J. Math. Kyoto Univ. (JMKYAZ)
40-2 (2000) 379-388

On an invariant of plumbed homology 3-spheres
By

Y. FukuMoTo

Abstract

The main purpose of this paper is to give some invariance property of a homology cobordism invariant
of plumbed homology 3-spheres under a kind of blowing up process for auxiliary 4-V-manifolds. By
using this property, we prove a homology cobordism invariance of an integral lift of the Rohlin
invariant constructed by W. Neumann [6] and L. Siebenmann [12] in the set of all homology 3-spheres
bounding plumbed 4-V-manifolds with 43 + b5 <2 which are obtained by blowing down of smooth
spin 4-manifolds.

1. Introduction

The Neumann-Siebenmann invariant (#-invariant) [6], [12] is an invariant for
plumbed homology 3-spheres which is an integral lift of Rohlin’s g-invariant.
This invariant vanishes for several plumbed homology spheres which are known
to bound acyclic 4-manifolds, but it is not known whether this invariant has a
homology cobordism invariance or not. On the other hand, in a joint work with
M. Furuta [2], we defined a homology cobordism invariant (w-invariant) which is
an integral lift of p-invariant by using the Seiberg-Witten monopole equation on
closed 4-V-manifolds. For two non-negative integers k*.k~, let #P™®(k+ k~) be
the set of all homology 3-spheres bounding plumbed 4-V-manifolds with b;—L <k*
which are blowing down of smooth spin 4-manifolds. The main purpose of this
paper! is to give an invariance property of w-invariant under a kind of blowing up
process for auxiliary V-manifolds and to prove a homology cobordism invariance
of f-invariant in the set ¥PUmP(k+ k) satisfying k* +k~ <2. In fact, we show
that f-invariant is equal to minus w-invariant in the set ¥P"™®(k* k~) for any
k*.k~. Recently N. Saveliev defined an invariant (v-invariant) of homology 3-
spheres by using instanton Floer homology and proved that this invariant is equal
to f-invariant in the set of all Seifert fibered homology 3-spheres [10], [11]. As a
corollary, we see that the above three invariants ji, v, and —w are equal and has a
homology cobordism invariance in the set .#P“™(0 1). This paper is organized
as follows. In section 2, we review several definitions and basic facts concerning
w-invariant. In section 3, we consider V-spin structures around the singularities of
V-manifolds. Here we consider only cyclic quotient singularities for later dis-
cussions. In section 4, we define a kind of blowing up process of the singularities
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for V-manifolds. This process is a truncation of the Hirzebruch-Jung resolution
process. In this section, we prove an invariance property of w-invariant under
blowing up processes. In section 5, we apply these properties to V-plumbing which
is an extension of the plumbing to the V-manifold category defined in [1]. Here
we prove that w-invariant is equal to minus j-invariant.

2. w-invariant

In this section, we review several definitions and basic facts concerning
w-invariant [2]. Let (X2, X.c¢) be a triple consisting of a homology 3-sphere X
a compact 4-V-manifold X with dY =X, and a V-spin®-structure ¢ on X. We
assume that the V-manifold X has only isolated singularities in its interior. For
the definitions concerning V-manifolds see [9]. Let Y be a compact smooth spin
4-manifold with 0Y = —X. We patch X and Y along X and get the closed 4-
V-manifold X Us Y. Since 2 is a homology 3-sphere, the V-spin®-structure ¢ on X
and the spin structure on Y can be patched uniquely and define a V-spin¢-structure
on XUysY, which we denote by ¢. Let 2(XUsY) be the Dirac operator on
X Us Y associated to the V-spin‘-structure ¢. Then w-invariant is defined as
follows.

Definition 1.

1 .
w(Z, X.¢) = zindR 2(XUsY) +%sxgn Y.

