J. Math. Kyoto Univ. (JMKYAZ)
40-1 (2000), 13-35

Removable singularities for semilinear degenerate
elliptic equations and its application

Dedicated to Professor Norio Shimakura on the occasion of his sixtieth birthday

By

Toshio HORIucHI

0. Introduction

Let N>1 and p>1. Let Q be a bounded open set with smooth boundary
and F be a compact set satisfying FcQcRY. We also set Q' =Q\dF, where
OF=F\IntF. We assume that the measure of dF is zero. Define

©-1) P=—div(4A(x)V"),

where A(x)e C'(Y) is positive in Q\F and vanishes in Int F. First we shall consider
removable singularities of solutions for degenerate semilinear elliptic equations.
Assume that ue CO(Q)NC*(Q\F) satisfies the differential inequality

0-2) Pu+ Bx)Qu)<C(x), in Q,

for some nonnegative functions B(x) and C(x). Here Q(f) is continuous and strictly
monotone increasing on R satisfying the growth condition (1-6). For instance we
can adopt |t|P~ 't with p>1 and (¢! —1)sgn(¢) for Q(f). Then we shall show under
some additional conditions on A(x), B(x), C(x) and Q(f) that

0-3) limsup u(x) < + oo.

x—0F
From this result we can deduce that if ue Co(Q)NC*(Q\F) satisfies
(0-4) Pu+ B(x)Qu)=f(x), in Q'

for f/BeL*(Q), then there is a bounded function in Q which coincides with u in
Q' =Q\dF.

This result was established by H. Brezis and L. Veron, under the assumptions
that F consists of finite points, Q(f)=|¢f|P" !t and A(x), B(x), C(x) are positive
constants. More precisely they proved in [BV] that if u satisfies (0-2) with some
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additional assumptions on p, u can possess only removable singularities on F. (See
also [VV1], [VV2] and [V]). In this paper we generalize their results for an
arbitrary compact set F in place of finite set and for wider class of (degenerate)
elliptic operators P. Roughly speaking, the operators P considered here are permitted
not only to vanish infinitely on a compact set F=(, but also remain unbounded
on Fif [F]=0. The main tools for this aim are similar to those in [BV], namely
a comparison principle, Kato’s inequality and a weak maximum principle. Since
the operators P are rather general, we need to modify them suitably. As a result
we are able to derive a pointwise estimate of u. We also prove the sharpness of
our results for the removability of singularities in the special case that F is either
a set of finite points or an m-dimensional compact Lipschitz submanifolds
(O<m<N-—1) of RY, and

A(x)=d(x)**, B(x) = d(x)*, C(x) =d(x)*",

(0-5) { _ .
o0 =ItP~ ', d(x)=dist(x,0F),

where p>1 and a, f and y are real numbers.
Secondly as an application, we shall consider the Dirichlet boundary problem
for genuinely degenerate semilinear elliptic operators:

{ Pu+ B(x)Qu)=flx), inQ,

(0-6)
u=0, onodQ.

Then we shall establish the existence and uniqueness of bounded solutions u for
this problem with f/BeL®(Q). When P is uniformly elliptic on Q, this problem
has been treated by many authors. In [S], G. Stampacchia considered the linear
case. In [BS] H. Brezis and W.A. Strauss proved the existence and uniqueness of
solution for feL!(Q) with a monotone increasing non-linear term in u (possibly
multi-valued). See also [BBC] and [BG]. The quasi-linear case has been also
considered in L!'— framework by many researchers, for instance [LL], [LM],
[BGDM], [R1], [R2], [R3], and so on. But the development of the theory seems
to be rather limitted in the study of genuinely degenerate operators.

This paper is organized in the following way. In §1 we shall describe our
precise framework and main results which consisit of the removability of singularities
and the unique existence of solutions for Dirichlet boundary problem (0-6). In §1
we shall also construct examples showing that in certain respects Theorem 1 gives
best possible results. §2 is devoted to prepare auxiliary lemmas. In §3 we shall
prove Theorem 1 by the use of weak maximum principle in Orlicz space. Theorem
2 will be finally established in §4 as an application of Theorem 1.

1. Main results and Applications

In this section we describe our precise framework and main results. Let
N>1. Let F and Q be a compact set and a bounded open set with smooth
boundary respectively, satisfying FcQ<R", and set



Removable singularities 15
(1-1 Q' =Q\JF,

where OF is defined as 0F=F\Interior of F. In this paper we assume that the
measure of JF is zero. For example if F is a smooth compact subset of R, then
the measure of OF is zero.

In the next we define a modified distance to OF.

Definition 1. Let d(x)e C*(Q') be a nonnegative function satisfying

(1-2) cO=— _ <1, xeq,
dist(x, 0F)
|87d(x)| < C(lyldist(x, 0F)* 1", xeQ',y #0,

where y is an arbitrary multi-index and C(|y|) is positive number depending on each
|y|. For the construction of a modified distance d(x), see [T] for example.

First we assume the following [H-1] on the nonnegative functions A(x), B(x)
and C(x).

[H-1].
A(x)e CHQ)NL;,(Q),

(1-3) A(x)=0 in Int F=F\0F,
A(x)>0 in Q\F,

(1-4) { B(ELQ)NLindD)
B(x)>0 in Q' =Q\J0F,

and

(1-5) { C (X)ELF.?C(Q’)ﬁLz‘oc(Q),
Cx)=>0 inQ.

