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The Grassmannian of k ((z )): Picard group,
equations and automorphisms

By

Francisco J.PLAZA-MARTIN

Abstract

It is shown that the Determinant line bundle generates the Picard group of the
infinite Grassmannian and that it is defined by the Pliicker equ a tions. An
approach to its automorp'hism group is also offered.

1. Introduction

This paper aims at generalizing some geometric properties of Grassmannians of
finite dimensional vector spaces to the case of Grassmannians of infinite dimensional
spaces.

Recall that infinite Grassmannians are schemes (see [1,3,12] or section §2 below
for precise statements). Therefore, it is natural to use the standard techniques of
algebraic geometry in the study of standard geometric problems (global sections of
bundles, Picard group, automorphisms). The scheme structure of infinite Grassman-
nians has shown to be very useful in some moduli problems ([12,13,14]). Although
none of our results is unexpected, we think that the literature lacks of rigorous proofs
of them. However, it must be said that studies of similar properties have been carried
out by several authors b u t with different approaches ; for instance, some of them
consider a H ilbert space and endow its Grassmannian with a structure of infinite
com plex space, others consider it sim ply a s  a  s e t  because they only need few
properties.

For sake of brevity, we state our results whilst we describe the organization of
the paper.

In  § 2  it is p roved , using  a n  explicit construction of global sections of the
determinant bundle, that the Plticker morphism is a closed immersion (see Theorem
5.3). The section §3 is devoted to show that the Picard group is isomorphic to Z and
that the determinant bundle generates it. T he next section, §4, is concerned with the
autom orphism s of the Grassm annian. The characterization o f finite dimensional
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projective spaces embedded in the Grassmannian (Theorem 4.4) and the fact that
automorphisms o f a  connected component d o  extend to the  entire Grassmannian
(Lemma 4.6) are the key results of this section. Using them, we will, firstly, recover
some known results (Theorem 4.8), and, secondly, prove that the automorphisms of
the Grassmannian are "essentially" induced by linear maps (see Theorem 4.9).

The last section finishes with the applications of the previous results in the case
of the Grassm annian of k ((z ) ) .  In  particular, the interpretation o f semi-infinite
wedge products as sections of the determinant bundle is now easily seen (the notion
of admissible basis is not needed, see [15,16]). The Theorem 5.3 deserves a special
mention : the equations of the Pliicker morphism are the set of all Pliicker relations ;
tha t is , our Grassmannian scheme thus coincides with th e  Universal Grassmann
Manifold of Sato-Sato [17], but not with the Segal-Wilson Grassmannian Gr o (see §
2 of [16]), which is interpreted as the set of points of Gr (k ((z ))) with finitely many
non-zero coordinates. In a certain sense, Gr (k ((z ))) unifies both Grassmannians.

I w ish to express my gratitude of Prof. J.M. Mufloz Porras for his supervision
and for the fruitful discussions we have had and to the referee, whose comments has
been helpful to improve the exposition.

2. Grassmannians

Backgrounds. (F o r  a  detailed approach to th e  scheme structure of infinite
Grassmannians, see [1,12].)

We shall fix a pair ( V, 53) of a k-vector space and a  family of subspaces such
that :

1. A , B E 2 > A + B, ArIBE.93,
2. A , B E 2 > dim (A  ±B)/A n B <co ,
3. the topology is separated : n AE2A= (0),
4. V  is complete : V —> lim V / A  is an isomorphism,

AE53

5. every finite dimensional subspace o f  V/B is a  neighbourhood of (0) : lim  A
—* V 1B is surjective (for B EE). A E 2

T he com pletion with respect to  the  linear topology induced by •B  will be
denoted w ith  –  . For S , a morphism of k-schemes, and U g V s : =V 0 k 0 s .
a  sub-e s -m odu le , de fine  Û : =  U&o,07 - .