Here indg D is the real V-index of an elliptic operator D over V-manifold defined
as dimg Kery (D) — dimg Cokery (D), and sign Y is the signature of the intersection
form on H3(Y.dY:R) = H?(Y:R). Note that each term on the right hand side is
an integer. By the excision property for the indices of the elliptic operators over
V-manifolds and the Atiyah-Singer index theorem, the invariant w (2, X.¢) does not
depend on Y and its spin structure [2]. Let 2'(kT.k~) be the set of all triples
(2. X, ) consisting of homology 3-spheres X, spin 4-V-manifolds X with X = X
satisfying by (X) <k* and b(X) =0, and V-spin structures ¢ on X. Further-
more, let #(k*, k™) be the set of all homology 3-spheres X such that (X, X.c) e
Z(k*t. k™) for some (X.c¢). In a joint work with M. Furuta [2]. we proved the
following property of w-invariant.

Theorem 1 ([2]). 1. If ¢ comes from a V-spin structure on X then
w(Z. X.,c) = u(Z) (mod 2).
2. Suppose kt + k= <2. Then w(X,X.,c) does not depend on the choice of
(X.c) with (X.X.c)eZ(kT. k™) and the map:

wkt k7)Y Lkt k)X w(Z. X.c)el

is a homology cobordism invariant.



Plumbed homology 3-spheres 381
3. Cyclic quotient singularities

In this section, we consider V-spin structures around the isolated
singularities of 4-V-manifolds. Here we consider only cyclic quotient singularities
which are needed for later discussions. Let C(«.f) be the cyclic quotient sin-
gularity [5] defined by:

_CxC

where a(a.f) is the Z/x action on C x C defined by

(0’( (zow) = ({i:.g“flw).

4

for ¢\ € Z/a with {, = ¢*™~1/* and (a.f5) coprime. Note that the link S
a(x. f)

CxC . .

o0 f) of C(x.f) is isomorphic to the lens space L(«.f). Then we have the

following proposition.

Proposition 1. Suppose (x,f8) are coprime integers.
1. If ais odd then C(x.f3) has a unique V-spin structure.
2. If ais even then C(a,f) has two V-spin structures.

Proof. Fix a V-complex structure on C(a.f) which is the quotient of the
standard complex structure on C x C, and fix the induced V-Riemannian metric on
C(2.f). The set of all V-spin“-structures on C(a«.f) can be identified with the
topological Picard group Picy(C(«.f8)) of all line V-bundles on C(x,p) see [4].
and C(a,f) has a V-spin structure if and only if the canonical line V-bundle K
on C(x.f) has a square root K'/?. Pic{,(C(a.f)) is isomorphic to Z/x and is
generated by L, corresponding to the standard U(1)-representation of Z/x. The
canonical line V-bundle K is isomorphic to LS“””, and it has a square root if
and only if 1 4+ =2m (mod «) for some integer m. If o is odd, m has only one
solution modulo . and K'/2 is determined uniquely. On the other hand. since
a2, ff coprime, if x is even, there always exist a solution m, and m + («/2) is also a
solution modulo 2, and hence K'/2 has two possibility.

Next we consider the inclusion map 7 : C(a. /)\{0} — C(«.f), we obtain the
following restriction map from the set of all V-spin‘-structures on C(x,f}) to the set
of all spin‘-structures on C(a, )\ {0}.

i*: Spin{(C(a. f£)) — Spin‘(C(a, \{0})
Proposition 2.  The restriction map i* : Spiny(C(a, f8)) — Spin“(C(2, )\{0})

is bijective.

Proof. We fix a V-complex structure on C(«.ff). By using the canonical
spin“-V-bundle on C(x. ), we can identify Pic{,(C(«.8)) and Spiny(C(x,f)). Then
the assertion follows from the induced map corresponding to the restriction map:
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i Pic (C(a. ) = Z /2 — Pic' (C(a. )\{0}) = H2(C(a B)\{0}: Z) = Z/x
which is clearly bijective.

Corollary 1.  The restriction map from the set of all V-spin structures on C(a,f5)
to the set of all spin structures on C(x. f)\{0}:

i* : Spiny (C(a. #)) — Spin(C (2. )\ {0})
is bijective.

