) .

3. Proof of Theorem 1

Let us set y=Q - 1 (supx e , f ) ). Then we have, as in the proof of Lemma 2-4,

(3-1) — t)+ B(x)(Q(u) — Q(,u)). 0, for x e {u (x ) 0}.

Then we have from Lemma 2-1

(3-2) — ,u) + B(x) sgn + (u— p)(Q(u) —Q (n)) 0, in  g'(0').

N o w  w e  assum e  th a t  w ith o u t  lo s s  o f  genera lity  {x : d(x) < 1} cQ  a n d
.- suP 1 /2 <d(x) < 1 U (X ), then we shall see

(3-3) u(x)._/..t, for d(x)< 1/2.

In fact a weak maximum principle works in this case since the operator P is elliptic
in s2 \ F . To see this we set 0 =(u — 14+ i f  d(x)< 3/4, and 0=0 otherwise, and set

=min(0,j) for j=1 ,2 ,• • • .  Here we note that by virtue of Lemma 2-5 BQ(u) is
locally integrable o n  {x e Q ;u 0 }.  Therefore we see that BQ((1)eL 1(S2). Then we
approximate 0;  by a sequence of smooth functions 07e c ( s-1) for m = After
all we have as j—*ci

(3-4) 0;—>0=(u—,u)+ in  Q (a.e.), BQ(0i)—,BQ(0), in  L 1(0)

and as m—>oo for each j

(3-5) 07-40; in Q  a.e., BQ(07)—q3Q(0i ), in  Ll(Q).

For any nonnegative I/JEC(0), we have
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(3-6) <fig , + f B(x)sgn + (u– j4(Q(u)–Q(j1)ilicix

= OTPikdx+ B(400-011)itildx
(. 1z)

=  (4 1 -0 )P d x +  (4 ) ; -0)Ptlidx

f OAP d X  f  MX)I Q(X) — t f r d X .
SI {u

From  [H-2], for any s >0 there is a positive number CE such that

(3-7) t< CEQ(t),50+1 + E, for any t > O.

Then we have

(3-8) J. (0i_0).p0dx

   

1d x
014); –  01)6°+ 1 * Mx) —

d

+Ej'  IPOldxI suppv
cE(1

B(x)Q(IC— 01)dx
SU PPV

1 133

X (I .  Â ( x ) ( (bd 2(
)

,30, , d x r+1 +E
suppv

IPOICIX, as j–co . ([H-3])
Jo

Since e is an arbitrary, we see that

f.

(0 _ 0 i ). p 0 d x1„0 , as j–■oo.

In a similar way we have for each j

(3-10) - 0). NIA
J o

as m–)oo.

  

Hence we are able to m ake the first and second terms in the right-hand side
of (3-6) arbitrarily small by letting c o  and m–■oo. Now we deal with the rest
of te rm s . For a sufficiently small e> 0, le t riE be defined in the proof of Lemma
2 - 3 .  Then,

y o + 1

(3-9)
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(3-11)

JO
OPIkdx Mx)IQ(u)— VIdx

{u

=  ( 1 — th)OPOdx (1 — lic)B(X)10 0 — 0010 dx
SI 11)

d il  e t P ) d  X  
f

B I A X ) 1 — 0010 clx
{ti ft}

0 [P ,  i t  dx.

By using the similar estimate to (3-8), we see from [H-3] a n d  Lemm 2-5 that
ON/ e L l (n). From Lemma 2-5 we also have for B(Q(u)— Q(p.))sgn +  (u — ti)111 e L1 (0)
for p.> 0 .  Therefore it follows from the dominated comvergence theorem that the
first and second terms converge to zero as g—>0. Since supp(nE tfr)c ST, we see from
(3-2) the sum of the third and forth terms in  the  right-hand side is non-positive.
Now we show that the last term also converges to zero as e—>0. From (2-13), for
some positive number C  we have

(3-12)

f O

OEP,rhltfrclx
1

< C —
dx

+1
(42 .dsont.>,) d(x)

1
< C — ii(x)Q(u

1  d x
+ )1 +  ([H-2])

6 1 E /2 < d < E d(x)