Observe that the set of affine schemes F A  = H O n ik (L  A ,  A ) (where AE.Y 3 and L
(DA -= V) is an open covering of the k-scheme infinite Grassmannian of ( V , 53) :

sub-C s -modules L g  Ps quasi-coherent
S G r.( V )(S )=

I. such that there exist A E .93 w ith L e 2 s =

From now on we will fix a subspace V +  E E . This choice allows us to introduce
the index function as well as the determ inant line bundle. L e t 2 0 b e  the set of
subspaces A E .53 such that dim A/(A n 1/ ± )=  d im  V + /(A n v+).

Recall that the index function i(L ): =d im k ( L n  v+ )— din i k ( v/L+ v+) gives
rise to  the decomposition into connected components G r( V )= 1 .L G e( V ), where
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G r( V ) :  = i - l ( n ) .  For simplicity's sake, Gr°( V ) will be denoted by Gr( V).
T h e  d e te rm in an t b u n d le  is  t h e  determ inant o f  t h e  perfect com plex of

CG r ( v ) -modulesort r * ( V/ V ± ), where 7 t is Gr( V)—> Spec(k) and o f  is the univer-
sal object of Gr( V)([1,10]).

Plücker morphism. Assume that SI is a subspace of H °(Gr( V), D e t) such that
the  canonical homomorphism (20k0c,( V) —> Det *v  i s  surjective. T h e  universal
property of the projective space implies the existence of a morphism

Gr( V) —> P(2*

which is called the "Pliicker morphism". (Here and henceforth PE* will denote the
scheme Proj ( S .  E ) where S E  is  the symmetric algebra of a  vector space E).

Let us show how such a subspace (2 can be obtained. Fix A E 530 . Then, det(zA
)  is a global section of the dual of the determinant of the complex 6 :  c6=
( V I  A )  and thus gives a section (24 E H °(Gr( V ), D e t )  via  the canonical isomor-
phism:

Det D et(6 ,)*0 (A A / A  fl V + )0 (A  V + /A n V + ) *

(where A denotes the top exterior algebra). Then, define SI as the subspace :

E <E24 > g ir(G r(V ), p e t ')
AE.Ba

Note that û is precisely the image of the homomorphism

: ( A A/A n v+)(30 v+/A n v+)* ,  H °(Gr( V ), D et;)
,4 20

defined by twisting the A-component by det(7r4 ). A n explicit expression for (2 is
given by the following :

Lemma 2.1. There exists a  natural factorization

e ( A A / A n 00(A V±/An v+)* >11°(Gr( V), D e t)
4E So

lim (O M " '  A  V/ V+0 (  A k V +  / B) * )
8E33
13 1/'

P r o o f  Let us fix B E .B  such that B ç  V + . Note that the morphism :

0  (  A A/A n v+)0(A v+/A n v+). H °(Gr( V ), D et;)
AE.230

An Vt=-B

factors through a surjection onto  A k V/ V+0 (A  k V + IB) * ,  where k =dim k ( V - B ) .
Therefore, the linear map factors through a surjection onto :
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( A k  17/ v±o(A k v-i-/B)*)
B V

Fixing B  again, observe further that the induced morphism

(4) A k V/ V + O (A k V H°(Gr( V), D e t)
Bg B'
B'g V*

(k = d iM k ( V +  I B )) factors through a surjection onto :
dim( 1/'/B) A

kV + C D ( A k  V + /B) * (2.2)
k=0

Since the set (2.2) is a direct system as B  varies, the statement follows easily.

Theorem 2.3. The Plucker m orphism  Gr( V) — > Pf2 * is  a  closed immersion.