Secondly we assume the following [H-2] on the nonlinear term Q(¢).
[H-2]
Q(?) is strictly monotone increasing and continuous on R such that Q(0)=0

and Q(1)t>0 for any te R\{0}. Moreover we assume that there is a positive number
0o such that

. ltll +do
(1-6) limsup
-+o Q0

We need more notations.

<+ 00. (Super-linearity)

Definition 2. Let us set for any xeQ'=Q\oF
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A(x)=A(x) + d(x)|VA(x)],
(1-7) (D(x)=ess-sup|,_x|<@ B() >

\]J(x)=ess-sup,y-,,|<@ B(y) -

é.

E

Then we assume that:
[H-3]. For the same positive number §,>0 as in [H-2], it holds that

1
D(x) \2o 1
1-8 —€ell
(1-8) 1(")[( d(x)2> +1] d(x)eL'“(Q)
and
1
N | d(x) \% dx
1-9 1 f — 7 .
(= e 8 Lk.«x,f(x) [(d(x)Z) “] o~ T
We also assume that:
[H-4].
C(x)
(1o WP B <t

In the application, it will be useful to introduce the following subclass consisting
of admissible weight functions 4(x). Namely:

Definition 3. Let L>1. A(x)eC'(Q) is said to belong to the class S; if there
is a positive number C such that d(x)*|VA(x)| < C- A(x), in Q where C is independent
of each x.

It is easy to see that if AeS; for L>1, then the following [H-5] implies (1-9)
in [H-3] with the same §,.

[H-5]. There is a positive number d, such that

1
R | Y(x) )5 ] dx
1-11 | f — A —_ 1| —— )
(=10 e LMX,Q ) [(d(x)“* e

Remark 1. In Definition 3, if F is assumed to be smooth and A4 vanishes on
OF uniformly in finite order, then by the mean-value theorem we may take L=1. On
the other hand if 4 vanishes infinitely on OF, then we see L>1. For instance,
F={0}, A(x)=exp(—1/|x|"), xeR™, then L=a+1. If AeS, with L=1, then @ is
equivalent to ‘P.

Remark 2. The conditions (1-9) in [H-3] and [H-5] mean that B(x) does not
vanish much faster than A(x). If 1<N<2, then either 4 or ® must vanish on oF
in order to satisfy (1-9) in [H-3]. See also [H-5].

Remark 3. If we assume the following condition [H-6], then [H-3] is
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satisfied. In fact, the both conditions (1-8) and (1-9) in [H-3] are weaker than
(1-12) in [H-6]. We shall give an example in Theorem 3 which does not satisfy
[H-6] but satisfies [H-3]. (See Remark 6 in §2.)

[H-6]. For the same positive number d,>0 as in [H-2], it holds that

D(x) \&s 1 .
(1-12) Ax) [(d(x)2> +1] PR

Let D be an open subset of . In order to state our main results, we prepare
more definitions.

Definition 4. For u, uA and u|VA|eL} (D), we set
(1-13) {Pu, @) = — Aud)+V(uVA), )
for all peCg(D).

Definition 5. For u, |Vu| and A|Vu|eL} (D), we set

(1-14) CPu, > = —V(AVH), @)
for all peCZ(D).

Here we note that from [H-1] and [H-3] we have 4 and |VA|eL} (Q)NLZ(Y).
Therefore if u is bounded on Q, then Pu is well defined by (1-13) as a distribution
on D. It is also obvious to see that if 4 is a smooth function, then (1-13) coincides
with the usual definition of the distribution. Moreover we show the following.

Lemma 1-1. Assume [H-1] and [H-3]. Let ueLl(Q) and let Pu be a
distribution defined by Definition 4 with D=C'. Suppose that PueLl(S), then
A\Vule LL(QY) and the distribution Pu defined by Definition 5 with D=Q' coincides
with Pu. In particular PueLl (Q) and we have

(1-15) {Pu, (p>=J Pu-@dx, for all peCF(QY).
o

Proof. From [H-1] we see that the operator P is elliptic in . Hence we
see that if ueL},(Q) and PueL}(Q), then |Vu|leLL (). (For the detailed proof,
see [K; Lemma 1] for example.) Since 4 and |VA|eL.(Q)NLZ(Q), we see that
A|Vule L (). Hence we see for peCP(Q)

<Pu )= — J

Q

u(AA@ +VA-Vo)dx = J

uPodx={Pu, p).
o

This proves the statement.

Now we are able to state our main results.
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Theorem 1. Assume [H-1], [H-2], [H-3] and [H-4). Assume that ue L2(Y)
satisfies PueL,(Q) in the distribution sense. Moreover we assume that Sfor almost
all xe{xeQ';u(x)>0},

(1-16) Pu+ B(x)Q(u) < C(x).

Then we have u,eL(Q), that is to say, ess-sup,_pu,(x)<+oco. Here u,(x)=
max(u(x), 0).

Remark 4. It follows from Lemma 1-1 that under the assumptions in Theorem
1, the distribution Pu on Q' definesd by (1-13) is the function PuelLl (Q). Then,
Theorem 1 says that u, e L3(Q') can be extended as a locally bounded function on
a whole Q. Since the measure of 0F is zero, this extension coincides with u, except
on a set of measure zero.

The following is a direct consequence of this Theorem.