Proof. Any spin bundle is obtained as the tensor product of the dual of
a half canonical line K'/? and the canonical spin‘-bundle. On the other hand,
half canonicals on each side corresponds bijectively, since the restriction map i :
Pic{,(C(x, B)) — Pic'(C(a, f)\{0}) is bijective.

Then we have the next corollary.

Corollary 2. Let X be a 4-V-manifold with cyclic quotient singularities x, . ..,
Xp in its interior. Then any spin structure on X\{xy,...,x,} can be extended
uniquely to a V-spin structure on X.

4. Blowing up

In this section, we use a truncation of the Hirzebruch-Jung resolution
process [5] to define a kind of blowing up of 4-V-manifolds. Let x be a singular
point of a 4-V-manifold X whose neighborhood ¥ has the identification (V,x) =
(C(a,p),0). First we consider a continued fraction expansion:

1

a_l.

B

We put o) := f. f, :==mff —a. Note that (a;,f,) are coprime integers. Let Cy,
C, be two copies of the complex plane C. Then we define the following line

jod
—=m| —

p

. . C
V-bundle U; over a Riemannian V-sphere CP! = C;U ﬁ:
1
C2 x C
U :=C, xCU, ———,
R TET )

where the map ¢, is given by:

(C\{0}) x C
O o )

Let E; = U, be the zero V-section of U;. We put Xp:= X\{x}, and V:=
V\{x}. Then we have a diffeomorphism

3 [zow) = (275 7By e (€\{0)) x C.

¥ UN\E) = C(a. )\{0} = V)
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which is defined by the following commutative maps:

Cy x (C\{0})

U\E| = C, x (C\{0}) U, a(o1. )
(z,w) [z, w)]
g l l
[/ zwhl] [w!/2z whl?)
” _ (C\{oh xC C x (C\{0})
Clo. HV{0} = (2. f) U )

Note that we take w//* = (w'/”)ﬂ, and the above maps do not depend on the
choice of a branch of w!/%. Then we define a blowing up X of the V-manifold X
by:

X := XoUy, Uy.

Note that we have an isomorphism X\E; =~ X;. Then we have the following
theorem.

Theorem 2. Let X be a closed 4-V-manifold, and X its blowing up at a cyclic
quotient singularity in X. Suppose that X admits a V-spin structure é. Then X
admits a V-spin structure ¢ whose restriction to Xy is isomorphic to the restriction
of ¢, and we have the following equality.

indg 2(X) = indg 2(X).

Proof. Suppose X is obtained by blowing up of a singularity (V.x) =
(C(x.$),0) of X. Note that X is defined by X := XoUy, U;. Now we have a
V-spin structure ¢ on X. We denote by ¢| the restriction of & to U;. Then we
have a spin structure ¢y, which is the pull back of ¢i[y,\g by the diffeomorphism
¥, : U\E) = Vy. By Corollary 2, we can extend ¢y, uniquely to the V-spin struc-
ture ¢y on V. Hence we have V-spin structures ¢, —cy Uy, ¢;, and —c¢p Uy, ¢y on
X. =V Uy U, and —V UV, respectively. Now by the excision argument for the
indices of the Dirac operators on V-manifolds,

indg 2(X) — indg Z(X) = indg Z(— V' Uy, U)) — indg 2(-V U V).

Since — V' UV admits an orientation reversing diffeomorphism, indg 2(—V U V) =
0. Note that the closed spin 4-V-manifold — V" Uy, U, has the second Betti number
1. We see that indg 2(—V Uy, U;) = 0, since the index of the Dirac operator on
the closed spin 4-V-manifold with b <2 and b; < 2 always vanish (see Corollary
1 in [2]).

Then we have the next corollary.

Corollary 3. Let X be a 4-V-manifold with boundary X a homology 3-sphere,
and X be a blowing up of a cyclic quotient singularity in X. Suppose that X admits
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a V-spin structure ¢.  Then X admits a V-spin structure ¢ whose restriction to X is
isomorphic to that of ¢, and we have the following equality.

w(Z, X, &) =w(Z. X.c).

