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The Grassmannian of £((z)): Picard group,
equations and automorphisms

By

Francisco J.PLAZA-MARTIN

Abstract

It is shown that the Determinant line bundle generates the Picard group of the
infinite Grassmannian and that it is defined by the Pliicker equations. An
approach to its automorphism group is also offered.

1. Introduction

This paper aims at generalizing some geometric properties of Grassmannians of
finite dimensional vector spaces to the case of Grassmannians of infinite dimensional
spaces.

Recall that infinite Grassmannians are schemes (see [1,3,12] or section §2 below
for precise statements). Therefore, it is natural to use the standard techniques of
algebraic geometry in the study of standard geometric problems (global sections of
bundles, Picard group, automorphisms). The scheme structure of infinite Grassman-
nians has shown to be very useful in some moduli problems ([12,13,14]). Although
none of our results is unexpected, we think that the literature lacks of rigorous proofs
of them. However, it must be said that studies of similar properties have been carried
out by several authors but with different approaches; for instance, some of them
consider a Hilbert space and endow its Grassmannian with a structure of infinite
complex space, others consider it simply as a set because they only need few
properties.

For sake of brevity, we state our results whilst we describe the organization of
the paper.

In §2 it is proved, using an explicit construction of global sections of the
determinant bundle, that the Pliicker morphism is a closed immersion (see Theorem
5.3). The section §3 is devoted to show that the Picard group is isomorphic to Z and
that the determinant bundle generates it. The next section, §4, is concerned with the
automorphisms of the Grassmannian. The characterization of finite dimensional
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projective spaces embedded in the Grassmannian (Theorem 4.4) and the fact that
automorphisms of a connected component do extend to the entire Grassmannian
(Lemma 4.6) are the key results of this section. Using them, we will, firstly, recover
some known results (Theorem 4.8), and, secondly, prove that the automorphisms of
the Grassmannian are “essentially” induced by linear maps (see Theorem 4.9).

The last section finishes with the applications of the previous results in the case
of the Grassmannian of k((z)). In particular, the interpretation of semi-infinite
wedge products as sections of the determinant bundle is now easily seen (the notion
of admissible basis is not needed, see [15,16]). The Theorem 5.3 deserves a special
mention : the equations of the Pliicker morphism are the set of all Pliicker relations ;
that is, our Grassmannian scheme thus coincides with the Universal Grassmann
Manifold of Sato-Sato [17], but not with the Segal-Wilson Grassmannian Gr, (see §
2 of [16]), which is interpreted as the set of points of Gr (k((z))) with finitely many
non-zero coordinates. In a certain sense, Gr (k((z))) unifies both Grassmannians.

I wish to express my gratitude of Prof. J.M. Mufioz Porras for his supervision
and for the fruitful discussions we have had and to the referee, whose comments has
been helpful to improve the exposition.

2. Grassmannians

Backgrounds. (For a detailed approach to the scheme structure of infinite
Grassmannians, see [1,12].)
We shall fix a pair (V, B) of a k-vector space and a family of subspaces such
that :
1. 4, BEB=—> A+B, ANBE A,
2. A, BEB=—=dim(4+B)/ANB<>,
3. the topology is separated : N 4e54=(0),
4. V is complete: ¥ — lim V/A is an isomorphism,
e
5. every finite dimensional subspace of ¥'/B is a neighbourhood of (0): lim 4
— V/B is surjective (for BE B). Ty
The completion with respect to the linear topology induced by B will be
denoted with ~. For T— S, a moArphism of k-schemes, and US Vs: = V&, O,
a sub-Og-module, define U;: = U®0.0r.
Observe that the set of affine schemes F,: =Hom,(L,, A) (where AE 3B and L,
@A=>=V) is an open covering of the k-scheme infinite Grassmannian of (¥, B):

sub-Ogs-modules L < Vs quasi-coherent
S~ Gr*(V)(S)=

such that there exist AE B with LD 45> Vs

From now on we will fix a subspace V'*&€ B. This choice allows us to introduce
the index function as well as the determinant line bundle. Let B, be the set of
subspaces A€ B such that dim A/(AN V7 )=dim V* /(AN V™).