Corollary 1. Assume [H-1], [H-2] and [H-3]. Instead of [H-4], assume that
SX)eLEZ(Q)NLL Q) satisfies for some positive number C

(1-17) [f)<C-B(x), for almost all xeQ.
Assume that ue L2(Q') satisfies

(1-18) Pu+B(x)QW)=f, in 2'().
Then there exists a function veLjo(Q) such that

{ Pv+B(x)Q(v)=f, in2'(Q)

Vg =u.

(1-19)

Here by 2'(Q') and 2'(Q) we denote the set of distributions on Q' and Q respectively.

Proof. From Theorem | we have u,eL2(Q). The function —u satisfies (1-18)
with replacing f and Q(f) by —f and — Q(—1¢) respectively. Since — Q(—1) satisfies
the same assumption as the one for Q(t), we see in a similar way u_e L2 (). Accord-
ing to Remark 4, u is extended as a locally bounded function on Q. By v we
denote this extension of u to a whole Q. Thus veL2(Q) and v|p,=u. From [H-1]
and [H-2] we also see that B-Q(v)eLj(€Q). Here we note that since A(x)=0 on
F\OF, u(x)=v(x)= Q0 '(f(x)/B(x)) on F\@F. Then it follows form Lemma 2-3 in §2
that v is extended as a solution of the same equation on a whole Q. Here we
remark that the uniqueness of solutions of (1-19) in Lj(Q) follows from the same
argument in the proof of Theorem 2 in §4.

As an application we consider the Dirichlet boundary value problem for
degenerate semi-liniear elliptic equation:

{ Pu+ B(x)Qw)=f inQ

(1-20) u=0 ondQ.



Removable singularities 19

We prepare more notations. Let D be an open subset of RY. Let ¢>1 and
let j be a positive integer. By H?%D) we denote the spaces of all functions on D,
whose generalized derivatives 0’u of order <j satisfy

1/q
(1-21) lul; = Y (j |3"u(x)|"dx) <+ 0.
D

7l <ij

Also, HLAD) is a local version of H*4(D), and by |ull, we denote the essential
supremum of u. By H{%D) we denote the completion of CF(D) with respect to
the norm defined by (1-21). Conventionally we set H'(D)=H"*D), H,,(D)=
HL2(D), and HYD)=HY*(D). Then we have

Theorem 2. Assume [H-1], [H-2] and [H-3]. Instead of [H-4] assume that
f(X)eL™(Q) satisfies for some positive number C

(1-22) f(x)| < C-B(x), for almost all xeQ.
Moreover we assume that A(x), B(x)eC%(Q). Then there exists a unique function
(1-23) ue L*(Q)nH},(Q\F)

which satisfies the homogeneous Dirichlet boundary value problem (1-20) in the
distribution sense and satisfies

(1-24) J LAX)Vul> + Bx)Qu)uldx < C'(If/ Bl % + 1 )-
Q

Here A=%+3% and C' is a positive number independent of each function f.

Remark 5. If Q is Lipschitz continuous, then ue H: (Q\F) as well. For the
proof of Theorem 2 we shall regularize the problem. By virtue of Theorem 1, we
shall prove that the solutions of this approximating nonlinear elliptic equations
converge to the unique bounded solution of the original equation. The monotonicity
of the nonlinear term Q on R will be needed to establish the uniqueness of
solutions. Therefore it suffices to assume in Theorem 1 that there is a positive
number C such that Q(f) is monotone increasing for te R\[—C, C].

Counter examples to Theorem 1. In the rest of this subsection we shall construct
examples showing that in certain respects Theorem 1 gives best possible results. Let
F be either the origin 0 or an m-dimensional C® compact submanifolds in R¥
without boundary for 0<m<N—1, and let d(x) be a modified distance function
defined by Definition 1. If F consists of the origin 0, then we put d(x)=|x|. We
set for some positive smooth functions b(x) and c(x),

(1-25) { Lu= —div(d(x)**Vu),

O(u) = |ulP~ *u, B(x) = b(x) d(x)*# and C(x)= c(x) d(x)*.
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Assume that real numbers «, f and y satisfy the following conditions. First
we assume (h-1) which is equivalent to [H-1].
N—m N—m

and y> — ——.
' 2

(h-1) B>—

Here we note that the condition on « is included in (h-2) below.
Let us set for 0O<m<N-—1

142 1 —2+h

—_, if a<pf+1,
p*={ N+20—-2—m g
m 1,

(1-26) .
if a>p+1.
Then we assume (h-2) which is equivalent to [H-3].

p=pk ifa<f+1,

(h-2) p>pr=1, ifa>p+1,
N—m-2
we>—- — .
2

Lastly we assume (h-3) which is equivalent to [H-4].
(h-3) B<y.

Let us set u, =max[0,u] and u_=max[0, —u].
By L,u we denote the distribution defined by Definition 4 with P=L, and
A=d(x)*.

Theorem 3. Let F be either the origin or an m-dimensional C* compact
submanifolds in RN without boundary for 0<m<N—1. Assume [h-1], [h-2] and
[h-3]. Assume that ueL(Q) satisfies LueLl(Q) in the distribution sense.
Moreover we assume that for almost all xe{xeQ';u(x)>0}

(1-27) L+ b(x)d(x)**u? < c(x)d(x)?",
for some positive smooth functions b(x) and c(x). Then we have u.eLj(Q).

