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The Penney-Fujiwara Plancherel formula
for nilpotent Lie groups

By
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Abstract

We prove the Penney-Fujiwara Plancerel Formula associated to a monomial
representation of a nilpotent Lie group. We give also a short proof of a theorem
due to Corwin and Greenleaf about the algebra of differential operators on
certain nilpotent homogeneous space.

0. Introduction

Let G be a nilpotent connected simply connected Lie group with Lie
algebra g. Let &(G) denote the Schwartz-space of G, i.e. the space of all complex
valued functions ¢ on G, such that foexp is a ordinary Schwartz-function on the
vector space g. Let b be a subalgebra of g. Let feg* be such that <f,[h,h]> =(0).
We obtain a unitary character y, of H=exp(h) by letting

xoexp(V)=e"</7>, Yeb.

Let #={X,,--,X,} be a Malcev-basis relative to b, ie. g=) P.;., RX;®b and for
any j=1,---,r, the subspace g;=span{X, -, X,, b} is a subalgebra. The mapping
Eg:R'—>G/H:Egt,, -, t,)=exp(t,X,)---exp(t,X,)H is then a diffeomorphism. We
obtain a G-invariant measure dg =dgg on the quotient space G/H by setting

f ¢(g)dag = f {EHT))AT,LeC(G/H),
G/H R

where C,(G/H) denotes the space of the continuous functions with compact support
on G/H.

Let #(G/H, f) be the space of all C*-functions & on G, such that &(gh) =y (h~")é(g)
for all ge G,he H and such that the function T+ &(Eg(T)) is a Schwartz-function
on R". Pick a Haar measure dh of H and let for ¢ € #(G)

Communicated by Prof. K. Ueno, October 20, 1997
Revised September 24, 1999



2 Ali Baklouti and Jean Ludwig
Py ((9)(g)=Ple)(g)= f o(gh)x,(h)dh,geG.
H

It is easy to see that P(¢) is in &(G/H,f) and that the mapping P is linear surjective
and continuous, if we provide our spaces with the standard Fréchet topologies.
Let Sy , be the tempered distribution on G defined by

<Su.p 0> =Py (p)e)= J oWy (h)dh, pe £(G).
H

We observe that the distribution Sy , is x,-H invariant, i.. for any he H, we have
that A,(Sy, ;)=x,(h)Sy ;, where 4, denotes left translation by h. Indeed, for
peS(G)

<'1h(SH,f),(P> = <SH,f’ A’h' 1(p>
= J o(hh)x((W)dh' =y (h) J W) (H)dh =y (B) < Sy s 0>.
H H

Let now H=exp(h) and K=exp(f) be two closed connected subgroups of G
and f be an element in g* sucht that h and f are subordinated to f. We can
construct a ¥ -invariant distribution S¥ ; on ¥(G/H,f) in the following way. Pick
a K-invariant measure dk on K/Kn H and let

<S¥ . ¢>= J k) (k) dlk.

K/HnK
It follows as above that for all keK
<SE pdi-1&> =y, k) <S§ ;,¢>,EeH(G/H, [),keK.

Let ¢eg* and let b be a polarization at ¢. Let B=exp(b) and let x f be the
character of B associated to ¢. It is wellknown that the representation n, =Ind§ x f
is irreducible and that the space &(G/B,¢) is in fact the space of the C®-vectors
of m, (see [1]).

Let now H=exp(h) be a closed connected subgroup of G and let t=1Ind§ Xy be the
monomial representation induced from y, It has been shown in [1] that there
exists a certain affine subspace ¥~ of I'y;=f+bh* =g*, such that

t:Fﬂ¢d¢=t', 0.1)

where d¢ denotes Lebesgue measure on ¥° and where 7, is the irreducible
representation associated to ¢ (pe¥").

The general distribution-theoretic Plancherel formula is due to Penney (see [20]). It
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is associated to a desintegration of an induced representation and it is of the form
<t(w),a,>= J <n ¢(w)ﬁ » B ¢>d¢,we.§”(G), 0.2)
v

where a, is the canonical cyclic generalized vector for T and ) is an (appropriately
H-covariant) generalized vector for n , In general the determination of appropriate
distributions is problematic. In the case when G is nilpotent, (0.2) was obtained by
Fujiwara in a different form (see [13]) when the multiplicities occuring in the
decomposition (0.1) are finite. Groundbreaking work on extending results of [13]
to other classes of homogeneous spaces has been done by Fujiwara and Yamagami
[12] and Lipsman [17, 18, 19]. However, beyond the nilpotent case the technical
difficulties involved in (0.2) are considerable. Recently, Currey studied a class of
completely solvable homogeneous spaces when t is induced from a “Levi”
component. In this situation, he overcomes these problems and he gives an explicit
and natural construction for a smooth decomposition.