Recall that the index function i(L): =dim(LN VY —dim(V/L+ V™) gives
rise to the decomposition into connected components Gr®(¥V)=_1LGr"(V), where
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Gr'(V): =i~ '(n). For simplicity’s sake, Gr'( V') will be denoted by Gr(}).

The determinant bundle is the determinant of the perfect complex of
Ocuvy-modules &£ — z*(V/ V™), where z is Gr(V) — Spec(k) and £ is the univer-
sal object of Gr(V)([1,10]).

Pliicker morphism. Assume that Q is a subspace of H(Gr( V), Det}) such that
the canonical homomorphism Q®&),Og(V)— Dety is surjective. The universal
property of the projective space implies the existence of a morphism :

Gr(V)— PQ*

which is called the “Pliicker morphism”. (Here and henceforth PE* will denote the
scheme Proj (S®E) where S°*E is the symmetric algebra of a vector space E).

Let us show how such a subspace Q) can be obtained. Fix A€ B, Then, det(x 4
) is a global section of the dual of the determinant of the complex 6 §=£L—">z"
(V/A) and thus gives a section Q,E HGr(V), Dety) via the canonical isomor-
phism :

Det} ~Det(€ $)*Q(ANA/ANVHRQAVT/ ANV H*

(where A denotes the top exterior algebra). Then, define Q as the subspace :

2 <> S HY(GH(V), Det})

AE Bo

Note that () is precisely the image of the homomorphism :
v @ﬂ(/\A/A NVHRX(AVFT/ANVH* = HY(Gr(V), Det})
AE Bo

defined by twisting the A-component by det(z,4). An explicit expression for Q is
given by the following:

Lemma 2.1. There exists a natural factorization :

D (AA/ANVHR(AV/ ANV *—L—HYGr(V), Det})

| o

lim (@fggv‘/s)/\k V/ V+®(/\k V+/B)*)

BERB
BESV*

Proof. Let us fix BE B such that BS V*. Note that the morphism :

A@; (NA/ANVHRQAVT/ANVH)* — HY(Gr(V), Dety)
ANVi=g

factors through a surjection onto A*V/VY@(A*V*/B)*, where k=dimy(V*/B).
Therefore, the linear map W factors through a surjection onto :
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@V (ANVIVIR(AN VT/B)*)
BEV*
Fixing B again, observe further that the induced morphism :

D AV/VIRQN*VT/B)Y* — H(Gr(V), Det})
BEB
B'SVv*
(k=dim,(V */B)) factors through a surjection onto :

dim(V*/B)

k@ ANVIVIRN VT/B)* (2.2)
=0

Since the set (2.2) is a direct system as B varies, the statement follows easily.
Theorem 2.3. The Pliicker morphism Gr(V)— PQ* is a closed immersion.

Proof. Once the previous lemma has been proved, one proceeds as in [7]. Let
U, the affine open subscheme of PQ* where the 4-coordinate has no zeroes. It is
clear that p(F,)< U,, and that it is enough to see that p|, is a closed immersion.

For the sake of clarity, it will be assumed that A= V'*. Nevertheless, the general
case presents no extra difficulty. By fixing sections of ¥ — V/V* and Q — Q/<Q-+
> one has identifications Fy-=~Hom(V/V™*,V*) and U,-~Hom(Q/<Q+>,<Q4
>). The restriction of the Pliicker morphism to Fy- is now a morphism :

Hom(V/V*, V*)— Hom(Q/<Q+>,<Q+>) 2.4)
By Lemma 2.1 one has that:

dim(V*/B)
Q= lim( ke_BO AV VIRQ(AF V+/B)*)
=

and that <Q+> corresponds to B=V*. Recalling that V*=1im V*/B, it follows
that (2.4) is the inverse limit of : ’_

dim(V*/B)
Hom(V/V+,V+/B)—>Hom< k@ /\"V/V+®(/\"V+/B)*,<Q+>>

where BE B is such that B& V",
Observe that all these spaces are affine schemes, and it then suffices prove that
given BE B such that B& V' the morphism :

dim(V*/B)
Hom(V/V™*,V*/B)— h! Hom(A*V/VIQ(A*V*/B)*,<Q+>)
=1

is a closed immersion. This, however, is trivial since it is the graph of a morphism.