P ro o f  Once the previous lemma has been proved, one proceeds as in [7]. Let
I, the affine open subscheme of PS-2* where the A-coordinate has no zeroes. It is

clear that l ( F A ) g  UA, and  that it is enough to see that )plE, is a closed immersion.
For the sake of clarity, it will be assumed that A= V + . Nevertheless, the general

case presents no extra difficulty. By fixing sections of V —> v/ V + and SI II/<C2 +

>  one has identifications FH=Hom( V/ V+ , V+ )  a n d  U r  =Hom(f2/<C2 + > ,< ( .2+

> ) .  The restriction of the Plücker morphism to  F v ç is now a  morphism :

Hom( V/ V, Hom(f21<f2 + >,<S1 +  >) (2.4)

By Lemma 2.1 one has that :

(
din( v+/.9)

k=0
Bg V+
BE J3

and that < 12+ >  corresponds to B = V+ .  Recalling that V + = lim V ± /B , it follows
that (2.4) is the inverse limit of :

dim( W /B )
Hom( V/ V ± , V + /B )--> H o m ( (1 )  A k V/ V+ O(A k V ± /B)*,<S), + > )

k= 1

where B E 73 is  su c h  th a t  B  V .
Observe that all these spaces are affine schemes, and it then suffices prove that

given B EY 3 such that B  V+ th e  morphism :
dim( r/B)

H O W  V /  V + , V + 0 3 ) — )  1 1  H o m ( A k V/ V + O (A k  V +  / B)* , <S2 + >)
k=1

is a closed immersion. This, however, is trivial since it is the graph of a morphism.

lim A k  V/ V + CD(A k  V + 1 B)*)

Related Grassmannians.
T he Grassm annian o f  th e  dual space. Let ( V , ,  V+ )  be as u su a l. F or a  given
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submodule U  g  Ps ( S  a  k-scheme), we introduce the following notation :

U* :  =Home' s ( U,Cs)

:  = I f  U * continuous)

where the  topology i n  U  is given by  {s fl L/1/1E 3} a n d  C s has th e  discrete
topology. A nd define :

: = V E (P s) * l  f lu O)

: = V E (P s ) l  f lu —=0}

A  long  bu t straightforward check shows tha t the  Grassmannian of ( 0)
exists, where Y3° : =1)1 ° w here AE31.

Nevertheless, there is a canonical isomorphism between the Grassmannian of ( V,
53) and that of ( V ,̀ ), whose expression for rational points is I (L )= L °  .

The case o f  a  m etric space. Assume now  that there is a  given irreducible and
skewsymmetric fo rm  o n  V, T2: V  X  V —) k  s u c h  th a t  V +  i s  m axim al totally
isotropic (( V + ) ± = V + ).

Thus, iT2 :  T V` turns out to be a bicontinuous isomorphism of vector spaces
and it therefore induces an isomorphism G r (  V`)--4 G r (  V).

The composition of the latter isomorphism and I  is an involution, R, of both
G r( V) an d  Gr( V), whose expression at the rational points is given by :

R :  Gr • ( V) — > Gr • ( V)
(2.5)

L LL

3. Picard group of Gr( V)

Restriction of sections. For a pair of rational points M , N EGr'( V) such that
N C M , let Grass (M /N) denote the standard Grassmannian as defined in [7] I. We
know from [I] that the morphism :

j : Grass(M/N) — > Gr( V)

L --> 7r - I (L )

(where 7r : M M /N )  is a closed immersion and that the composite :

Grassk(M/N)—i > Gr( V ) >3 P H °(Gr( V),DetI)* (3.1)

factors through the Pliicker morphism of Grassk(M/N).
Looking at restrictions, we note first that if A E 53 satisfies V/M -1- A = (0) and

N  n A = (0), then j - I (FA )= Fm n , .  It follows that the restriction of the section f2A is
SlmnA, and that the restriction homomorphism of global sections :
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11—> H°(Grassk(M/N), DeIL/N) (3.2)

is surjective.

Picard group

T heorem  3.3. L e t  k  b e  a n  algebraically  closed f ield. A ssum e th at  dim
(Gr( V)).>: 1. T hen, the Picard group  o f  Gr( V ) is isom orphic to Z  an d  th e  line
bundle D e t, is  a  generator.

P ro o f  If dim(Gr( V ))= 1, then Gr( V ) is  the projective line , and w e have
finished.