The first aim of this note is a desintegration of the distribution Sy , into an integral
J Sp).+d¢ in pure distributions Sy, 4 of positive type associated with the irreducible
v

representations © » where ¥ is a certain affine subspace of g*. In other words, we
are going to prove (0.2) without taking into account the multiplicities occuring in
the decomposition (0.1).

In the second part of the paper we give a short proof of the main result of [7]. Let
C>(G,1)={,eC*(G):&(gh)=x(h™")(g).g€G, he H}.

Let Diff(G) be the algebra of all C* differential operators taking C*(G,7) into itself,
and D(G/H) the algebra of operators D|C*(G,1) of DeDiff(G) commuting with
the action of t on that space. This algebra of differential operators is commutative
(see [6]). Commutativity was proven by showing that D(G/H) is isomorphic to
a generating subalgebra of the field C(f+b')# of Ad*(H)-invariant rational functions
on I';. In [6], Corwin and Greenleaf have formulated the following conjecture:

If m(n) < oo for generic nespec(t), then D(G/H)~C[f+b*1¥, where C[f+b*]" is the
algebra of Ad*(H)-invariant polynomial functions on T .

Later, Corwin and Greenleaf proved in [7] this conjecture when there exists
a subalgebra which polarizes all generic elements in I'; and normalized by b.

Very recently, we have proved in [2] (and Fujiwara in [14]) this conjecture
when there exists a subalgebra which polarizes all generic elements in I'; and in
particular when H is a normal subgroup of G.

1. The Penney-Fujiwara Plancherel Formula

1.1. Let H=exp(h) be a closed connected subgroup of the connected nilpotent
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Lie group G=exp(g). Let feg* such that <f,[h,h]> =(0) and let y ,=exp(—i 1) °log
be its unitary character on H. It has been shown in ([1]) how the representation
1=indfj x, can be smoothly disintegrated into irreducibles. There exists a Zariski-open
subset ¥, of ¥~ with the following properties. For every ¢e¥, there exists a
polarization B(¢)=exp(b(¢)) at ¢, a Malcev-basis

Z(@)={X\(9), "+, Xi(¢)}

of g relative to b(¢), a Malcev-basis

Y(@)={Y\(9),"-, Y.(¢)}
of b(¢) relative to hnb(¢) and a Malcev basis

| Y($)={U(@), - Uy}
of b relative to hnb(¢p), such that the mappings
o X(9); ¢ Y(@); o Ufo)
are rational and continuous on ¥, for all . The projections
T,:#(G/H.N)~F(G] B(¢), p)d€¥5)
given by

T (&)= Egb)t (B b, E€S(G/H./),g€G,
B(¢)/HB(¢)

allow us to define an operator

U:S(G/H,j)—»F3 Hdo=H,,

Yo

(where H,= L*(G/B(¢), ¢) denotes the Hilbert space of the irreducible representation
m,) by setting
U =T (e #,, pe¥o, €L (G/ H, [).

This mapping U is in fact an isometry for the L2-norms and extends to a unitary
operator from #=L*G/H,f) onto . (see [1]). This operator diagonalizes the
action of D(G/H) (see [2]), that is for all DeD(G/H), there exist a function D on
I'; such that for all {eS(G/H,f), one has

UDEN$) = D(d)UENP), pe .

Let dh be a Haar measure of H.  We choose now for any ¢e 7, a Malcev basis

Z(@)={Z,(9),-, Z(d)}
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of b(¢p) b, such that for the Malcev basis B(¢)=U(P) U Z(¢) of b the measure dg,,
is just the given measure dh. Let also #'(¢)=Z(d)u¥(¢) be the Malcev basis of
b(¢).

We shall use this isometry to prove the Penney-Fujiwara Plancherel theorem.

1.2. Theorem. Let G be a connected, simply connected nilpotent Lie group, H
a connected Lie subgroup, and y =y, a unitary character on H associated with some
Sfeg* such that f is a Lie homomorphism. Let V" (resp. ¥,) the affine subspace of
[y (resp. the open dense subset of ¥") as in (1.1). Let X (¢), ¥(¢), U(P), Z(p), B(P),
Y'(¢p) also as in (1.1) for pe¥"y. With the normalizations of the measures given by
these bases one has for any pe¥(G)

<SH,j,(p> =J <S¢’(p>d¢a
Yo
where S . denotes the tempered distribution on S(G) defined by
< S¢, p>= f T¢(P H, /((P))(h)x f(h)d‘?lw)il
H/B($)nH

= <SE. TPy (0)>. 0e#(G), pe¥ .