1+60
C [ Q(u +)B(x)dx]

fe/2< d (x) < E

x [ -

1

i i ( x )
4311(x))6. dx + 

6
°

6  E /2  <

(

d(x) < E d(x)2 d(x)
(Holder inequality)

1 
1-Fbo

[ Q(u +)B(x)dx] —)0, ([H-1], [H-3], Lemma 2-5),
f e /2  < d (x) < 8

as

After all, we see that for any K>0 and any nonnegative e C (2) it holds that for
some sufficiently large numbers j  and m

(3-13) <POT, ifr> +
 J

B(x)sgn +  (u — p)(Q(u)— Q(u))tlidx < K .
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Now we choose a  ifr so  that tk = 1 on the set {d(x)_<_ 3/4}. Since s u p p  s u p p  c
{d(x)<3/4}, we see the first term (3-13) equals to zero, so that w e have

(3- 14) 0 < B(x)•IQ(u)— Q(y)Idx K.
(u> i l l n ( d ( x )<  3/4)

Since K  is arbitrary, (3-3) is derived from  th e  positivity o f  B (x ) and the strict
monotonicity of Q() .

4. Proof of Theorem 2

U n iqu en ess . First we prove the uniqueness of solutions in

(4- 1) T(S2)= L NS2)(- )H10 ,(i) \F).

Assume that u  and v are solutions to  the homogeneous Dirichlet boundary value
problem (1-20) in  the space To). By subtraction we get

(4- 2) Au—  v)+ B(x)(Q(u) — Q(v))= 0, in  9'(1 ).

Since f, B• Q(u)e ( S I )  it follows from Lemma 2-1 that

(4-3) Au— v), +B(x)sgn + (u — v)(Q(u) — Q (v ))  0, in  9'(Q').

Since it holds that Av+e)+ BQ(v + f)v + B Q (v)= f for any  e> 0, w e also have

(4-4) /5(u— v— e) +  B(x)sgn + (u—v— 6)(Q(u) — Q(v + E D  0, in  g '(a).

Here we note that supp(u— v—E) 4 . nOSZ= 0. As in the proof of Theorem 1, for any
K > 0 and tke q)(0) we can approximate a bounded function (u — y — e) + by a sequence
o f smooth functions Yoi lr_ C (S 2 ) and  w e have for sufficiently large numbers

(4-5) <PC, tp> + B(x)sgn + (u — y — E )(Q (u )—  Q(v + OW' dx <K.

Now we choose a so that = 1 on the support of cki . Then we have

(4- 6) 0 B(x)IQ(u)— Q(v + r)Idx K.
u> V +V

Since Q  is  monotone and E  is arbitrary, we see that u< v. In  a  similar way we
see u> y, so  that w e have u= v. Thus the uniqueness holds.

Ex istence. We assume tha t N > 1 . If N= 1 the proof below still works with
obvious modifications. First we shall regularize the problem by approximating the
operator P  by uniformly elliptic operators {Pc }e > 0  in  th e  following w a y . I f  P  is
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uniformly elliptic, the existence of solutions to  (1-20) in H,(f1) is well known. Let
us set for E >0

(4- 7) -  divfle + A(x))V

and consider the Dirichlet problem:

5.
 e u + B(x)Q(u) =f, in n,
1. u= 0, o n  an.

Then we prepare a lemma which concerns the existence and regularity of solutions of
(4 -8 ). We shall sketch the proof for convenience.

Lemma 4 - 1 .  L et N > 1 .  A ssume that the same assumptions as  those in  Theorem
2. T hen there  is a u n iq u e  u,eHUSI) w hich satisf ies (4- 8 )  in the distribution
sen se . Moreover u, satisfies

(4- 9) BQ(u,), BQ(u,)u, e  ( ) ) .

Sketch of  P ro o f  This proposition can be shown in the following w a y . We
replace Q for Q(u)=min(1Q(u)i,n)sgnu and consider the truncated equation below;

(4- 10) .13,un+B(x)Q„(u)=f, in a
u„= 0, on Q .