Proof. Since Q(u)=|ul’~'u, we can put §o=p—1 to obtain (1-6). Putting A(x)
=d(x)**, B(x)="b(x)d(x)** and C(x)=c(x)d(x)*>’, we shall apply Theorem 1 and the
remark just after it. Then these obviously satisfy [H-1] and [H-2]. Hence, it
suffices to show that the condition [H-3] is satisfied. A direct caclulation leads us to
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(1-28)
! j (d(x)_—(_m_z ETa 1>d(x)2“‘ tdx
€ £/2<d(x)<e

! J (d(x)%("'%gt—%Hd(x)z“‘) dx
€ Je2<dix)<e

! J dpj (d(x)zi’——'l‘(P-%)+d(x)2a-l) dH"1(x)
€ d(x)=p

2a—1

SCdiam(F)'”lf (pp i (p-32% 1)+p2a 1) pN"m=1dp
€ £/2

= C'diam(F)" < = (P—ﬁ%)+sza+n—m-z>

=0(1). (h-1) and (h-2)

This proves the assertion. Here H" !(x) is the (N —1)—dimensional Hausdorff
measure, and we used the fact: There is a positive number C such that we have

(1-29) {0 <d(x)<e}| < Ce¥ "diam(F)", 0<e<l.

Remark 6. Here we note that if p=p;,, then [H-6] is not satisfied in this example.

The following is also a direct consequence of this whose proof is omitted.

Corollary 2. Assume [h-1] and [h-2]. Instead of [h-3], assume that b(x) is a
positive smooth function on Q and f(x)e L)L}, (Q) satisfies for some positive
number C

(1-30) f(x)| < C-d(x)*®, for almost all xeQ.
Assume that ue L2(Q') satisfies

(1-31) Lau+b(x)d(x)**|ul’~‘u=f, in 2'Q).
Then there exists a unique funciton ve L2(Q) such that

(1-32) { Ly+bx)do) PP-tv=f, in2(Q)

vIQ/ =u.
Here by 2'(QY) and 2'(Q) we denote the set of distributions on Q' and Q respectively.

Counter-examples to Theorem 3. We shall see that Theorem 3 is best possible in
certain respects, provided 1<p. Let F be either the origin or an m-dimensional
C*® compact submanifolds without boundary in R¥ for 0<m<N—1. We note that
F=0F holds. Since it suffices to construct the counter-examples in a small ball
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contained in some neighborhood of F, we may assume d(x)=dist(x, F) and d(x) is
smooth on F* so that we have |Vd(x)|=1 near F. Let W be a small neighborhood
of F. Now we consider a funciton U in W\F of the form

(1-33) U(x)=d(x)~™, for M>0.

Let U be a solution of the following equation for some M >0.

(1-34) L UX) +b(x)d(x)*U(x)? =0, in W\F.
Equivalently we have

(1-35) M(d(x)Ad(x) + 20— 1 — M) + b(x)d(x)> ~*+H =M= =,

Since d(x) is smooth and d(x)Ad(x) is bounded, in order to get an unbounded
solution it suffices to make M, p, a, f and b(x) satisfy

(1-36) p=1+ 2(1;1;_@ , M(dxX)Ad(x)+ 20— 1 — M)+ b(x) = 0.

Here we note that b(x) becomes a smooth positive function in W\F as desired, if
it holds that

(1-37) M > d(x)Ad(x)+ 20— 1.

For sake of simplicity, we examine (1-37) when Fis a plane. Let us set F=F,,, where

F,={x=(xy, x5, X)Xy ==Xy =0},
(1-38) for l<m<N-—1,
Fo={0}

Then we immediately see that

N
(1-39) dist(x,F,)= | Y. x{ and dist(x, F,)Adist(x,F,)=N—m—1.

l=m+1

Remark 7. When F is an m-dismensional compact smooth manifolds without
boundary, we can also show that

(1-40) lim dist(x, F)Adist(x, F)=N—m—1.

x=F
For the proof of this formula, see Lemma 2-2 in [V] for example.
Then the condition (1-37) becomes in a sufficiently small neighborhoods of F,
(1-41) M>N—m+20—2.

Therefore we see that U(x)=dist(x, F,) ™ becomes an unbounded solution to (1-34)
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if (1-36) and (1-41) hold. After all we get

Proposition 1-1. Assume that F=F,, for 0<Sm<N—1. Moreover we assume
that [h-1]. Then for the validity of Theorem 3, the assumptions [h-2] is necessary.

Proof. Assume that [h-1]. If af+1, then from the previous consideration
U(x)=dist(x,F,)™™ becomes a counter-example for a suitable b(x) provided
1<p<p} Ifa=p+1, then pf=1. Therefore we put p=1. Since the equation is
linear, a fundamental solution or a good parametrix exists, and it becomes a
counter-example. Here we note that if a<—%¥=2=2 then U(x) becomes an
counter-example for any p, M, b(x) satisfying (1-36) and (1-41).

Lastly we consider [h-3]. We can show the following:

Proposition 1-2. Let us set F=F,, for 0<m<N—1. Assume [h-1]. Then for
the validity of Theorem 3, the assumption B<7y ([h-3]) is necessary if a>y+1. If
a<l+m/2, then B<y+p®=3=" +a) is necessary as well.

Proof. Assume that f>7p. Let us set U(x)= —logd(x). Then it is easy to see
that U(x) becomes a counter-example, provided a>y+1. Secondly we assume
a<1+m/2. Since dx) N m-2*29¢ ! and Ld(x) " ™ 2*29=0 in Q\F, we see
that f<y+pE=2=2 4+ «) is needed to avoid this null solution.

2. Lemmas

We shall prepare auxiliary lemmas which will be needed to establish Theorem
1 in §1.