Proof. Let ¢,YyeSF(G). We shall show that

<S,,,,,<p*n//>=‘[ <8, @*xy>dp. (1.2.1)
Yo

Since the factorization theorem of Dixmier-Malliavin says that every Schwartz-
function p is of the form p = @* *y for some elements ¢,  in F(G) (see [9]), the theorem
follows from (1.2.1). A standard computation tells us that

<Sy.p@*xY> =f

(J ¢(gh’)xf(h')dh')(f w(gh)x s(h)dh)dg
G/H VH H

= <Py ;) Py A0)> L26/m,5)

where dg is the G-invariant measure on G/ H which is choosen such that dg =dgdh.
Let now &=Py (@),n=Py (V)eS(G/H.f). The fact that the map U is an
isometry tells us that

j < Td,(’l), T¢(§)> e dp=<Un), U&)> .= <, {> L2m, p)-
Yo

Hence in order to prove the theorem, it suffices to show that for every ¢e¥", we
have that
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ST, T8> = <S, @*+P>. (1.2.2)

We write P=Py,;, B=B(¢), X=%(d), U=H($), U=U(D), B=R($), ¥ =¥'(¢),
F=%(¢). We see that

<T,n), T¢(¢)>x,=f [( j n(gb)x¢(b)dgb)(j E(gb)x (b)dgb)ldat
B/BnH B,

G/B /BnH

=f [(J (j l/f(gbh)xf(h)dgh)x¢(b)dgi>)-
G/B B/BnH VH
(J (| olebh)x ,(h')dgh'>x¢(b)d@b)1d,g. (1.2.3)

B/BAnH JH
On the other hand
T (P(p**))(h) = (| (@*x)(hbh ) (R )dgh'x (b}
JB/BhnH VH

Il
—

j @*@W(g ™ ' hbh)dgy (W )dgh 1 ,(b)db
G

JB/BAH JH

"

I
—

J oEh™ D)Y(gbh')dgx ;(h)dah'y (b)dgb
HJG

JB/BnH

"

Il

@(gh™ D)n(gb)dgyx (b)dyb

JB/BAH JG

»

= | T,n)g)plgh™)dg
G

- f 9@bh T (n)gb)dy bdxg

JG/BJB

~

= @(gbh™ T (N)(©)x (b~ "y bdyg.

JG/BJ B

It follows that

<S,p*xy>= J T (P(@* * Y)Y (h)dosh

H/BnH

=J [ (| PEEAOT, e, b My b)dz]r i)

/BhH JG/B JB
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= f [ (| oledh Dy, B)T,)e)dsb)dag1x (h)dah
H,

/BAH JG/B JB

The operator 7,(¢*) is Hilbert-Schmidt, its kernel is the function

Ig.8)= J @(gbg'~ Ny (b)dy b,
B

and the function (g, h)— I(g, h) is in #(G/B, p)® ¥(H/Bn H,f). Hence, using Fubini,
we can deduce that

<S8, @¥xY> = f j j o(gbh™ T (1)2)x ,(B)s by ((h)dyhdyg. (1.24)
G/BJH/BAHJ B

Now for any qe C,(G) we have that

f J q(b'h“)x,(h)x]b—')d@hdgb'=” ()
B/BAnHJH BJYH/HNB

1, 0oy b (1.2.5)
Indeed,

J f q(b'h-‘)x¢(h)z(‘l»")d@hdgb'=J f QEoTEa(S)™")
B/BAnHJV H Rrtp

RM

1 (Ea(D)y (Ea(S)dSAT

»

= J J q(Eg(T)(E.,,,(S)E_,,(R))_1)x¢(E,y(T))x¢(E@(S)E1(R)deSdT

JRmM

»

= I J UESTHEL(R) ™ (Eo(S) ™ N1 (Eo(T)1 (Eo(S)Eo(R)ASARAT

JRmM

~

= j AEg ATV (Ea(S) ™" 1 (Eg A1 (Ea(S)ASAT

JRMtr

=j Jq(b'h")x,,,(hm(b')d@hdg'b'.
H/HABJB

Hence by (1.2.4) and (1.2.5), we have that
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<S,0*xy>= ( f J o(gbh™ )T (1) (@), (B)dy- be(h)dQ(h>dIg
H/BnH

=| T (n)(g)(

JG/B

f ¢(gbh‘r)xf(h)dwhm(b)dqb)dgg
H

B/BnH

r

=| T,m@T(OEMaw

JG/B

=< T¢(”)9 T¢(€)> Ko

1.3. Corollary. We keep the same hypotheses and notations as above. Let
¢e¥o and YyeSL(G/B(#), ¢). Let

BW)=<SEP¥>= W(h)x [(R)dah, (1.3.1)

H/B($)nH

then we have that for all we2(G) that
<S8y 0> = <t(w),0,> =J <n¢(w)ﬁ¢,/3¢>d¢,
¥

where a, is the canonical cyclic genaralized vector for 1 ie a(f)=Ee), £€ #(G/H,[).