F o r  th e  general case, recall that the P icard  group of Gr( V ) is canonically
isomorphic to the class group of Cartier divisors, because Gr( V ) is integral.

Fix AEY 3 0 and assume Z A :  
=

G r( V )
-

 FA  (the locus where f2 A vanishes) to be
irreducible. This then implies the exactness of the sequence :

Z —> Pic(Gr( V)) — >Pic(FA)

1 —> Ocr( v)( Z A ) =  De( v

Observe that Pic(FA )=0, since FA  is the spectrum of a factorial ring (see [2] VII §3.
5.). Finally, Det *

v
®" cannot be trivial for n>0, because its space of global sections

has dimension greater than 1 and H °(Gr( V),CG,(v))=k([1])•
The proof is therefore reduced to proving the  following claim : le t k  be  an

algebraically  closed f ield, an d  dim(Gr( V)) 2 .  There ex ists a subspace A E 2 0 o f
V  such  that Z A  is irreducible.

If Gr( V ) is of finite type (that is , V  is finite dimensional), the statement is an
easy consequence of the Bertini Theorem (see [8] 11.8.18 and 111.7.9.1), since Z A  is
precisely a  hyperplane section of the P lticker m orphism . Moreover, the Bertini
Theorem implies that Z A  is irreducible for A  generic.

Assume now  tha t V  is not finite dim ensional. One first proves that if  Z A  is
reducible then its restriction to  a finite dimensional Grassmannian is also reducible.
Since the restriction hom om orphism  of global sections i s  surjective (3.2), one
concludes that this is not possible for generic A , and the result follows.

4. Automorphisms of Grassmannians

The linear group. Fix a pair ( V ,.)  as usual. Given a k-scheme S , Auto s( Vs)
will denote the automorphism group o f  Ps  as an O s -module.

Definition 4.1.
• A  sub- Os -module A g  f7

s, belongs to 2  i f  there ex ists B E.B  such that Ils g A
and the quotient is f ree  o f  f inite type.

• A n automorphism gE A ut o s ( Ps )  is bicontinuous (w .r.t. 2) i f  there ex ists A E
2  such that both g(2 s )  an d  g -

I (A s )  belong to Y3.
• T he linear group, G1( V ), associated w ith ( V,5S), is  the contravariant functor
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over the category o f  k-schemes given by :

S G1( V)(S)={gEAut a ( Ps ) such that g  is bicontinuous}

Theorem 4.2. There exists a  canonical action of  G1( V ) on (the f unctor of
points of ) G r (  V ):

G1( V)XGr • ( V) G r ' (  V)

(g,L )— > g(L )

Moreover, this action preserves Det;', ; th at is, f *D e t v , ''-- f :D e t v ,  w here f : S —>
Gr( V ), g  is an  element o f  G1( V )(S ), and f ,: S  — > Gr( V ) is the transform of  f
under g.

P ro o f  Fix gEG1( V)(S ). Note that it suffices check that g(L ) is a point of the
Grassmannian for arbitrary LEF A (S).

From  L a i s = Ps  it follow s that g (L )eg (2 5 ) -= Ps . Let B E  .Y3 be such that
P(2.)/fis is free of finite type . It follows from [1] that g(L )n .f is =o  a n d  Ps / (g(L)
+I is ) is locally free of finite type, and hence g(L)E G r • ( V)(S), as desired.

The second claim is a direct consequence of the properties of the determinant
([10]) and the exactness of the sequence of complexes (written vertically)

0 — > g(L) e g s  — > g(L)i0g( Prs',) — > g (PW  Iis — > 0

0

     

Vs 0 — * 0

 

(where BEY3 is such that g( )/B'5 /  is  free of finite type).

Projective spaces in Gr( V ) .  For the sake of notation, let us denote simply by
DL  the stalk of Deev̀  at a rational point LEGr( V ). Further, Gr( V ) will be thought
of as a closed subscheme of in ) *  (Theorem 2.3).