Lemma 2-1 (Kato’s inequality ). Assume that ueL} () and PueLL (). Then
we have

(-1 Pu, <(Pu)sgn*u, in 2'(),
1, for u>0,
where  sgntu= { 1/2, for u=0,
0, for u<O.

Proof. This follows from Kato’s inequality. Let us set
N
(2-2) M(x,0)= ) 0.fau(x)dy,),
k=1

where a;(x)e C'(Q\F) is positive definite.
Then we have, for u and M(x,d, )JueL} (Q\F),

(2-3) M(x,0)\ul=(M(x,0 u)sgnu  in 2'(Q\F).

Since P is elliptic in Q\F and identically zero in IntF and 2u, =|u|+u, we get the
desired inequality. For the detailed proof of Kato’s inequality see [K].
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Next we make sure that Py is a distribution on Q for any e CP(Q).

Lemma 2-2 (Po with peCy(Q)). Assume [H-1] and [H-3]. Then it holds that
PoeL'(Q) for any peCQ(Q). In particular, P satisfies

(2-4) <13¢,¢>=I ¢Plﬁdx=f AV -VWdx={Py, ¥},
(2] 2]
Jfor any YeCF(Q).
Remark 8. If yeC(Q), then this is already proved in Lemma 1-1.

Proof. First we show that PpeL'(Q) for any peCP(Q). By the definition of
the operator P and Definition 2, we see that for some positive number C

A
(2-5) |Po|=|4AA@+VA-Vo|< o (1Ag|+[Vol).

Then it follows form [H-3] that PpeL'(Q). Since @, |Vo|, A|Vo| and [VA|peLl (Q)
we can define both Py and Py, and have

(2-6) (Poyy=— I P(AAY +VAVY)dx
Q
= —j @-div(AV)dx = j AV -Vdx = {(Po>.
2] (2]

Therefore we see Pp=Po.

In the next we shall show that Pu with u being a bounded function on Q
becomes a distribution on Q in a canonical way.

Lemma 2_3. (Extension). Assume [H-1] and [H-3]. Let feLlL(Q) and
ueL2(Q). Let Pu be a distribution defined by (1-13). Assume that u satisfies
2-7) Pu=f, in 2'(Q).

Then we have
(2-8) Pu=f, in 2'(Q).

Here by 2'(Y) and 2'(Q) we denote the set of distributions on Q' and Q respectively.

Remark 9. We assume that [H-1], [H-3] and fe L} (). In particular, it follows
from Lemma 2-3 that if ueL®(Q) for Q' =Q\JF satisfies Pu=f in 2'(Q), then u
can be extended as a solution of the same equation on a whole Q. If the operator
P is not singular but uniformly elliptic on Q having smooth coefficients, then this
result is already known provided that the set OF is sufficiently small. By u* we
denote the zero-extension of u to Q, that is, u*=u in @ and u*=0 otherwise. From
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Definition 4 we see that P(u*) is also a distribution on € in a canonical way. Then
u* equals u a.e. and satisfies the assumptions of Lemma 2-3. Therefore Lemma
2-3 imlpies, roughly speaking, the set JF is so small in some sense that the support
of P(u*) as a distribution and the set F have no point in common. As a result we
also have

Lemma 2-3’° (Extension). Assume [H-1] and [H-3]. Let feL.L(Q) and
ueL™(QY). Let Pu be a distribution defined by (1-13). Assume that u satisfies (2-7).
Then there is a function ve L*(Q) such that v=u in Q' and v satisfies the same
equation on a whole Q in the distribution sense.

Proof of Lemma 2-3. Now we take a smooth function #(f)e C*(R) such that
for some positive number C,

" 1, fort>1,
(2-9) 0<n(t)<1, max[n'(9),ln"(D]<C, and n(r)= )
0, for tsi.

Then we put for any £¢>0
(2-10) nx)=n(d(x)/e).

Then by the definition of Pu, Lemma 1-1 and (2-7) we have for any test
function peCP(Q) and &>0,

(2-11) CPu,ne) =J uP(ne¢)dx=me¢dx.
o 9]
We also have
(2-12) P(n.9)=[P,nJo+nrPe, for [P,n]Je=Pn.e)—nrPo.
and
(2-13) lu[ P, 1]l < Cled(x)) ~'|ulA(x), for /2 <d(x)<E,

where C is a positive number independent of each x and & Then we have

(2-14) f ulP,n Jodx SEJ /T(X)Iuld—x ,
Q € g/2<d(x)<e d(.X)

and

(2-15)

™ | -

dx So+1 IEzn
Ax)ul— < [u®* ' B(x)dx | 77
£/2 <d(x)<e d(x) £/2 <d(x)<e
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[ L. oGopal
€ £/2 <d(x)<e d(x)2 d(x)

1
ch ul?* ! B(x)dx |”"°-»0, ([H-1] and [H-3]),
£/2 <d(x)<e

as ¢—0.

Since PpeL'(Q) and ueLZ(Q), we have by letting e—0 in (2-11) that

(2-16) j u-Podx = J fodx for all peCF(Q).
(2] Q
This proves the assertion.

Lemma 24. Assume that ueL®(Q) satisfies PueLl(Q) in the distribution
sense. Assume [H-1]-[H-4]. Moreover we assume that for almost all
xe{xeQ’;u(x)>0}

(2-17) Pu+ B(x)Q(u) < C(x).