Then we prove the existence of bounded solutions in 111,(1) by the use of Schauder's
theorem. It is easy to see that {u„} 1 is bounded in H ( S ) .  As we make n tend
to infinity, we show the weak convergence of solutions in  H (Q ) using a priori
estimates for a fixed E >O . Then by the compactness argument we see the limit u,
satisfies (4-8) and (4-9).

Remark 1 1 .  F o r each compact set K c n \ F ,  it ho lds tha t uE eH l (K ) and
BQ(uju e eL l (t1). Since P  is uniformly elliptic on  K  and A (x)e CO), we see that
for some positive number C(K) independent of each E >0 such that

(4-11) sup Iti,(x)1 C(1().
XEK

Moreover we can show that u, is Holder continuous on K  and its Holder norm is
uniformly bounded with respect to E. If Q is unifomly Lipschitz continuous, then
we see uE eH7,,,(0)\F) as well.

End of  the proof  o f  Theorem 2. By u , we denote the solutions to  (4-8) as
before. From Lemma 4-1 and its remark we see uEel-n(n) and BQ(u,)u,eL t (S2). First
we prove that /4, satisfies (1-24) uniformly in E > 0 . W e  set

(4-12) a -  
2 + 6 0

, a n d  b= 2 +60 .
1 +(50

(4-8)
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From  (1-6) in  [H -2], we see lu,1 C[(luj Q(u,)1) 2 +.50+ 1] for some positive number
C .  By Young's inequality we have for any positive number h

(4-13) folf C f —(114,11Q(uE)1)2 +6 0.13dX C  VIC&
„B

1 11— a1 3 d X +  Cb - l hb  f luEli guA B dx +C  If idx .
B

Multilpying u, to  the bothside of (4-8) and integrating over 1), we get

(4-14) L(E + A)1Vue l2 dx + (1 - Cb - l hb ) f Blzi,11Q(uOldx
S2 17

<Ca - 1 h ' B dx+Cf []clx .
B

Now we put hb  =b(2C) - 1 , then we have the desired inequality.
Secondly, by the  method of a  p rio ri estimate a n d  compactness, we derive a

subsequence {uE,}7_ , f ro m  {tit }e "  w hich  converges w eakly to som e elem ent
riel-no c (C2\F) and  u, converges u  a .e . in  S1 \ F .  Then by virtue o f Fatou's lemma
and a weakly lower semicontinuity of L2 -norm, we get for some positive number C'

(4-15) I I2dx+ f 11f11L A V R
F SAF

N o w  w e  show  th a t  BQ(u, j )-*BQ(i4) in ' ( Q \ 1 ) .F). F ro m  th e  definition o f  weak
convergence of  { u } 1 a n d  t h e  estim ates (4 -14) a n d  (4-15), w e  se e  th a t

/1/2 in  g'(f/\F). Therefore the lim it o f BQ(u,j )  in  9'(2 \ F )  as co
exists. H ence it suffices to  show that

(4-16) LB(Q(u,)-Q(R))(pdx->0, for all cpe C(S2\F).

From  Rem ark 11 just after th e  proof o f Lemma 4-1 , sunxesupp(pl
u e i i  i s  u n i f o r m l y

bounded on the support of cp, so  tha t BQ(u,j ) is uniformly bounded with respect
to  c .  S in c e  u , --*Ft a.e. in  5-2\F, (4-16) follows from th e  dominated covergence
th e o re m . A fte r  a ll w e  se e  th a t u  sa tis f ie s  (1-20) i n  SI \F i n  t h e  sense  of
distribution. Now we define

(4-17) 5  171(4
ifxen \F,

u(x)= 
Q - 1 (f(x)1B(x)), if x eFv F.

Then u  clearly satisfies (1-20) in  S.2 \ aF in  the  sense of distribution. In  \ F the
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operator P is elliptic a n d  th e  right-hand side of (1-20) belongs to LN S1). Hence
we see that ueL ro c (ST) Then it follows from Theorem 1 that u is bounded in SY. From
Corollary 1  w e see that there exists a  u n iq u e  function veLNS2) which satisfies
(1 -1 9 ). Since v =u in  SIV F , we see that ve T(S2) is a  unique so lu tion  to  (1-20) in
g ' ( 1) a n d  v satisfies (1-24) fo r some positive number C.
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