Theorem 4.3. Three rational points L I , L 2, L 3  o f  Gr( V ) lie in a line if  L 1 n
L 2 g.L 3 g L I - HL2 an d  both inclusions have codimension I .

I f  this is the case, the line is GrassVL I L 2 ) /(L , n LM EGr( V ) and does not
depend on the choice o f  I - 2 .

P ro o f  Consider the following commutative diagram :

n > A, >c_Y=,.0,,

f.2 > A2

where A : =  A k (A n L i +-•• - FA n L i ) * .  Note that p3, P2, p2 and  n. are surjective.
Fix A .53 such that such that ( VAA-HLM= (0) . It then follows that k = dim( A n
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L I ) does not depend on i and tha t Ak (A n L,)* L,.
Observe that ILI,L2,L31 lie  in  a  line  if:

f hyperplanes of P i f hyperplanes o f  P if
( containing L i ,  L2, L3  J I. containing L I ,  L 2  )

which is equivalent to ker(p 3 )=ker(p 2 0 r ) .  But from the very definition of A3 one
easily sees that they are equal if:

A k (A n L3) g Ak(A nL,)+ Ak(A n L2)
which implies that A n L 3  is contained in  A n L i + A n L 2  and that it has codimen-
sion 1. Observe, however, that this argument also holds for every B E .B  such that
A g B , and hence one concludes that L3 g L i + L 2 has codimension 1, as desired.

When computing the codimension of L 3  L i + L2, one replaces A by B Y 3 such
that B n (0) and A;  by A "( B n L,)) in the previous discussion.

The converse is straightforward.

Recall that n + 2  points of a  n-projective space define a  reference in  it if there
is no  n+1 of them lying in a (n - 1)- dim ensional subspace. For a family { L I E /  o f
subspaces, one defines {L,} : ( EL,)/( n L,).

The previous Theorem is generalized to the following characterization

Theorem 4.4.
• L et { L i } 1 + 2  b e  points o f  Gr( V ) defining a  n-dim ensional reference such

that dimk {L,}= n+ 1. It then holds that Grass"  { L ,}  (k=dim L,I(n,L,),
w hich does not depend on  i, an d  its  value is  1 o r n )  is  a  n-dimensional
projective space contained in Gr( V).

• I f  X = P„gG r(V ), then there ex ists a  reference IL11 +2 in  X  such that
dim,. Q {LE}= n+1 and X = Grassk { L ,}  G r (  V ), where k=1 or k=n. (Note
that k does not depend on {L,} but only  on X ).

Automorphisms o f  Gr( V ) .  Henceforth, Autk-,0.(Gr( V ))  w ill sim ply  be
denoted by Aut(Gr( V)) and similarly for Gr . ( V ). It is clear that the automorphisms
of Gr( V ) are restrictions of linear transformations of PH °(Gr( V),Det;)* via the
Plticker morphism; that is :

Lemma 4.5. L et X  Gr( V ) be a finite dimensional projective space and let 0
be an  automorphism  o f  Gr( V ) .  Then, 0 (X ) is  a  f inite dim ensional projective
space.

Lemma 4.6. Fix  q5EAut (Gr( V )). There then ex ists a unique 0 EAut (Gr .

( V )) with the following properties :
I. i t  i s  an ex tension of  0 (0.1Gr(v)= ch),
2. is an  inclusion-preserving or inclusion-reversing automorphism.
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P ro o f  Let us first define (15 (L ) for LEGr k ( V )(k > 0 ). Choose L'EGr - 1 ( V)
such that L' ŒL and hence P(L / L ') Gr( V ) is a finite dimensional projective space.
Theorem 4.4 implies that there exists a finite family of points {M,} of P(LI L'), such
that :

P(L/L')=-PO{M,}

Using this theorem again and Lemma 4.5, it follows that :

(P (L 7L ))=  Grass'Q {0 (MO}

where r= 1  or r= —1 (here Grass - I (E) for a finite dimensional space E denotes the
grassmannian o f  1-codimensional subspaces o f  E ) .  B y proving that r  is locally
constant and that it is invariant under restrictions P(L/ L')CP(L"/ L')gGr( V )(LC
L"), it follows that r  depends only o n  0.