Proof. Take a spin 4-manifold Y with 0Y = -2, and apply the above
theorem to the closed spin 4-V-manifold X Uy Y. Then we have:

1. 5 1. I, 1.
Ede 2(XUsY) +§51gn Y = Emdk 2(XUsY) +§S|gn Y.

5. V-Plumbing

In the paper concerning an explicit computation of w-invariants of plumbing
type homology 3-spheres [1], we extended the notion of the plumbing process to the
V-manifold category. For several definitions and basic facts concerning the usual
plumbing process, see [7]. Here, we need more general version of this process.
First we define a Seifert graph I' = (V, E.w) as follows.

Definition 2. I = (V. E.w) is a Seifert graph if and only if:

1. (V.E) is a connected tree graph consisting of a set of vertices V and a set of
edges E.

2. Each vertex k €V is assigned an unnormalized Seifert invariant:

w(k) = {1 Bi)s - (s Bra )} (K EV),

where (o, f;) are coprime integers (o # 0).

3. If two vertices k and k' are connected by an edge e € E , then there is a map
w(e) which assigns an index labeling a singular orbit in the Seifert invariant to
each vertex k. k':

wle)(k) = ki,  wle)k') = k.

and the pair (ki k'j) must satisfy the compatibility condition:
(@) o = oy, and
(b) BriBrj =1 (mod ;).
4. If two edges e and ¢' have the same vertex k as the common boundary, then
w(e)(k) # w(e")(k).

We denote edges e satisfying w(e)(k) = ki, w(e)(k') = k'j simply by e = (ki.k'j).

Remark. More general Seifert graphs can be defined as the usual plumbing
graphs. Since we are only interested in integral homology 3-spheres. the above
definition will be sufficient for our discussion.

A plumbed 4-V-manifold P(I") is constructed from a Seifert graph I" as follows.
For each vertex k € V', we construct a line V-bundle
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. "k Dki x C

Ly = (§?\{n-points}) x CUy,, —.
Mrepoints)) > Clto U e i)

where Dy; = D = C. (. ) is the action of Z/a; on Dy x C defined by ¢}

(zow) = (C,{,i:,C,{!f’l\"). for (!, € Z/oy; with {4 = ¢>V=1/%_ and the map @i 18 given
by:

. ([)ki\{o}) xC
o Bry)

here we identified a neighborhood Uy, of x4; in S? and a unit disk Dy; in C. Let
DL, be the D2-V-bundle associated to the line V-bundle L;. If two vertices k. k'
are connected by an edge e € E, and the edge e is assigned a pair w(e) = (ki.k'))
then we glue two disk V-bundles DL; and DLy as follows. We choose each
trivialization over a (singular) disk around the singular point labeled by ki.k'j.
Dy x D? : . ,
DLy, = 0(1;27)(/3) respectively. Note that we have specified the V-manifold
kis Pki

structure by the map ¢,;’s and we use these identifications. Then we glue them up
by the map:

3 [zow] = (2% z7Puw) e (Di\{0}) x C.

[)-,' X D2
o, DLi|p, = T [zow] [, z] €

(i Bri)

Dk'j X D2

= DLkI| L
a(%js Brrj) Put

The map o, is well-defined by the compatibility condition. The plumbed 4-
V-manifold P(I") has singularities of the form of the cone on the lens space. The
V-manifold P(I"), which is a rational homology manifold, has a rational inter-
section pairing. We denote by I, the intersection matrix of P(I"). If I is a tree
graph then the (k, k')-entry of I is:

e k=K'
Ur)gp = Vi (kiik'j)eE
0 otherwise,

where ¢, := Y, fB;/oxi. Let us denote the boundary of the plumbing P(I) by
2(I).