Then we have, for some positive numbers C and &,
1 =2
(2-18) u(x) < C[®(x)ed(x) % +1],  for x with 0<d(x)<e,.

Remark 10. In particular if F is an m-dimensional compact smooth submanifolds
of RV and if A(x)=d(x)**, B(x)=d(x)*#, C(x)=d(x)*' and d,=p—1 in this lemma,
then we get under the assumptions [h-1]-[h-3],

u(x) < Cd(x)*, for d(x)<e,,
(2-19) s=max[sy,S,],

5, =252 5, = 2B,
In particular if a<f+1 and p=p}, then we have

(2-20) s;=N—242—m and s5,=2(B—7) ﬁ};i—;ﬁ_’;ﬂ
Proof. Let 6 satisfy

(2-21) 0:99=2.

Let x,eQ\F, with 0<d(xo)<1/2. For R=d(x,)/2 and r=|x—Xx,|, we set

(2-22) G={xeR";|x—xo|<R}.

We also put
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(2—23) g= Q— ‘<3supxeﬂg{§§) >
Wx)=iw ?+pu, w=R>—r* xeG.

Now we determine a constant A so that v satisfies

(2-24) Pv+B(x)Q(n=Cx), in G.
Then
(2-25) Pv=—(A(x)A+ VA(x)-V)v

2
= —A(x)(% +(N—1)% %)—VA(x)-Vv

=—26w % 2x
[A(X)NR?+ (26 +2 — N)r}) + wV A(x)(x — x,)]
> — 2A8 CR¥(A(x) +d(x)|VA(x))w 22,

where C is a positive number independent of x,, x, and R. From the monotonicity
of O and the definition of u we have

a1 .
(2-26) o= B0o) *3 (Q/2)+ QAw ™).

Then we have

(2-27)  Bv+BXx)Q(v)

> C(x)—2A6CR*A(x)w™°"2 + % Bx)[QW/2)+ Q0w %]

1 —do —é do__ (' @(_;LW_ _6)60+1. 2)
> Q00+ 5 4B QU )(/1 C o o R

1 .
+ 3 B(x)0Q(1/2), in G.
Here we note that § +2=0(d,+ 1), C'=60C, and C is a positive number independent

of each x.
Now we put

do+ 1 1
2-28 Ao = C'®d R? s .
(2-25) (o) max[fﬁ‘ng(m IQ(u/Z)I]

If Aw™%>1, then we immediately get the desired inequality (2-24). On the
other hand, if Aw™ %<1, then we use the inequalities
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1
(2-29) A% > C'®(x,)R? and Aw %" 2< ) %,
7 10w/2)
Then we see
1
(2-30) 3 BO(11/2)>(QCHR*Aiw %2,

Therefore we have the desired conclusion.
Be virtue of (2-17), (2-24) and Lemma 2-1, we have

(2-31)
—Pu—v), > —Pu—v)sgn*(u—v)

> B(x)(Q(u) — Q(v))'sgn*(u—v)>0 in 2'(G).
Since (u—v), =0 near 0G, it follows from a usual maximum principle that

(2-32) u(xo) <v(xo)=AR™ 2 4 p
=CD(xo)R*R™?*+C

1 2
< CO(xp)bod(xp) %0+ C,

and this proves the assertion. Here we used [H-2], d(x,)=R/2 and R<d(x)<3R
in G, and C is a positive number independent of R.

Lemma 2-5. Assume [H-1], [H-2] and [H-3]. Assume that ue L2(QY) satisfies
PueLl (Q) in the distribution sense. Moreover assume that for almost all
xe{xeQ';u(x) >0}

(2-33) Pu+ B(x)O(u) < C(x).
Then we have
(2-34) B(x)Q(u +)€ Lj, Q).

Proof. First we have from (2-33) and Lemma 2-1
(2-35) Pu, + B(x)Q(u,)<C(x), in 2'(Q).
For a nonnegative test function peCg(Q), we have

(2-36) CPuy + B()Q(u+),1.9>

= f [u+ P(n.9)+ B(x)Q(u . )n.0)1dx < J C(x)n.pdx.
(2] 9]

Here {1,}.>o is a family of nonnegative smooth functions defined in (2-9) and (2-10)
in the proof of Lemma 2-3.
As in Lemma 2-3, we have, for some positive number C,
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(2-37)

J U, P (”cq))dx
Q

< C[1 J (d(x) " YA(x) +|VA(xX)|)|u |dx
€ /2 <d(x)<e

+J (A(X)+IVA(x)I)Iu+Idx]

and by Lemma 2-4 and [H-3],

(2-38) ! j (d(x)™ " Ax)+ [VAX))ue . |dx

€ &/2<d(x)<e

1
C ®(x) \° dx

<€ i [( )+1]_= 1.

= 8J;/2<d(x)<e (X) d(x)z d(x) 0( )
Similarly
(2-39) J (A(x) +|VAX))u 4 |dx < +00.  ([H-3])

Then by taking ¢—»0 we see that B(x)Q(u.)eL}, ().

3. Proof of Theorem 1

Let us set u=Q " '(sup,.o5c). Then we have, as in the proof of Lemma 2-4,
(3-1) B(u—p)+ B(xXQu)— Q) <0,  for x e{u(x)=0}.

Then we have from Lemma 2-1
(3-2) P(u—p), +B(x) sgn*(u—p) (Qw)— QW) <0,  in 2/(Q).