One now checks that the following definition fulfills the requirements :

U 0(M i ) if r= 1
ck ( L ' ) :  =  

no (M )  if r=  —1

Lemma 4.7. L et V + be f inite dimensional. Then the following conditions are
equivalent :

1. there exists 0  Aut(Gr( V )) with an  inclusion-reversing extension,
2. V is finite dimensional and  dim k  V 2  d im k V + ,
3. there is an  irreducible sk ew sym m etr ic metric in V , such that V +  is  maximal

totally isotropic.

P ro o f  Conditions 2 and 3 are clearly equivalent. The third implies the first
since R , the automorphism of Gr( V ) constructed in  (2.5), extends naturally to an
inclusion-reversing automorphism of G r'( V).

Let us prove that 1 implies 2 . L e t  E Aut(Gr( V )) and let0 EAut(Gr • ( V)) be
its inclusion-reversing extension. Observe that

Gr( V)=Grass - k ( V)

where k=dim k ( V+ ). Since 0  reverses inclusions and leaves Gr( V ) invariant, it
follows that

: G r a s s ' '(  V ) GraSS - k + r ( V ) r Z

Observe that for r= — k —  1, the scheme on the left hand side is a projective space.
By Theorem 4.4, one has that dim k  V = 2k.

The lemmas above enable us to state the following Theorem that includes the
classical results about the automorphism group

Theorem 4.8. The group Aut(Gr( V )) is canonically isomorphic to:
•PG 1(V ) i f  dim k V <  and  dim k V 2 d i m k;



576 F.J. Plaza-Martin

• PG1( V)X Z/2 i f  dimk V <° °  and  dimk V ------ 2dimk  V + (these two connected
components correspond to collineations and  correlations);

• PG1(V) i f  dim k  V < 0 0  and dim,. V < °° ;
• PG1( V ') i f  dim k  V < o o  and dimk  (V / V + ) <co.

(For a group G  with centre Z (G ), define PG : =G /Z(G )).

Remark 1. The two first statements were proved by Chow in  [4], while the
latter two are algebraic versions of the results of Cowen ([5]) and Kaup ([9]), which
were given for Hilbert spaces. A similar group isomorphism cannot be expected for
arbitrary infinite Grassmannians (see §1 of [9] for the case of a Banach space).

From Lemma 4.6 one deduces that the study of automorphism of the Grassman-
nian can therefore be restricted to those with an inclusion-preserving extension.

Nevertheless, since the study of the automorphism group is rather complicated
we shall add some extra structure to the pair ( V,.8) consisting of a separated linear
topology on V with a basis such  th at : 1) d i m k (A +B)/(A  fl B )< °° for all A , B

;  and, 2 )  A E G r • ( V) for a l l  A E .  The completion will be denoted by.
We now define :

G1( V, ) :  =
{O E G 1 (V )(k ) bicontinuous w.r.t.

such that 0(G r( V))=G r( V)

EAut(Gr( V) bicontinuous w.r.t.
:  =

L. with an inclusion-preserving extension

where bicontinuous w.r.t. means that both 0 (A )  an d  çb- I ( A ) E  contain an
element of ( f o r  a ll A

Theorem 4.9. There exist injective morphisms o f  groups

PGI( V, ) — > .4(0 — >  P G I( , f l

such that the composite maps a continuous automorphism o f  V to that canonically
induced on V .

P r o o f  The first morphism is deduced from Theorem 4.2. Now, take 0 E .54().
Since 0-  is inclusion-preserving, we have the following commutative diagram :

Gr( V IL )  — >  Gr( V IL ')  — > Gr( V)

Gr( V / 0(L)) — > Gr( VI 0 ( 0 ) — > Gr( V)

where L 'g L  and L , L 'E &  Theorem 4.8 implies that TL : V I L V I ( L )  is a
morphism of inverse systems as L varies in One therefore obtains an isomorphism

:  V V , which is bicontinuous w.r.t.
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It remains to show that if T b =  A • /d(A. E k*), then 0 = Id . But this follows from
a standard argument about the restriction to  FA and '(F A ) ,  where A E.8 0 ,  L E
and :  Gr( V/L)—> Gr( V).