Related Grassmannians.
The Grassmannian of the dual space. Let (V,B,V7") be as usual. For a given
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submodule U S Vs (S a k-scheme), we introduce the following notation :

U*: =Homog,(U,Os)

Uc: ={fEU”* continuous}

where the topology in U is given by {AsNU|AE B} and Os has the discrete
topology. And define:

U°: ={fe(Vs* flu=0}

U ={re@srl rlo=0)
A long but straightforward check shows that the Grassmannian of (V,8°)
exists, where B°: ={4° where A€ B}.
Nevertheless, there is a canonical isomorphism between the Grassmannian of (V,
B) and that of (¥, B°), whose expression for rational points is I(L)=L".

The case of a metric space. Assume now that there is a given irreducible and
skewsymmetric form on ¥V, T,: VXV — k such that V' is maximal totally
isotropic (V*)*=V™).

Thus, iT,: T = V°turns out to be a bicontinuous isomorphism of vector spaces
and it therefore induces an isomorphism Gr®(¥V )= Gr®(V).

The composition of the latter isomorphism and I is an involution, R, of both
Gr®(V) and Gr(V'), whose expression at the rational points is given by :

R: Gr*(V)—> Gr* (V)
(2.5)
L— L*

3. Picard group of Gr(V)

Restriction of sections. For a pair of rational points M, NEGr® (V) such that
NCM, let Grass (M/N) denote the standard Grassmannian as defined in [7] 1. we
know from [1] that the morphism :

j: Grass(cM/N)— Gr*(V)

L— z7'(L)
(where #: M — M/N) is a closed immersion and that the composite :
Grass“(M/N) -5 Gr(V) > PHYGr(V),Det})* 3.1

factors through the Pliicker morphism of Grass“(M/N).

Looking at restrictions, we note first that if AE B satisfies V' /M + A=(0) and
NN A=(0), then j~'(F,)=Fun4 It follows that the restriction of the section Q, is
Qumna and that the restriction homomorphism of global sections:
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Q— H%Grass"(M/N), Dety;/n) (3.2)
is surjective.
Picard group

Theorem 3.3. Let k be an algebraically closed field. Assume that dim
(Gr(V))=1. Then, the Picard group of Gr(V) is isomorphic to Z and the line
bundle Det, is a generator.

Proof. If dim(Gr(V))=1, then Gr(V') is the projective line, and we have
finished.

For the general case, recall that the Picard group of Gr(}) is canonically
isomorphic to the class group of Cartier divisors, because Gr( V') is integral.

Fix A€ B, and assume Z,: =Gr(V)— F, (the locus where Q, vanishes) to be
irreducible. This then implies the exactness of the sequence :

Z — Pic(Gr(V)) — Pic(F,)

1 = Ogun(—Z )=Dety

Observe that Pic(F,)=0, since F, is the spectrum of a factorial ring (see [2] VII §3.
5.). Finally, Det}®" cannot be trivial for >0, because its space of global sections
has dimension greater than 1 and H(Gr(V),0g.,)=k([1]).

The proof is therefore reduced to proving the following claim: let k be an
algebraically closed field, and dim(Gr(V))=2. There exists a subspace AS B, of
V such that Z, is irreducible.

If Gr(V) is of finite type (that is, ¥ is finite dimensional), the statement is an
easy consequence of the Bertini Theorem (see [8] 11.8.18 and 111.7.9.1), since Z, is
precisely a hyperplane section of the Pliicker morphism. Moreover, the Bertini
Theorem implies that Z, is irreducible for 4 generic.

Assume now that V' is not finite dimensional. One first proves that if Z, is
reducible then its restriction to a finite dimensional Grassmannian is also reducible.
Since the restriction homomorphism of global sections is surjective (3.2), one
concludes that this is not possible for generic 4, and the result follows.

4., Automorphisms of Grassmannians

The linear group. Fix a pair (¥,8) as usual. Given a k-scheme S, Aute,(Vs)
will denote the automorphism group of Vs as an Og-module.

Definition 4.1.

® 4 sub-Ogs-module A< Vs belongs to B if there exists BE B such that B,S 4
and the quotient is free of finite type.