Now we assume that without loss of generality {x:d(x)<1}cQ and
U=SUP ;5 <4< 1U(X), then we shall see

(3-3) ux)<p, for d(x)<1/2.

In fact a weak maximum principle works in this case since the operator P is elliptic
in Q\F. To see this we set ¢p=(u—p), if dx)<3/4, and ¢ =0 otherwise, and set
¢;=min(¢,)) for j=1,2,.--. Here we note that by virtue of Lemma 2-5 BQ(u) is
locally integrable on {xeQ;u>0}. Therefore we see that BQ(¢)eL'(Q). Then we
approximate @; by a sequence of smooth functions ¢7eCP(Q) for m=1,2,-.-. After
all we have as j— oo

(-4 ¢;>¢=u—p), in Q (ae) BOtd)—>BO(¢), in L'(Q)
and as m— oo for each j
(3-5) ¢7—-¢; in Q ae, BQ(PT)-BQO(¢), in L'(Q).

For any nonnegative Y e CP(QQ), we have
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(3-6) BT ¥>+ J B(x)sgn* (u— ul(Q(w) — Q(uppdx
Q

r

= | o7 Pydx +J B(x)| Q) — Q(u)lydx

Jo fu2p)

= (¢?—¢;)P¢dx+j (¢;— d)Pydx
o Q

r~

+ | ¢Pydx+ I B(x)|Q(x) — Qw)ldx.

Jo fuzp)

From [H-2], for any ¢>0 there is a positive number C, such that

(3-7) t<C,0(f ¥ T+, for any t>0.
Then we have
(3- —¢)-Pydx
<C, Ao, </>|)"°"1 J(X) f |Py|dx
suppe

_1
sczq B(x)Q(I¢,-—¢>I)dx)6°

3o
x( J Alx )(‘”"’) ‘dx) " e J |Py|dx
suppe Q

—»eJ‘ |Py|dx, as j—oo. ([H-3])
2]
Since ¢ is an arbitrary, we see that

(3-9)

J (¢—9)) Pydx

—0, as j—oo.

In a similar way we have for each j

(3-10) -0, as m—oo.

f (67 — @) Ppdx
o}

Hence we are able to make the first and second terms in the right-hand side
of (3-6) arbitrarily small by letting j—>o00 and m—o0. Now we deal with the rest
of terms. For a sufficiently small ¢>0, let , be defined in the proof of Lemma
2-3. Then,
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(3-11)
j ¢PYdx + J B(x)|Q(u) — Q(u)lydx
2

{u2p}

r

= | (1—n)PpPydx+ _[ (1 —n)B(x)| Qu) — Q)Y dx
2 {u>p}

~

+ | ¢PnY)dx + j 1.B(x)| Q) — Q()ldx
Q {u2p}

+ | ¢LP.nJydx.
Q

v

By using the similar estimate to (3-8), we see from [H-3] and Lemm 2-5 that
$PYeL(Q). From Lemma 2-5 we also have for B(Q(u)— Q(w)sgn™ (u—upeL'(Q)
for p>0. Therefore it follows from the dominated comvergence theorem that the
first and second terms converge to zero as ¢é—0. Since supp(n,¥)c=Q’, we see from
(3-2) the sum of the third and forth terms in the right-hand side is non-positive.
Now we show that the last term also converges to zero as ¢—0. From (2-13), for
some positive number C we have

(3-12)

1
<C —J A, Iﬁ
& (e/2 <d<e}ln{u>pu) d(x)

f OLP,n,Jpdx

sclj Awou s 2 a2
g/2<d<e d(x)

T3
<C [I Ou +)B(x)dx] X
g/2 <d(x)<e

1 4q
1 oNEax T
- Ao =2
I:ELRd(x)Q (x)<d(x)2) d(x):| (Holder inequality)

1
<C U Q(u+)B(x)dx]l "0, ((H-1], [H-3], Lemma 2-5),
&/2 <d(x)<e

as ¢—0.

After all, we see that for any x>0 and any nonnegative Yy e C3(Q) it holds that for
some sufficiently large numbers j and m

(3-13) CPT ) + f B(x)sgn™ (u— ) Q) — Q(W)Wdx <.
Q
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Now we choose a  so that yy=1 on the set {d(x)<3/4}. Since suppé, supp¢T <
{d(x)<3/4}, we see the first term (3—13) equals to zero, so that we have

(3-14) 0< f B(x)'|Q(u) — Q(w)ldx <.
> mnde) < 3/4)

Since x is arbitrary, (3-3) is derived from the positivity of B(x) and the strict
monotonicity of Q(-).

4. Proof of Theorem 2
Uniqueness. First we prove the uniqueness of solutions in
(4-1) N =L>(QnH,,(Q\F).

Assume that u and v are solutions to the homogeneous Dirichlet boundary value
problem (1-20) in the space 7(€). By subtraction we get

4-2) Pu—v)+Bx)XQw)— Q) =0, in Q).

Since f, B-Qu)eL'(®) it follows from Lemma 2-1 that

4-3) Pu—v), +B(x)sgn* (4 —v(Qw) — QW) <0, in P'(Q).

Since it holds that P(v+eg)+ BQ(v+&)>Pv+BQ(v)=f for any ¢>0, we also have
@4 Pu—v—e), +Bx)sgn*(u—v—elQu) - Qv+e)<0, in Q).