E xam p le  2 . Assume th a t  d im (  I V + )  is fin ite  and let b e  th e  set o f  all
rational points of Gr( V ).  It then holds that PG1( V)=> PG1( V ,)= >  PG1( V and

Aut(Gr( V ) ) .  Summing up PG1( V)=> Aut(Gr( V ) ) .  T his is  the case of
finite dimensional Grassmannians.

5. Applications to Gr(k((z)))

Global sections on finite G rassm annians. L et us now  assume th a t  V  is  a
finite dimensional k-vector space and that .B is the set of subspaces o f  V . Choose
a basis {e l ,•••,ed} o f  V  such that V + = < e l , • " , e d - , > ,  and let te l

* , - - - ,e 1  be its dual
basis . Let A  now be the set of strictly increasing sequences o f d— r integers S = 0
< s ,< • • • < sd _ , -< d  ;  and for S E A  define As =

Observe tha t {FA s ISE A } is again a  covering o f Gr( V ) and  tha t the rational
points of Gr( V) are precisely the r-dimensional subspaces.

Carrying out similar arguments as above, one sees how to interpret the section
Os i n  terms o f exterior products. More precisely, one  obtains a  natural isomor -

phism:

H°(Gr( V), DetV) — > A' V*

f2s e :; A • • • A el,

where {s1, - •,s,}={1,'••,d} — {s■,•••,sa-,}.
Let 7 r : V  ->  T / '  be a surjective morphism between two k-vector spaces, and let

{e 1,• -• ,e d }  and te id+1,•••,61(d : =dim k (ker 7r)) be bases o f V  a n d  V ' respectively,
such that 7r(e1)=0 for i < d , and 7r(e 1) =  e  for i >d .

The naturally induced morphism between their Grassmannians defined by
7r- l (L )  gives rise to a restriction homomorphism of global sections A' + d  V* —> A '
V*, which consists of the inner contraction w ith  A  ker :

e',*‘ , A • • • A e 'L  if j i =  i for i d,
A••- A  * (5.1)

0 otherwise.

(1 < j c < j 2 < • • • < / , + d d ) .

Global sections on G r (k ( (z ) ) ) .  L e t  V +  be k [[z ] ]  a n d  le t  53 be the family

{ subspaces A g  V  containing z '• k [[z ] ]  as a

subspace of finite codimension (for nE Z)

We need some notation. Let us denote by A the set of Maya diagrams of virtual
cardinal zero; tha t is, the set of strictly increasing sequences of integers S =  {s,},0



{a§ where S: =S— S(N) if S ( M ) S S ( N )
f f 2 s =

otherwise
(5.2)
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such that :
• there exists an integer io  such that S,
• # (S  fl Z <0 )=  # (Z o — S) (condition of virtual cardinal zero).

For the  sake of clarity, z i E V  w ill be denoted by e,. Let A s  b e  the z-adic
completion of the subspace < f e s , l i o >  fo r  a  given Maya diagram S E .J . Observe
that the subschemes IFA,ISE A l are an open covering of Gr( V).

When building global sections ([1]), note that the canonical isomorphisms :

Det *
 / Is , 0 A(A s / As rl A5)0 A(As , 1 A sn A s ) * D e t"  "Is

(where A denotes the highest exterior power and S, S'Es3) induce isomorphisms
gi ss' : Det( 6 pet( 6 Aes ) .

Moreover, these isomorphisms can be chosen in a compatible way ;  that is (bss-
= q5s-s- 0  '4ss'. This compatibility is based on the face that there is a "good choice"
for a basis o f A (A s /As n A o 0 A (A a A s  n A y r  ; namely, e J 0 4  where ej :  = e f i

A•••Ae,„, : A •••A e:„ e7(ei ) =6 ,,, J=S — (S ns ') and K = S '— (S n s
-
).