® An automorphism g€ Aute(Vs) is bicontinuous (w.r.t. B) if there exists AS
B such that both g(As) and g~ '(As) belong to B.

® The linear group, GI(V), associated with (V,B), is the contravariant functor



The Grassmannian of k((z)) 573

over the category of k-schemes given by :
S~ GUV)(S)={g9E Aute(Vs) such that g is bicontinuous}

Theorem 4.2. There exists a canonical action of GI(V') on (the functor of
points of ) Gr*(V):

GI(V)XGr* (V)% Gr*(V)

(g.L)y— g(L)

Moreover, this action preserves Det} ; that is, f*Det,>f;Dety,, where f: S —
Gr(V), g is an element of GV )(S), and f,: S — Gr(V) is the transform of f
under g.

Proof. Fix gEGI(V)(S). Note that it suffices check that g(L) is a point of the
Grassmannian for arbitrary Le F.S).

From L@ As= Vs it follows that g(L)®g(As)= Ps. Let BEB be such that
g(;fs)/ﬁs is free of finite type. It follows from [1] that g(L)N Bs=0 and Vs/(g(L)
+By) is locally free of finite type, and hence g(L)EGr®(V)(S), as desired.

The second claim is a direct consequence of the properties of the determinant
([10]) and the exactness of the sequence of complexes (written vertically) :

0— g(LYBBs— g(L)Bg(VH — g(P)/Bs— 0
0— Ve, — Vs — 0 —0

(where BE B is such that g(V$)/Bs/ is free of finite type).

Projective spaces in Gr(}V'). For the sake of notation, let us denote simply by
D, the stalk of Det} at a rational point LEGr(V). Further, Gr(¥) will be thought
of as a closed subscheme of PQ* (Theorem 2.3).

Theorem 4.3. Three rational points L,, L,, Ly of Gr(V) lie in a line iff L,N
L, LS L,+ L, and both inclusions have codimension 1.

If this is the case, the line is Grass'((L,+ L,)/(L, N L,))CGr(V) and does not
depend on the choice of L, L,.

Proof- Consider the following commutative diagram :
Q—"> A; —>@kD,,
QL’ A, _pz"@%me

where A;: =AYANL,+--+ANL)*. Note that ps, p,, p, and 7 are surjective.
Fix AE B such that such that (V/(4+ L;))=(0). It then follows that k=dim(A4 N
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L;) does not depend on i and that A*(ANL,)* > D,.
Observe that {L,,L, L} lie in a line iff:

{ hyperplanes of PQ* } _ { hyperplanes of PQ* }
containing L,, L,, L; containing L,, L,

which is equivalent to ker(p;)=ker(p,O 7). But from the very definition of A; one
easily sees that they are equal iff:

ANANLY)SE AYANL)+A*(ANL,)

which implies that 4N L; is contained in AN L,+ AN L, and that it has codimen-
sion 1. Observe, however, that this argument also holds for every BE B such that
AS B, and hence one concludes that L;< L,+ L, has codimension |, as desired.
When computing the codimension of L;< L,+ L,, one replaces 4 by BE B such
that BNL;=(0) and A; by AX(V/Z,<; BN L;)) in the previous discussion.
The converse is straightforward.

Recall that n+2 points of a n-projective space define a reference in it iff there
is no n+1 of them lying in a (n—1)-dimensional subspace. For a family {L}:c, of
subspaces, one defines Q{L;}: =(XL,)/(NL)).

The previous Theorem is generalized to the following characterization :

Theorem 4.4.

® Let {L;} <i<,+2 be points of Gr(V) defining a n-dimensional reference such
that dimy Q{L;}=n+1. It then holds that Grass* Q{L,} (k=dim L,/(N,L,),
which does not depend on i, and its value is 1 or n) is a n-dimensional
projective space contained in Gr(V).

®If X=P,SGr(V), then there exists a reference {L;} <i<,+» in X such that
dim, Q{L:}J=n+1 and X =Grass* Q{L.}SGr(V), where k=1 or k= n. (Note
that k does not depend on {L.} but only on X).