Here we note that supp(u—v—e¢),ndQ=¢. As in the proof of Theorem 1, for any
k>0 and Y e CP(Q2) we can approximate a bounded function (v —v—g), by a sequence
of smooth functions {¢;}2,<C§(Q) and we have for sufficiently large numbers
J

4-5) (P Y+ J B(x)sgn™ (u—v—el Q) — Qv+ e)pdx <k.

Q2

Now we choose a  so that Y =1 on the support of ¢; Then we have

(4-6) 0< f B(x)|Q(u) — O(v + ¢e)ldx < k.

Since Q is monotone and ¢ is arbitrary, we see that u<v. In a similar way we
see u>v, so that we have u=v. Thus the uniqueness holds.

Existence. We assume that N>1. If N=1 the proof below still works with
obvious modifications. First we shall regularize the problem by approximating the
operator P by uniformly elliptic operators {P,},., in the following way. If P is
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uniformly elliptic, the existence of solutions to (1-20) in H{(Q) is well known. Let
us set for ¢>0

47 P,= —div[(e+A(x))V-],
and consider the Dirichlet problem:

43) { Pu+B(x)Qu)=f, inQ,

u=0, onoQ.
Then we prepare a lemma which concerns the existence and regularity of solutions of
(4-8). We shall sketch the proof for convenience.

Lemma 4-1. Let N>1. Assume that the same assumptions as those in Theorem
2. Then there is a unique u,eHLQ) which satisfies (4-8) in the distribution
sense. Moreover u, satisfies

“4-9) BQ(u,), BO(uJu.e L'(Q).

Sketch of Proof. This proposition can be shown in the following way. We
replace Q for Q,(u)=min(|Q(u)|,n)sgnu and consider the truncated equation below;

(4-10) Pu,+B(x)Q,u,)=f, in Q.
u,=0, on 0Q.

Then we prove the existence of bounded solutions in H}(Q) by the use of Schauder’s
theorem. It is easy to see that {u,}= , is bounded in H}(Q). As we make n tend
to infinity, we show the weak convergence of solutions in H(€Q) using a priori
estimates for a fixed é>0. Then by the compactness argument we see the limit ,
satisfies (4-8) and (4-9).

Remark 11. For each compact set K<Q\F, it holds that u,e H'(K) and
BO(u)u,cL'(Q). Since P is uniformly elliptic on K and A(x)eC°(Q), we see that
for some positive number C(K) independent of each £¢>0 such that

4-11) sup |u(x)| < C(K).
xeK
Moreover we can show that u, is Holder continuous on K and its Hélder norm is

uniformly bounded with respect to ¢. If Q is unifomly Lipschitz continuous, then
we see u,e H2 (Q)\F) as well.

End of the proof of Theorem 2. By u, we denote the solutions to (4-8) as
before. From Lemma 4-1 and its remark we see u,e H}(Q) and BQ(u,)u,e L'(Q). First
we prove that u, satisfies (1-24) unifiormly in ¢>0. We set

2
g +3d,
146,

4-12) . and  b=2+0,.
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. 1
From (1-6) in [H-2], we see |u,|<C[(ju||Q(,))2*% + 1] for some positive number
C. By Young’s inequality we have for any positive number A

(4-13) J flluldx<C —lg(luell Q)T Bdx+C | |fldx
Q Q 2

U

<Ca 'h J <E)ade+Cb“h” J lu,| Q)| Bdx+ C| |fldx.
0 Q

Q

Multilpying u, to the bothside of (4-8) and integrating over Q, we get
4-14) f(6+A)|Vug|2dx+(l—Cb“h")f J Blu, || Q(u,)|dx
Q JQ

<Ca ‘h‘“J (m)ade+C dx.
(2] B (2]

Now we put i®=5(2C)~!, then we have the desired inequality.

Secondly, by the method of a priori estimate and compactness, we derive a
subsequence {u,}2, from {u},., which converges weakly to some element
ueHL(Q\F) and u, converges i ae. in Q\F. Then by virtue of Fatou’s lemma
and a weakly lower semicontinuity of L? -norm, we get for some positive number C'

(4-15) J A|Val>dx +J BQ@udx < C'[11f/Bll% + Il ]-
Q\F Q\F

Now we show that BQ(u,)—»BQ(@) in 2'(Q\F). From the definition of weak
convergence of {u,}?; and the estimates (4-14) and (4-15), we see that
f—Pejusjaf—Pa in 2'(Q\F). Therefore the limit of BQ(,) in 2'(Q\F) as j—o0
exists. Hence it suffices to show that

(4-16) I B(Q(1,)— Q@) pdx—0, for all peCLQ\F).

From Remark 11 just after the proof of Lemma 4-1, sup,cgppelt;,| is uniformly
bounded on the support of ¢, so that BQ(x,) is uniformly bounded with respect
to g Since u, —»u ae. in Q\F, (4-16) follows from the dominated covergence
theorem. After all we see that # satisfies (1-20) in Q\F in the sense of
distribution. Now we define

(4-17) u(x)={ u(x), if xeQ\F,

07 '(fx)/B(x)),  ifxeF\F.

Then u clearly satisfies (1-20) in Q\JF in the sense of distribution. In Q\F the
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operator P is elliptic and the right-hand side of (1-20) belongs to L®(Q)). Hence
we see that ue L5 (') Then it follows from Theorem 1 that u is bounded in . From
Corollary 1 we see that there exists a unique function veL®(Q) which satisfies
(1-19). Since v=u in Q\JF, we see that veT(Q) is a unique solution to (1-20) in
2'(Q) and v satisfies (1-24) for some positive number C.
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