Let b*(I') (resp. b=(I')) be the number of positive (resp. negative) eigenvalues
of Ir. Note that if all ay;’s are +1, then we can regard the Seifert graph I as a
usual integrally weighted graph I"" = (V. E,m) by defining an integral weight m :

Oeny,
by plumbing according to a Seifert graph I can be regarded as a smooth 4-
manifold obtained by plumbing according to the corresponding integrally weighted
graph I''. We write a vertex ke V' with the Seifert invariant {(ox;. ). ...
(%ny - Brn, )} @s in Figure 1. If two vertices k and k&’ are connected by an edge e =
(ki,k'j) then we write as in Figure 2.

V —Z as my = (/xi + - Correspondingly 4-V-manifold P(I") obtained
k1
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(o, i) m...(ak”"’ B (@i» Brir Br'y)

k k K

Fig. 1 Fig. 2

Then the blowing up process introduced in section 4 applied to the V-plumbing
gives the following operations of Seifert graphs. Here we omit the dots in the
notation for the usual integral weights and usual plumbings. Note that these

blowing up processes does not change the diffeomorphism type of the boundary of
the V-plumbing.

: : m,
(a,B) <> (al’ﬁl)

(e,By) = (B, mB- )

(a, B, B) -m, (a;,B,,B,)

(a,,B1,B)) = B,mp—a, "ﬁ%_])

6. The Neumann-Siebenmann invariant

Let I be an integrally weighted tree graph. Let P(I’) be a 4-manifold
obtained by plumbing according to the graph I". Then the intersection matrix of
Ir of P(I) is:
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mg (k=K
Ir)e = { 1 (k#k'and (k.k') e E)
0  (otherwise)

Let X(I") be the boundary of P(I"). Then it is known that 2(/”) is a homology
3-sphere if and only if:

(HS) det I = +I.
and P(I') is spin if and only if:
(SP) all my’s are even.

Suppose I satisfies the condition (HS). Then there exists a unique integral

homology class ¢ € Ho(P(I'): Z) (the spherical integral Wu class) satisfying:

. ¢-x=x-x (mod2) for any xe Hy(P(I'):Z),

2. c¢eHy(P(I'):Z) is written by using the standard basis spheres {[E/]}, E; = S,
for Hy(P(I'):Z) as follows:

(‘ZZB,‘[E,']. 8,':0.1.

i

Then ji-invariant introduced by W. Neumann (6] and L. Siebenmann [12] is defined
as follows.

Definition 3.
o)) = %(sign P(I') —c-¢)

Note that the right hand side is an integer and it is an integral lift of g-invariant:
() =w(Z(I))  (mod 2).

Let &PUmP(k+ k=) be the set of all plumbed homology 3-spheres X(I") such that
1) I' is an integrally weighted graph satisfying the conditions (HS) and (SP). 2) I
is obtained by blowing up of a Seifert graph I" satisfying b*(I") < k*.

Note that the set of all Seifert fibered homology 3-spheres X(«y,...,a,) with
one of the «;’s is even is the class #P"™(0,1). Then we have the following
theorem.

Theorem 3. Suppose that k™ + k= <2. Then the map:
Ak k) s Mt k=) 5 X(I) - @(2(IN)) e Z
is a homology cobordism invariant.

Proof. The spherical integral Wu class is ¢ = 0 € Ha(P(I"); Z) for the spin 4-
manifold P(I"). Since P(I')Uygy —P(I') admits an orientation reversing diffeo-
morphism, we see that indg Z(P(I')Ug) —P(I')) = 0. Then by Corollary 3:
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() = %sign P(I")

- %indR P(P(I')Ugry — P(I)) +%sign (—P(I))

= —w(Z(I), P(I).¢)

—w(Z(I), P(I),¢).

Hence the assertion follows from Theorem 1-2 in section 2.

Recently, N. Saveliev defined an invariant v of homology 3-spheres by using the
instanton Floer homology. and he proved that i(X) = v(X) for any Seifert fibered
homology 3-spheres [10], [11]. Thus we have the equality v(Z(I")) = g(Z(I')) =
—w(Z(I)) for Z(I') € £PU°(0,1). Therefore:

Corollary 4. The map: v(0.1): PO 1) X(I) — w(E())eZ is a

homology cobordism invariant.
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