Indeed, it’s not difficult to see that <Sy ,, 0> = <t(w)a,, a,> (see [12, 13]). On
the other hand the following computation in ([12], page 177) tells us that for ¢e¥,
we have

< n¢(w)ﬂ¢9 ﬁd’ >= f T¢(PH,f(w))(h)xf(h)dql(¢)il =< Sfl(?’ T¢(PH f(w)) >
H/B($)nH

for all we2(G) and theorem (1.2) permits us to conclude.

2. Invariant differential operators
Let G,H,f e.ct. be as in the introduction. Let

C*(G,1)={£eC™(G): &(gh)=x(h~")i(g).g€G, he H}.

Let Diff(G) be the algebra of all C* differential operators taking C*(G, 1) into itself,
and D/(G/H) the algebra of operators D|C*(G,1) of DeDiff(G) commuting with
the action of t on that space. Let I';=f+b*. It is wellknown that the finite
multiplicity condition for 7 is equivalent to the condition that for one and hence
for almost all ¢eI';, we have that

2 dim(AdXH)¢p) = dim(4dXG) ).
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(see [5]).
The aim of this section is to give a short proof of the following theorem proved
by Corwin and Greenleaf in [7].

2.1. Theorem. Let g be a nilpotent Lie algebra. Let feg* and §,b two
subalgebras of g. Suppose that Yy is subordinate to f, i.e<f,[h,h]> =(0) and that b
is a polarization in ¢ for all $eT ;=f+b* in general position and that b is normalized
by bh. Let G=expg, H=expl, B=expb. Suppose in addition that the representation
1=Ind§ x, of G is decomposed on G with finite multiplicities. Then the conjecture
(0.3) hold.

Proof. First of all, let us remark that ¢c=h+b is a subalgebra of g, as b
normalizes b. Let C=exp(c). Then t=Ind¢ 1, where 1,=Ind§y, and so by [6,
(35)] the algebra D,(G/H) is isomorphic to the algebra D, (C/H). On the other
hand, by the finite multiplicity condition, we know that ad*(h)(f)>¢* and so f+c*
is contained in the H-orbit of /. Hence the restriction map defines an H-covariant
isomorphism between the algebra of H-invariant polynomial functions defined on
I'; and the algebra of H-invariant polynomial functions defined on f, +bh*“cc*.
Hence, we can suppose that G=C. In particular b is now a normal subgroup of
g and g=h+b.

The Fourier transform denoted here by U maps the space L%(G/H,f) onto the
Hilbert space L*(I;). The transformation U is defined for ée #(G/H,f) by

UeXP)=| &b, (b)db,deTy.

B/BnH

Let us take a Malcev-basis ¥ ={X,, .-, X,} of g relative to h. Since g=h+b, we
can assume that  =b. But then for any ¢el', the set 2 is also a Malcev-basis
of b relative to hnb=hng($). We can write then U in the following form:

UX¢) = —[ E(exp(ty Xy)---exp(t, X, )e ™ T by, ...,

Rr

Hence in these coordinates U is just the ordinary Fourier transform on R". We
can transfer the representation t of G on L*G/H,f) to L*T,) with this map U
and we get a representation of G on L*(I';). In particular,

ph)n(®)=x (Iyn(Ad*(h™ ")), p(b)n(d) = x ,(b)n(¢)

for be B,he H,ne L*(T').

Let now D be an element of D(G/H). Then D commutes with t(b) for all
beB. Furthermore, D is represented by an element of the envelopping universal
algebra u(g¢) of g, hence, it can be written on S(G/H, f) as a differential operator with
polynomial coefficients. Let D’=UoDoU~' be the corresponding operator acting
on S(I'y) the Schwartz space of I';. Then, since U is the ordinary Fourier transform,
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D' is also a differential operator with polynomial coefficients and D’ commutes with
the multiplication with the functions e/®, Xeb, and hence D' is itself a multiplication
operator with a polynomial function P,. As D commutes with the action of H,
the function P, must be H-invariant. Then P, is a H-invariant polynomial on
I';. On the other hand, if P is a H-invariant polynomial on I';, then the multiplication
with P defines an operator D’ on S(I';) which commutes with the action of G. Hence
D=U"'+D'o Uis an element of D(G/H). Hence we see that D(G/H) is isomorphic
to the algebra of H-invariant polynomial functions defined on I7.
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