Then, the canonical global section det(r A s )EH °
(Gr( V), Det * ( A' s)) gives rise

to  a global section of H ° (Gr( V), D et;), f2s , via the isomorphism 6 t=> 6 It is
easy to check that th e  Pliicker morphism Gr( V) ±  K 2 * is  w ell defined , tha t is,
defined at every point (S2 being <{f2s}se >).

In this situation the restriction of ,f2s (S E A )  by the homomorphism (3.2) admits
a  nice description :

where S(M ) and S (N ) are Maya diagrams (but no t of virtual cardinal zero) such
that : M E N E  F A . , ,  and S(M )g S (N ).

Equations of G r(k (z ) ) ) . Take L ,:  = < {e i }J .( ; >  for an integer i.  Note that L,
E G I'( V). Denote by j, the induced morphism Grass (L1L_,)—> Gr. "( V) and letG,
be  Grass(LIL_,) n Gr( V ) .  Recall from (3.1) tha t the com posite G, — ) Gr( V) — )
PSI* factors through P (  A ' L i / L _ ,). Therefore, th e  corresponding commutative
diagram of structural sheaves is the following :

(S",(2) - -

J.
OGr( V)

( S  ' ( A ( e l - r (G „ D e t * ® d ) ) -
d 0-

where denotes the homogeneous localization and S ' the symmetric algebra. Let
/ be the kernel of and /, that of Theorem 2.3 implies that these ideals are the
equations defining G r(k((z))) and Gh  respectively.

Denote by t the restriction morphism A'(Li/L_,)*, which is known to be
surjective by (3 .2 ). Let us denote by < X >  the free k-module generated by a set X.
Let ,521, be the set of strictly increasing sequences — i 1. Note
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that A`(LIL_,) .  <  > ,  11:= < se3 > and that /7 is the morphism induced by the
map (see (5.2))

0 otherwise

This morphism has a  natural section ;  namely :

Let cr, be the induced morphism S • < >  S • <
Bearing i n  mind (5 .1 ), o n e  constructs surjections s3, — > ,s3, (for j> i)  and

sections A i  — > .53i , which render the family {A } ,  an inverse system and a direct
system, respectively. Moreover, one has :

se3= lim  J3;l i m

from which one has that S . <  > limS•<.0 1 >  ; and hence :

i= n 6 ,(s•< A ,> )) lim (t,*/  n s•<4>)
for every submodule /OES . <,s3>.

Since S • (A i L i /L_ ; ) =S • < 4 > ,  o n e  h as th at 1=  lim (t71 1). T h e  same
argument also implies that I  is generated by its degree 2 homogeneous component,
since I ,  does (this is a classical result). That is, the ideal I is generated by the union
of the generators of I ,  for a ll i.

We have thus proved the following :

Theorem  5.3. Gr( V ) is def ined by  the set of all (finite) Plucker equations.

Automorphisms of G r(k ((z ))). In  this case, one consider on k((z )) the skew-
symmetric form defined by T2 (z i ,z-1) : = 6 1+ 1 ,1 when i >.j. Then, it follows easily that
A ut(G r k ((z ))) m o d u lo  th e  subgroup o f  automorphisms w ith  a n  inclusion-
preserving extension is isomorphic to Z/2 and that the automorphism R of 2.5 is a
generator.

It is now clear that it is not possible to represent arbitrary elements o fp fik ((z )))
as m atrices. For instance, if is the set of subspaces {z"• k [z - I ]I,Ez, then V= k [[z - I  ,
z ]].  So, there is an associated Z X Z-matrix to every gEG l( V ), but one recovers g
from the matrix if it is continuous w.r.t. the  z-adic topology. This fact implies
further relations between G1( V  and the group Gl,„ of [16].

{so,•••,si_1} if  — i so and  si =j for all j> i{
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