Automorphisms of Gr(V). Henceforth, Autichem(Gr(V)) will simply be
denoted by Aut(Gr(¥)) and similarly for Gr®(¥). It is clear that the automorphisms
of Gr(V) are restrictions of linear transformations of PH®(Gr(V),Det})* via the
Pliicker morphism; that is:

Lemma 4.5. Let X SGr(V) be a finite dimensional projective space and let ¢
be an automorphism of Gr(V). Then, $(X) is a finite dimensional projective
space.

Lemma 4.6. Fix ¢ EAut (Gr(V)). There then exists a unique ¢ <Aut (Gr®
(V) with the following properties :
1. it is an extension of ¢ ($lo=@¢),
2. q; is an inclusion-preserving or inclusion-reversing automorphism.
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Proof. Let us first define q?(L) for LEGr*(V)(k>0). Choose L'EGr (V)
such that L'C L and hence P(L/L")SGr(V) is a finite dimensional projective space.
Theorem 4.4 implies that there exists a finite family of points {M;} of P(L/L’), such
that :

P(L/L)=PQ{M}
Using this theorem again and Lemma 4.5, it follows that :
$(P(L'/L)=Grass’Q{¢(M )}

where r=1 or r=—1 (here Grass '(E) for a finite dimensional space E denotes the
grassmannian of l-codimensional subspaces of E). By proving that r is locally
constant and that it is invariant under restrictions P(L/L)CP(L"/L)SGr(V)(LC
L"), it follows that r depends only on ¢.

One now checks that the following definition fulfills the requirements :

_ Ug(M,) if r=1
F(L): = ,
ﬂ¢(M,) if r=—1

Lemma 4.7. Let V™ be finite dimensional. Then the following conditions are
equivalent :
1. there exists ¢ = Aut(Gr(V')) with an inclusion-reversing extension,
2.V is finite dimensional and dim, V=2 dim, V7,
3. there is an irreducible skewsymmetric metric in V, such that V* is maximal
totally isotropic.

Proof. Conditions 2 and 3 are clearly equivalent. The third implies the first
since R, the automorphism of Gr( V) constructed in (2.5), extends naturally to an
inclusion-reversing automorphism of Gr®(V).

Let us prove that 1 implies 2. Let = Aut(Gr(V')) and letq?EAut(Gr'( V)) be
its inclusion-reversing extension. Observe that:

Gr(V)=Grass *(V)

where k=dim,(¥V™*). Since $ reverses inclusions and leaves Gr(}V') invariant, it
follows that :

é : Grass ¥ "(V)> Grass **" (V) VrEZ

Observe that for r=—k — 1, the scheme on the left hand side is a projective space.
By Theorem 4.4, one has that dim, V=2k.

The lemmas above enable us to state the following Theorem that includes the
classical results about the automorphism group :

Theorem 4.8. The group Aut(Gr(V)) is canonically isomorphic to:
O PGI(V) if dim, V< and dim, V #2dim, V*;
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OPGI(V)XZ/2 if dim, V<oo and dim, V=2dim, V* (these two connected
components correspond to collineations and correlations) ;
O PGI(V) if dim, V<o and dim, V*<oo;
O PGI(V*) if dim, V<oco and dim, (V/V*)<oo,
(For a group G with centre Z(G), define PG : =G/Z(G)).

Remark 1. The two first statements were proved by Chow in [4], while the
latter two are algebraic versions of the results of Cowen ([5]) and Kaup ([9]), which
were given for Hilbert spaces. A similar group isomorphism cannot be expected for
arbitrary infinite Grassmannians (see §1 of [9] for the case of a Banach space).

From Lemma 4.6 one deduces that the study of automorphism of the Grassman-
nian can therefore be restricted to those with an inclusion-preserving extension.

Nevertheless, since the study of the automorphism group is rather complicated
we shall add some extra structure to the pair (¥,8) consisting of a separated linear
topology on V¥ with a basis € such that: 1) dim,(4+B)/(ANB)<oo forall 4, B
€6 ; and, 2) AEGr*(V) for all AEE. The completion will be denoted by.

We now define :

{ ¢ EGI(V)(k) bicontinuous w.r.t. (LS}
GV, 8. =

such that ¢(Gr(V))=Gr(V)

@ EAut(Gr(V) bicontinuous w.r.t. €.
AQ): =

with an inclusion-preserving extension

where bicontinuous w.r.t. € means that both ¢(A4) and ¢ '(4)EE contain an
element of € (for all 4EE).

Theorem 4.9. There exist injective morphisms of groups :
PGI(V,6) — A(€) — PGI(V,0)

such that the composite maps a continuous automorphism of V to that canonically
induced on V.

Proof. The first morphism is deduced from Theorem 4.2. Now, take ¢ € 4 (€).
Since ¢ is inclusion-preserving, we have the following commutative diagram :

Gr(V/L) — Gr(V/L) — Gr(V)
! | l
Gr(V/$(L)) = Gr(V/$(L)) = Gr(V)

where L'S L and L, L'€€. Theorem 4.8 implies that T,: V/L—> V/$(L) is a
morphism of inverse systems as L varies in €. One therefore obtains an isomorphism
T,: V = V, which is bicontinuous w.r.t. €,
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It remains to show that if T,=1+Id(1E k™), then ¢ =1Id. But this follows from
a standard argument about the restriction to F, and j.'(F,), where A€ B, LEC
and j,: Gr(V/L)— Gr(V).

Example 2. Assume that dim(¥/V") is finite and let € be the set of all
rational points of Gr( V). It then holds that PGI(V)— PGI(V,8) = PGI(V,€) and
A (€)= Aut(Gr(V)). Summing up PGI(V)—= Aut(Gr(¥)). This is the case of
finite dimensional Grassmannians.

5. Applications to Gr(k((2)))

Global sections on finite Grassmannians. Let us now assume that V is a
finite dimensional k-vector space and that B is the set of subspaces of V. Choose
a basis {e,,"**,es} of ¥V such that ¥T=<e,, -, e,—,>, and let {e},-,e} be its dual
basis. Let «§ now be the set of strictly increasing sequences of d —r integers S=0
<§,<<5;-,<d; and for S€J define A;=<e,, "€, >.

Observe that {F,|SE )} is again a covering of Gr(¥) and that the rational
points of Gr(V') are precisely the r-dimensional subspaces.

Carrying out similar arguments as above, one sees how to interpret the section
Qs in terms of exterior products. More precisely, one obtains a natural isomor-
phism :

HYGr(V), Dett) — A'V*

Qs— e N Ne}

where {5,,--+,5,}={1,-,d}—{s,,-*",54-,}.

Let 7: V' — V'’ be a surjective morphism between two k-vector spaces, and let
{ei,",eqt and {ejt1, -, ey}(d : =dimi(ker x)) be bases of ¥ and V' respectively,
such that z(e;)=0 for i<d, and z(e;)=e¢/ for i>d.

The naturally induced morphism between their Grassmannians defined by L —
7 '(L) gives rise to a restriction homomorphism of global sections A" *9F* — A’
V’*, which consists of the inner contraction with A ker 7 :

, i ey N-Ne'f if j,=ifor i<d,
e, N Nej,,— (5.1
0 otherwise.

(l£j1<j2<“'<jr+d,£d)-

Global sections on Gr(k((z))). Let V" be k[[z]] and let B be the family :
{subspaces AS V containing z"- k[[z]] as a}
subspace of finite codimension (for nEZ)

We need some notation. Let us denote by «J the set of Maya diagrams of virtual
cardinal zero; that is, the set of strictly increasing sequences of integers S={s,};so
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such that:
@ there exists an integer i, such that {ip,ip+1,--}S S,
@ #(SNZ<y)=#(Z>—S) (condition of virtual cardinal zero).

For the sake of clarity, z’€ V' will be denoted by e;. Let A5 be the z-adic
completion of the subspace <{e,};>o> for a given Maya diagram S€ .. Observe
that the subschemes {F,|SE S} are an open covering of Gr(V).

When building global sections ([1]), note that the canonical isomorphisms :

Det* 6 $.QAN(As/AsN As)QA(As/ AsN Ag)* = Det* 6§,

(where A denotes the highest exterior power and S, S'€ 43) induce isomorphisms
¢ss: Det(63,) = Det(6 31.).

Moreover, these isomorphisms can be chosen in a compatible way ; that is ¢ ss-
=¢ss O ¢ss. This compatibility is based on the face that there is a “good choice”
for a basis of A(As/AsNAs)QN(As/AsN As)* ; namely, e,Qex where e, . =e;
N+ Ne,, ex: =er N Neg, ef(e)=6; J=S—(SNS’) and K=5"—(SNS).

Then, the canonical global section det(x)E H(Gr(V), Det*(8 1)) gives rise
to a global section of H%(Gr(V), Det}), Qs, via the isomorphism 6 3, — 6 }-. It is
easy to check that the Pliicker morphism Gr( V)5 PQy is well defined, that is,
defined at every point (Q being <{Qs}ses>).

In this situation the restriction of Qs(SE ) by the homomorphism (3.2) admits
a nice description :

J Qs=

{05 where §: =S—S(N) if SIM)SSSS(N)
(5.2)

otherwise

where S(M) and S(N) are Maya diagrams (but not of virtual cardinal zero) such
that: MEF,,,, NEF,,, and S(M)SS(N).

Equations of Gr(k(z))). Take L,: =</{e;};<;> for an integer i. Note that L,
€Gr®(V). Denote by j; the induced morphism Grass (L;/L-;)— Gr®(V) and letG;
be Grass(L;/L-;)NGr(V). Recall from (3.1) that the composite G, — Gr(V)—
PQ* factors through P(A’ L,/L_;). Therefore, the corresponding commutative
diagram of structural sheaves is the following:

(S°Q)” ~2 Ocur)

l l

(S* (A Li/L—i)*)Ni’(dEi?OHO(G,-,Det*®"))”

where ~ denotes the homogeneous localization and S® the symmetric algebra. Let
I be the kernel of p* and I; that of p/. Theorem 2.3 implies that these ideals are the
equations defining Gr(k((z))) and G, respectively.

Denote by ¢/ the restriction morphism Q — A'(L;/L_;)*, which is known to be
surjective by (3.2). Let us denote by <X > the free k-module generated by a set X.
Let 8, be the set of strictly increasing sequences —i <s5,<s5,<-<s;-;<i—1. Note
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that A'(L;/L_)*><3,>, Q>=<s3> and that ; is the morphism induced by the
map (see (5.2)):

.55—’53,'

{so,*,5i=1} if —i<s,and s;=j for all j=i
{Si}fzo_’

otherwise

This morphism has a natural section ; namely :

Jé,'_’d

{SO)”'lsi—l} - {So,"',si—|,l:i+ lr.”}

Let o; be the induced morphism $°*°<J;>— S*°<JS>.

Bearing in mind (5.1), one constructs surjections $; — «J;, (for j=i) and
sections «4; — «J;, which render the family {s3,};5, an inverse system and a direct
system, respectively. Moreover, one has:

S=1lim S, — lim J;

from which one has that S*°<J> > limS*<,>: and hence:
I=lim(INg(S*°<S:>) = lim(FINS*<S,>)

for every submodule ICS°* <>,

Since S*(A'L;/L_;) =S°*<,>, one has that I=1im(;}I;). The same
argument also implies that I is generated by its degree 2 hoEgeneous component,
since I; does (this is a classical result). That is, the ideal I is generated by the union
of the generators of I, for all i.

We have thus proved the following:

Theorem 5.3. Gr(V) is defined by the set of all (finite) Pliicker equations.

Automorphisms of Gr(k((z))). In this case, one consider on k((z)) the skew-
symmetric form defined by Ty(z',z) : =¢84, when i=j. Then, it follows easily that
Aut(Gr k((z))) modulo the subgroup of automorphisms with an inclusion-
preserving extension is isomorphic to Z/2 and that the automorphism R of 2.5 is a
generator.

It is now clear that it is not possible to represent arbitrary elements of Gl(k((2)))
as matrices. For instance, if € is the set of subspaces {z"*k[z7']},cz, then V=k[[z7",
z]]. So, there is an associated Z X Z-matrix to every g=GI( V'), but one recovers g
from the matrix iff it is continuous w.r.t. the z-adic topology. This fact implies
further relations between GI(V,&) and the group Gl,., of [16].
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